Machine Learning for Signal Processing Detecting faces in images Class 7. 19 Sep 2013 Instructor: Bhiksha Raj

• Try to "match" the typical face to each location in the picture

9 Sep 2013 117

Finding faces in an image

• Try to "match" the typical face to each location in the picture

en 2013

Finding faces in an image

• Try to "match" the typical face to each location in the picture

19 Sep 2013 11755/18979

Finding faces in an image

 Try to "match" the typical face to each location in the picture

19 Sep 2013 11755/18979

Finding faces in an image

• Try to "match" the typical face to each location in the picture

10 San 2013 11755/18070 17

Finding faces in an image

• Try to "match" the typical face to each location in the picture

2013 11755/18979

Finding faces in an image

• Try to "match" the typical face to each location in the picture

Finding faces in an image

- Try to "match" the typical face to each location in the picture
- The "typical face" will explain some spots on the image much better than others
 - These are the spots at which we probably have a face!

How to "match"

- What exactly is the "match"
 - What is the match "score"

19 Sep 2013 11755/18979

How to "match"

- What exactly is the "match"
 - What is the match "score"
- The DOT Product
 - Express the typical face as a vector
 - Express the region of the image being evaluated as a vector

 - But first histogram equalize the region
 Just the section being evaluated, without considering the rest of the image
 - Compute the dot product of the typical face vector and the "region" vector

19 Sep 2013 11755/18979

What do we get

- The right panel shows the dot product a various loctions
 - Redder is higher
 - The locations of peaks indicate locations of faces!

19 Sep 2013 11755/18979

What do we get

The right panel shows the dot product a various loctions

- Redder is higher
 - The locations of peaks indicate locations of faces!
- Correctly detects all three faces
 - Likes George's face most
 - · He looks most like the typical face
- · Also finds a face where there is none!
 - A false alarm

11755/18979

And even before that — what is classification? Given "features" describing an entity, determine the category it belongs to Walks on two legs, has no hair. Is this A Chimpanizee A Human Has long hair, is 5'6" tall, is this A man A woman Matches "eye" pattern with score 0.5, "mouth pattern" with score 0.25, "nose" pattern with score 0.1. Are we looking at A face Not a face?

11755/18979

19 Sep 2013

Classification

Multi-class classification

Many possible categories

E.g. Sounds "AH, IY, UW, EY.."

E.g. Images "Tree, dog, house, person.."

Binary classification

Only two categories

Man vs. Woman

Face vs. not a face..

Face detection: Recast as binary face classification

For each little square of the image, determine if the square represents a face or not

Binary classification

- · Classification can be abstracted as follows
- H: X → (+1,-1)
- A function H that takes as input some X and outputs a +1 or -1
 - X is the set of "features"
 - +1/-1 represent the two classes
- Many mechanisms (may types of "H")
 - Any many ways of characterizing "X"
- We'll look at a specific method based on voting with simple rules
 - A "META" method

19 Sep 2013

11755/18979

Introduction to Boosting

- An ensemble method that sequentially combines many simple BINARY classifiers to construct a final complex classifier
 - Simple classifiers are often called "weak" learners
 - The complex classifiers are called "strong" learners
- Each weak learner focuses on instances where the previous classifier failed
 - Give greater weight to instances that have been incorrectly classified by previous learners
- · Restrictions for weak learners
 - Better than 50% correct
- · Final classifier is weighted sum of weak classifiers

19 Sep 2013

11755/18979

Boosting: A very simple idea

- · One can come up with many rules to classify
 - E.g. Chimpanzee vs. Human classifier:
 - If arms == long, entity is chimpanzee
 - If height > 5'6" entity is human
 - If lives in house == entity is human
 - If lives in zoo == entity is chimpanzee
- Each of them is a reasonable rule, but makes many mistakes
 - Each rule has an intrinsic error rate
- Combine the predictions of these rules
 - But not equally
 - Rules that are less accurate should be given lesser weight

19 Sep 2013

11755/18979

Boosting and the Chimpanzee Problem

Arm length?

Height?

Jule in house?

Lives in house?

Chimp

Chimp

The total confidence in all classifiers that classify the entity as a chimpanzee is

Score chimp =

Cassifier favors chimpanzee

The total confidence in all classifiers that classify it as a human is

Score chimpanzee

Lives in house?

