

Machine Learning for Signal Processing Project Ideas

Class 5. 12 Sep 2013

Instructor: Bhiksha Raj

Administrivia

- Homework questions?
 - If you have any questions, please feel free to approach TAs or me

Course Projects

- Covers 50% of your grade
- 10-12 weeks of work
- Required:
 - Serious commitment to project
 - Extra points for working demonstration
 - Project Report
 - Poster presented in poster session
 - Graded by anonymous external reviewers in addition to the course instructors

Course Projects

- Projects will be done by teams of students
 - Ideal team size: 3
 - Find yourself a team
 - If you wish to work alone, that is OK
 - But we will not require less of you for this
 - If you cannot find a team by yourselves, you will be assigned to a team
 - Teams will be listed on the website
 - All currently registered students will be put in a team eventually
- Will require background reading and literature survey
 - Learn about the problem

Projects

- A list of possible projects will be presented to you in the rest of this lecture
- This is just a sampling
- You may work on one of the proposed projects, or one that you come up with yourselves
- Teams must inform us of their choice of project by 27th
 September 2013
 - The later you start, the less time you will have to work on the project

Quality of projects

- Project must include aspects of signal analysis and machine learning
 - Prediction, classification or compression of signals
 - Using machine learning techniques
- Several projects from previous years have led to publications
 - Conference and journal papers
 - Best paper awards
 - Doctoral and Masters' dissertations

Projects from previous years: 2012

- Skin surface input interfaces
 - Chris Harrison
- Visual feedback for needle steering system
- Clothing recognition and search
- Time of flight countertop
 - Chris Harrison
- Non-intrusive load monitoring using an EMF sensor
 - Mario Berges
- Blind sidewalk detection
- Detecting abnormal ECG rhythms
- Shot boundary detection (in video)
- Stacked autoencoders for audio reconstruction
 - Rita Singh
- Change detection using SVD for ultrasonic pipe monitoring
- Detecting Bonobo vocalizations
 - Alan Black
- Kinect gesture recognition for musical control

Projects from previous years: 2011

- Spoken word detection using seam carving on spectrograms
 - Rita Singh
- Bioinformatics pipeline for biomarker discovery from oxidative lipdomics of radiation damage
- Automatic annotation and evaluation of solfege
- Left ventricular segmentation in MR images using a conditional random field
- Non-intrusive load monitoring
 - Mario Berges
- Velocity detection of speeding automobiles from analysis of audio recordings
- Speech and music separation using probabilistic latent component analysis and constant-Q transforms

Project Complexity

Depends on what you want to do

Complexity of the project will be considered in grading.

 Projects typically vary from cutting-edge research to reimplementation of existing techniques. Both are fine.

Incomplete Projects

- Be realistic about your goals.
- Incomplete projects can still get a good grade if
 - You can demonstrate that you made progress
 - You can clearly show why the project is infeasible to complete in one semester
- Remember: You will be graded by peers

Projects...

- Several project ideas routinely proposed by various faculty/industry partners
 - Sarnoff labs, NASA, Mitsubishi

Today we have Alan Black...

A proposed theme: health

- http://physionet.org/
- Data of various kinds
 - Static snapshots
 - Time-series data
- For various health markers
 - Timing measurements, e.g. Gait
 - Electrical measurements, e.g. ECG, EKG
 - Images: Magnetic Resonance

Problems

- Signal enhancement
 - Measurement is noisy, can you clean it
- Classification
 - Does this person have Parkinsons
 - Does this person have a cardiac problem
- Prediction
 - Rehospitalization: What fraction of these patients will go back to hospital in the next N days

Current "Challenges"

- Fetal heartbeats
 - Predict QT syndromes

- 2012 challenge: Predict mortality rate in ICU
 - Cardiology challenge

2011 challenge: Improving quality of ECG collected over mobile phones

Other Ideas

• Some ideas follow..

