Machine Learning for Signal

Processing
Eigenfaces and Eigenrepresentations

Class 6. 17 Sep 2013

Instructor: Bhiksha Raj
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Recall: Representing images @

3%

¢ The most common element in the image:
background
— Or rather large regions of relatively featureless shading
— Uniform sequences of numbers
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image =~ w, B, +w,B, + w,B; +...

* “Bases” are the “standard” units such that all instances can be
expressed a weighted combinations of these units
 ldeal requirements: Bases must be orthogonal
* Checkerboards are one choice of bases
— Orthogonal
— But not “smooth”
* Other choices of bases: Complex exponentials, Wavelets,
etc..
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9/17/2013

Administrivia
* Project teams?

— By the end of the month..

* Project proposals?
— Please send proposals to TAs, and cc me

* Reminder: Assignment 1 due in 9 days
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Sy

Adding more bases

.

" I R

B

* Checkerboards with different variations

Image ~ w, By +wyBy + wyBy + ..
w
Wr

W=|ws B=[B, B, By]

BW ~Image

W = pinv(B)Image
PROJECTION = BW

17 Sep 2013 11-755/18-797

Getting closer at 625 bases!

Data specific bases?

¢ Issue: All the bases we have considered so far are
data agnostic
— Checkerboards, Complex exponentials, Wavelets..
— We use the same bases regardless of the data we analyze

* Image of face vs. Image of a forest
* Segment of speech vs. Seismic rumble

* How about data specific bases

— Bases that consider the underlying data

* E.g.is there something better than checkerboards to describe
faces

* Something better than complex exponentials to describe music?
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wiLsH

The Energy Compaction Property Data-specific description of faceE@
I SR
=

* Define “better”?

* The description 4
W ¥ R

X =wB +w,B, +w,B; +...+ w,B,

* The ideal:
A A2 H H
X ~wB +w,B, E”"’=HX_XH * A collection of images
— If the description is terminated at any point, we — All normalized to 100x100 pixels

should still get most of the information about the * What is common among all of them?

data — Do we have a common descriptor?
* Error should be small
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A collection of least squares typical faces@

: The typical face “ w a*"*"*‘
il =

Assumption: There are a set of K “typical” faces that captures most of all faces

A typical face
-l SRS
W R E

* Assumption: There is a “typical” face that captures most of
R * Approximate every face fas f = w;; V,+ wy, V, + wpy Vi +. + wp V)
what is common to all faces ) oL e T E T T ke
— V,isused to “correct” errors resulting from using only V;. So on average
_ ) ) B .
Every face can be represented by a scaled version of a typical face Hf_(W/JV/-I +Wf-2Vf-2)H <H/ _W/JV/.IH
— We will denote this face as V. — V; corrects errors remaining after correction with V,,
3 °
* Approximate every facefas f = w; V R Jf—(WuVr.n bty V< = w0
- \nd so on..
* Estimate V to minimize the squared error - V=iV Vi
. * Estimate V to minimize the squared error
— How? Whatis V? — How? Whatis V?
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.
A recollection @ How about the other way? @
M= M=
S=Pinv(N) M
N = M Piny(S

41 U=NS~M U=NS~M

N= E S = pin(N)M N= ? U= '? N =M pinu(S)
= | - -
* Finding the best explanatlon of music M in terms of notes N * Finding the notes N given music M and score S
* Also finds the score S of M in terms of N * Also finds best explanation of M in terms of S
17569 2013 11.755/18-797 17 5ep 2013 11.755/18-797 1




rything

M=

9 - ?

U=NS~M

= Find the four notes and their score that generate the
closest approximation to M
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Abstracting the problem:
Finding the FIRST typical face

Pixel 2
[
L

Pixel 1

* Each “point” represents a face in “pixel space”

17 Sep 2013

Abstracting the problem:
Finding the FIRST, typical face
A\

Pixel 2
«

Pixel 1

Each “point” represents a face in “pixel space”
* The “typical face” V is a vector in this space
The approximation W V for any face f is the projection of f onto V

The distance between f and its projection W,V is the projection error for £
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9/17/2013

The same problem

-

Typical faces

| W |
| ooy
=== I

¢ Here W, Vand U are ALL unknown and must be determined
— Such that the squared error between U and M is minimum

