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Statistical Modelling and Latent
Structure

* Much of statistical modelling attempts to identify /atent structure in
the data
— Structure that is not immediately apparent from the observed data
— But which, if known, helps us explain it better, and make predictions
from or about it

* Clustering methods attempt to extract such structure from
proximity
— First-level structure (as opposed to deep structure)
* We will see other forms of latent structure discovery later in the

course
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Why Clustering

* Automatic grouping into “Classes”
— Different clusters may show different behavior

* Quantization

— All data within a cluster are represented by a
single point

* Preprocessing step for other algorithms
— Indexing, categorization, etc.
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Finding natural structure in data
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* Find natural groupings in data for further analysis
* Discover latent structure in data
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Some Applications of Clustering

* Image segmentation




Representation: Quantization

TRAINING QUANTIZATION

* Quantize every vector to one of K (vector) values

¢ What are the optimal K vectors? How do we find them? How do
we perform the quantization?

* LBG algorithm

Representation: BOW

Representation: Each number is the

Training: Each pointis a video frame #frames assigned to the codeword

17
/30

* Bag of words representations of
video/audio/data
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Clustering Criterion

* The “Clustering criterion” actually has two
aspects

* Cluster compactness criterion

— Measure that shows how “good” clusters are
* The objective function

* Distance of a point from a cluster
— To determine the cluster a data vector belongs to

10 Oct 2013

LS
Representation: BOW
PSY - GANGNAM STYLE (2!
* How to retrieve all music videos by this guy?
* Build a classifier
— But how do you represent the video?
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Obtaining “Meaningful” Clusters

* Two key aspects:

— 1. The feature representation used to characterize
your data

— 2. The “clustering criteria” employed

10 Oct 2013
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“Compactness” criteria for clustering

* Distance based measures

— Total distance between each
element in the cluster and
every other element in the
cluster
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“Compactness” criteria for clustering
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* Distance based measures ‘ XZE‘

TN\ -
— Total distance between each ( E \\
¥
S

element in the cluster and every
other element in the cluster

J

— Distance between the two farthest / I \

points in the cluster ( / )

— Total distance of every element in NS
the cluster from the centroid of the | \\
cluster \_ )
~ 7

— Distance measures are often -

weighted Minkowski metrics 4 A
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Clustering: Distance from cluster

* How far is a data point from a VRN
cluster? \J 7T
N

— Euclidean or Minkowski distance
from the centroid of the cluster
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Clustering: Distance from cluster

* How faris a data point froma TN
cluster? [ =T
) . . o /
— Euclidean or Minkowski distance D

from the centroid of the cluster

— Distance from the closest pointin

the cluster
— Distance from the farthest point in \ ° = \;
the cluster \'/;//(’

— Probability of data measured on
cluster distribution

— Fit of data to cluster-based
regression
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Optimal clustering: Exhaustive enumeration

* All possible combinations of data must be evaluated

— If there are M data points, and we desire N clusters, the
number of ways of separating M instances into N clusters is

L& (N)
M;en(ij(zv—z)

— Exhaustive enumeration based clustering requires that the
objective function (the “Goodness measure”) be evaluated
for every one of these, and the best one chosen

* This is the only correct way of optimal clustering
— Unfortunately, it is also computationally unrealistic
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Probability of analog value
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Not-quite non sequitur: Quantization
Signal Value Bits | Mapped to
S >=3.75v 11 | 3* const
3.75v > § >=2.5v 10 |2 * const
25v>8>=125v |01 |1*const

1.25v > S >= 0v 0 0

PETETETETETT

Analog value (arrows are quantization levels)

Linear quantization (uniform quantization):

— Each digital value represents an equally wide range of analog values
— Regardless of distribution of data

— Digital-to-analog conversion represented by a “uniform” table
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Non-uniform quantization

