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Administrivia 

• Project teams? 
– By the end of the month.. 

 

• Project proposals? 
– Please send proposals to TAs,  and cc me 

 

• Reminder: Assignment 1 due in 9 days 
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Recall: Representing images 

• The most common element in the image: 
background 

– Or rather large regions of relatively featureless shading 

– Uniform sequences of numbers 
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Adding more bases 

• Checkerboards with different variations 
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Getting closer at 625 bases! 



“Bases” 

• “Bases” are the “standard” units such that all instances can be 
expressed a weighted combinations of these units 

• Ideal requirements: Bases must be orthogonal 

• Checkerboards are one choice of bases 
– Orthogonal 

– But not “smooth” 

• Other choices of bases:  Complex exponentials,  Wavelets, 
etc.. 
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Data specific bases? 

• Issue:  All the bases we have considered so far are 
data agnostic 

– Checkerboards,  Complex exponentials, Wavelets.. 

– We use the same bases regardless of the data we analyze 
• Image of face  vs.  Image of a forest 

• Segment of speech vs. Seismic rumble 

 

• How about data specific bases 

– Bases that consider the underlying data 
• E.g. is there something better than checkerboards to describe 

faces 

• Something better than complex exponentials to describe music? 
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The Energy Compaction Property 

• Define “better”? 

• The description 

 

• The ideal: 

 

– If the description is terminated at any point,  we 

should still get most of the information about the  

data 

• Error should be small 
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• A collection of images 

– All normalized to 100x100 pixels 

• What is common among all of them? 

– Do we have a common descriptor? 
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A typical face 

• Assumption: There is a “typical” face that captures most of 

what is common to all faces 

– Every face can be represented by a scaled version of a typical face 

– We will denote this face as V 

• Approximate every face f as f  = wf  V 

• Estimate V to minimize the squared error 

– How?  What is V? 

17 Sep 2013 11-755/18-797 9 

The typical face 



A collection of least squares typical faces 

• Assumption: There are a set of K “typical” faces that captures most of all faces 

• Approximate every face f as f  = wf,1 V1+ wf,2 V2 + wf,3 V3 +.. + wf,k Vk  

– V2 is used to “correct” errors resulting from using only V1. So on average 
 

 

– V3 corrects errors remaining after correction with V2 
 

 

– And so on.. 

– V = [V1 V2 V3] 

• Estimate V to minimize the squared error 

– How? What is V? 
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A recollection 
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How about the other way? 
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Finding Everything 
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The same problem 

• Here W, V and U are ALL unknown and must be determined 

– Such that the squared error between U and M is minimum 
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Abstracting the problem:  
Finding the FIRST typical face 

• Each “point” represents a face in “pixel space” 
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Abstracting the problem:  
Finding the FIRST typical face 

• Each “point” represents a face in “pixel space” 

• Any “typical face” V is a vector in this space 
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Abstracting the problem:  
Finding the FIRST typical face 

• Each “point” represents a face in “pixel space” 

• The “typical face” V is a vector in this space 

• The approximation Wf, V for any face f is the projection of f onto V 

• The distance between f and its projection WfV is the projection error for f 
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Abstracting the problem:  
Finding the FIRST typical face 

• Every face in our data will suffer error when 
approximated by its projection on V 

• The total squared length of all error lines is the total 
squared projection error 
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Abstracting the problem:  
Finding the FIRST typical face 

• The problem of finding the first typical face V1: 
Find the V for which the total projection error is minimum! 

• This “minimum squared error” V is our “best” first typical face 

• It is also the first Eigen face 
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Abstracting the problem:  
Finding the FIRST typical face 

• The problem of finding the first typical face V1: 
Find the V for which the total projection error is minimum! 

• This “minimum squared error” V is our “best” first typical face 

• It is also the first Eigen face 
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Abstracting the problem:  
Finding the FIRST typical face 

• The problem of finding the first typical face V1: 
Find the V for which the total projection error is minimum! 

