Machine Learning for Signal Processing Detecting faces in images Class 7. 19 Sep 2013 Instructor: Bhiksha Raj • Try to "match" the typical face to each location in the picture 9 Sep 2013 117 ## Finding faces in an image • Try to "match" the typical face to each location in the picture en 2013 ## Finding faces in an image • Try to "match" the typical face to each location in the picture 19 Sep 2013 11755/18979 ## Finding faces in an image Try to "match" the typical face to each location in the picture 19 Sep 2013 11755/18979 ## Finding faces in an image • Try to "match" the typical face to each location in the picture 10 San 2013 11755/18070 17 ## Finding faces in an image • Try to "match" the typical face to each location in the picture 2013 11755/18979 ## Finding faces in an image • Try to "match" the typical face to each location in the picture ## Finding faces in an image - Try to "match" the typical face to each location in the picture - The "typical face" will explain some spots on the image much better than others - These are the spots at which we probably have a face! ## How to "match" - What exactly is the "match" - What is the match "score" 19 Sep 2013 11755/18979 ## How to "match" - What exactly is the "match" - What is the match "score" - The DOT Product - Express the typical face as a vector - Express the region of the image being evaluated as a vector - But first histogram equalize the region Just the section being evaluated, without considering the rest of the image - Compute the dot product of the typical face vector and the "region" vector 19 Sep 2013 11755/18979 ## What do we get - The right panel shows the dot product a various loctions - Redder is higher - The locations of peaks indicate locations of faces! 19 Sep 2013 11755/18979 ## What do we get The right panel shows the dot product a various loctions - Redder is higher - The locations of peaks indicate locations of faces! - Correctly detects all three faces - Likes George's face most - · He looks most like the typical face - · Also finds a face where there is none! - A false alarm 11755/18979 ## And even before that — what is classification? Given "features" describing an entity, determine the category it belongs to Walks on two legs, has no hair. Is this A Chimpanizee A Human Has long hair, is 5'6" tall, is this A man A woman Matches "eye" pattern with score 0.5, "mouth pattern" with score 0.25, "nose" pattern with score 0.1. Are we looking at A face Not a face? 11755/18979 19 Sep 2013 Classification Multi-class classification Many possible categories E.g. Sounds "AH, IY, UW, EY.." E.g. Images "Tree, dog, house, person.." Binary classification Only two categories Man vs. Woman Face vs. not a face.. Face detection: Recast as binary face classification For each little square of the image, determine if the square represents a face or not ## **Binary classification** - · Classification can be abstracted as follows - H: X → (+1,-1) - A function H that takes as input some X and outputs a +1 or -1 - X is the set of "features" - +1/-1 represent the two classes - Many mechanisms (may types of "H") - Any many ways of characterizing "X" - We'll look at a specific method based on voting with simple rules - A "META" method 19 Sep 2013 11755/18979 ## **Introduction to Boosting** - An ensemble method that sequentially combines many simple BINARY classifiers to construct a final complex classifier - Simple classifiers are often called "weak" learners - The complex classifiers are called "strong" learners - Each weak learner focuses on instances where the previous classifier failed - Give greater weight to instances that have been incorrectly classified by previous learners - · Restrictions for weak learners - Better than 50% correct - · Final classifier is weighted sum of weak classifiers 19 Sep 2013 11755/18979 ## **Boosting: A very simple idea** - · One can come up with many rules to classify - E.g. Chimpanzee vs. Human classifier: - If arms == long, entity is chimpanzee - If height > 5'6" entity is human - If lives in house == entity is human - If lives in zoo == entity is chimpanzee - Each of them is a reasonable rule, but makes many mistakes - Each rule has an intrinsic error rate - Combine the predictions of these rules - But not equally - Rules that are less accurate should be given lesser weight 19 Sep 2013 11755/18979 Boosting and the Chimpanzee Problem Arm length? Height? Jule in house? Lives in house? Chimp Chimp The total confidence in all classifiers that classify the entity as a chimpanzee is Score chimp = Cassifier favors chimpanzee The total confidence in all classifiers that classify it as a human is Score chimpanzee Lives in house? Calassifier Calassifier Calassifier Calassifier Calassifier Calassifier favors human If Score chimpanzee is greater than the belief that we have a human ## **Boosting as defined by Freund** - A gambler wants to write a program to predict winning horses. His program must encode the expertise of his brilliant winner friend - The friend has no single, encodable algorithm. Instead he has many rules of thumb - He uses a different rule of thumb for each set of races - E.g. "in this set, go with races that have black horses with stars