MLSP

Machine Learning for Signal

Processing
Fundamentals of Linear Algebra

Class 2. 3 Sep 2013

Instructor: Bhiksha Raj
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Administrivia

Change of classroom: BH A51
— Being broadcast to west coast

Registration: Anyone on waitlist still?

Homework 1: Will appear over weekend.
— Linear algebra

Both TAs have office hours from 9.30am-11.30am on
Fridays
— Location TBD, still waiting for info from ECE
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Overview

Vectors and matrices

Basic vector/matrix operations
Vector products

Matrix products

Various matrix types
Projections
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Book

 Fundamentals of Linear Algebra, Gilbert Strang

* Important to be very comfortable with linear algebra

— Appears repeatedly in the form of Eigen analysis, SVD, Factor
analysis

— Appears through various properties of matrices that are used in
machine learning, particularly when applied to images and
sound

* Today’s lecture: Definitions
— Very small subset of all that’s used
— Important subset, intended to help you recollect



Incentive to use linear algebra

* Pretty notation!
XT-A°y PN Z)/J-inaij

 Easier intuition

— Really convenient geometric interpretations

— Operations easy to describe verbally

e Easy code translation!

for i=1:n
for j=1:m
c(i)=c(i)+y(3)*x(i)*a(i,7)
end

end

C=x*A*y
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And other things you can do

From Bach’s Fugue in Gm

: e e e e ,J@
— o e e e e

Frequency —

74401759

Rotation + Projection + Time -
Scaling + Perspective Decomposition (NMF)

* Manipulate Images
* Manipulate Sounds
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Scalars, vectors, matrices, ...

A scalar a is a number
— a=2,a=3.14,a=-1000, etc.

A vector a is a linear arrangement of a collection of scalars
3.14
a=|1 2 3| a=
2 5 ey

A matrix A is a rectangular arrangement of a collection of

scalars
3.12 -10
A =
10,0 2

MATLAB syntax: a=[1 2 3], A=[1 2;3 4]
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Vectors

* Vectors usually hold sets of numerical

attributes o= = ~
'hl"‘_.hl J,l'( ) . ‘:‘f *:'-"\5:..
H b = ‘ = €5z
— X, Y, Z coordinates SN P e oY X
Jr,-m M qv '*“Q_
* [1,2,0] i [-2.5av 6§t] &y, ) S 7
e iy F 5 - fa ®
— Earnings, losses, suicides RSN N A [1_‘1"&8?]
o 5 b
e [SO0 $1,000,000 3] B S 5
- - ] 4
— Alocation in Manhattan SlerS UF
° [3av 33St] N 1Hr:-1?ﬁ:‘]i:=.nr' o
Square Park - oy )
Iy £
o _ . .-_._,Q- -, -
* \Vectors are either column or row vectors CNNIS - S
g v
(e _
MEQIOre Monsevell ‘?"-E'.'.. iz
a L Hirtr':.lrlaacu I ‘: 5 oy 6-93,‘:(& .- ¢
T Gramercy
B . . = S S Park F.“_';,;S; d -,
c=|b r—[a b c] S—[J\/\/\/‘M/\f(/\'\/\/“] iy J NS & av 4st]
‘ PRI AN N
. . . - ey g ‘{/ -
— A sound can be a vector, a series of daily e X Sy HaNS T

temperatures can be a vector, etc ...
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Vectors in the abstract

 OQOrdered collection of numbers
— Examples: [345],[abcd], ..
— [345] !=[4 3 5] 2 Order is important

* Typically viewed as identifying (the path from origin to) a location in an
N-dimensional space  (3,4,5)

5 (4,3,5)

v

3 Sep 2013 11-755/18-797 9
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Matrices

* Matrices can be square or rectangular
}, M:

L C D

— Images can be a matrix, collections of sounds can be a
matrix, etc.