• This “minimum squared error” V is our “best” first typical face 

• It is also the first Eigen face 
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Abstracting the problem:  
Finding the FIRST typical face 

• The problem of finding the first typical face V1: 
Find the V for which the total projection error is minimum! 

• This “minimum squared error” V is our “best” first typical face 

• It is also the first Eigen face 
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Abstracting the problem:  
Finding the FIRST typical face 

• The problem of finding the first typical face V1: 
Find the V for which the total projection error is minimum! 

• This “minimum squared error” V is our “best” first typical face 

• It is also the first Eigen face 
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Formalizing the Problem: Error from 
approximating a single vector 

• Consider:  approximating x = wv 

– E.g x is a face, and “v” is the “typical face” 

• Finding an approximation wv which is closest to x  

– In a Euclidean sense 

– Basically projecting x onto v 
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Formalizing the Problem: Error from 
approximating a single vector 

• Projection of a vector x on to a vector v 
 

 

• Assuming v is of unit length: 
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Error from approximating a single 
vector 

• Minimum squared approximation error from 
approximating x as it as wv 

 

 

• Optimal value of w:  w = vTx  
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Error from approximating a single 
vector 

• Error from projecting a vector x on to a vector 
onto a unit vector v 
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Error from approximating a single 
vector 

• Error from projecting a vector x on to a vector 
onto a unit vector v 
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Error from approximating a single 
vector 

• Error from projecting a vector x on to a vector 
onto a unit vector v 
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Error from approximating a single 
vector 
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Error for many vectors 

• Error for one vector: 

• Error for many vectors 

 

 

• Goal:  Estimate v to minimize this error! 
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Error for many vectors 

• Total error: 
 

• Add constraint:  vTv = 1 

• Constrained objective to minimize:  
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Two Matrix Identities 

• Derivative w.r.t v 
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Minimizing error 

 
 

• Differentiating w.r.t  v and equating to 0 

17 Sep 2013 11-755/18-797 34 

x 

y 

v 

 
i

T

ii 022 vvxx 

 1   vvxvvxxx
T

i i

i

TT

ii

T

iE 

vvxx 









i

T

ii



The correlation matrix 

• The encircled term is the correlation matrix 
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The best “basis” 

• The minimum-error basis is found by solving 
 

 

• v is an Eigen vector of the correlation matrix R 

–  is the corresponding Eigen value 

17 Sep 2013 11-755/18-797 36 

x 

y 

v 

vRv 



What about the total error? 

• xTv = vTx   (inner product) 
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Minimizing the error 
• The total error is 

 

• We already know that the optimal basis is an 
Eigen vector 

• The total error depends on the negative of the 
corresponding Eigen value 

• To minimize error, we must maximize  

• i.e. Select the Eigen vector with the largest 
Eigen value 
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The typical face 

• Compute the correlation matrix for your data 
– Arrange them in matrix X  and compute R = XXT 

 

• Compute the principal Eigen vector of R 
– The Eigen vector with the largest Eigen value 

 

• This is the typical face 
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With many typical faces 

• Approximate every face f as f  = wf,1 V1+ wf,2 V2 +... + wf,k Vk  
 

• Here W, V and U are ALL unknown and must be determined 
– Such that the squared error between U and M is minimum 
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With multiple bases 

• Assumption: all bases v1 v2 v3.. are unit length 

• Assumption:  all bases are orthogonal to one another: vi
Tvj = 0 if i != j 

– We are trying to find the optimal K-dimensional subspace to project the data 

– Any set of vectors in this subspace will define the subspace 

– Constraining them to be orthogonal does not change this 
 

• I.e. if  V = [v1 v2 v3 … ],      VTV = I 

– Pinv(V) = VT 

 

• Projection matrix for V =  VPinv(V) = VVT 
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With multiple bases 

• Optimal projection for a vector 

• Error vector = 

 

• Error length =   
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With multiple bases 

• Error for one vector: 

• Error for many vectors 

 

 

• Goal:  Estimate V to minimize this error! 

