MLSP

Machine Learning for Signal

Processing
Eigenfaces and Eigenrepresentations

Class 6. 17 Sep 2013

Instructor: Bhiksha Raj
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MLSP
Administrivia

* Project teams?
— By the end of the month..

* Project proposals?

— Please send proposals to TAs, and cc me

* Reminder: Assignment 1 due in 9 days
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Recall: Representing images

aboard Apollo space capsule Apollo Xi aboard Apollo space capsule Building Apollo space ship aboard Apollo space capsule.
1038 x 1280 - 142k 1280 x 1255 - 226k 1029 x 1280 - 128k 1280 x 1257 - 114k 1017 x 1280 - 130k
LIFE LIFE LIFE LIFE LIFE

Apollo Xi Apollo 10 space ship. w Splashdown of Apollo XI mission Earth seen from space during the  Apollo Xi
1228 x 1280 - 181k 1280 x 853 - 72k 1280 x 866 - 184k 1280 x 839 - 60k 844 x 1280 - 123k
LIFE LIFE LIFE LIFE LIFE

the moon as seen from Apollo 8 Apollo 11
1280 x 956 - 117k 1223 x 1280 - 214k 1280 x 1277 - 142k
LIFE LIFE LIFE LIFE LIFE

Apollo 8
1278 x 1280 - 74k

working on Apollo space project Apollo 8 Crew

968 x 1280 - 125k

The most common element in the image:
background
— Or rather large regions of relatively featureless shading
— Uniform sequences of numbers
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Adding more bases

* Checkerboards with different variations

Image~ wy By + wW,B, +W3B3 +...

W =| Ws B=[B, B, Bs]

- BW ~ Image
W = pinv(B) Image ;
PROJECTION = BW Gett1i0ng closer at 625 bases!
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“Bases”
e T
B, B, B. B,

Image = w,B, + w,B, + w,B, +...

e “Bases” are the “standard” units such that all instances can be
expressed a weighted combinations of these units

* Ideal requirements: Bases must be orthogonal

e Checkerboards are one choice of bases

— Orthogonal
— But not “smooth”

e Other choices of bases: Complex exponentials, Wavelets,
etc..
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Data specific bases?

* |Issue: All the bases we have considered so far are
data agnostic
— Checkerboards, Complex exponentials, Wavelets..
— We use the same bases regardless of the data we analyze

* Image of face vs. Image of a forest
* Segment of speech vs. Seismic rumble

 How about data specific bases

— Bases that consider the underlying data

e E.g.is there something better than checkerboards to describe
faces

* Something better than complex exponentials to describe music?
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MLSP

Vichielzaming for SaraProcessing Gt

The Energy Compaction Property

e Define “better”?

* The description

X =w,B, +w,B, + w,B; +...+ w B,

* The ideal:

N

X ~w,B, +w,B, Error =|X - X

2

— |f the description is terminated at any point, we
should still get most of the information about the
data

 Error should be small
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Data-specific description of faces

I IS

-~
u
| ——

4 L

YR

* A collection of images

— All normalized to 100x100 pixels
* What is common among all of them?

— Do we have a common descriptor?
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A typical face
Q" lh h‘

The typical face

. ﬂ ’ ) ) ) ) ) 7

I”

 Assumption: There is a “typical” face that captures most of
what is common to all faces
— Every face can be represented by a scaled version of a typical face
— We will denote this face as V
* Approximate every facefast = w, V

* Estimate V to minimize the squared error
— How? Whatis V?
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A collection of least squares typical faces “%&

4 jeyes
) A

Assumption: There are a set of K “typica

|II

faces that captures most of all faces
* Approximate every facefast = w¢, V,+ w,, V, + we, V; +.0 +w Vi

— V,is used to “correct” errors resulting from using only V. So on average

2 2
Hf —(we Vi, +Wf,2Vf,2)H < Hf _Wf,lvf,1H
— V; corrects errors remaining after correction with V,,
2 2
H F—(we Vg + Wi Vo + W Vs 3)” < H =Wy Vi + W,V 2)H

— Andsoon..