Probability of analog value

Analog value

« |If data distribution is not Gaussian-ish?
— Mu-law / A-law are not optimal

— How to compute the optimal ranges for quantization?
* Or the optimal table

10 Oct 2013

Lloyd Quantizer

* Randomly initialize
quantization points

— Right column entries of
quantization table
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Not-quite non sequitur: Quantization
v
—g Signal Value Bits Mapped to
> =
S S >=4v 11 4.5
S 4v > S >=25v 10 3.25
<
2 25v>8>=1v 01 1.25
N 1.0v > S >= Ov 0 05
£
E TiTiTiTiAiAiA
S A A
A Analog value (arrows are quantization levels)
* Non-Linear quantization:
— Each digital value represents a different range of analog values
* Finer resolution in high-density areas
* Mu-law / A-law assumes a Gaussian-like distribution of data
— Digital-to-analog conversion represented by a “non-uniform” table
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The Lloyd Quantizer
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Probability of analog value

Analog value (arrows show quantization levels)

¢ Lloyd quantizer: An iterative algorithm for computing optimal
quantization tables for non-uniformly distributed data

¢ Learned from “training” data
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Lloyd Quantizer

* Randomlyinitialize
quantization points

— Right column entries of
quantization table

* Assign all training points to
the nearest quantization
point

— Draw boundaries
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Lloyd Quantizer

* Randomlyinitialize
quantization points

— Right column entries of
quantization table

* Assign all training points to
the nearest quantization
point

— Draw boundaries

* Reestimate quantization
points

BT
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Generalized Lloyd Algorithm: K-means clustering

* K meansis an iterative algorithm for clustering vector
data
— McQueen, J. 1967. “Some methods for classification and
analysis of multivariate observations.” Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Probability,
281-297

* General procedure:
— Initially group data into the required number of clusters
somehow (initialization)
— Assign each data point to the closest cluster
— Once all data points are assigned to clusters, redefine clusters

— lterate

10 Oct 2013

1.

K-means

Initialize a set of centroids
randomly

Lloyd Quantizer

* Randomlyinitialize
quantization points

— Right column entries of
quantization table

* Assign all training points to
the nearest quantization
point

— Draw boundaries

* Reestimate quantization
points

Iterate until convergence
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K—-means

¢ Problem: Given a set of data
vectors, find natural clusters

¢ Clustering criterion is scatter:
distance from the centroid
—  Every cluster has a centroid
—  The centroid represents the cluster

* Definition: The centroid is the
weighted mean of the cluster
—  Weight =1 for basic scheme 1
mc/uster = Z Wixi
Z Wl‘ iecluster

iecluster

10 Oct 2013 40

K-—means

1. Initialize a set of centroids
randomly

2. For each data point x, find the
distance from the centroid for g
each cluster ¢

*d

= distance(x,m,,) "o

cluster
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Initialize a set of centroids
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For each data point x, find the
distance from the centroid for
each cluster
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K—-means

1. Initialize a set of centroids
randomly

2. For each data point x, find the
distance from the centroid for
each cluster
. dcln.\re/‘ = diStance(xv m(/uxler)

3. Put data point in the cluster of the
closest centroid
*  Cluster for which dge, is

minimum

4. When all data points are
clustered, recompute centroids
! "

K—means

Initialize a set of centroids
randomly
For each data point x, find the
distance from the centroid for
each cluster
A usier
Put data point in the cluster of the
closest centroid
*  Cluster for which dge, is
minimum
When all data points are
clustered, recompute centroids

= distance(x, m,,, )

m, 1 wx,
= W,
ctuster X
ZW‘ iecluster

reclusier

If not converged, go back to 2

K-Means comments

* The distance metric determines the clusters

— In the original formulation, the distance is L, distance
* Euclidean norm, w; =1
1
>,

custer |12 Metuser = 37— :
cluster i<cluster

distance, ., (x,m,,,,,) = x—m

cluster
— If we replace every x by m..(x), we get Vector
Quantization
¢ K-means is an instance of generalized EM

* Not guaranteed to converge for all distance
metrics
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Initialization