Calassifier

Calassifier

Calassifier

Calassifier

Calassifier

Calassifier favors human

If Score chimpanzee

is greater than the belief that we have a human

Boosting as defined by Freund

- A gambler wants to write a program to predict winning horses. His program must encode the expertise of his brilliant winner friend
- The friend has no single, encodable algorithm. Instead he has many rules of thumb
 - He uses a different rule of thumb for each set of races
 - E.g. "in this set, go with races that have black horses with stars on their foreheads"
 - But cannot really enumerate what rules of thumbs go with what sets of races: he simply "knows" when he encounters a set
 - A common problem that faces us in many situations
- Problem
 - How best to combine all of the friend's rules of thumb
 - What is the best set of races to present to the friend, to extract the various rules of thumb

19 Sep 2013

11755/18979

Boosting

- The basic idea: Can a "weak" learning algorithm that performs just slightly better than random guessing be *boosted* into an arbitrarily accurate "strong" learner
 - Each of the gambler's rules may be just better than random guessing
- This is a "meta" algorithm, that poses no constraints on the form of the weak learners themselves
 - The gambler's rules of thumb can be anything

19 Sep 2013

Boosting: A Voting Perspective

- Boosting can be considered a form of voting
 - Let a number of different classifiers classify the data
 - Go with the majority
 - Intuition says that as the number of classifiers increases, the dependability of the majority vote increases
- The corresponding algorithms were called Boosting by majority
 - A (weighted) majority vote taken over all the classifiers
 - How do we compute weights for the classifiers?
 - How do we actually train the classifiers

19 Sen 2013

11755/18979

ADA Boost: Adaptive algorithm for learning the weights

- ADA Boost: Not named of ADA Lovelace
- An adaptive algorithm that learns the weights of each classifier sequentially
 - Learning adapts to the current accuracy
- Iteratively:
 - Train a simple classifier from training data
 - It will make errors even on training data
 - Train a new classifier that focuses on the training data points that have been misclassified

013

/18070 38

ADABoost

- Cannot just add new classifiers that work well only the the previously misclassified data
- Problem: The new classifier will make errors on the points that the **earlier** classifiers got right
 - Not good
 - On test data we have no way of knowing which points were correctly classified by the first classifier
- · Solution: Weight the data to train the second classifier
 - Use all the data but assign them weights
 - Data that are already correctly classified have less weight
 - Data that are currently incorrectly classified have more weight

19 Sep 2013 11755/18979

ADA Boost • Each new classifier modifies the weights of the data points based on the accuracy of the current classifier • The final classifier too is a weighted combination of all component classifiers 195ep 2013 11755/18979 53

Formalizing the Boosting Concept Given a set of instances (x₁, y₁), (x₂, y₂),... (x₀, y₀) x₁ is the set of attributes of the fth instance y₁ is the class for the fth instance y₁ can be 1 or -1 (binary classification only) Given a set of classifiers h₁, h₂, ..., h₁ hᵢ classifies an instance with attributes x as hᵢ(x) hᵢ(x) is either -1 or +1 (for a binary classifier) y*h(x) is 1 for all correctly classified points and -1 for incorrectly classified points Devise a function f (h₂(x), h₂(x),..., h₁(x)) such that classification based on f() is superior to classification by any hᵢ(x) The function is succinctly represented as f(x)

The ADABoost Algorithm • Given: a set (x_1, y_1) , ... (x_N, y_N) of training instances - x_i is the set of attributes for the ith instance - y_i is the class for the ith instance and can be either +1 or -1

AdaBoost

- In this example both of our first two classifiers were based on E1
 - Additional classifiers may switch to E2
- In general, the reweighting of the data will result in a different feature being picked for each classifier
- This also automatically gives us a feature selection strategy
 - In this data the wt(E1) is the most important feature

19 Sep 2013 11755/18979

AdaBoost

- NOT required to go with the best classifier so far
- For instance, for our second classifier, we might use the best E2 classifier, even though its worse than the E1 classifier
 - So long as its right more than 50% of the time
- We can continue to add classifiers even after we get 100% classification of the training data
 - Because the weights of the data keep changing
 - Adding new classifiers beyond this point is often a good thing to do

19 Sep 2013 11755/18979

ADA Boost

- · The final classifier is
 - $-H(x) = \operatorname{sign}(\Sigma_t \alpha_t h_t(x))$
- The output is 1 if the total weight of all weak learners that classify x as 1 is greater than the total weight of all weak learners that classify it as

19 Sep 2013

11755/18979

Boosting and Face Detection

- Boosting is the basis of one of the most popular methods for face detection: The Viola-Jones algorithm
 - Current methods use other classifiers like SVMs, but adaboost classifiers remain easy to implement and popular
 - OpenCV implements Viola Jones..

19 Sep 2013

• Area(D) = Pixelsum(4) - Pixelsum(2) - Pixelsum(3) + Pixelsum(1)

Learning: No. of features

• Analysis performed on images of 24x24 pixels only

- Reduces the no. of possible features to about 180000

• Restrict checkerboard size

- Minimum of 8 pixels wide

- Minimum of 8 pixels high

• Other limits, e.g. 4 pixels may be used too

- Reduces no. of checkerboards to about 50000

The Classifier

- · The Viola-Jones algorithm uses a simple Boosting based classifier
- · Each "weak learner" is a simple threshold
- · At each stage find the best feature to classify the data
 - I.e the feature that gives us the best classification of all the training data
 - Training data includes many examples of faces and non-face images
 - The classification rule is of the kind
 - . If feature > threshold, face (or if feature < threshold, face)
 - The optimal value of "threshold" must also be determined.