- V=[V;V,V;]
* Estimate V to minimize the squared error

— How? Whatis V?
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* Finding the best explanation of music M in terms of notes N

Also finds the score S of M in terms of N
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N = M Pinv(S

U=NS=M

N = f? U= ’? N =M pinv(S)

* Finding the notes N given music M and score S
e Also finds best explanation of M in terms of S
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= Find the four notes and their score that generate the
closest approximation to M
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Typical faces

2F.a

* Here W,V and U are ALL unknown and must be determined
— Such that the squared error between U and M is minimum

17 Sep 2013 11-755/18-797
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Abstracting the problem: MLSP
Finding the FIRST typical face

AN

Pixel 2

v

Pixel 1

* Each “point” represents a face in “pixel space”
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Abstracting the problem: MLSP
Finding the FIRST, typical face
V

Pixel 2

v

Pixel 1

* Each “point” represents a face in “pixel space”
* Any “typical face” V is a vector in this space
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Abstracting the problem: MLSP
Finding the FIRST, typical face
V

Pixel 2

v

Pixel 1

)

* Each “point” represents a face in “pixel space’
* The “typical face” V is a vector in this space

* The approximation WY, V for any face f is the projection of f onto V

* The distance between f and its projection WV is the projection error for £
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Abstracting the problem: MLSP
Finding the FIRST, typical face
v /"

Pixel 2

v

Pixel 1

e FEvery face in our data will suffer error when
approximated by its projection on V

 The total squared length of all error lines is the total
squared projection error
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Abstracting the problem: MLSP
Finding the FIRST, typical face
v /"

Pixel 2

v

Pixel 1

* The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!
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Abstracting the problem: MLSP
Finding the FIRST typical face

Pixel 2

v

Pixel 1

* The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!
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Abstracting the problem: MLSP
Finding the FIRST typical face

AN
[ ]
w \ \
\ \ \
(Q\| \ \
> | N i
>< \ ‘\ ! L |
- — \‘ x‘ 1 \ \‘
D_ . \ \‘ ‘
\ M
\ <y V
v
\ \
Wy
>
Pixel 1

* The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!
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Abstracting the problem: MLSP
Finding the FIRST typical face
V

AN

Pixel 2

v

Pixel 1

* The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!
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Abstracting the problem: MLSP
Finding the FIRST typical face

AN

Vi

Pixel 2

v

Pixel 1

* The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!

* This “minimum squared error” V is our “best” first typical face
e Itis also the first Eigen face
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Formalizing the Problem: Error from "™

approximating a single vector

Approximating: x = wv

A\

* Consider: approximating X = wv
— E.g xis a face, and “v” is the “typical face”
* Finding an approximation WV which is closest to x

— In a Euclidean sense

— Basically projecting x onto v
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Formalizing the Problem: Error from ™

approximating a single vector

Approximating: x = wv

~ \-i -------------------------------- > X = VVTX

N
7

* Assuming V is of unit length: X=w'x
2
error = x—% = x—w'x  squarederror=_|x—vv'x]|

17 Sep 2013 11-755/18-797 25



MLSP

Error from approximating a single
vector

* Minimum squared approximation error from
approximating X as it as wv

2
e(X) = Hx —w' XH

e Optimal value of w: w=v'x

17 Sep 2013 11-755/18-797 26



MLSP

Error from approximating a single
vector

* Error from projecting a vector X on to a vector
onto a unit vector V. e(x) = [x—w'x|

e(x) = (X—WTX)T (x—vax) = (xT —x'w' )(X—WTX)

=X X=X W' X=X"W'X+X W' w'X

17 Sep 2013 11-755/18-797 27



MLSP

Error from approximating a single
vector

* Error from projecting a vector X on to a vector
onto a unit vector v e(x)= Hx—waH2

e(x) = (x—WTx)T (X—WTX) = (xT —x'w' XX—WTX)

=X'X=X'"W'X=xX"W'x+x"vw' w'x
=1
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MLSP

Error from approximating a single
vector

* Error from projecting a vector X on to a vector
onto a unit vector v e(x)= Hx—waH2

e(x) = (x—WTx)T (X—WTX) = (xT —x'w' XX—WTX)

=X X=X W' X=X"W'X+X wW'X

e(X) =x"x—x"w'x
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MLSP

Error from approximating a single
vector

e(X) = x'x — xTv.v'x
R
Length of projection

This is the very familiar pythogoras’ theorem!!
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MLSP
Error for many vectors

~
Cdd

e Error for one vector: e(X) =X'X—X' w'X
* Error for many vectors

E = Ze(xi) = Z(xiTxi —xiTvaxi) =2 X X = D X[ WX

e Goal: Estimate vV to minimize this error!
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MLSP
Error for many vectors

