Machine Learning for Signal Processing Expectation Maximization Mixture Models Bhiksha Raj Class 10. 3 Oct 2013

Administrivia

- HW2 is up
 - A final problem will be added
 - You have four weeks
 - It's a loooooong homework
 - About 12-24 hours of work
- Does everyone have teams/project proposals
- Begin working on your projects immediately..

Oct 2011 11755/18797

I'm not the only one to find the high-pitched stuff annoying

- Sarah McDonald (Holy Cow): ".. shrieking..."
- Khazana.com: ".. female Indian movie playback singers who can produce ultra high frequncies which only dogs can hear clearly.."
- www.roadjunky.com: ".. High pitched female singers doing their best to sound like they were seven years old .."

3 Oct 2011 11755/18797

Lets Fix the Song

- The pitch is unpleasant
- The melody isn't bad
- Modify the pitch, but retain melody
- Problem:
 - $\boldsymbol{-}$ Cannot just shift the pitch: will destroy the music
 - The music is fine, leave it alone
 - Modify the singing pitch without affecting the music

3 Oct 2011 11755/18797

"Personalizing" the Song

- $\bullet\,$ Separate the vocals from the background music
 - Modify the separated vocals, keep music unchanged
- · Separation need not be perfect
 - Must only be sufficient to enable pitch modification of vocals
 - Pitch modification is tolerant of low-level artifacts
 - For octave level pitch modification artifacts can be undetectable.

3 Oct 2011 11755/18797

Techniques Employed

- · Signal separation
 - Employed a simple latent-variable based separation method
- · Voice modification
 - Equally simple techniques
- Separation: Extensive use of Expectation Maximization

3 Oct 2011 11755/18797 11

Learning Distributions for Data

- Problem: Given a collection of examples from some data, estimate its distribution
- Solution: Assign a model to the distribution
 - Learn parameters of model from data
- Models can be arbitrarily complex
 - Mixture densities, Hierarchical models.
- Learning must be done using Expectation Maximization
- Following slides: An intuitive explanation using a simple example of multinomials

Oct 2011 11755/18797 12

A Thought Experiment

6215/12/

- · A person shoots a loaded dice repeatedly
- You observe the series of outcomes
- · You can form a good idea of how the dice is loaded
 - Figure out what the probabilities of the various numbers are for dice
- P(number) = count(number)/sum(rolls)
- This is a maximum likelihood estimate
 - Estimate that makes the observed sequence of numbers most probable

3 Oct 2011 11755/18797 1:

The Multinomial Distribution

• A probability distribution over a discrete collection of items is a *Multinomial*

P(X : X belongs to a discrete set) = P(X)

- · E.g. the roll of dice
 - X: X in (1,2,3,4,5,6)
- · Or the toss of a coin
 - X: X in (head, tails)

Oct 2011 11755/18797

Maximum Likelihood Estimation

- Basic principle: Assign a form to the distribution
- E.g. a multinomial
- Or a Gaussian
- Find the *distribution* that best fits the histogram of the data

3 Oct 2011 11755/18797

Defining "Best Fit"

- The data are generated by draws from the distribution
 - I.e. the generating process draws from the distribution
- Assumption: The world is a boring place
 - The data you have observed are very typical of the process
- Consequent assumption: The distribution has a high probability of generating the observed data
 - Not necessarily true

E 0.2

- Select the distribution that has the highest probability of generating the data
 - Should assign lower probability to less frequent observations and vice versa

3 Oct 2011 11755/18797 16

Segue: Gaussians

Maximum Likelihood Estimation: Multinomial

• Probability of generating (n₁, n₂, n₃, n₄, n₅, n₆)

 $P(n_1, n_2, n_3, n_4, n_5, n_6) = Const \prod p_i^{n_i}$

- Find p₁,p₂,p₃,p₄,p₅,p₆ so that the above is maximized
- Alternately maximize

 $\log(P(n_1, n_2, n_3, n_4, n_5, n_6)) = \log(Const) + \sum_{i} n_i \log(p_i)$

- Log() is a monotonic function
- $\operatorname{argmax}_{x} f(x) = \operatorname{argmax}_{x} \log(f(x))$
- Solving for the probabilities gives us
 - Requires constrained optimization to ensure probabilities sum to 1

EVENTUALLY ITS JUST COUNTING!

ct 2011 11755/18797

• Parameters of a Gaussian:

- Mean μ , Covariance Θ

Oct 2011 11755/18797 18

Maximum Likelihood: Gaussian

• Given a collection of observations $(X_1, X_2,...)$, estimate mean μ and covariance Θ

$$P(X_1, X_2,...) = \prod_{i} \frac{1}{\sqrt{(2\pi)^d |\Theta|}} \exp(-0.5(X_i - \mu)^T \Theta^{-1}(X_i - \mu))$$

$$\log(P(X_1, X_2,...)) = C - 0.5\sum(\log(|\Theta|) + (X_i - \mu)^T \Theta^{-1}(X_i - \mu))$$

• Maximizing w.r.t μ and Θ gives us

$$\mu = \frac{1}{N} \sum_{i} X_{i} \qquad \Theta = \frac{1}{N} \sum_{i} (X_{i} - \mu)(X_{i} - \mu)^{T}$$

ITS STILL
JUST
COUNTING!

3 Oct 2011 11755/18797

Maximum Likelihood: Laplacian

 Given a collection of observations (x₁, x₂,...), estimate mean μ and scale b

$$\log(P(x_1, x_2,...)) = C - N\log(b) - \sum_i \frac{|x_i - \mu|}{b}$$

• Maximizing w.r.t μ and b gives us

$$\mu = \frac{1}{N} \sum_{i} x_i \qquad b = \frac{1}{N} \sum_{i} |x_i - \mu|$$

3 Oct 2011 11755/18797

Maximum Likelihood: Dirichlet

• Given a collection of observations ($X_1, X_2,...$), estimate α

$$\log(P(X_1, X_2, ...)) = \sum_{i} \sum_{i} (\alpha_i - 1) \log(X_{j,i}) + N \sum_{i} \log(\Gamma(\alpha_i)) - N \log\left(\Gamma\left(\sum_{i} \alpha_i\right)\right)$$

- No closed form solution for αs .
 - Needs gradient ascent
- Several distributions have this property: the ML estimate of their parameters have no closed form solution

3 Oct 2011 11755/18797 23

Continuing the Thought Experiment

63154124...

44163212...

- Two persons shoot loaded dice repeatedly
 - The dice are differently loaded for the two of them
- We observe the series of outcomes for both persons
- How to determine the probability distributions of the two dice?

2011 11755/18797 24

Mixture Distributions

 $P(X) = \sum P(Z)N(X; \mu_z, \Theta_z)$

Mixture weights Component distributions

Mixture of Gaussians and Laplacians

 $P(X) = \sum P(Z)N(X; \mu_z, \Theta_z) + \sum P(Z) \prod L(X_i; \mu_z, b_{z,i})$

- Mixture distributions mix several component distributions
 - Component distributions may be of varied type
- Mixing weights must sum to 1.0
- Component distributions integrate to 1.0
- Mixture distribution integrates to 1.0

Maximum Likelihood Estimation

• For our problem: $P(X) = \sum P(Z)P(X|Z)$ - Z = color of dice

 $P(n_1, n_2, n_3, n_4, n_5, n_6) = Const \prod P(X)^{n_X} = Const \prod \sum P(Z)P(X|Z)$

· Maximum likelihood solution: Maximize

$$\log(P(n_1, n_2, n_3, n_4, n_5, n_6)) = \log(Const) + \sum_{X} n_X \log\left(\sum_{Z} P(Z)P(X \mid Z)\right)$$

- No closed form solution (summation inside log)!
 - In general ML estimates for mixtures do not have a closed form
 - USE EM!

3 Oct 2011

11755/18797

Expectation Maximization

- It is possible to estimate all parameters in this setup using the Expectation Maximization (or EM) algorithm
- First described in a landmark paper by Dempster, Laird and
 - Maximum Likelihood Estimation from incomplete data, via the EM Algorithm, Journal of the Royal Statistical Society, Series B, 1977
- · Much work on the algorithm since then
- The principles behind the algorithm existed for several years prior to the landmark paper, however.

11755/18797 3 Oct 2011 33

Expectation Maximization

- · Iterative solution
- · Get some initial estimates for all parameters
 - Dice shooter example: This includes probability distributions for dice AND the probability with which the caller selects the dice
- Two steps that are iterated:
 - Expectation Step: Estimate statistically, the values of unseen variables
 - Maximization Step: Using the estimated values of the unseen variables as truth, estimates of the model parameters

11755/18797

Solution: FRAGMENT THE OBSERVATION

EM: The auxiliary function

- · EM iteratively optimizes the following auxiliary function
- $Q(\theta, \theta') = \Sigma_Z P(Z|X,\theta') \log(P(Z,X \mid \theta))$
 - -Z are the unseen variables
 - Assuming Z is discrete (may not be)
- θ' are the parameter estimates from the previous iteration
- θ are the estimates to be obtained in the current iteration

11755/18797

Expectation Maximization as counting Dice: The identity of the dice whose number has been called out If we knew Z for every observation, we could estimate all terms - By adding the observation to the right bin • Unfortunately, we do not know Z – it is hidden from us!