17 Sep 2013 11-755/18-797 43 

xVVxxxx
TTTe )(

x 

y 

 
i i

i

TT

ii

T

iE xVVxxx

V 



Minimizing error 

• With regularization VTV = I, objective to 
minimize 

 

 

– Note: now L is a diagonal matrix 

– The regularization simply ensures that vTv = 1 for 
every basis 

• Differentiating w.r.t  V and equating to 0 

17 Sep 2013 11-755/18-797 44 

  IVVxVVxxx L   T

i i

i

TT

ii

T

i traceE

022 L







  VVxx

i

T

ii VRV L



 



i

K

j

ji

T

iE
1

xx

Finding the optimal K bases 

• Compute the Eigendecompsition of the 
correlation matrix 

• Select K Eigen vectors 

• But which K? 

• Total error =  

• Select K eigen vectors corresponding to the K 
largest Eigen values 
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Eigen Faces! 

• Arrange your input data into a matrix X 

• Compute the correlation R = XXT 

• Solve the Eigen decomposition:  RV = LV 

• The Eigen vectors corresponding to the  K largest eigen values 
are our optimal bases 

• We will refer to these as eigen faces. 
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How many Eigen faces 

• How to choose “K” (number of Eigen faces) 

• Lay all faces side by side in vector form to form a matrix 
– In my example: 300 faces. So the matrix is 10000 x 300 

• Multiply the matrix by its transpose 
– The correlation matrix is 10000x10000 
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Eigen faces 

• Compute the eigen vectors 
– Only 300 of the 10000 eigen values are non-zero 

• Why? 

• Retain eigen vectors with high eigen values (>0) 
– Could use a higher threshold 
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Eigen Faces 

• The eigen vector with the highest eigen value is the first typical face 

• The vector with the second highest eigen value is the second typical 
face. 

• Etc. 
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Representing a face 

• The weights with which the eigen faces must 
be combined to compose the face are used to 
represent the face! 
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Energy Compaction Example 

• One outcome of the “energy compaction 
principle”:  the approximations are 
recognizable 

 

 

 

• Approximating a face with one basis: 
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Energy Compaction Example 

• One outcome of the “energy compaction 
principle”:  the approximations are 
recognizable 

 

 

 

• Approximating a face with one Eigenface: 
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Energy Compaction Example 

• One outcome of the “energy compaction 
principle”:  the approximations are 
recognizable 

 

 

 

• Approximating a face with 10 eigenfaces: 
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Energy Compaction Example 

• One outcome of the “energy compaction 
principle”:  the approximations are 
recognizable 

 

 

 

• Approximating a face with 30 eigenfaces: 
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Energy Compaction Example 

• One outcome of the “energy compaction 
principle”:  the approximations are 
recognizable 

 

 

 

• Approximating a face with 60 eigenfaces: 
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How did I do this? 

• Hint:  only changing weights assigned to Eigen faces.. 
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Class specificity 

• The Eigenimages (bases) are very specific to 
the class of data they are trained on 

– Faces here 

• They will not be useful for other classes 
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Class specificity 

• Eigen bases are class specific 

 
 

 

 

• Composing a fishbowl from Eigenfaces 
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Class specificity 

• Eigen bases are class specific 

 
 

 

 

• Composing a fishbowl from Eigenfaces 

• With 1 basis 
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Class specificity 

• Eigen bases are class specific 

 
 

 

 

• Composing a fishbowl from Eigenfaces 

• With 10 bases 
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Class specificity 

• Eigen bases are class specific 

 
 

 

 

• Composing a fishbowl from Eigenfaces 

• With 30 bases 
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Class specificity 

• Eigen bases are class specific 

 
 

 

 

• Composing a fishbowl from Eigenfaces 

• With 100 bases 
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Universal bases 
• Universal bases.. 

 
 
 
 
 
 
 
 
 

• End up looking a lot like discrete cosine transforms!!!! 
• DCTs are the best “universal” bases 

– If you don’t know what your data are, use the DCT 

17 Sep 2013 11-755/18-797 63 



SVD instead of Eigen 

• Do we need to compute a 10000 x 10000 correlation matrix and 
then perform Eigen analysis? 
– Will take a very long time on your laptop 

• SVD 
– Only need to perform “Thin” SVD. Very fast 

• U = 10000 x 300 
– The columns of U are the eigen faces! 