on their foreheads" - But cannot really enumerate what rules of thumbs go with what sets of races: he simply "knows" when he encounters a set - A common problem that faces us in many situations - Problem - How best to combine all of the friend's rules of thumb - What is the best set of races to present to the friend, to extract the various rules of thumb 19 Sep 2013 11755/18979 ### **Boosting** - The basic idea: Can a "weak" learning algorithm that performs just slightly better than random guessing be *boosted* into an arbitrarily accurate "strong" learner - Each of the gambler's rules may be just better than random guessing - This is a "meta" algorithm, that poses no constraints on the form of the weak learners themselves - The gambler's rules of thumb can be anything 19 Sep 2013 ## **Boosting: A Voting Perspective** - Boosting can be considered a form of voting - Let a number of different classifiers classify the data - Go with the majority - Intuition says that as the number of classifiers increases, the dependability of the majority vote increases - The corresponding algorithms were called Boosting by majority - A (weighted) majority vote taken over all the classifiers - How do we compute weights for the classifiers? - How do we actually train the classifiers 19 Sen 2013 11755/18979 ## ADA Boost: Adaptive algorithm for learning the weights - ADA Boost: Not named of ADA Lovelace - An adaptive algorithm that learns the weights of each classifier sequentially - Learning adapts to the current accuracy - Iteratively: - Train a simple classifier from training data - It will make errors even on training data - Train a new classifier that focuses on the training data points that have been misclassified 013 /18070 38 ## ADABoost - Cannot just add new classifiers that work well only the the previously misclassified data - Problem: The new classifier will make errors on the points that the **earlier** classifiers got right - Not good - On test data we have no way of knowing which points were correctly classified by the first classifier - · Solution: Weight the data to train the second classifier - Use all the data but assign them weights - Data that are already correctly classified have less weight - Data that are currently incorrectly classified have more weight 19 Sep 2013 11755/18979 # ADA Boost • Each new classifier modifies the weights of the data points based on the accuracy of the current classifier • The final classifier too is a weighted combination of all component classifiers 195ep 2013 11755/18979 53 ## Formalizing the Boosting Concept Given a set of instances (x₁, y₁), (x₂, y₂),... (x₀, y₀) x₁ is the set of attributes of the fth instance y₁ is the class for the fth instance y₁ can be 1 or -1 (binary classification only) Given a set of classifiers h₁, h₂, ..., h₁ hᵢ classifies an instance with attributes x as hᵢ(x) hᵢ(x) is either -1 or +1 (for a binary classifier) y*h(x) is 1 for all correctly classified points and -1 for incorrectly classified points Devise a function f (h₂(x), h₂(x),..., h₁(x)) such that classification based on f() is superior to classification by any hᵢ(x) The function is succinctly represented as f(x) ## The ADABoost Algorithm • Given: a set (x_1, y_1) , ... (x_N, y_N) of training instances - x_i is the set of attributes for the ith instance - y_i is the class for the ith instance and can be either +1 or -1 ## AdaBoost - In this example both of our first two classifiers were based on E1 - Additional classifiers may switch to E2 - In general, the reweighting of the data will result in a different feature being picked for each classifier - This also automatically gives us a feature selection strategy - In this data the wt(E1) is the most important feature 19 Sep 2013 11755/18979 ### AdaBoost - NOT required to go with the best classifier so far - For instance, for our second classifier, we might use the best E2 classifier, even though its worse than the E1 classifier - So long as its right more than 50% of the time - We can continue to add classifiers even after we get 100% classification of the training data - Because the weights of the data keep changing - Adding new classifiers beyond this point is often a good thing to do 19 Sep 2013 11755/18979 ## **ADA Boost** - · The final classifier is - $-H(x) = \operatorname{sign}(\Sigma_t \alpha_t h_t(x))$ - The output is 1 if the total weight of all weak learners that classify x as 1 is greater than the total weight of all weak learners that classify it as 19 Sep 2013 11755/18979 ## **Boosting and Face Detection** - Boosting is the basis of one of the most popular methods for face detection: The Viola-Jones algorithm - Current methods use other classifiers like SVMs, but adaboost classifiers remain easy to implement and popular - OpenCV implements Viola Jones.. 