~
Cdd

X
* Total error: E:inTxi—inTvaxi
i i

e Add constraint: viv=1
e Constrained objective to minimize:
E=> X% - Y X w'x, +/1(VTV—1)
i i

17 Sep 2013 11-/55/15-/9/ 32



MLSP
Two Matrix Identities

e Derivative w.r.t v

dx'vv'x
dv

= 2XX' V
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MLSEP
Minimizing error

~
Cdd

E=> XX —Z)ﬁiTvaxi +/1(VTV—1)

e Differentiating w.r.t v and equatingto O
—2) XX{V+2Av=0 (ZX'XT j\,:/lv
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MLSP

Vichielzaming for SaraProcessing Gt

The correlation matrix

= AV

e The encircled term is the correlation matrix

T T
X =[x X, %] inxi =XX" =R

X = Data Matrix

Pt

Correlation

XT = Transposed
Data Matrix

17 Sep 2013 11-755/18-797 35



MLSP
The best “basis”

~
Cdd

* The minimum-error basis is found by solving
Rv = Av

* Vis an Eigen vector of the correlation matrix R

— A is the corresponding Eigen value
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MLSP

What about the total error?

E=> XX — > X/ W'X,

e X'v=VIX (inner product)
E=D XX =D VXXV =>xx, —VT(inxiij
E=>) XX, -V RV=) XX -V Av=) XX, —AV'V
E=>x{x,—4

17 Sep 2013 11-755/18-797 37



MLSP

Minimizing the error
* Thetotal erroris E=) XX, -4

 We already know that the optimal basis is an
Eigen vector

* The total error depends on the negative of the
corresponding Eigen value

 To minimize error, we must maximize A

* j.e. Select the Eigen vector with the largest
Eigen value
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MLSP

The typical face

¥ F
g ¥ 0

 Compute the correlation matrix for your data
— Arrange them in matrix X and compute R = XXT

The typical face

 Compute the principal Eigen vector of R
— The Eigen vector with the largest Eigen value

* This is the typical face
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With many typical faces

o

Typical faces

P -

* Approximate every facefasft = w;, V,+ wq, V, +... + w V.

e Here W,V and U are ALL unknown and must be determined
— Such that the squared error between U and M is minimum
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MLSP

With multiple bases

[ [/ [ [T [T 777 7

[/ /[ 7T [ /777 7

Assumption: all bases v, v, v,.. are unit length

Assumption: all bases are orthogonal to one another: Viij =0ifi1=]
— We are trying to find the optimal K-dimensional subspace to project the data
— Any set of vectors in this subspace will define the subspace
— Constraining them to be orthogonal does not change this

le.if V=[v,v,v;...], VIV=I
— Pinv(V) = VT

Projection matrix for V= VPinv(V) = VVT
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With multiple bases

vy < Representsa
K-dimensional subspace

* Optimal projection for a vector X =VV'x

* Error vector =

* Error length =

17 Sep 2013

X—X=X-VV'x

e(X) =x'x=x"VV'x

11-755/18-797

MLSP
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With multiple bases

N

 Error for one vector:
* Error for many vectors

~
Cdd

e(X) =x'x=x'VV'x

E=>X{X,— > Xx{VV'Xx

e Goal: Estimate V to minimize this error!

17 Sep 2013

11-755/18-797

MLSP
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Minimizing error
* With regularization V'V = |, objective to
minimize

E =" X/%; — 2. X VW, +trace{A(V'V - 1))

— Note: now A is a diagonal matrix

— The regularization simply ensures that v'v = 1 for
every basis

e Differentiating w.r.t V and equatingto O

—2(inxiT ]V+ 2AV =0



MLSP

Finding the optimal K bases
RV = AV

 Compute the Eigendecompsition of the
correlation matrix

* Select K Eigen vectors
* But which K? K
. T
. Totalerror= E= in & _Z;/“j
| j=

* Select K eigen vectors corresponding to the K
largest Eigen values
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Eigen Faces!

e
'!ﬁ“ﬂfl

Arrange your input data into a matrix X

« Compute the correlation R = XXT
* Solve the Eigen decomposition: RV = AV

* The Eigen vectors corresponding to the K largest eigen values
are our optimal bases

* We will refer to these as eigen faces.