– The Us corresponding to the “zero” eigen values are not computed 

• S = 300 x 300 

• V = 300 x 300 
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Using SVD to compute Eigenbases 

                       [U, S, V] = SVD(X) 

 

• U will have the Eigenvectors 
 

• Thin SVD for 100 bases: 

                     [U,S,V] = svds(X, 100) 

• Much more efficient 
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Eigenvectors and scatter 

• Turns out:  Eigenvectors represent the major and minor 
axes of an ellipse centered at the origin which encloses 
the data most compactly 

 

• The SVD of data matrix X uncovers these vectors 
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What about sound? 

• Finding Eigen bases for speech signals: 

 

• Look like DFT/DCT 

• Or wavelets 

 

 

 

• DFTs are pretty good most of the time 
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Eigen Analysis 

• Can often find surprising features in your data 

• Trends, relationships, more 

• Commonly used in recommender systems 

 

• An interesting example.. 
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Eigen Analysis 

• Cheng Liu’s research on pipes.. 
• SVD automatically separates useful and uninformative 

features 
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Eigen Analysis 

• But for all of this,  we need to “preprocess” 
data 

 

• Eliminate unnecessary aspects 

– E.g. noise, other externally caused variations.. 
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NORMALIZING OUT VARIATIONS 

17 Sep 2013 11-755/18-797 71 



Images: Accounting for variations 

• What are the obvious differences in the above 
images 

• How can we capture these differences 

– Hint – image histograms.. 
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Images -- Variations 

• Pixel histograms: what are the differences 
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Normalizing Image Characteristics 

• Normalize the pictures 

– Eliminate lighting/contrast variations 

– All pictures must have “similar” lighting 

• How? 

 

• Lighting and contrast are represented in the image histograms: 
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Histogram Equalization 
• Normalize histograms of images 

– Maximize the contrast 

• Contrast is defined as the “flatness” of the histogram 

• For maximal contrast, every greyscale must happen as frequently as every other 
greyscale 

 

 

 

 

 

 

 

 

• Maximizing the contrast: Flattening the histogram 

– Doing it for every image ensures that every image has the same constrast 

• I.e. exactly the same histogram of pixel values 

– Which should be flat 
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Histogram Equalization 

• Modify pixel values such that histogram becomes “flat”. 

• For each pixel 
– New pixel value = f(old pixel value) 

– What is f()? 

• Easy way to compute this function: map cumulative 
counts 
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Cumulative Count Function 

• The histogram (count) of a pixel value X is the number of 
pixels in the image that have value X 
– E.g. in the above image, the count of pixel value 180 is about 

110 

 

• The cumulative count at pixel value X is the total number 
of pixels that have values in the range 0 <= x <= X 
– CCF(X) =  H(1) + H(2) + .. H(X)  
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Cumulative Count Function 

• The cumulative count function of a uniform 
histogram is a line 
 
 
 

• We must modify the pixel values of the image 
so that its cumulative count is a line 
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Mapping CCFs 

• CCF(f(x)) -> a*f(x)   [or a*(f(x)+1) if pixels can take value 0] 
– x = pixel value 

– f() is the function that converts the old pixel value to a new 
(normalized) pixel value 

– a = (total no. of pixels in image) / (total no. of pixel levels) 
• The no. of pixel levels is 256 in our examples 

• Total no. of pixels is 10000 in a 100x100 image 
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Mapping CCFs 

• For each pixel value x: 
– Find the location on the red line that has the closet Y value to 

the observed CCF at x  
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Mapping CCFs 

• For each pixel value x: 
– Find the location on the red line that has the closet Y value to 

the observed CCF at x  
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x1 

x2 

f(x1) = x2 

x3 

x4 

f(x3) = x4 

 

Etc. 



