

The Energy Compaction Property

- · Define "better"?
- The description

$$X = w_1 B_1 + w_2 B_2 + w_3 B_3 + \dots + w_N B_N$$

• The ideal:

$$\hat{X} \approx w_1 B_1 + w_2 B_2 \qquad \qquad Error = \left\| X - \hat{X} \right\|^2$$

- If the description is terminated at any point, we should still get most of the information about the data
 - Error should be small

Formalizing the Problem: Error from [™] approximating a single vector

- Projection of a vector **x** on to a vector **v**
- Assuming \mathbf{v} is of unit length: $\hat{\mathbf{x}} = \mathbf{v}\mathbf{v}^T\mathbf{x}$

$$error = \mathbf{x} - \hat{\mathbf{x}} = \mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}$$
 squared error = $\|\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}\|^2$

Error from approximating a single

• Minimum squared approximation error from approximating x as it as wv

$$e(\mathbf{x}) = \|\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}\|^2$$

• Optimal value of w: $w = \mathbf{v}^{\mathrm{T}}\mathbf{x}$

Error from approximating a single

• Error from projecting a vector x on to a vector onto a unit vector \mathbf{v} $e(\mathbf{x}) = \|\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}\|^2$

$$e(\mathbf{x}) = (\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})^T(\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}) = (\mathbf{x}^T - \mathbf{x}^T\mathbf{v}\mathbf{v}^T)(\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})$$
$$= \mathbf{x}^T\mathbf{x} - \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{x} - \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{x} + \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{v}\mathbf{v}^T\mathbf{x}$$

Error from approximating a single

• Error from projecting a vector x on to a vector onto a unit vector \mathbf{v} $e(\mathbf{x}) = \|\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}\|^2$

$$e(\mathbf{x}) = (\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})^T(\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}) = (\mathbf{x}^T - \mathbf{x}^T\mathbf{v}\mathbf{v}^T)(\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})$$
$$= \mathbf{x}^T\mathbf{x} - \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{x} - \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{x} + \mathbf{x}^T\mathbf{v}\frac{\mathbf{v}^T\mathbf{v}}{=1}\mathbf{v}^T\mathbf{x}$$

Error from approximating a single

• Error from projecting a vector **x** on to a vector onto a unit vector $\mathbf{v} = \left\| \mathbf{x} - \mathbf{v} \mathbf{v}^T \mathbf{x} \right\|^2$

$$e(\mathbf{x}) = (\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})^T(\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}) = (\mathbf{x}^T - \mathbf{x}^T\mathbf{v}\mathbf{v}^T)(\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})$$
$$= \mathbf{x}^T\mathbf{x} - \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{x} - \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{x} + \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{x}$$

 $e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x}$

Error from approximating a single

Error for many vectors

- Error for one vector: $e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x}$
- Error for many vectors

$$E = \sum_{i} e(\mathbf{x}_{i}) = \sum_{i} (\mathbf{x}_{i}^{T} \mathbf{x}_{i} - \mathbf{x}_{i}^{T} \mathbf{v} \mathbf{v}^{T} \mathbf{x}_{i}) = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{x}_{i}^{T} \mathbf{v} \mathbf{v}^{T} \mathbf{x}_{i}$$

• Goal: Estimate v to minimize this error!

Two Matrix Identities

• Derivative w.r.t v

$$\frac{d\mathbf{v}^T\mathbf{v}}{d\mathbf{v}} = 2\mathbf{v}$$

$$\frac{d\mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x}}{d\mathbf{v}} = 2\mathbf{x} \mathbf{x}^T \mathbf{v}$$

Minimizing error • Differentiating w.r.t v and equating to 0 $-2\sum_{i}\mathbf{x}_{i}\mathbf{x}_{i}^{T}\mathbf{v}+2\lambda\mathbf{v}=0$

The correlation matrix

$$\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{v} = \lambda \mathbf{v}$$

• The encircled term is the correlation matrix

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 \ \mathbf{x}_2 \ \dots \mathbf{x}_N \end{bmatrix}$$

X = Data Matrix

The best "basis"

• The minimum-error basis is found by solving

 $\mathbf{R}\mathbf{v} = \lambda \mathbf{v}$

 $oldsymbol{\cdot}$ $oldsymbol{v}$ is an Eigen vector of the correlation matrix $oldsymbol{R}$ $-\,\lambda$ is the corresponding Eigen value

What about the total error?