17 Sep 2013

%4

Abstracting the problem:
Finding the FIRST, typical face
v

Pixel 2
[

Pixel 1

* Each “point” represents a face in “pixel space”
* Any “typical face” V is a vector in this space

17 Sep 2013

Abstracting the problem:
Finding the FIRST, typical face
v

Pixel 2
L4

Pixel 1

* Every face in our data will suffer error when
approximated by its projection on V

* The total squared length of all error lines is the total
squared projection error
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Abstracting the problem:
Finding the FIRST, typical face
v /"

Pixel 2
o

Pixel 1

¢ The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!

17 Sep 2013

wiLsH

Abstracting the problem:
Finding the FIRST typical face

Pixel 2
"

Pixel 1

¢ The problem of finding the first typical face V;:
Find the V for which the total projection error is minimum!
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Abstracting the problem:
Finding the FIRST typical face

Y Vi

Pixel 2
a
s

Pixel 1

The problem of finding the first typical face V,:
Find the V for which the total projection error is minimum!

This “minimum squared error” V is our “best” first typical face
It is also the first Eigen face

17 Sep 2013
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Abstracting the problem:

Pixel 2
~

Finding the FIRST typical face

wiLsH

Pixel 1

¢ The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!
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Abstracting the problem:
Finding the FIRST typical face
v

Pixel 2

Pixel 1

¢ The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!

17 Sep 2013

Formalizing the Problem: Error from
approximating a single vector

¢ Consider: approximating x = wv
— E.g xis a face, and “v” is the “typical face”

* Finding an approximation wv which is closest to x
— In a Euclidean sense

— Basically projecting x onto v
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Formalizing the Problem: Error from ™

approximating a single vector

* Projection of a vector x on to a vector v
~ VTX
X=vV—r
M
* Assuming v is of unit length: x=vv'x

2
2 T
error = Xx—X = x—vv'x  squared error = Hx—vv xH
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Error from approximating a single ™=

vector

* Error from projecting a vector x on to a vector
onto a unit vector v e(x)= fovatz

€00 = [ w's] o) = (6 xw feoy

=x"x—x"vwwix—x"vwx+x"vwvw'x
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Error from approximating a single ™

vector

* Error from projecting a vector x on to a vector
onto a unit vector v e(x)= Hx—vatz

\
e(x) = (x - VVTX) (x - vvrx) = (xT —x'w’ Xx - vvrx)
=xx-x"wx-x"vwwx+x wx

e(x)=x"x—x"vv'x
11.755/18.797

5/18-7"

7 Sep 2013
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Error from approximating a single ™

vector

* Minimum squared approximation error from
approximating x as it as wv
[

e(x)= Hx —w'x

 Optimal value of w: w=vTx

Sep 2013 11-755/18-79

Error from approximating a single ™=

vector

* Error from projecting a vector x on to a vector
onto a unit vector v e(x)= fovatz

€00 = [ w's] o) = (6 xw feey

=x'x—x"vwx—x"vwwx+x vv'yv'x
=1

Sep 2013 11-755/18-79

Error from approximating a single

vector

e(x) = x"x — x"v.v’x
b o o
Length of projection

This is the very familiar pythogoras’ theorem!!
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Error for many vectors

| x

* Error for one vector: ‘e(x) =x"x-x"ww'x

* Error for many vectors
T T T _ T T T
E =Ze(xi) ZZ(X[ X; —X; vV X[) _th X —in VAT
i i i i

* Goal: Estimate v to minimize this error!
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Error for many vectors

x

. _ T 7T
* Totalerror: F=3% x'x, - x/w'x,
i i

* Add constraint: vIv=1
* Constrained objective to minimize:
E=Yx/x,— ) x/w'x, +l(vTV—l)

Sep 2013

Minimizing error

I x
E= lerxl —inrvvrxi +/1(VTV—1)
* Differentiating w.r.t v and equating to 0

—ZZXiXiTV+22V:0 (ZX‘X'TJVZ/W

Sep 2013 11-755/18-79

™LSH
Two Matrix Identities
* Derivative w.rt v
T
dav'v _ov
dv
T T
(LA S
dv
MLSH

The correlation matrix

* The encircled term is the correlation matrix

7 7
X=[x, x,...x, ] inxi =XX"=R

X = Data Matrix

= Correlation

XT = Transposed
Data Matrix

The best “basis”