— A matrix can be vertical stacking of row vectors

lla b cl|
R{d e fJ

— Or a horizontal arrangement of column vectors

llallbl [¢c
R_[d e f}
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Dimensions of a matrix

The matrix size is specified by the number of rows and
columns

c=|b, r=[a b ¢

— ¢ = 3x1 matrix: 3 rows and 1 column
— r =1x3 matrix: 1 row and 3 columns

a b a b c ”
S{ d}R{d e J C D

— S =2 x2 matrix

— R =2 x 3 matrix
— Pacman =321 x 399 matrix
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Representing an image as a matrix

N

Z:iend, 1:40:end)

s Z(1:3

vft 1.2 .2 2 . 2 .10
x|t 2 .1 .56 .10 . 10
vit 1 .1 .00 1 .1
L 12.21212.000..1]

Values only; X and Y are
implicit

3 pacmen
A 321 x 399 matrix

— Row and Column = position
A 3 x 128079 matrix
— Triples of x,y and value

A1lx 128079 vector

— “Unraveling” the matrix

Note: All of these can be recast as the
matrix that forms the image

— Representations 2 and 4 are equivalent
* The position is not represented
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Vectors vs. Matrices

. (34,5)

5

v
’
v
’
’
’ 4

»
»
gl »

3

* A vector is a geometric notation for how to get from (0,0)
to some location in the space

A matrixis simply a collection of vectors!

— Properties of matrices are average properties of the traveller’s
path to the vector destinations

3 Sep 2013 11-755/18-797 13
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Basic arithmetic operations

e Addition and subtraction
— Element-wise operations

a, b, a, + b, a, b, a,—b,
a+b=|a,|+|b,|=|a,+b,| a—-b=|a,|-|b,|=|a,—-b,

a, by | |a;+b; a, | |by| |ay—b;
A+B=|:a“ a12:|+{b11 b12:|:|:a11+b11 a12+b12:|
ay; dy b,, b, a, +b, a,,+b,,

* MATLAB syntax: a+b and a-b
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Vector Operations

3

* Operations tell us how to get from origin to the
result of the vector operations

—(3,4,5) +(3,-2,-3) = (6,2,2)

3 Sep 2013 11-755/18-797 15



>» E{l1:32:end, 1:40:end)
1 1 1 1 1 1 1 1 1 1
_ 1 1 1 1 o o o 1 1 1
ans = 1 1 1 1 o =} o 1 1 1
1 1 1 1 o 1 o 1 1 1
1 1 1 1 1 1 1 1 1 1 T L L S 1 1 . 2 . 2 2 . 2 . lO
1 1 1 1 1 1 1 1 1 1
1 1 1 1 o o o 1 1 1 S S R Y
1 1 1 1 i i 0 1 1 1 Lo o 11111 o o 1 2 1 5 6 10 10
1 1 1 1 o 1 o 1 1 1 1 o o o 1 1 1 o o o " " " "
1 o o o 1 1 1 o o o
1 1 L 1 1 1 1 1 1 1 S S A A 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 1 1 . . . .
1 1 0 1 1 1 1 1 D 1
1 ] 0 1 1 1 1 1 D D
1 ] 0 0 1 1 1 a D 0 o o.4835  o.e7a  oams o arme  o.soir 0.5 oasie +
o om0 ol omer o o e
1 o o o 1 1 1 o o o o 0. 0.2729 0.8955 o 0.8501 0.4507 0.1967 0.5585
, 1 ) 1 1 1 1 1 1 , o o olsere oo o ole  oases  o.sa2s  o.nese
o oissse  osma sz o oisis  o2sss  oosws  ndaa
o olsses  olmsa  o.ss4 olassa  o.s5i  o.esi  0.esss y
o. s oases o, 0isar0  n.moms
o o1 0.4 0.8478 o5 0419 0.161 03401
o. oiz7ss 0.t 0,389 ooz D.ests  o.ss1s 5366

=
H
H
o
o
o

=

(TR S Y
SN SRS N R
o o N

* Adding random values to different
representations of the image
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Vector norm

Length = sqrt(32 + 42 + 52) (3,4,5)
)

 Measure of how big a vector is:
— Represented as ||X||

H[a b ...]‘:\/a2+b2+...2

A

 Geometrically the shortest
distance to travel from the origin
to the destination

— As the crow flies

— Assuming Euclidean Geometry

* MATLAB syntax:
norm(x)

3 Sep 2013 11-755/18-797 17
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Transposition

* Atransposed row vector becomes a column (and vice versa)

a a
x:b,xT:[a b c] y=[a b c] y' =|b

e A transposed matrix gets all its row (or column) vectors
transposed in order

a d
a b c .
X = X =|b e
d e f
C

 MATLAB syntax: a’

3 Sep 2013 11-755/18-797 18



Vector multiplication

 Multiplication is not element-wise!