Sound Processing: A fun demo

Talk-Along Karaoke

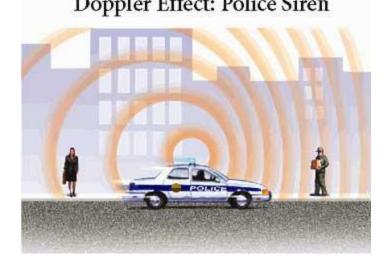
- Pick a song that features a prominent vocal lead
 - Preferably with only one lead vocal
- Build a system such that:
 - User talks the song out with reasonable rhythm
 - The system produces a version of the song with the user singing the song instead of the lead vocalist
 - i.e. The user's singing voice now replaces the vocalist in the song
- No. of issues:
 - Separation
 - Pitch estimation
 - Alignment
 - Pitch shifting

Plagiarism Detection

Youtube videos...

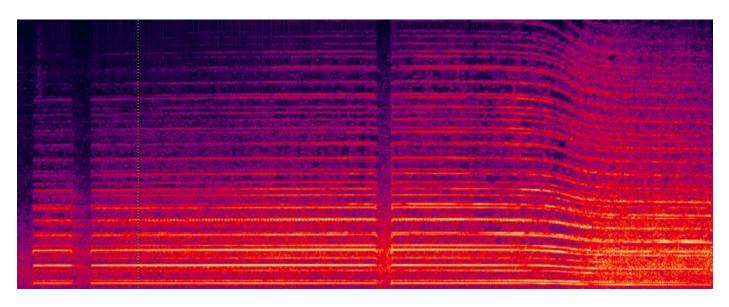
 e.g. Are the first bars in these two identical to merely close or copied?

http://www.youtube.com/watch?v=iPqsix_wm6Y


VS.

http://www.youtube.com/watch?v=RhJaVvyanZk

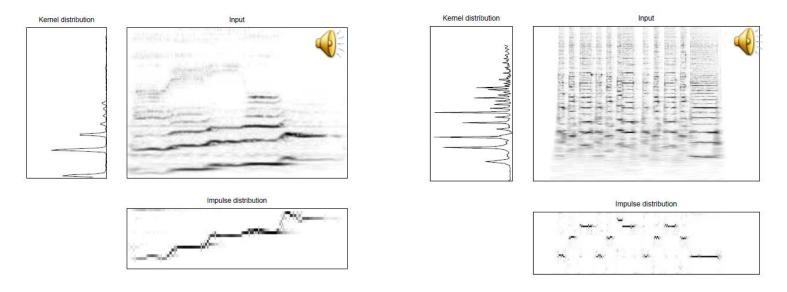
The Doppler Effect


 The observed frequency of a moving sound source differs from the emitted frequency when the source and observer are moving relative to each other Doppler Effect: Police Siren

The Doppler Effect

- Spectrogram of horn from speeding car
 - Tells you the velocity
 - Tells you the distance of the car from the mic

Problem


 Analyze audio from speeding automobiles to detect velocity using the Doppler shift

 Find the frequency shift and track velocity/position

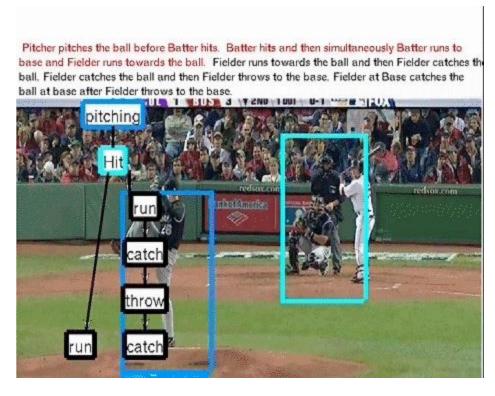
Supervisor: Dr. Rita Singh

Pitch Tracking

- Frequency-shift-invariant latent variable analysis
- Combined with Kalman filtering
- Estimate the velocity of multiple cars at the same time

New Doppler Problem

- Can we learn to derive articulator information from speech by considering its relationship to Doppler signal
- Can this be used to improve automatic speech recognition performance
- Procedure
 - Learn a deep neural network to learn the mapping
 - Use the network as a feature computation module for speech recognition
 - Augments conventional features
- Supervisor: Bhiksha Raj