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{x}_{i}^{T} \mathbf{v} \mathbf{v}^{T} \mathbf{x}_{i}$$

• $\mathbf{x}^{\mathrm{T}}\mathbf{v} = \mathbf{v}^{\mathrm{T}}\mathbf{x}$ (inner product)

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{v}^{T} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{v} = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \mathbf{v}^{T} \left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \right) \mathbf{v}$$

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \mathbf{v}^{T} \mathbf{R} \mathbf{v} = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \mathbf{v}^{T} \lambda \mathbf{v} = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \lambda \mathbf{v}^{T} \mathbf{v}$$
$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \lambda$$

Minimizing the error

The total error is

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \lambda$$

- We already know that the optimal basis is an Eigen vector
- The total error depends on the negative of the corresponding Eigen value
- To minimize error, we must maximize λ
- i.e. Select the Eigen vector with the largest Eigen value

The typical face

- Compute the correlation matrix for your data Arrange them in matrix X and compute R = XX^T
- Compute the *principal* Eigen vector of R The Eigen vector with the largest Eigen value
- This is the typical face

With many typical faces

- Approximate every face f as $f = w_{f,1} \; V_1 + \, w_{f,2} \; V_2 + ... + \, w_{f,k} \; V_k$
- · Here W, V and U are ALL unknown and must be determined - Such that the squared error between U and M is minimum

With multiple bases

- Assumption: all bases $v_1 v_2 v_3 ...$ are unit length
- Assumption: all bases are orthogonal to one another: $v_i{}^{\rm T}v_j \equiv 0$ if $i \mathrel{!}= j$
 - We are trying to find the optimal K-dimensional subspace to project the data
 - Any set of vectors in this subspace will define the subspace
 - Constraining them to be orthogonal does not change this
- I.e. if $\mathbf{V} = [\mathbf{v}_1 \, \mathbf{v}_2 \, \mathbf{v}_3 \, \dots], \quad \mathbf{V}^T \mathbf{V} = \mathbf{I}$
 - Pinv(V) = V^T
- Projection matrix for V = VPinv(V) = VV^T

With multiple bases

- Optimal projection for a vector $|\hat{\mathbf{x}} = \mathbf{V}\mathbf{V}^T\mathbf{x}|$
- Error vector = $\mathbf{x} \hat{\mathbf{x}} = \mathbf{x} \mathbf{V}\mathbf{V}^T\mathbf{x}$
- Error length = $e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} \mathbf{x}^T \mathbf{V} \mathbf{V}^T \mathbf{x}$

With multiple bases

• Error for one vector:

• Error for one vector:
$$e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{V} \mathbf{V}^T \mathbf{x}$$

· Error for many vectors

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{x}_{i}^{T} \mathbf{V} \mathbf{V}^{T} \mathbf{x}_{i}$$

 $\bullet \ \ \text{Goal: Estimate } V \ \text{to minimize this error!} \\$

17 Son 2013

1 755/10 707

Minimizing error

• With regularization $\mathbf{V}^T\mathbf{V} = \mathbf{I}$, objective to minimize

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{x}_{i}^{T} \mathbf{V} \mathbf{V}^{T} \mathbf{x}_{i} + trace \left(\Lambda \left(\mathbf{V}^{T} \mathbf{V} - \mathbf{I} \right) \right)$$

- Note: now $\boldsymbol{\Lambda}$ is a diagonal matrix
- The regularization simply ensures that $\boldsymbol{v}^T\boldsymbol{v}$ = 1 for every basis
- ullet Differentiating w.r.t $\,{f V}$ and equating to 0

$$-2\left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}\right) \mathbf{V} + 2\Lambda \mathbf{V} = 0$$

 $RV = \Lambda V$

2013 11-755/18-

Finding the optimal K bases

$\mathbf{RV} = \Lambda \mathbf{V}$

- Compute the Eigendecompsition of the correlation matrix
- Select K Eigen vectors
- But which K?
- Total error =

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i=1}^{K} \lambda_{j}$$

Select K eigen vectors corresponding to the K largest Eigen values

7 Sep 2013 11-755/18-

Eigen Faces!