Fragmenting the Observation

- EM is an iterative algorithm
 - At each time there is a *current* estimate of parameters
- The "size" of the fragments is proportional to the a posteriori probability of the component distributions
 - The a posteriori probabilities of the various values of Z are computed using Bayes' rule:

$$P(Z \mid X) = \frac{P(X \mid Z)P(Z)}{P(X)} = CP(X \mid Z)P(Z)$$

• Every dice gets a fragment of size P(dice | number)

3 Oct 2011 11755/18797

Expectation Maximization

- Hypothetical Dice Shooter Example:
- · Initial estimate:
 - P(blue) = P(red) = 0.5
 - P(4 | blue) = 0.1, for P(4 | red) = 0.05
- Caller has just called out 4
- · Posterior probability of colors:

 $P(red \mid X = 4) = CP(X = 4 \mid Z = red)P(Z = red) = C \times 0.05 \times 0.5 = C0.025$ $P(blue \mid X = 4) = CP(X = 4 \mid Z = blue)P(Z = blue) = C \times 0.1 \times 0.5 = C0.05$

Normalizin g : P(red | X = 4) = 0.33; P(blue | X = 4) = 0.67

3 Oct 2011 11755/18797

Expectation Maximization

 Every observed roll of the dice contributes to both "Red" and "Blue"

3 Oct 2011 11755/18797 41

Expectation Maximization • Every observed roll of the dice contributes to both "Red" and "Blue" 6 (0.8) 6 (0.2)

- Total count for "Red": 7.31
- Total count for "Blue": 10.69
- Total instances = 18
 - Note 7.31+10.69 = 18
- · We also revise our estimate for the probability that the caller calls out
 - i.e the fraction of times that he calls Red and the fraction of times he calls Blue
- P(Z=Red) = 7.31/18 = 0.41
- P(Z=Blue) = 10.69/18 = 0.59

3 Oct 2011 11755/18797

ation						•					
					Proba	bility of Red	d dice:				
ed	P(red X)	P(blue X)					1/7.31 = 0.234		Called	P(red X)	P(blue)
	.8	.2					66/7.31 = 0.077		6	.8	.2
	.33	.67							4	.33	.67
	.33	.67			□ P(3	Red = 0.6	66/7.31 = 0.090		5	.33	.67
	.57	.43			P(4	Red = 1.3	2/7.31 = 0.181		1	.57	.43
	.14	.86			P(5	Red = 0.6	6/7.31 = 0.090		2	.14	.86
	.33	.67			n P(6	IRed) = 24	0/7.31 = 0.328		3	.33	.67
	.33	.67							4	.33	.67
	.33	.67				bility of Blu			5	.33	.67
	.14	.86			P(1	Blue) = 1.2	29/11.69 = 0.122	2	2	.14	.86
	.14	.86			P(2	Blue) = 0.5	56/11.69 = 0.322	2	2	.14	.86
	.57	.43			P(3)	I Blue) = 0.6	66/11.69 = 0.125	5	1	.57	.43
	.33	.67					32/11.69 = 0.250		4	.33	.67
	.33	.67							3	.33	.67
	.33	.67					66/11.69 = 0.125		4	.33	.67
	.8	.2			P(6	Blue) = 2.4	10/11.69 = 0.056	5	6	.8	.2
	.14	.86		• D/7	-Red) -	7.31/18 = 0	11		2	.14	.86
	.57	.43		,					1	.57	.43
	.8	.2		 P(Z 	:=Blue)	= 10.69/18 =	0.59		6	.8	.2
	7.31	10.69	THE UPDATED VALUES CAN BE USED TO REPEAT THE PROCESS. ESTIMATION IS AN ITERATIVE PROCESS								
TROCESS. ESTIMATION IS AN ITEMATIVE TROCESS											

The updated values

Solutions may not be unique

- The EM algorithm will give us one of many solutions, all equally valid!
 - The probability of 6 being called out:

$P(6) = \alpha P(6 \mid red) + \beta P(6 \mid blue) = \alpha P_r + \beta P_b$

- Assigns P_{r} as the probability of 6 for the red die
- Assigns P_{b} as the probability of 6 for the blue die
- The following too is a valid solution [FIX]

$$P(6) = 1.0(\alpha P_r + \beta P_b) + 0.0 anything$$

- Assigns 1.0 as the a priori probability of the red die
- Assigns 0.0 as the probability of the blue die
- The solution is NOT unique

3 Oct 2011

A more complex model: Gaussian mixtures

- A Gaussian mixture can represent data distributions far better than a simple
- The two panels show the histogram of an unknown random variable
- The first panel shows how it is modeled by a simple Gaussian
- The second panel models the histogram by a mixture of two Gaussians
- Caveat: It is hard to know the optimal number of Gaussians in a mixture

A More Complex Model $P(X) = \sum_{k} P(k)N(X; \mu_k, \Theta_k) = \sum_{k} \frac{P(k)}{\sqrt{(2\pi)^d |\Theta_k|}} \exp\left(-0.5(X - \mu_k)^T \Theta_k^{-1}(X - \mu_k)\right)$ • Gaussian mixtures are often good models for the distribution of multivariate data • Problem: Estimating the parameters, given a collection of data

EM for Gaussian Mixtures

- 1. Initialize P(k), μ_k and Θ_k for all Gaussians
- 2. For each observation X compute *a posteriori* probabilities for all Gaussian

$$P(k \mid X) = \frac{P(k)N(X; \mu_k, \Theta_k)}{\sum_{i} P(k')N(X; \mu_k, \Theta_{k'})}$$

3. Update mixture weights, means and variances for all Gaussians

$$P(k) = \frac{\sum_{X} P(k|X)}{N} \qquad \mu_k = \frac{\sum_{X} P(k|X)}{\sum_{X} P(k|X)}$$

$$\mu_k = \frac{\sum_{X} P(k|X) X}{\sum_{X} P(k|X)}$$

$$\Theta_{k} = \frac{\sum_{X} P(k|X) (X - \mu_{k})^{2}}{\sum_{K} P(k|X)}$$

4. If not converged, return to 2

3 Oct 2011 11755/18797

EM estimation of Gaussian Mixtures

• An Example

Histogram of 4000 instances of a randomly generated data

3 Oct 2011

Histogram of 4001

Individual parameters of a two-Gaussian mixture estimated by EM

Two-Gaussian mixture

Expectation Maximization

- The same principle can be extended to mixtures of other distributions.
- E.g. Mixture of Laplacians: Laplacian parameters become

$$\mu_{k} = \frac{1}{\sum_{x} P(k \mid x)} \sum_{x} P(k \mid x) x \qquad b_{k} = \frac{1}{\sum_{x} P(k \mid x)} \sum_{x} P(k \mid x) |x - \mu_{k}|$$

 In a mixture of Gaussians and Laplacians, Gaussians use the Gaussian update rules, Laplacians use the Laplacian rule

3 Oct 2011 11755/18797

Expectation Maximization

- The EM algorithm is used whenever proper statistical analysis of a phenomenon requires the knowledge of a hidden or missing variable (or a set of hidden/missing variables)
 - The hidden variable is often called a "latent" variable
- Some examples:
 - Estimating mixtures of distributions
 - Only data are observed. The individual distributions and mixing proportions must both be learnt.
 - $\,-\,$ Estimating the distribution of data, when some attributes are missing
 - Estimating the dynamics of a system, based only on observations that may be a complex function of system state

3 Oct 2011 11755/18797 77

Solve this problem:

- Problem 1:
 - Caller rolls a dice and flips a coin

- He calls out the number rolled if the coin shows head
- Otherwise he calls the number+1
- Determine p(heads) and p(number) for the dice from a collection of outputs
- Problem 2:
 - Caller rolls two dice
 - He calls out the sum
 - Determine P(dice) from a collection of ouputs

3 Oct 2011 11755/18797 7

• Unknown: Whether it was head or tails

3 Oct 2011 11755/18797

The two dice

- Unknown: How to partition the number
- Count_{blue}(3) += P(3,1 | 4)
- Count_{blue}(2) += P(2,2 | 4)
- Count_{blue}(1) += P(1,3 | 4)

Oct 2011 11755/18797

Fragmentation can be hierarchical

- E.g. mixture of mixtures
- Fragments are further fragmented..
- Work this out

3 Oct 2011 11755/18797

More later

- Will see a couple of other instances of the use of EM
- EM for signal representation: PCA and factor analysis
- EM for signal separation
- EM for parameter estimation
- EM for homework..

3 Oct 2011 11755/18797