* Dot product, or inner product
— Vectors must have the same number of elements

— Row vector times column vector = scalar
_d_

[a b c]- e|l=a-d+b-e+c-f
/

* Quter product or vector direct product
— Column vector times row vector = matrix

] (a-d ae a-f]
bl-ld e fl=|b-d be b-f
| c-d c-e c-f]

* MATLAB syntax: a*b

3 Sep 2013 11-755/18-797
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Vector dot product in Manhattan
 Example:
— Coordinates are yards, not ave/st S— ;
& a»%“ / ~~r §
- a — [200 1600], ""E .o.é?'h ! =~ erl_:!l:Jirl,r'l T Q_;
[200yd;1600yd] [,~St=e 3 -
b =[770 300] notm,= 1612 SN :
¥ W"?-i-';-.,-_ Y o - = #,-i{ ‘x ,.:‘
W -2 . <7 —
 The dot product of the two vectors NS WA R o
.. = BN Ny Va2
relates to the length of a projection ] NSNS
— How much of the first vector have we A ,;“‘ﬁ NN R < ’ 4
covered by following the second one? & S w,;f,»,ﬁ.:”““’ &3]
' £ = L] ) e
— Must normalize by the length of the FQS Z h‘; NN
- : . s
“target” vector S X SN
> P 'Fe',,-f g
- Theod E:ggffl_ = -'2-.‘:1..,;&. ) E_e&rq&-'f'? by ¢
S N SN SRS
[200 1600] o NN, ‘
a-b’ 300 =~ 393yd o >
la] H[2OO 1600]‘ K3 X norm=826 3
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Vector dot product

C E C2
3
o v v v
-
&
=4
@y
7 |
n_JL r.oln |mn£ lw’nni Imnnl :I".nn\ ?,!mﬂl ?\’:Of' * 4000 g‘ I5uo lwuu 15_0‘JDL ZDL |2500 auoul 3500‘ wluc a 500 1000 1500 2000 2500 EDOEI 3500 l 4000
frequency frequency frequency
1 9 .05 1. ..1] 3. 24 . .16 . 14 . 1] 0.0 .30 .13 . 0]

* Vectors are spectra

— Energy at a discrete set of frequencies

— Actually 1 x 4096

— X axis is the index of the number in the vector
* Represents frequency

— Y axis is the value of the number in the vector

* Represents magnitude
3 Sep 2013 11-755/18-797 21
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Vector dot product

C E C2

5 9 9 <
-
&
=4
@y
7 |

Q_JL 50].'1 |mn£ l\snnl I?Onnl :I‘fmnl J!JODI 3-’:00 * 4000 u‘ Isuo lwuo 15_0JuL ZDL |2500 3uool 3500‘ 40|00 a 500 1000 1500 2000 2500 EDODI 3500 l 4000

frequency frequency frequency
1 9 .05 1. ..1] 3. 24 . .16 . 14 . 1] 0.0 .30 .13 . 0]

e How muchofCisalsoinE
— How much can you fake a C by playing an E
— C.E/|C||E] =0.1
— Not very much
e How much of Cisin C2?
— C.c2/]|c|/|c2] =0.5
— Not bad, you can fake it
* To do this, C, E, and C2 must be the same size

3 Sep 2013 11-755/18-797
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Vector outer product

7N SN
7

\ "\ N /N /N / \ -/
A \ / \ /
\\.\ _ / , \\\ S // \.\ / . \\\ / .\\ // \ /

s

The column vector is the spectrum

The row vector is an amplitude modulation

The outer product is a spectrogram
— Shows how the energy in each frequency varies with time
— The pattern in each column is a scaled version of the spectrum
— Each row is a scaled version of the modulation
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Multiplying a vector by a matrix

* Generalization of vector multiplication
— Left multiplication: Dot product of each vector pair
AB:V a, ﬂ' ! :{al-b}

<~ a, —>||]| |a-b

— Dimensions must match!!
 No. of columns of matrix = size of vector
e Result inherits the number of rows from the matrix

 MATLAB syntax: a*b
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Multiplying a vector by a matrix

* Generalization of vector multiplication
— Right multiplication: Dot product of each vector pair

_T T_
A-B=[<— a —>]- b, b,
_i/ \L_

— Dimensions must match!!