* Random initialization

* Top-down clustering

— Initially partition the data into two (or a small
number of) clusters using K means

— Partition each of the resulting clusters into two
(or a small number of) clusters, also using K
means

— Terminate when the desired number of clusters
is obtained

10 Oct 2013
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K-Means for Top—Down clustering

1 Start with one cluster e ®
(o o o)
° o
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K-Means for Top—Down clustering
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AN O,i 70/7 /
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K-Means for Top—Down clustering
1 Start with one cluster e ®
(0 Oe @
. . AN S
2. Split each cluster into two: — 9
o Perturb centroid of cluster slightly (by < 5%) to
generate two centroids 7 g ~
( o)
N
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K-Means for Top—Down clustering
1 Start with one cluster e ®
. . NI A
2. Split each cluster into two: — 2
o Perturb centroid of cluster slightly (by < 5%) to o
generate two centroids I
( %La
3. Initialize K means with new set of N~ o S
centroids
N
R / .\’/f \
4. Iterate Kmeans until convergence ( o/”*é;'d.
A - \ /!
N4
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K-Means for Top—Down clustering
1 Start with one cluster e &
( Oe ©)
. . N.° 5
2. Split each cluster into two: —
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generate two centroids
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K-Means for Top—Down clustering
1 Start with one cluster e ®
(0 Qe @)
N © /
2. Split each cluster into two: ——
o Perturb centroid of cluster slightly (by < 5%) to
generate two centroids e _ p
( 0\.-\.'-3&*
3. Initialize K means with new set of o~ O/;é/
centroids
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K-Means for Top—Down clustering
1. Start with one cluster e &
( Oe ©)
N9y /

2. Split each cluster into two: — 2

— Perturb centroid of cluster slightly (by < 5%) to
generate two centroids

3. Initialize K means with new set of > O/;é
centroids —
4. lterate Kmeans until convergence ( o/*é)f.
A \ /!
N4
e J/‘ \\\
) o
. © /| |
— 0 /
10 Oct 2013 N/ 5
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K-Means for Top—Down clustering
Start with one cluster s AN
Split each cluster into two: — —

— Perturb centroid of cluster slightly (by < 5%) to o

generate two centroids p N .

( Oﬁ..)zoa )

Initialize K means with new set of ™ 7% -

centroids

Iterate Kmeans until convergence OT-.}é)fo\
If the desired number of clusters is not N
obtained, returnto 2 2\
—a /® \\

0 ) o e

\ b )
10 Oct 2013 \ ‘\,//

Non-Euclidean clusters

o . :
b ) > eyl \
\ X=X '

; oo /
( ) /\y=y( y @

\ z=o(x2+y?

NS S

e o o

* For other forms of clusters we must modify the dfstance measure
— E.g. distance from a circle

* May be viewed as a distance in a higher dimensional space
— l.e Kernel distances
— Kernel K-means

* Other related clustering mechansims:

— Spectral clustering
— Non-linear weighting of adjacency

— 1Normalized cuts..

10 Oct 2C

s
Distance in higher-dimensional space

* Transform data x through a possibly unknown
function ®(x) into a higher (potentially infinite)
dimensional space

—z=D(x)

¢ The distance between two points is computed in
the higher-dimensional space
—d(x;, Xp) = |124-2,] |2 = | |D(x) - D(x,) | |

* d(x,, X,) can be computed without computing z
— Since it is a direct function of x, and x,

10 Oct 2013

] e |
Non-Euclidean clusters
Cet
T .. e T
Teeet
* Basic K-means results in good clusters in
Euclidean spaces
— Alternately stated, will only find clusters that are
“good” in terms of Euclidean distances
* Will not find other types of clusters
MLSH

The Kernel Trick

o . ’
¥ " > eyl \
\ X=X '

A
ooy 7]
( | Jy=y - @

\\ | 2= a(x?+y2)

A e

e o o

* Transform the data into a synthetic higher-dimensional space where

the desired patterns become natural clusters
— E.g. the quadratic transform above

¢ Problem: What is the function/space?