17 Sep 2013 11-755/18-797 46



How many Eigen faces

300x10000

10000x300 10000x10000

* How to choose “K” (humber of Eigen faces)

* Lay all faces side by side in vector form to form a matrix
— In my example: 300 faces. So the matrix is 10000 x 300

* Multiply the matrix by its transpose
— The correlation matrix is 10000x10000
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Eigen faces

[U,S] = eig(correlation)

4 . 0 . 0 | N T
L O
0 4 0. 0 188
S = U= Hg “gooo
(O
. . . . . GJ GJ L
B O . O . 110000_ 00 50 100

* Compute the eigen vectors

— Only 300 of the 10000 eigen values are non-zero
e Why?

* Retain eigen vectors with high eigen values (>0)
— Could use a higher threshold

17 Sep 2013 11-755/18-797
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Eigen Faces

eigenfacel

eigenfacel
eigenface2
.
o

-

o
0 50 100 150 200 250 300 350 400 450 500

mmmmmmmmmmmmm

éigenfaces

 The eigen vector with the highest eigen value is the first typical face

 The vector with the second highest eigen value is the second typical
face.

 Etc.
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P
»
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-
=
[ —
Wk %W wm T

Representation -

* The weights with which the eigen faces must
be combined to compose the face are used to
represent the face!
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MLSP
Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognizable

* Approximating a face with one basis:
f =wv,
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MLSP
Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognizable

* Approximating a face with one Eigenface:
f =wv,

17 Sep 2013 11-755/18-797 52



MLSP
Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognizable

e

e Approximating a face with 10 eigenfaces:
f =w v, +W,v, +...W,V,,
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MLSP
Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognizable

e Approximating a face with 30 eigenfaces:

f =WV, +W,V, +.. 4+ W,V +... 4+ Wy Vg

17 Sep 2013 11-755/18-797 54



L
Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognizable

* Approximating a face with 60 eigenfaces:

f =WV, +W,V, +. 4+ W Vo +o Wy Vg +.oc 4 W Vg,
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How did | do this?

10
20
30
40
50
60
70
80

90

100 L H
10 20 30 40 50 60 70 80 90 100

* Hint: only changing weights assigned to Eigen faces..
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Class specificity

eigenfacel eigenface2 . .
eigenface3

* The Eigenimages (bases) are very specific to
the class of data they are trained on

— Faces here

* They will not be useful for other classes

17 Sep 2013 11-755/18-797
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MLSP
Class specificity

* Eigen bases are class specific

* Composing a fishbowl| from Eigenfaces
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MLSP
Class specificity

* Eigen bases are class specific

e Composing a fishbowl| from Eigenfaces
 With 1 basis

f =wv,
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MLSE
Class specificity

* Eigen bases are class specific

e Composing a fishbowl| from Eigenfaces
 With 10 bases

f =w,v, +W,v, +...+W,V,,
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Class specificity

* Eigen bases are class specific

e Composing a fishbowl| from Eigenfaces
 With 30 bases

f =WV, +W,V, +.. 4+ W,V +... 4+ Wy Vg,
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Class specificity

* Eigen bases are class specific

e Composing a fishbowl| from Eigenfaces
* With 100 bases

f = WiV +Wo Vo o T WigViyg o+ WagVigg e+ Wigo Vg
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Universal bases

e Universal bases..

20 20 20
30 30 30
10 20 30 10 20 30 10 20 30 10 20 30
w = : :
20 20 . _- .
30 30 30 . "
10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

* End up looking a lot like discrete cosine transforms!!!!

 DCTs are the best “universal” bases
— If you don’t know what your data are, use the DCT

17 Sep 2013 11-755/18-797
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SVD instead of Eigen

S=300x300| [V=300x300
U=10000x300

eigenfacel
eigenface2
.
o

Do we need to compute a 10000 x 10000 correlation matrix and
then perform Eigen analysis?
— Will take a very long time on your laptop

« SVD

— Only need to perform “Thin” SVD. Very fast
* U =10000 x 300

— The columns of U are the eigen faces!
— The Us corresponding to the “zero” eigen values are not computed

* S=300x300
* V=300x300
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MLSP

Vichielzaming for SaraProcessing Gt

Using SVD to compute Eigenbases

[U, S, V] = SVD(X)

* U will have the Eigenvectors

e Thin SVD for 100 bases:
[U,S,V] = svds(X, 100)
e Much more efficient
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MLSP

Vichielzaming for SaraProcessing Gt

Eigenvectors and scatter

N

v

Pixel 1

 Turns out: Eigenvectors represent the major and minor
axes of an ellipse centered at the origin which encloses
the data most compactly

e The SVD of data matrix X uncovers these vectors
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What about sound?