=lab, ab,]

 No. of rows of matrix = size of vector
e Result inherits the number of columns from the matrix

 MATLAB syntax: a*b
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Multiplication of vector space by matrix

5 T T
150 -
} ]
14 . <
2 -
05f
1 L
0 e 0 L.
1+
05f
2+
-1+ 3L
4L
15+
1 | 1 1 _5 1 1 1 1 1 1 1 1 1
15 - 05 0 05 1 15 % 4 3 =2 4 0 1 2 3 4 5

 The matrix rotates and scales the space

— Including its own vectors

3 Sep 2013 11-755/18-797 26
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Multiplication of vector space by matrix

150 I \ |
2r &

1k | sl
05+
0_..
_0.5_
A+

03 0.7 |
-15F Y = |

-1.3 16

1 1 1 1 _25 1 1 1 L 1 1 1 1

15 -1 05 0 05 1 15 25 2 15 A 05 0 05 1 15 2 25

e The normals to the row vectors in the matrix become the
new axes

— X axis = hormal to the second row vector

» Scaled by the inverse of the length of the first row vector
3 Sep 2013 11-755/18-797 27
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Matrix Multiplication

{ ol ]
15}

R . 25l M

05 o 05 1 5 %5 2 a5 4 05 0 05 1 15 2 25

* The k-th axis corresponds to the normal to the hyperplane represented
by the 1..k-1,k+1..N-th row vectors in the matrix

— Any set of K-1 vectors represent a hyperplane of dimension K-1 or less
 The distance along the new axis equals the length of the projection on

the k-th row vector

— Expressed in inverse-lengths of the vector

3 Sep 2013 11-755/18-797 28
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Matrix Multiplication: Column space

a b c _|a b C
RlEHE Y
* So much for spaces .. what does multiplying a
matrix by a vector really do?

e |t mixes the column vectors of the matrix
using the numbers in the vector

* The column space of the Matrix is the
complete set of all vectors that can be formed
by mixing its columns
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Matrix Multiplication: Row space

% A BTN

* Left multiplication mixes the row vectors of
the matrix.

* The row space of the Matrix is the complete
set of all vectors that can be formed by mixing

ItS rows
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Matrix multiplication: Mixing vectors

N} N} N X Y ¢
| . 1 3 0 L 7 |
| . .0 )
] i 2 =
. 9 24 —
] 1 1
_ 1 - - 2 _

* A physical example
— The three column vectors of the matrix X are the spectra of
three notes
— The multiplying column vector Y is just a mixing vector

— The result is a sound that is the mixture of the three notes

3 Sep 2013 11-755/18-797 31



Matrix multiplication: Mixing vectors

200 x 200 200 x 200
/) g

¢ 9
~. /

4 N
0.25
0.75
\_ . 2Xx1

40000 x 2
* Mixing two images
— The images are arranged as columns
e position value not included

-

40000 x 1

— The result of the multiplication is rearranged as an image

3 Sep 2013 11-755/18-797
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J
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Multiplying matrices

* Generalization of vector multiplication
— Quter product of dot products!!

«— a >
A-B=

«— a, —

}.

S
bl b2

_i/ i/_

— Dimensions must match!!
* Columns of first matrix = rows of second

e Result inherits the number of rows from the first matrix and
the number of columns from the second matrix

 MATLAB syntax: a*b

_ a,-b,

al'bl
- az'bl

az'bz
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Matrix multiplication: another view

' - a,
alN bll . bNK all a12 .N
= [b11 : blK]+ [b21 - bZK]+"'+ [le : bNK]

_aMl_ aMZ_ a'MN_

= The outer product of the first column of A and the first row of

B + outer product of the second column of A and the second
row of B + ....

= Sum of outer products

3 Sep 2013 11-755/18-797 34
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Why is that useful?

SVAVAVAVAVAV;
NN

¢ ¢ ¢ _
130 (0 05 075 1 075 05 0 .. ... ]
) .0 1 09 07 05 0 05 . .....
o lgou 05 06 07 08 09 095 1 ... .. _
Y
X
e Sounds: Three notes modulated
independently

3 Sep 2013 11-755/18-797 35
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Matrix multiplication: Mixing modulated
spectra

SVAVAVAVAVAV;
NN

¢ < ¢
130 0 05075 L 075 05 0 .. ... ]
. .0 1 09 07 05 0 05 . .....
| . e 05 06 07 08 09 095 1 ... .. _
_ ‘ | Y

X
 Sounds: Three notes modulated
independently

3 Sep 2013 11-755/18-797 36
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Matrix multiplication: Mixing modulated
spectra