* The minimum-error basis is found by solving
Rv = Av

* visan Eigen vector of the correlation matrix R

— A is the corresponding Eigen value

7 Sep 2013 755/18-797




What about the total error?
E= foxl —inTvaxi

e xTv=v™x (inner product)

— T T T T T T
E—inxi—ZV XX,V =inxi—v (inxij
i i i i

<

E= Zx X,—~v'Rv= Zx X, —v Av= Zx X, —Av'v

E= Zxx—
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The typical face "

I NEEE
WA E

¢ Compute the correlation matrix for your data
— Arrange them in matrix X and compute R = XXT

The typical face

* Compute the principal Eigen vector of R
— The Eigen vector with the largest Eigen value

* This is the typical face
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With multiple bases

*  Assumption: all bases v, v, v;.. are unit length

* Assumption: all bases are orthogonal to one another: v;'v; = 0ifi!=
— We are trying to find the optimal K-dimensional subspace to project the data
— Any set of vectors in this subspace will define the subspace
— Constraining them to be orthogonal does not change this

o leif V=[vv,vy..], VIV=I
— Pinv(V)=V"

Projection matrix for V.= VPinv(V) = VW

17 Sep 2013 11-755/18-797
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Minimizing the error
« The total erroris E=Y x/x,—4

We already know that the optimal basis is an
Eigen vector

* The total error depends on the negative of the
corresponding Eigen value

* To minimize error, we must maximize A

i.e. Select the Eigen vector with the largest
Eigen value

17 Sep 2013 11-755/18-797 38

With many typical faces @
- L

Typical faces

* Approximate every face fas f = w; Vi+ wi, V, +.. + wi Vi

* Here W,V and U are ALL unknown and must be determined
— Such that the squared error between U and M is minimum
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With multiple bases

vV o< Represents a
K-dimensional subspace

» Optimal projection for a vector | =VV'x
* Error vector = x—X=x-VV’x

* Error length = ‘e(x)szx—xTVVTX

17 Sep 2013 -755/18-797




With multiple bases

| x
T T T
 Error for one vector: ‘e(x)zx Xx—-x VV'x
« Error for many vectors

E=foxi —ZXiTVVTXI

* Goal: Estimate V to minimize this error!
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Minimizing error
 With regularization VTV = I, objective to
minimize

E=Yx'x, - Y x'VV'x, +trace(A(V'V -T))

— Note: now A is a diagonal matrix

— The regularization simply ensures that v'v = 1 for
every basis

* Differentiating w.r.t V and equating to 0

- 2(2 xx" JV +2AV =0
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Finding the optimal K bases
RV = AV

* Compute the Eigendecompsition of the
correlation matrix

Select K Eigen vectors
* But which K?
. Totalerror= £= ZX X _2’1

* Select K eigen vectors correspondlng to the K
largest Eigen values

17 Sep 2013 11-755/18-797

Eigen Faces! @
WL o5 -
L

Arrange your input data into a matrix X
* Compute the correlation R = XXT
« Solve the Eigen decomposition: RV = AV

* The Eigen vectors corresponding to the K largest eigen values
are our optimal bases

* We will refer to these as eigen faces.
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How many Eigen faces

300x10000

10000x10000

* How to choose “K” (number of Eigen faces)

* Lay all faces side by side in vector form to form a matrix
— In my example: 300 faces. So the matrix is 10000 x 300

¢ Multiply the matrix by its transpose
— The correlation matrix is 10000x10000

17 Sep 2013 -755/18-797

Eigen faces

[U,S] = eig(correlation)

4 . 0. 0 -
0 A 0 0 88
, 0. _
S= U=|g ...
o £
29
o S
0 . 0 . 00

* Compute the eigen vectors
— Only 300 of the 10000 eigen values are non-zero
* Why?
* Retain eigen vectors with high eigen values (>0)
— Could use a higher threshold
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Eigen Faces

eigenfacet eigenface2

eigenface3

eigenface1
eigenface2

<
i ]

* The eigen vector with the highest eigen value is the first typical face

¢ The vector with the second highest eigen value is the second typical
face.