19 Sep 2013 • Area(D) = Pixelsum(4) - Pixelsum(2) - Pixelsum(3) + Pixelsum(1) Learning: No. of features • Analysis performed on images of 24x24 pixels only - Reduces the no. of possible features to about 180000 • Restrict checkerboard size - Minimum of 8 pixels wide - Minimum of 8 pixels high • Other limits, e.g. 4 pixels may be used too - Reduces no. of checkerboards to about 50000 ### The Classifier - · The Viola-Jones algorithm uses a simple Boosting based classifier - · Each "weak learner" is a simple threshold - · At each stage find the best feature to classify the data - I.e the feature that gives us the best classification of all the training data - Training data includes many examples of faces and non-face images - The classification rule is of the kind - . If feature > threshold, face (or if feature < threshold, face) - The optimal value of "threshold" must also be determined. 11755/18979 ## The Weak Learner - Training (for each weak learner): - For each feature f (of all 180000 features) - Find a threshold $\theta(f)$ and polarity p(f) (p(f) = -1 or p(f) = 1) such that $(f > p(f)) \theta(f)$ performs the best classification of faces - Lowest overall error in classifying all training data - » Error counted over weighted samples - · Let the optimal overall error for f be error(f) - Find the feature f' such that error(f') is lowest - The weak learner is the test $(f' > p(f') \theta(f')) => face$ - Note that the procedure for learning weak learners also identifies the most useful features for face recognition 11755/18979 ## The Viola Jones Classifier - A boosted threshold-based classifier - · First weak learner: Find the best feature, and its optimal threshold - Second weak learner: Find the best feature, for the weighted training data, and its threshold (weighting from one weak learner) - Third weak learner: Find the best feature for the weighted data and its optimal threshold (weighting from two weak learners) - Fourth weak learner: Find the best feature for the weighted data and its optimal threhsold (weighting from three weak learners) 19 Sep 2013 11755/18979 To Train - Collect a large number of histogram equalized facial images - Resize all of them to 24x24 - These are our "face" training set - Collect a much much much larger set of 24x24 non-face images of all kinds - Each of them is histogram equalized - These are our "non-face" training set - · Train a boosted classifier 19 Sep 2013 11755/18979 ## The Viola Jones Classifier - During tests: - Given any new 24x24 image R = $\Sigma_f \alpha_f (f > p_f \theta(f))$ - Only a small number of features (f < 100) typically used - Problems: - Only classifies 24 x 24 images entirely as faces or non-faces - Pictures are typically much larger - · They may contain many faces - · Faces in pictures can be much larger or smaller - Not accurate enough 11755/18979 ## Multiple faces in the picture - Scan the image - Classify each 24x24 rectangle from the photo - All rectangles that get classified as having a face indicate the location - For an NxM picture, we will perform (N-24)*(M-24) classifications - If overlapping 24x24 rectangles are found to have faces, merge them 11755/18979 19 ## Multiple faces in the picture - · Scan the image - Classify each 24x24 rectangle from the photo - All rectangles that get classified as having a face indicate the location of a face - For an NxM picture, we will perform (N-24)*(M-24) classifications - If overlapping 24x24 rectangles are found to have faces, merge them 19 Sep 2013 11755/18979 ## Multiple faces in the picture - · Scan the image - Classify each 24x24 rectangle from the photo - All rectangles that get classified as having a face indicate the location of a face - For an NxM picture, we will perform (N-24)*(M-24) classifications - If overlapping 24x24 rectangles are found to have faces, merge them 19 Sep 2013 11755/18979 1 ## Multiple faces in the picture - · Scan the image - Classify each 24x24 rectangle from the photo - All rectangles that get classified as having a face indicate the location of a face - For an NxM picture, we will perform (N-24)*(M-24) classifications - If overlapping 24x24 rectangles are found to have faces, merge them 19 Sep 2013 11755/18979 ## **Picture size solution** - That uses weak learners - · Scale each classifier - Every weak learner - Scale its size up by factor α . Scale the threshold up to $\alpha\theta$. - Do this for many scaling factors 13 11755/18979 ### **Overall solution** - Scan the picture with classifiers of size 24x24 - Scale the classifier to 26x26 and scan - Scale to 28x28 and scan etc. - Faces of different sizes will be found at different scales 19 Sep 2013 11755/18979 119 ## False Rejection vs. False detection - False Rejection: There's a face in the image, but the classifier misses it - Rejects the hypothesis that there's a face - False detection: Recognizes a face when there is none. - Classifier: - Standard boosted classifier: $H(x) = sign(\Sigma_t \alpha_t h_t(x))$ - Modified classifier $H(x) = sign(\sum_{t} \alpha_{t} h_{t}(x) + Y)$ - $\Sigma_t \alpha_t h_t(x)$ is a measure of certainty - The higher it is, the more certainty - If Y is large, then we assume the presence of a face even when we are not sure - By increasing Y, we can reduce false rejection, while increasing false detection 9 Sep 2013 11755/18979 120 ## Practical implementation • Details discussed in Viola-Jones paper • Training time = weeks (with 5k faces and 9.5k non-faces) • Final detector has 38 layers in the cascade, 6060 features • 700 Mhz processor: - Can process a 384 x 288 image in 0.067 seconds (in 2003 when paper was written)