- Arrange your input data into a matrix X
- Compute the correlation $\mathbf{R} = \mathbf{X}\mathbf{X}^{\mathrm{T}}$
- Solve the Eigen decomposition: $\mathbf{R}\mathbf{V} = \Lambda\mathbf{V}$
- The Eigen vectors corresponding to the K largest eigen values are our optimal bases
- We will refer to these as eigen faces.

17 Sep 2013

11-755/18-797

How many Eigen faces

10000x300

M = Data Matrix

10000x10000

- How to choose "K" (number of Eigen faces)
- Lay all faces side by side in vector form to form a matrix

 In my example: 300 faces. So the matrix is 10000 x 300
- Multiply the matrix by its transpose
 - The correlation matrix is 10000x10000

17 Sep 2013

11 755/19 707

Eigen faces
[U.S] = eig(correlation)

 $U = \begin{bmatrix} \mathbf{e} & \mathbf{e} & \mathbf{e} \\ \mathbf{e} & \mathbf{e} \\ \mathbf{e} & \mathbf{e} \end{bmatrix}$

- Compute the eigen vectors
 - Only 300 of the 10000 eigen values are non-zero
 - Why?

• Retain eigen vectors with high eigen values (>0)

Could use a higher threshold

17 Sep 2013

Energy Compaction Example

• One outcome of the "energy compaction principle": the approximations are recognizable

· Approximating a face with one basis:

$$f = w_1 \mathbf{v}_1$$

Energy Compaction Example

• One outcome of the "energy compaction principle": the approximations are recognizable

Approximating a face with one Eigenface:

$$f = w_1 \mathbf{v}_1$$

Energy Compaction Example

• One outcome of the "energy compaction principle": the approximations are recognizable

• Approximating a face with 10 eigenfaces:

$$f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots + w_{10} \mathbf{v}_{10}$$

Energy Compaction Example

• One outcome of the "energy compaction principle": the approximations are recognizable

• Approximating a face with 30 eigenfaces:

$$f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots + w_{10} \mathbf{v}_{10} + \dots + w_{30} \mathbf{v}_{30}$$

Energy Compaction Example

 One outcome of the "energy compaction principle": the approximations are recognizable

• Approximating a face with 60 eigenfaces:

$$f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \ldots + w_{10} \mathbf{v}_{10} + \ldots + w_{30} \mathbf{v}_{30} + \ldots + w_{60} \mathbf{v}_{60}$$

17 Sen 2013

1-755/18-797

How did I do this?

• Hint: only changing weights assigned to Eigen faces..

17 Son 2013

11.755/18.707

Class specificity

- The Eigenimages (bases) are very specific to the class of data they are trained on
 - Faces here
- They will not be useful for other classes

17 Sep 2013

11-755/18-797

Class specificity

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces

17 Sep 201

11-755/18-797

Class specificity

• Eigen bases are class specific

- Composing a fishbowl from Eigenfaces
- With 1 basis

$$f = w_1 \mathbf{v}_1$$

17 Sep 2013

11-755/18-797

Class specificity

• Eigen bases are class specific

- Composing a fishbowl from Eigenfaces
- With 10 bases

$$f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + ... + w_{10} \mathbf{v}_{10}$$

17 Sep 2013

Class specificity

• Eigen bases are class specific

- · Composing a fishbowl from Eigenfaces
- With 30 bases

$$f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots + w_{10} \mathbf{v}_{10} + \dots + w_{30} \mathbf{v}_{30}$$

17 Cap 2012

1-755/18-797

Class specificity • Eigen bases are class specific • Composing a fishbowl from Eigenfaces • With 100 bases

 $f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \ldots + w_{10} \mathbf{v}_{10} + \ldots + w_{30} \mathbf{v}_{30} + \ldots + w_{100} \mathbf{v}_{100}$

p 2013 11-755/18-7

Universal bases

Universal bases..