Finding Eigen bases for speech signals:

Look like DFT/DCT

Or wavelets

0 4
-0.1 ]
-0.2 ‘ :
50 0 50 100 150
0.2 0.2
01 ] 01 |
0 4
0 4
-0.1 4
0.1 ] 02 |
-0.2 ‘ : 0.3 ‘ :
0 50 100 150 0 50 100 150

DFTs are pretty good most of the time

17 Sep 2013 11-755/18-797

MLSP

Vichielzaming for SaraProcessing Gt

67



MLSP

Eigen Analysis

e Can often find surprising features in your data
* Trends, relationships, more
e Commonly used in recommender systems

* An interesting example..
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Eigen Analysis

Field Expenments on 08/31

Figurel. Experiment setup @Wean Hall mechanical
space. Pipe with arrow indicates a 10”7 diameter hot
water pipe carrying pressurized hot water flow, on
which piezoelectric sensors are installed every 10 ft.
A National instruments data acquisition system is
used to acquire and store the data for later

processing.

MLSP

W/ Mass [

WIO Mas§ E

0.75}
0.5+

|—Selected Singular Vector |—Corre|at|on Coefficients l_

Singular Vector Corr. Coef s
=) o o
& o FoR

MMMWW

09:00 15: 00 21 00 03: 00
Slow Time (HH:MM)

Figure 2. Damage detection results compared with
conventional methods. Top: Ground truth of whether
the pipe i1s damaged or not. Middle: Conventional
method only captures temperature variations, and
shows no indication of the presence of damage.
Bottom: The SVD method clearly picks up the steps
where damage are introduced and removed.

* Cheng Liu’s research on pipes..
e SVD automatically separates useful and uninformative

features

17 Sep 2013

11-755/18-797
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MLSP

Vichielzaming for SaraProcessing Gt

Eigen Analysis

e But for all of this, we need to “preprocess”
data

* Eliminate unnecessary aspects

— E.g. noise, other externally caused variations..
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NORMALIZING OUT VARIATIONS
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MLSP
Images: Accounting for variations

ﬂ w iy LJ
w ¥ EI

e What are the obvious differences in the above
Images

* How can we capture these differences
— Hint — image histogrames..
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MLSEP
Images -- Variations

‘= W W

* Pixel histograms: what are the differences
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MLSP
Normalizing Image Characteristics

* Normalize the pictures
— Eliminate lighting/contrast variations

— All pictures must have “similar” lighting
* How?

e Lighting and contrast are represented in the image histograms:
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Histogram Equalization

* Normalize histograms of images
— Maximize the contrast

* Contrastis defined as the “flatness” of the histogram

* For maximal contrast, every greyscale must happen as frequently as every other
greyscale

0 255

 Maximizing the contrast: Flattening the histogram

— Doing it for every image ensures that every image has the same constrast

* |.e. exactly the same histogram of pixel values
— Which should be flat

17 Sep 2013 11-755/18-797
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MLSP
Histogram Equalization

? T T T T
120
6k 1
100 - 4
sk 1
80 4
N
60
3
40 4
2
20 -
1
0
(] 50 250 o
0 50 100 150 200 250

* Modify pixel values such that histogram becomes “flat”.

* For each pixel
— New pixel value = f(old pixel value)
— What s f()?

e Easy way to compute this function: map cumulative
counts
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* The histogram (count) of a pixel value X is the number of
pixels in the image that have value X

— E.g. in the above image, the count of pixel value 180 is about
110

 The cumulative count at pixel value X is the total number
of pixels that have values in the range 0 <= x <= X

— CCF(X) = H(1) + H(2) + .. H(X)

17 Sep 2013 11-755/18-797
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MLSP
Cumulative Count Function

W

e The cumulative count functlon of a umform
histogram is a line

nnnnn

nnnnn
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2000
2000
1000

 We must modify the pixel values of the image
so that its cumulative count is a line
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Mapping CCFs

nnnnn
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Move x axis levels around until the plot to the left
looks like the plot to the right

e CCF(f(x)) -> a*f(x) [or a*(f(x)+1) if pixels can take value 0]
— X = pixel value

— f() is the function that converts the old pixel value to a new
(normalized) pixel value

— a = (total no. of pixels in image) / (total no. of pixel levels)
* The no. of pixel levels is 256 in our examples

* Total no. of pixels is 10000 in a 100x100 image

17 Sep 2013 11-755/18-797 79



MLSP

Mapping CCFs

10000
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* For each pixel value x:

— Find the location on the red line that has the closet Y value to
the observed CCF at x
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Mapping CCFs

10000

f(x1) = x2
oor f(x3) = x4

Etc.