AVAVAVAVAVAVS

0 0507 1 075 05 0 .. ...
Q i Y

X
e Sounds: Three notes modulated

independently
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Matrix multiplication: Mixing modulated
spectra

/\/\/ \

< 1 09 07 05 O C

X
 Sounds: Three notes modulated
independently
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Matrix multiplication: Mixing modulated

spectra
g1 o506 07 08 09 0951 ... .. _
§ 0
1_
X

 Sounds: Three notes modulated
independently
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Matrix multiplication: Mixing modulated
spectra

AVAVAVAVAVAVS
AN

< < v

 Sounds: Three notes modulated
independently

3 Sep 2013 11-755/18-797 40



[ [ ] [ [ ] Mml_hﬁg*
Matrix multiplication: Image

transition

'
b L1 98765432410
0123456.78.91]

* Imagel fades out linearly
* Image 2 fades in linearly

3 Sep 2013 11-755/18-797 41



[ [ ] [ [ ] Mm%
Matrix multiplication: Image

transition
. _[1 9876543210
|
. i 09y 08y . . .. .. 0]
i, 09, 08, .. .... 0
...... 0
L L 0.
iy 09iy 08y . . . . .. 0

 Each column is one image

— The columns represent a sequence of images of decreasing
intensity

* Imagel fades out linearly

3 Sep 2013 11-755/18-797 42



Matrix multiplication: Image

N

|

9

J
l

L

transition

[0 1234567891

* Image 2 fades in linearly

3 Sep 2013

11-755/18-797
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[ [ ] [ [ ] Mml_hﬁg‘
Matrix multiplication: Image

transition

I

b LI [1 98765432410 “
0122345678291

R ¢

* Imagel fades out linearly
* Image 2 fades in linearly

3 Sep 2013 11-755/18-797 44



Y =

i

081

06

0.4+

0.2

-0.2f

04k

-0.6F

-08f

* Anidentity matrix is a square matrix where

-0.5

=)

— All diagonal elements are 1.0
— All off-diagonal elements are 0.0

 Multiplication by an identity matrix does not change vectors

3 Sep 2013

11-755/18-797

081

06

0.4+

04k

-0.6F

-08f

The Identity Matrix

g |

f

I

¥

‘.f
#
F
&
oﬁ;

|MM " M L L

05 05 1

MLSP
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Diagonal Matrix

o]

1

1 T pa
08 08l s
o

06 08
0.4 oal o
0.2+ 0.2k

o i} 2
02F 0.2F
0.4 0.4+
06+ -0.6
-0.8r -0.81

1 | | . | | 1 i ,%

-2 -15 -1 -0.5 0 05 1 1.5 2 2 15 K .05 0

* All off-diagonal elements are zero
* Diagonal elements are non-zero

e Scales the axes
— May flip axes

3 Sep 2013 11-755/18-797 46
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Dlagonal matrix to transform images

i
.ry"v

e How?

3 Sep 2013 11-755/18-797 47
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Stretching

2 0 01 1 2 2 . 2 . 10]
0 1 0|1 2 5 6 . 10 . 10
0 0 111 00 .1 . 1

* Location-based
representation

e Scaling matrix — only scales
the X axis

— The Y axis and pixel value are
scaled by identity

 Not a good way of scaling.

3 Sep 2013 11-755/18-797 48
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11111111111

11111111111

11111111111

lllllllllll

11111111111

11111111111

11111111111

11111111111

11111111111

11111111111

"I(NX2N)

1 50 0

0O 51 5.

0 0 0 .5

0 0 0O

Newpic= EA

A=

* Better way
* [nterpolate

49

11-755/18-797
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Modifying colo

PR TS O A
S AR Lo
e, 7

=
NN

R| |G B
P=
(100
Newpic=P|0 2 O
0 0 1

* Scale only Green

3 Sep 2013 11-755/18-797 50



MLSP

Vichnedsaming or SayaProcessing G

Permutation Matrix

i A - (34,5
0 1 0Of|x y 5 Z(oldX) :
0 0 1||lyl=|z Y Y(dzy” -

1 0 0flz| |x 2 4 s

X 3 X(@ldY)4

* A permutation matrix simply rearranges the axes
— The row entries are axis vectors in a different order

— The result is a combination of rotations and reflections

 The permutation matrix effectively permutes the
arrangement of the elements in a vector
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Permutation Matrix

4 N

1 0 ) .