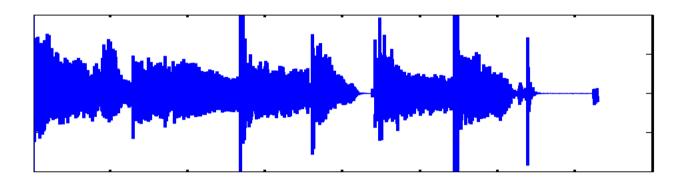
Song lyric recognition (Rita Singh)

- Recognize lyrics in songs
- Conventional Automatic Speech recognition won't work
 - Stylized voices
 - Overlaid music
 - Mispronunciations
- Can assume any framework
 - Select lyrics from a collection of lyrics
 - Know words but not lyrics

Assigning Semantic tags to multimedia data

- http://www.cs.cmu.edu/~abhinavg/Home.html
- Dan Ellis' website..

Object detection and Clustering



- Detect various types of objects in images
 - Supervised: You know what objects to detect
 - Unsupervised: Detect objects based on motion
- Required for content-based description
- Semi-knowledge-based clustering, supervised/semi-supervised learning

Audio object detection and Clustering

- Learn to detect various sound phenomena in multimedia recordings from "the wild"
 - YouTube style data
- Even when they occur concurrently with other sounds
- Including sound phenomena for which we may have no training instances!

Geolocation

- Different places *look* different
- And sound different
- Problem: Given an image, video or audio recording, can we localize it geographically
 - E.g. identify the town / country / continent
 - Localize it qualitatively
 - E.g. Its in a high-traffic area / Near the sea / at A windy place / "Sounds like Chicago.."

Recognizing Gender of a Face

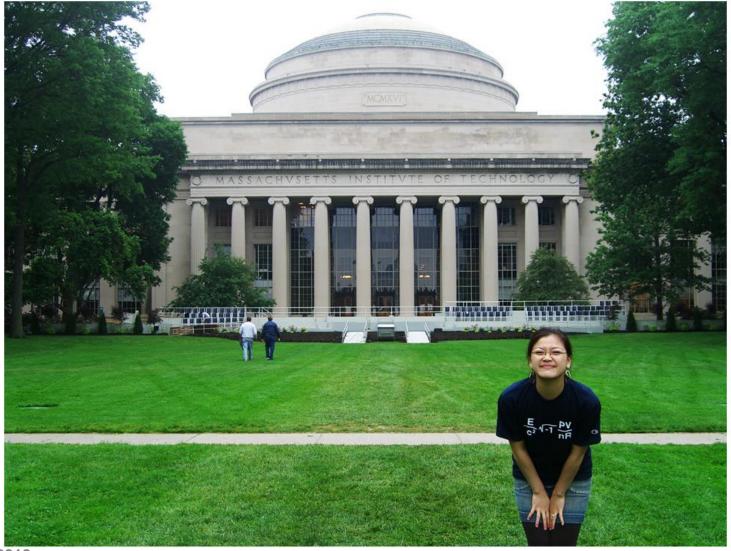
- A tough problem
- Similar to face recognition
- How can we detect the gender of a face from the picture?
 - Even humans are bad at this

Image Manipulation: Filling in

- Some objects are often occluded by other objects in an image
- Goal: Search a database of images to find the one that best fills in the occluded region

Image Manipulation: Filling in

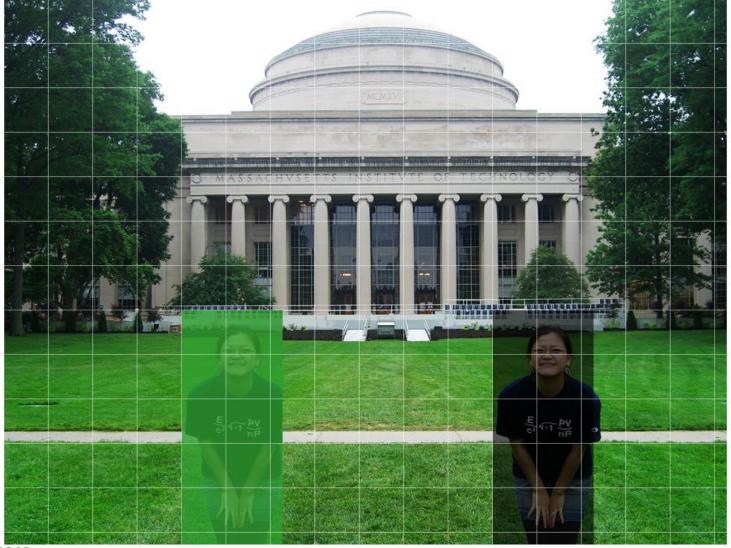
- Some objects are often occluded by other objects in an image
- Goal: Search a database of images to find the one that best fills in the occluded region