2000 -

1000 -

I I I I I
0 50 100 150 200 250

x4 X2

* For each pixel value x:

— Find the location on the red line that has the closet Y value to
the observed CCF at x
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Mapping CCFs

nnnnn
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Move x axis levels around until the plot to the left
looks like the plot to the right

* For each pixel in the image to the left
— The pixel has a value x
— Find the CCF at that pixel value CCF(x)

— Find x’ such that CCF(x’) in the function to the right equals
CCF(x)
* x" such that CCF_flat(x’) = CCF(x)
— Modify the pixel value to x’
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Vechiezaming for Sapal

=)

f (x) =roun CC'_:(X)_CCF”“” Max pixelvalue
Npixels— CCFin

* CCF,, is the smallest non-zero value of CCF(x)

— The value of the CCF at the smallest observed pixel value

* Npixels is the total no. of pixels in the image
— 10000 for a 100x100 image

 Max.pixel.value is the highest pixel value
— 255 for 8-bit pixel representations
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MLSP
Or even simpler

e Matlab:

— Newlimage = histeg(oldimage)
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Histogram Equalization
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Left column: Original image
Right column: Equalized image

All images now have similar contrast levels
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Elgenfaces after Equallzatlon
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Left panel : Without HEQ
Right panel: With HEQ

— Eigen faces are more face like..
* Need not always be the case
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Detecting Faces in Images
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Detectlng Faces in Images

* Finding face like patterns
— How do we find if a picture has faces in it
— Where are the faces?

* Asimple solution:
— Define a “typical face”
— Find the “typical face” in the image
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Finding faces in an |mage

Picture is larger than the “typical face”
— E.g. typical face is 100x100, picture is 600x800

First convert to greyscale
—R+G+B
— Not very useful to work in color
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Finding faces in an image

* Goal .. To flnd out |f and where images that

III

look like the “typical” face occur in the picture
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Finding faces in an image

L

 Try to “match” the typical face to each

location in the picture
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Finding faces in an image
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Finding faces in an image
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Finding faces in an image
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 Try to “match” the typical face to each
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Finding faces in an image

e Tryto match” the typical face to each

location in the picture
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Finding faces in an image

e Tryto match” the typical face to each

location in the picture
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Finding faces in an image

o
* Try to “match” the typical face to each
location in the picture

* The “typical face” will explain some spots on
the image much better than others

— These are the spots at which we probably have a
face!
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How to ”mtch”

 What exactly is the “match”
— What is the match “score”
e The DOT Product
— Express the typical face as a vector

— Express the region of the image being evaluated as a vector

e But first histogram equalize the region
— Just the section being evaluated, without considering the rest of the image

— Compute the dot product of the typical face vector and the “region”
vector

17 Sep 2013 11-755/18-797 101



MLSP

* The right panel shows the dot product a
various loctions

— Redder is higher
* The locations of peaks indicate locations of faces!
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Wat do et
(Y

* The right panel shows the dot product a various loctions
— Redder is higher
* The locations of peaks indicate locations of faces!
* Correctly detects all three faces

— Likes George’s face most
* He looks most like the typical face

 Also finds a face where there is none!
— A false alarm
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Scaling and Rotation Problems

JUDYBATS

e Scaling
— Not all faces are the same size

— Some people have bigger faces

— The size of the face on the image
changes with perspective

— Our “typical face” only represents
one of these sizes

 Rotation

— The head need not always be
upright!
* Our typical face image was upright
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Solution

@

E

* Create many “typical faces”
— One for each scaling factor

— One for each rotation
* How will we do this?

e Match them all

* Does this work
— Kind of .. Not well enough at all
— We need more sophisticated models
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Face Detection: A Quick Historical Persnective

Input image pyramid ~ Extracted window  Corrected lighting  Histogram equalized Receptive fields ) .
(20 by 20 pixels) Hidden units
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Preprocessing Neural network

Figure 1: The basic algorithm used for face detection.

Many more complex methods
— Use edge detectors and search for face like patterns

— Find “feature” detectors (noses, ears..) and employ them in complex
neural networks..

The Viola Jones method
— Boosted cascaded classifiers

Other classifiers

later in the program..
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