Mapping CCFs 

• For each pixel in the image to the left 

– The pixel has a value x 

– Find the CCF at that pixel value CCF(x) 

– Find x’ such that CCF(x’) in the function to the right equals 
CCF(x) 

• x’ such that CCF_flat(x’) = CCF(x) 

– Modify the pixel value to x’ 
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Doing it Formulaically 

• CCFmin is the smallest non-zero value of CCF(x) 

– The value of the CCF at the smallest observed pixel value 

• Npixels is the total no. of pixels in the image 

– 10000 for a 100x100 image 

• Max.pixel.value is the highest pixel value 

– 255 for 8-bit pixel representations 
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Or even simpler 

• Matlab: 

 
– Newimage = histeq(oldimage) 
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Histogram Equalization 

• Left column: Original image 

• Right column: Equalized image 

• All images now have similar contrast levels 
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Eigenfaces after Equalization 

• Left panel : Without HEQ 

• Right panel: With HEQ 

– Eigen faces are more face like.. 

• Need not always be the case 

17 Sep 2013 11-755/18-797 86 



Detecting Faces in Images 
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Detecting Faces in Images 

• Finding face like patterns 
– How do we find if a picture has faces in it 

– Where are the faces? 
 

• A simple solution: 
– Define a “typical face” 

– Find the “typical face” in the image 
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Finding faces in an image 

• Picture is larger than the “typical face” 

– E.g. typical face is 100x100, picture is 600x800 

• First convert to greyscale 

– R + G + B 

– Not very useful to work in color 
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Finding faces in an image 

• Goal .. To find out if and where images that 
look like the “typical” face occur in the picture 
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Finding faces in an image 

• Try to “match” the typical face to each 
location in the picture 
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Finding faces in an image 

• Try to “match” the typical face to each 
location in the picture 
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Finding faces in an image 

• Try to “match” the typical face to each 
location in the picture 
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Finding faces in an image 

• Try to “match” the typical face to each 
location in the picture 
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Finding faces in an image 

• Try to “match” the typical face to each 
location in the picture 
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Finding faces in an image 

• Try to “match” the typical face to each 
location in the picture 
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Finding faces in an image 

• Try to “match” the typical face to each 
location in the picture 
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Finding faces in an image 

• Try to “match” the typical face to each 
location in the picture 
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Finding faces in an image 

• Try to “match” the typical face to each 
location in the picture 
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Finding faces in an image 

• Try to “match” the typical face to each 
location in the picture 

• The “typical face” will explain some spots on 
the image much better than others 
– These are the spots at which we probably have a 

face! 

17 Sep 2013 11-755/18-797 100 



How to “match” 

• What exactly is the “match” 

– What is the match “score” 

• The DOT Product 

– Express the typical face as a vector 

– Express the region of the image being evaluated as a vector 
• But first histogram equalize the region 

– Just the section being evaluated, without considering the rest of the image 

– Compute the dot product of the typical face vector and the “region” 
vector 
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What do we get 

• The right panel shows the dot product a 
various loctions 

– Redder is higher 

• The locations of peaks indicate locations of faces! 
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What do we get 

• The right panel shows the dot product a various loctions 
– Redder is higher 

• The locations of peaks indicate locations of faces! 

• Correctly detects all three faces 
– Likes George’s face most 

• He looks most like the typical face 

• Also finds a face where there is none! 
– A false alarm 
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Scaling and Rotation Problems 

• Scaling 

– Not all faces are the same size 

– Some people have bigger faces 

– The size of the face on the image 
changes with perspective 

– Our “typical face” only represents 
one of these sizes 

 

• Rotation 

– The head need not always be 
upright! 

• Our typical face image was upright 
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Solution 

• Create many “typical faces” 
– One for each scaling factor 
– One for each rotation 

• How will we do this? 

• Match them all 
 

• Does this work 
– Kind of .. Not well enough at all 
– We need more sophisticated models 
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Face Detection: A Quick Historical Perspective 

• Many more complex methods 
– Use edge detectors and search for face like patterns 
– Find “feature” detectors (noses, ears..) and employ them in complex 

neural networks.. 
 

• The Viola Jones method 
– Boosted cascaded classifiers 

• Other classifiers 
 

• later in the program.. 
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