* Problem: Distances in higher dimensional-space are more expensive
to compute

— Yet only carry the same information in the lower-dimensional space
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Distance in higher-dimensional space

« Distance in lower-dimensional space: A combination of
dot products

= Hzy-2,| 12 = (2y- 2,)"(2y- 2,) = 202, + 2,.2,-2 2,2,

« Distance in higher-dimensional space
= d(x;, X,) =| | ®(x;) = D(x,) | |2
= D(x). D(x;) + D(x,). D(x,) -2 D(x;). D(x,)

* d(x,, x,) can be computed without knowing ®(x) if:

— @(x,). D(x,) can be computed for any x, and x, without
knowing ®(.)
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The Kernel function

A kernel function K(x,,x,) is a function such that:
- K(x,,x,) = D(x,). D(x,)

Once such a kernel function is found, the distance
in higher-dimensional space can be found in
terms of the kernels
—d(x;, X)) =| | D(x)) - D(x,) | |?

= O(x;). D(x;) + D(x,). D(x,)-2 D(x;). D(x,)

= K(x,,x;) + K(x,,x,) - 2K(x,,x5)

But what is K(x,,x,)?

The Mercer Condition

If z = ®(x) is a high-dimensional vector derived
from x then for all real {a,, a,, ...} and any set {z,,
Z,, ... } = {D(x;), D(x,),...}

—-% %9827z, >=0

- % 38,3 0(x).O(x)) >=0

If K(f,x,) = D(x;). D(x,)

= 3 K(x;x;) >=0

Any function K() that satisfies the above condition
is a valid kernel function

Typical Kernel Functions
Linear: K(x,y) =x"y + ¢
Polynomial K(x,y) = (ax"y + c)"
Gaussian: K(x,y) = exp(-| |x-y| | %/c?)
Exponential: K(x,y) = exp(-| | x-y| [/A\)
Several others

— Choosing the right Kernel with the right
parameters for your problem is an artform

e |
A property of the dot product
* Forany vectorv,vlv=||v||? >=0
— This is just the length of v and is therefore non-
negative
* Foranyvectoru=2X av, ||u||?>=0
=> (%, a; V)" (Z;a,v) >=0
=>%, X3 vy, >=0
* This holds for ANY real {a,, a,, ...}
MLSH

The Mercer Condition

o K(xy,%,) = O(x,). D(x,)
=> % %83 K(x;,x) >=0

A corollary: If any kernel K{(.) satisfies the Mercer
condition
d(x,, Xp) = K(x;,x;) + K(x,,%;) - 2K(x,,x;)
satisfies the following requirements for a
“distance”
—d(x,x)=0
—d(x,y)>=0
—d(x,w) +d(w,y) >=d(x,y)

Kernel K-means

A

v

o
e

// \\ K(x,y)= (xTy + c)? \

@)

.

L

* Perform the K-mean in the Kernel space

— The space of z = O(x)

* The algorithm..
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The mean of a cluster

¢ The average value of the points in the cluster computed in the
high-dimensional space

1
mm=ﬁ—mem

cluster i€cluster

. Alternately the weighted average

1
Mo =55 — 2 WP()=C > w(x)
Z W, iecluster iecluster
iecluster
10 Oct 2013 73
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K-means
- ) 1
e Initialize the cIuster.s with a m,,,, = Zwiq)(xi)
random set of K points Z W, icchuster
—  Cluster has 1 point iecluster

¢ For each data point x, find the closest cluster

: . 2
cluster(x) = min ., d(x, cluster) = min g, || P(x) — M, |
0
d(x, cluster) = D(x) =My, H2=(®(X)fc ZW,‘I’(X,)] (CD(X)fC ZW,‘P(X,)J
= [CD(X)TCD(X)—ZC > W) dx)+C Y Zwlefl)(xl)TfD(xJ)]
iecluster iecluster jecluster
=K(x,x)-2C Z wK(x,x,)+C? Z ZW|W1K(X|’X|)
iccluster iccluster jecluster : :
Computed entirely using only the kernel function!
10 Oct 2013 75
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K-means

1. Initialize a set of clusters
randomly

The centroids are virtual:
we don't actually compute
them explicitly!