« Etc.
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Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognizable

<

* Approximating a face with one basis:

f=wmy,
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Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognizable

R

» Approximating a face with 10 eigenfaces:

=WV, +w,v, +..w,V,,

17 Sep 2013 -755/18-797
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Representing a face @

- r
Representation m

* The weights with which the eigen faces must
be combined to compose the face are used to
represent the face!

= [wywywy. T
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s
Energy Compaction Example
* One outcome of the “energy compaction
principle”: the approximations are
recognizable
* Approximating a face with one Eigenface:
S=wmv,
MLSH

Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognizable

BRR7

» Approximating a face with 30 eigenfaces:

L =WV +wW v, + WV +. Wy Vs,
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Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognizable

R R

* Approximating a face with 60 eigenfaces:

L =WV WV, WV et Wy Vi o+ W Vi

17 Sep 2013 11-755/18-797 55

Class specificity

eigenface1 eigenface2

2

* The Eigenimages (bases) are very specific to
the class of data they are trained on
— Faces here

eigenface3

* They will not be useful for other classes

17 Sep 2013 11-755/18-797 57

Class specificity

* Eigen bases are class specific

=

* Composing a fishbowl from Eigenfaces
* With 1 basis

f=wy,

17 Sep 2013 11-755/18-797

How did | do this?

E
»
“
®
®
]
®
©
o

o2 B 4 % ® 0 0 W 10

« Hint: only changing weights assigned to Eigen faces..
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Class specificity

* Eigen bases are class specific

* Composing a fishbowl from Eigenfaces

17 Sep 2013 11-755/18-797

Class specificity

* Eigen bases are class specific

* Composing a fishbowl from Eigenfaces
* With 10 bases

f=wv +w,v, +..+w, v,

17 Sep 2013 11-755/18-797
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Class specificity Class specificity

* Eigen bases are class specific * Eigen bases are class specific

* Composing a fishbowl from Eigenfaces * Composing a fishbowl from Eigenfaces
* With 30 bases * With 100 bases
L =WV +w v, + WV +e Wy Vy S =WV +wW, v, + W Vg Feet Wy Vag Foect Wigo Vio
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i
¥

Universal bases SVD instead of Eigen

¢ Universal bases..

wm — S=300x300| [V=300x300 v=
B T e ] ~ | U=10000x300

eigenface1
eigenface2
H
.

* Do we need to compute a 10000 x 10000 correlation matrix and
then perform Eigen analysis?
— Will take a very long time on your laptop

* SVD
o B s ol — Only need to perform “Thin” SVD. Very fast
+ U = 10000 x 300
* End up looking a lot like discrete cosine transforms!!!! — The columns of U are the eigen faces!
“ . ” — The Us corresponding to the “zero” eigen values are not computed

* DCTs are the best “universal” bases . $=300x300

— If you don’t know what your data are, use the DCT V=300 x 300
17 Sep 2013 11-755/18-797 63 17 Sep 2013 11-755/18-797

MLSH MLSH
Using SVD to compute Eigenbases Eigenvectors and scatter

[U, S, V] = SVD(X)

* U will have the Eigenvectors e

* Thin SVD for 100 bases:

[U,S,V] = svds(X, 100) » Turns out: Eigenvectors represent the major and minor
* Much more efficient axes of an ellipse centered at the origin which encloses
the data most compactly

* The SVD of data matrix X uncovers these vectors
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MLSH
What about sound?
* Finding Eigen bases for speech signals:
* Look like DFT/DCT i
* Or wavelets = E "
* DFTs are pretty good most of the time
MLsH

Eigen Analysis

Figurel. Experiment setup @Wean Hall mechanical
space. Pipe with arrow indicates a 10" diameter hot
water pipe carrying pressurized hot water flow, on
which piezoelestric sensors are installed every 10 ft.
A National instruments data acquisition system is
used to acquire and store the data for later
processing.

fold Experiments on 08/31
WiMass T 7

‘Singular Vector Corr, Coet s
2

09:00 W00 09:00

TH 6w
Slow Time (44 MM
Figure 2. Damage detection results compared with
conventional methods. Top: Ground truth of whether
the pipe is damaged or not. Middle: Conventional
method only captures temperature variations, and

shows no indication of the presence of damage.
Bottom: The SVD method clearly picks up the steps
where damage are introduced and removed.