& ’,‘\‘
O O 14 . -
0 1

* Reflections and 90 degree rotations of images
and objects

3 Sep 2013 11-755/18-797 52
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Permutation Matrix

* Reflections and 90 degree rotations of images and objects
— Object represented as a matrix of 3-Dimensional “position” vectors
— Positions identify each point on the surface

3 Sep 2013 11-755/18-797 53
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Rotation Matrix

X'=Xxcos@—ysind cosd -—sind R X = X
. _ g = . 0 — “Yhnew
y'=xsin@+ycosf sind cosé
N :m ) (<.y)
(X.y) y , y / (X.y)
A Xnew :|:X|:| e /
Y Y Y
X g X X X "

* A rotation matrix rotates the vector by some angle g
* Alternately viewed, it rotates the axes

— The new axes are at an angle 0 to the old one

3 Sep 2013 11-755/18-797 54



Rotating a picture

¢
o

. =32

~”
¢ d
SR

1.
1.

RN R
o g N
o OO N

N

* Note the representation: 3-row matrix
— Rotation only applies on the “coordinate” rows

cos45 —sin4d5 0
sin45 cos45 O
0 0 1

— The value does not change

— Why is pacman grainy?

3 Sep 2013
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|

|

0
V2
1

—J2 . 2
32 . 3/2 .
1 1

72
0

—4J2
82
0

. =82 ..
L1242 ..
o1
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3-D Rotation

* 2 degrees of freedom

— 2 separate angles

e What will the rotation matrix be?

3 Sep 2013 11-755/18-797 56



Matrix Operations: Properties

* A+B =B+A
* AB I=BA

3 Sep 2013 11-755/18-797
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.Proj ections

L

m, /77
SO

Sanl! i

0

] 05
0
03 -0.5

-1 -1

 What would we see if the cone to the left were transparent if we
looked at it from above the plane shown by the grid?

— Normal to the plane
— Answer: the figure to the right
 How do we get this? Projection

3 Sep 2013 11-755/18-797 58
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egrees

o \ o
Prczjec on Matrix

[/ s /L))

/N 7777 7
W27V 7777

77 7 7
/ /[ /]
//////»(

[T7TITT 77777 W projection

* Consider any plane specified by a set of vectors W,, W,..
— Ormatrix [W; W, ..]
— Any vector can be projected onto this plane

— The matrix A that rotates and scales the vector so that it becomes its
projection is a projection matrix

3 Sep 2013 11-755/18-797 59
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PrOJec on Matrix

egrees

\

/S S S/
///////////

/4
/////)‘\ //////

_fz’fWZ //////

/[ /

II..H." I~/
I [»] =T | | / /

/ /)
77777 7 Wl Srojection

* Given a set of vectors W1, W2, which form a matrix W = [W1 W2.. ]

* The projection matrix to transform a vector X to its projection on the plane is
— P=W (WW)1WT
*  We will visit matrix inversion shortly
 Magic — any set of vectors from the same plane that are expressed as a matrix
will give you the same projection matrix

— P=V (VIV)LVT
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- Projections
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* Draw any two vectors W1 and W2 that lie on the plane

— ANY two so long as they have different angles
e Compose a matrix W = [W1 W2]
* Compose the projection matrix P =W (WTW)1 WT
 Multiply every point on the cone by P to get its projection
* Viewit©

— I’m missing a step here —what is it?
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Projections
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* The projection actually projects it onto the plane, but you're still seeing
the planein 3D

— The result of the projection is a 3-D vector
— P=W (W'W)1WT=3x3, P*Vector = 3x1
— The image must be rotated till the plane is in the plane of the paper

* The Z axis in this case will always be zero and can be ignored
* How will you rotate it? (remember you know W1 and W2)
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Projection matrix properties
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* The projection of any vector that is already on the plane is the vector itself

— Px=xif xison the plane

— If the object is already on the plane, there is no further projection to be performed

 The projection of a projection is the projection

— P (Px)=

— That is because Px is already on the plane

* Projection matrices are idempotent
— P2=P
35ep 2013« Follows from the above
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Projections: A more physical meaning

* LetW, W, .. W, be “bases”
 We want to explain our data in terms of these “bases”

— We often cannot do so
— But we can explain a significant portion of it

* The portion of the data that can be expressed in terms of
our vectors W, W,, .. W,, is the projection of the data
on the W, .. W, (hyper) plane

— In our previous example, the “data” were all the points on a
cone, and the bases were vectors on the plane