Metyster =

The mean of a cluster

The average value of the points in the cluster computed in the
high-dimensional space

1
mm=ﬁ—mem

cluster i€cluster

RECALL: We may never actually be able to compute this mean because

D(x) is not known

Alternately the weighted average

1
Moy =—=— 2. WP(x)=C Y wd(x,)
Z W, iecluster iecluster

iecluster

10 Oct 2013 74

K-means

%

1. Initialize a set of clusters
randomly

K-means

1. Initialize a set of clusters
randomly

2. For each data point x, find the
distance from the centroid for g
each cluster ¢

*d

= distance(x,m,,) "o

cluster

13



K-means
Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for

each cluster ®

. dcln.\re/‘ = diStance(xv m(?u.?l(‘!‘)

Put data point in the cluster of the

closest centroid

*  Cluster for which dyge, is
minimum

K—-means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

. dcln.\re/‘ = diStance(xv m(?u.?l(‘!‘)
Put data point in the cluster of the
closest centroid

*  Cluster for which dge, is

minimum
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- dcln.\re/‘ = diStance(xv m(?u.?l(‘!‘)
Put data point in the cluster of the
closest centroid

*  Cluster for which dge iS

minimum

MLSH
K-means
Initialize a set of clusters
randomly
For each data point x, find the
distance from the centroid for
each cluster
Y dy = distance(x,m,,,.)
Put data point in the cluster of the
closest centroid
*  Cluster for which dge, is
minimum
LS

K-means
Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for

each cluster °

- dcln.\re/‘ = diStance(xv m(?u.?l(‘!‘)
Put data point in the cluster of the
closest centroid

*  Cluster for which dge iS

minimum
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K-—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

*d =distance(x,m

cluster cluster )

Put data point in the cluster of the

closest centroid e
«  Cluster for which dg is
minimum

Kernel K-means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

* d,.. =distance(x,m,,, )

cluster

Put data point in the cluster of the

closest centroid

«  Cluster for which dg is
minimum

We do not explicitly compute the
means

May be impossible — we do not
know the high-dimensional

When all data points are
clustered, recompute centroids

1 S space
cluster Z“" L * We only know how to compute
iecluster inner products in it

If not converged, go back to 2 87

2.

K—-means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

. dclu.\re/‘ = diStance(xv m(/uxler)
Put data point in the cluster of the
closest centroid

*  Cluster for which dge, is

minimum

« We do not explicitly compute the
means

May be impossible — we do not
know the high-dimensional
space

We only know how to compute
inner products in it

When all data points are
clustered, recompute centroids
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How many clusters?

Assumptions:
— Dimensionality of kernel space > no. of clusters

— Clusters represent separate directions in Kernel spaces

Kernel correlation matrix K

- Kij = K(xilxj)

Find Eigen values A and Eigen vectors e of kernel
matrix

— No. of clusters = no. of dominant X; (17e;) terms
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Spectral Methods
“Spectral” methods attempt to find “principal”
subspaces of the high-dimensional kernel space
Clustering is performed in the principal subspaces
— Normalized cuts
— Spectral clustering
Involves finding Eigenvectors and Eigen values of
Kernel matrix
Fortunately, provably analogous to Kernel K-
means

Other clustering methods

* Regression based clustering

* Find a regression representing each cluster

* Associate each point to the cluster with the

1

best regression
— Related to kernel methods
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Clustering..

* Many many other variants
* Many applications..

* Important: Appropriate choice of feature

— Appropriate choice of feature may eliminate need
for kernel trick..

— Google is your friend.
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