11755/18979

The Weak Learner

- Training (for each weak learner):
 - For each feature f (of all 180000 features)
 - Find a threshold $\theta(f)$ and polarity p(f) (p(f) = -1 or p(f) = 1) such that $(f > p(f)) \theta(f)$ performs the best classification of faces
 - Lowest overall error in classifying all training data
 - » Error counted over weighted samples
 - · Let the optimal overall error for f be error(f)
 - Find the feature f' such that error(f') is lowest
 - The weak learner is the test $(f' > p(f') \theta(f')) => face$
- Note that the procedure for learning weak learners also identifies the most useful features for face recognition

11755/18979

The Viola Jones Classifier

- A boosted threshold-based classifier
- · First weak learner: Find the best feature, and its optimal threshold
 - Second weak learner: Find the best feature, for the weighted training data, and its threshold (weighting from one weak learner)
 - Third weak learner: Find the best feature for the weighted data and its optimal threshold (weighting from two weak learners)
 - Fourth weak learner: Find the best feature for the weighted data and its optimal threhsold (weighting from three weak learners)

19 Sep 2013

11755/18979

To Train

- Collect a large number of histogram equalized facial images
 - Resize all of them to 24x24
 - These are our "face" training set
- Collect a much much much larger set of 24x24 non-face images of all kinds
 - Each of them is histogram equalized
 - These are our "non-face" training set
- · Train a boosted classifier

19 Sep 2013

11755/18979

The Viola Jones Classifier

- During tests:
 - Given any new 24x24 image R = $\Sigma_f \alpha_f (f > p_f \theta(f))$
 - Only a small number of features (f < 100) typically used
- Problems:
 - Only classifies 24 x 24 images entirely as faces or non-faces
 - Pictures are typically much larger
 - · They may contain many faces
 - · Faces in pictures can be much larger or smaller
 - Not accurate enough

11755/18979

Multiple faces in the picture

- Scan the image
 - Classify each 24x24 rectangle from the photo
 - All rectangles that get classified as having a face indicate the location
- For an NxM picture, we will perform (N-24)*(M-24) classifications
- If overlapping 24x24 rectangles are found to have faces, merge them

11755/18979

19

Multiple faces in the picture

- · Scan the image
 - Classify each 24x24 rectangle from the photo
 - All rectangles that get classified as having a face indicate the location of a face
- For an NxM picture, we will perform (N-24)*(M-24) classifications
- If overlapping 24x24 rectangles are found to have faces, merge them

19 Sep 2013 11755/18979

Multiple faces in the picture

- · Scan the image
 - Classify each 24x24 rectangle from the photo
 - All rectangles that get classified as having a face indicate the location of a face
- For an NxM picture, we will perform (N-24)*(M-24) classifications
- If overlapping 24x24 rectangles are found to have faces, merge them

19 Sep 2013 11755/18979 1

Multiple faces in the picture

- · Scan the image
 - Classify each 24x24 rectangle from the photo
 - All rectangles that get classified as having a face indicate the location of a face
- For an NxM picture, we will perform (N-24)*(M-24) classifications
- If overlapping 24x24 rectangles are found to have faces, merge them

19 Sep 2013 11755/18979

Picture size solution

- That uses weak learners
- · Scale each classifier
 - Every weak learner
 - Scale its size up by factor α . Scale the threshold up to $\alpha\theta$.
 - Do this for many scaling factors

13 11755/18979

Overall solution

- Scan the picture with classifiers of size 24x24
- Scale the classifier to 26x26 and scan
- Scale to 28x28 and scan etc.
- Faces of different sizes will be found at different scales

19 Sep 2013 11755/18979 119

False Rejection vs. False detection

- False Rejection: There's a face in the image, but the classifier misses it
- Rejects the hypothesis that there's a face
- False detection: Recognizes a face when there is none.
- Classifier:
 - Standard boosted classifier: $H(x) = sign(\Sigma_t \alpha_t h_t(x))$
 - Modified classifier $H(x) = sign(\sum_{t} \alpha_{t} h_{t}(x) + Y)$
 - $\Sigma_t \alpha_t h_t(x)$ is a measure of certainty
 - The higher it is, the more certainty
 - If Y is large, then we assume the presence of a face even when we are not sure
 - By increasing Y, we can reduce false rejection, while increasing false detection

9 Sep 2013 11755/18979 120

Practical implementation • Details discussed in Viola-Jones paper • Training time = weeks (with 5k faces and 9.5k non-faces) • Final detector has 38 layers in the cascade, 6060 features • 700 Mhz processor: - Can process a 384 x 288 image in 0.067 seconds (in 2003 when paper was written)