Image Manipulation: Modifying images

- Moving objects around
 - "Patch transforms", Cho, Butman, Avidan and Freeman
 - Markov Random Fields with complicated a priori probability models

Applications – Subject

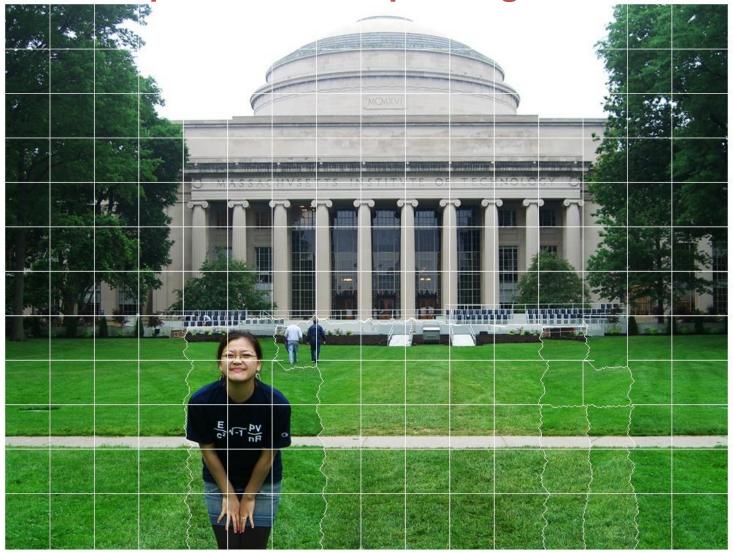
Input image



12 Sep 2013

Applications – Subject reorganization

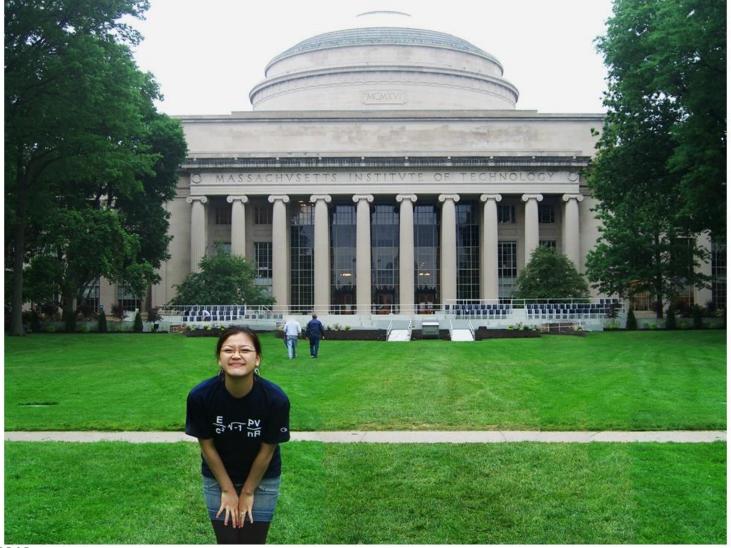
User input



12 Sep 2013 34

Applications – Subject reorganization

Output with corresponding seams



12 Sep 2013 35

Applications – Subject reorganization

Output image after Poisson blending

12 Sep 2013 36

You get the idea

- You may pick any of these problems or come up with a fun one of your own
- They must exercise your MLSP skills
- Please form teams and inform me and TAs of teams asap
 - Or we will assign you to a team
- Please send us project proposals before 27th
 - Try to break down the steps in solving your problem in your proposal
 - Needed to evaluate feasibility