¢ Cheng Liu’s research on pipes..
* SVD automatically separates useful and uninformative

features

17 Sep 2013 11755,
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NORMALIZING OUT VARIATIONS
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Eigen Analysis

* Can often find surprising features in your data
* Trends, relationships, more
* Commonly used in recommender systems

* An interesting example..

17 Sep 2013 11-755/18-797 68

MLsH
Eigen Analysis
* But for all of this, we need to “preprocess”
data
* Eliminate unnecessary aspects
— E.g. noise, other externally caused variations..
[

Images: Accounting for variations

W e e
W W M E

* What are the obvious differences in the above
images

* How can we capture these differences
— Hint — image histograms..

17 Sep 2013 -755/18-797 7
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wLsH
Normalizing Image Characteristics

* Normalize the pictures
— Eliminate lighting/contrast variations
— All pictures must have “similar” lighting
¢ How?

* Lighting and contrast are represented in the image histograms:

17 Sep 2013 11-755/18-797

MLSH
Images -- Variations
“ ’k.r“ ‘
= k] &
o A B a
T BA
& 5
* Pixel histograms: what are the differences
MLsH

Histogram Equalization

Normalize histograms of images
— Maximize the contrast
* Contrastis defined as the “flatness” of the histogram
* For maximal contrast, every greyscale must happen as frequently as every other
greyscale

255

* Maximizing the contrast: Flattening the histogram
— Doing it for every image ensures that every image has the same constrast
* l.e. exactly the same histogram of pixel values
— Which should be flat

17 Sep 2013 11-755/18-797

MLsH
Histogram Equalization
* Modify pixel values such that histogram becomes “flat”.
* For each pixel
— New pixel value = f(old pixel value)
— What is f()?
* Easy way to compute this function: map cumulative
counts
MLSH

Cumulative Count Function

* The histogram (count) of a pixel value X is the number of
pixels in the image that have value X

— E.g. in the above image, the count of pixel value 180 is about
110

* The cumulative count at pixel value X is the total number
of pixels that have values in the range 0 <= x <= X
— CCF(X) = H(1) + H(2) + .. H(X)

7 Sep 2013 -755/18-797

Cumulative Count Function

.-

* The cumulative count function of a uniform
histogram is a line

-

* We must modify the pixel values of the image
so that its cumulative count is a line

7 Sep 2013 -755/18-797
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Mapping CCFs

ALl

Move x axis levels around until the plot to the left
looks like the plot to the right

e CCF(f(x)) -> a*f(x) [or a*(f(x)+1) if pixels can take value 0]
— x = pixel value

— f() is the function that converts the old pixel value to a new
(normalized) pixel value

— a = (total no. of pixels in image) / (total no. of pixel levels)
* The no. of pixel levels is 256 in our examples
+ Total no. of pixels is 10000 in a 100x100 image

17 Sep 2013 11-755/18-797

Mapping CCFs

* For each pixel value x:

— Find the location on the red line that has the closet Y value to
the observed CCF at x

17 Sep 2013 11-755/18-797
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MLsH
Mapping CCFs
f(x1) = x2
f(x3) = x4
Etc.
x4 x2 ; A
* For each pixel value x:
— Find the location on the red line that has the closet Y value to
the observed CCF at x
17 Sep 2013 11-755/18-797 81
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Doing it Formulaically

-

CCF(x) = CChyy Max. pixelyaluej

X) = round| ——————
7 [ Npixels — CCF,

* CCF,,y, is the smallest non-zero value of CCF(x)

— The value of the CCF at the smallest observed pixel value
* Npixels is the total no. of pixels in the image

— 10000 for a 100x100 image
* Max.pixel.value is the highest pixel value

— 255 for 8-bit pixel representations

7 Sep 2013 755/18-797 83

Mapping CCFs

[

Move x axis levels around until the plot to the left
looks like the plot to the right
* For each pixel in the image to the left
— The pixel has a value x
— Find the CCF at that pixel value CCF(x)