MLSP

|

— T S e i i e e EE = =g Rl
- = e = e e === = =" —
[ = — o = far -— = 2
— = ol —— == — ey e ] = =W =
== . = T T B - . = _— s - E==
sooco - == = ot i = == === 5 =
S000 -— —= ’7 < = = i - — = " = == 3 —
=8 = - e = e e e L - — 5
= —— — E— - ————— = = g = ey
=2 ao0o00 —_— — = ———— — — = — g
= P == o e e e e -— =5 =
e = = e e e L e e e e g =
——— e o . e e e = = e e e e = e e
= = e = e ———— —= ==
== e = _m— s —_— e e = o
=lalalal =+ = — —_— e % = = e e el —
= e e e e e K e e — e e
ocoo — ——— == - = — e —
—_—— — — = — = = — — - —
e ————— = == = — T —
= —— - s e e  —mee e —r m—— wm e e = = — —m— — = =
= -1 =] = 1o 1= -1
i

* The spectrogram (matrix) of a piece of music
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= How much of the above music was composed of the
above notes

o l.e. how much can it be explained by the notes
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Pro;ectlon one note
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* The spectrogram (matrix) of a piece of music

e N

W = B

Lol

= M =spectrogram; W =note
= P=W (W'W)1WT
= Projected Spectrogram =P * M
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PrOJectlon one note cleaned up
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m Floored all matrix values below a threshold to zero
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* The spectrogram (matrix) of a piece of music

YUY =  —
iy

= P=W (W'W)1WT
m Projected Spectrogram=P * M
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Pro;ectlon multlpl otes cleaned up

* The spectrogram (matrix) of a piece of music

YUY
! S - - - - :%I'
w= 32

. P= W(WTW) Wt
= Projected Spectrogram =P * M
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Projection and Least Squares

Projection actually computes a least squared error estimate

For each vector V in the music spectrogram matrix

— Approximation: V, . =a*notel + b*note2 + c*note3..

d
- o |on
V. —lglgle
—| ol oo
approx =l el e
C

— FErrorvectorkE= V-V, .

— Squared error energy for V. e(V) = norm(E)?
— Total error =sumover all V{e(V) }=Z, e(V)

* Projection computes V, ., for all vectors such that Total error is minimized
— It does not give you “a”, “b”, “c”.. Though

That needs a different operation — the inverse / pseudo inverse
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Perspective
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* The picture is the equivalent of “painting” the viewed scenery on a
glass window

* Feature: The lines connecting any point in the scenery and its
projection on the window merge at a common point
— The eye

— As a result, parallel lines in the scene apparently merge to a point
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An aside on Perspective..

* Perspective is the result of convergence of the image to a point

* Convergence can be to multiple points

— Top Left: One-point perspective
— Top Right: Two-point perspective
— Right: Three-point perspective
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Representing Perspective
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* Perspective was not always understood.

* Carefully represented perspective can create
illusions..
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Central Projection

x,y,Z

LR

o\
A\

X Yy z . - X =
— == =— Property of a line through origin y=ay'
X'y z

 The positions on the “window” are scaled along the line

 To compute (x,y) position on the window, we need z (distance of

window from eye), and (x,y’,z’) (location being projected)
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Homogeneous Coordinates

Y — y=a'y
X,y a |
/ ) X=X
o
x \
Represent points by a triplet
— Usi - : o , a ,
Using yellow window as reference: “x=x Zy=y
- (le) = (lell) a (04

— (xVy')=(xyc) c=d/a
— Locations on line generally represented as (x,y,c)
« x=x/c’, y=y/c




Homogeneous Coordinates in 3-D

X1,¥Y1,44

X0,Y2,Zy ~

X1,¥Y1,41

oxX, =a X;
ayl :alyll
az, =a'z,

* Points are represented using FOUR coordinates
- (XIY)ZIC)
— “c” is the “scaling” factor that represents the distance of the actual

scene

e Actual Cartesian coordinates:

- X

actual

3 Sep 2013

Xlc, Y,

ctual

=Ylc, Z, = Z/C
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Homogeneous Coordinates

IS

In both cases, constant “c” represents distance along the line

with respect to a reference window

— In 2D the plane in which all points have values (x,y,1)

Changing the reference plane changes the representation

* |.e.there may be multiple Homogenous representations
(x,y,c) that represent the same cartesian point (x y')
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