- End up looking a lot like discrete cosine transforms!!!!
- DCTs are the best "universal" bases
 - If you don't know what your data are, use the DCT

17 Sep 2013

755/18-797

Using SVD to compute Eigenbases

[U, S, V] = SVD(X)

- U will have the Eigenvectors
- Thin SVD for 100 bases:

[U,S,V] = svds(X, 100)

· Much more efficient

17 Cap 2012

55/18-797

Eigenvectors and scatter • Turns out: Eigenvectors represent the major and minor axes of an ellipse centered at the origin which encloses the data most compactly

• The SVD of data matrix X uncovers these vectors

6

What about sound?

• Finding Eigen bases for speech signals:

- Look like DFT/DCT
- · Or wavelets

· DFTs are pretty good most of the time

17 Cap 2012

Eigen Analysis

- Can often find surprising features in your data
- Trends, relationships, more
- Commonly used in recommender systems
- An interesting example..

Con 2012 11 755/19 707

Eigen Analysis

Figure 1. Experiment setup @Wean Hall mechanical space. Pipe with arrow indicates a 10" diameter hot water pipe carrying pressurized hot water flow, on which piezoelectric sensors are installed every 10 ft. A National instruments data acquisition system is used to acquire and store the data for later moreossine.

W) Mass

WO Many

Golden Selected Singular Vector — Correlation Coefficients

Golden Size — Golden S

Figure 2. Damage neetcon resunts compared with conventional methods. Top: Ground truth of whether the pipe is damaged or not. Middle: Conventional method only captures temperature variations, and shows no indication of the presence of damage. Bottom: The SVD method clearly picks up the steps where damage are introduced and removed.

- Cheng Liu's research on pipes..
- SVD automatically separates useful and uninformative features

17 Sep 2013

1-755/18-797

Eigen Analysis

- But for all of this, we need to "preprocess" data
- Eliminate unnecessary aspects
 - E.g. noise, other externally caused variations..

7 Sep 2013 11-755/1

NORMALIZING OUT VARIATIONS

17 Sep 2013

11-755/18-797

Images: Accounting for variations

- What are the obvious differences in the above images
- How can we capture these differences
 Hint image histograms..

17 Sep 2013

Finding faces in an image

• Try to "match" the typical face to each location in the picture

7 Sen 2013

1 700/10 707

Finding faces in an image

• Try to "match" the typical face to each location in the picture

17 Son 2013

11 755/10 707

Finding faces in an image

• Try to "match" the typical face to each location in the picture

17 Sep 2013

11-755/18-797

Finding faces in an image

• Try to "match" the typical face to each location in the picture

17 Sep 2013

11-755/18-797

Finding faces in an image

• Try to "match" the typical face to each location in the picture

17 Sep 2013

11-755/18-797

Finding faces in an image

• Try to "match" the typical face to each location in the picture

17 Sep 2013

Finding faces in an image

• Try to "match" the typical face to each location in the picture

17 Sep 2013

1-755/18-797

Finding faces in an image

• Try to "match" the typical face to each location in the picture

17 Con 2012

11-755/18-797

Finding faces in an image

 Try to "match" the typical face to each location in the picture

17 Sep 2013

11-755/18-797

Finding faces in an image

- Try to "match" the typical face to each location in the picture
- The "typical face" will explain some spots on the image much better than others
 - These are the spots at which we probably have a face!

Sep 2013 11-755/1

11-755/18-797

How to "match"

- What exactly is the "match"
 - What is the match "score"
- The DOT Product
 - Express the typical face as a vector
 - Express the region of the image being evaluated as a vector
 But first histogram equalize the region
 - Just the section being evaluated, without considering the rest of the image
 - Compute the dot product of the typical face vector and the "region"

55/18-797

What do we get

- The right panel shows the dot product a various loctions
 - Redder is higher
 - The locations of peaks indicate locations of faces!

17 Sep 2013