— Find x’ such that CCF(x’) in the function to the right equals
CCF(x)
« x’ such that CCF_flat(x’) = CCF(x)
— Modify the pixel value to x

17 Sep 2013 11-755/18-797

Or even simpler

* Matlab:

—Newimage = histeqg(oldimage)

7 Sep 2013 755/18-797 84
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LS
Histogram Equalization
¥ L ¥
Wpd g E
Wes BINRI
& f
¥ & o R
¢ Left column: Original image A o
* Right column: Equalized image
* All images now have similar contrast levels
MLSH

Detecting Faces in Images

17 Sep 2013 11-755/18-797

s
Eigenfaces after Equalization

* Left panel : Without HEQ
* Right panel: With HEQ

— Eigen faces are more face like..
* Need not always be the case

17 Sep 2013 11-755/18-797

* Picture is larger than the “typical face”

— E.g. typical face is 100x100, picture is 600x800
* First convert to greyscale

—R+G+8B

— Not very useful to work in color

* Finding face like patterns
— How do we find if a picture has faces in it
— Where are the faces?

* Asimple solution:
— Define a “typical face”
— Find the “typical face” in the image

17 Sep 2013 11-755/18-797
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Finding faces in an image

bW 47
* Goal .. To find out if and where images that
look like the “typical” face occur in the picture

17 Sep 2013 11-755/18-797
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Finding faces in an image

1 n
AT & 8P
* Try to “match” the typical face to each
location in the picture
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Finding faces in an image

ke 7
* Try to “match” the typical face to each
location in the picture
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Finding faces in an image

i ,_
AT ik 8P
* Try to “match” the typical face to each
location in the picture

17 Sep 2013 11-755/18-797

Finding faces in an image

i A
X T il
* Try to “match” the typical face to each
location in the picture
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Finding faces in an image

“. ‘l i s
* Try to “match” the typical face to each
location in the picture

17 Sep 2013 11-755/18-797

Finding faces in an image

&
_ ol
* Try to “match” the typical face to each
location in the picture

17 Sep 2013 11-755/18-797

9/17/2013
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Finding faces in an image

Wb L V77
* Try to “match” the typical face to each
location in the picture
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Finding faces in an image

Wb L V77
* Try to “match” the typical face to each
location in the picture
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Finding faces in an image

Wi 4
* Try to “match” the typical face to each
location in the picture

17 Sep 2013 11-755/18-797

Finding faces in an image

* Try to “match” the typical face to each
location in the picture

* The “typical face” will explain some spots on
the image much better than others

— These are the spots at which we probably have a
face!

17 Sep 2013 11-755/18-797

¢ What exactly is the “match”
— What is the match “score”
* The DOT Product
— Express the typical face as a vector
— Express the region of the image being evaluated as a vector

* But first histogram equalize the region
— Just the section being evaluated, without considering the rest of the image

— Compute the dot product of the typical face vector and the “region”
vector

17 Sep 2013 -755/18-797

Wy,
* The right panel shows the dot product a
various loctions

— Redder is higher
* The locations of peaks indicate locations of faces!

17 Sep 2013 -755/18-797
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FETTTTTTTS

What do et

L il
* The right panel shows the dot product a various loctions
— Redder is higher
* The locations of peaks indicate locations of faces!
* Correctly detects all three faces
— Likes George’s face most
* He looks most like the typical face
* Also finds a face where there is none!
— Afalse alarm
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Scaling and Rotation Problems

¢ Scaling
— Not all faces are the same size
— Some people have bigger faces

— The size of the face on the image
changes with perspective

— Our “typical face” only represents
one of these sizes

* Rotation
— The head need not always be
upright!
« Our typical face image was upright
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Solution

W 80 &

* Create many “typical faces”
— One for each scaling factor
— One for each rotation
* How will we do this?
* Match them all

* Does this work

— Kind of .. Not well enough at all ™
— We need more sophisticated models
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Face Detection: A Quick Historical Perspective

Figure I: The basic algorithm used for face detection.
* Many more complex methods
— Use edge detectors and search for face like patterns

— Find “feature” detectors (noses, ears..) and employ them in complex
neural networks..

* The Viola Jones method
— Boosted cascaded classifiers
* Other classifiers

« later in the program..
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