
Machine Learning for Signal
Processing

Eigenfaces and Eigenrepresentations

Class 6. 17 Sep 2013

Instructor: Bhiksha Raj

17 Sep 2013 11-755/18-797 1

Administrivia

• Project teams?
– By the end of the month..

• Project proposals?
– Please send proposals to TAs, and cc me

• Reminder: Assignment 1 due in 9 days

17 Sep 2013 11-755/18-797 2

Recall: Representing images

• The most common element in the image:
background

– Or rather large regions of relatively featureless shading

– Uniform sequences of numbers

17 Sep 2013 11-755/18-797 3

Adding more bases

• Checkerboards with different variations

17 Sep 2013 11-755/18-797 4

BWPROJECTION

ageBpinvW

ageBW







Im)(

Im

] [

.

.

...Im

3213

2

1

332211

BBBBw

w

w

W

BwBwBwage



























B1 B2 B3 B4 B5 B6

Getting closer at 625 bases!

“Bases”

• “Bases” are the “standard” units such that all instances can be
expressed a weighted combinations of these units

• Ideal requirements: Bases must be orthogonal

• Checkerboards are one choice of bases
– Orthogonal

– But not “smooth”

• Other choices of bases: Complex exponentials, Wavelets,
etc..

17 Sep 2013 11-755/18-797 5

B1 B2 B3 B4 B5 B6

...332211  BwBwBwimage

Data specific bases?

• Issue: All the bases we have considered so far are
data agnostic

– Checkerboards, Complex exponentials, Wavelets..

– We use the same bases regardless of the data we analyze
• Image of face vs. Image of a forest

• Segment of speech vs. Seismic rumble

• How about data specific bases

– Bases that consider the underlying data
• E.g. is there something better than checkerboards to describe

faces

• Something better than complex exponentials to describe music?

17 Sep 2013 11-755/18-797 6

The Energy Compaction Property

• Define “better”?

• The description

• The ideal:

– If the description is terminated at any point, we

should still get most of the information about the

data

• Error should be small

17 Sep 2013 11-755/18-797 7

NN BwBwBwBwX  ...332211

2211
ˆ BwBwX 

2

X̂XError 

• A collection of images

– All normalized to 100x100 pixels

• What is common among all of them?

– Do we have a common descriptor?

17 Sep 2013 11-755/18-797 8

Data-specific description of faces

A typical face

• Assumption: There is a “typical” face that captures most of

what is common to all faces

– Every face can be represented by a scaled version of a typical face

– We will denote this face as V

• Approximate every face f as f = wf V

• Estimate V to minimize the squared error

– How? What is V?

17 Sep 2013 11-755/18-797 9

The typical face

A collection of least squares typical faces

• Assumption: There are a set of K “typical” faces that captures most of all faces

• Approximate every face f as f = wf,1 V1+ wf,2 V2 + wf,3 V3 +.. + wf,k Vk

– V2 is used to “correct” errors resulting from using only V1. So on average

– V3 corrects errors remaining after correction with V2

– And so on..

– V = [V1 V2 V3]

• Estimate V to minimize the squared error

– How? What is V?

17 Sep 2013 11-755/18-797 10

2

1,1,

2

2,2,1,1,)(ffffff VwfVwVwf 

2

2,2,1,1,

2

3,3,2,2,1,1,)()(ffffffffff VwVwfVwVwVwf 

A recollection

17 Sep 2013 11-755/18-797 11

M =

N =

S=Pinv(N) M

? U =

• Finding the best explanation of music M in terms of notes N

• Also finds the score S of M in terms of N

MNpinvS

MNSU

)(



How about the other way?

17 Sep 2013 11-755/18-797 12

N = M Pinv(S)

M =

N = ? ?

S =

U =

• Finding the notes N given music M and score S
• Also finds best explanation of M in terms of S

)(SpinvMN

MNSU





Finding Everything

17 Sep 2013 11-755/18-797 13

 Find the four notes and their score that generate the
closest approximation to M

M =

N = ? ?

S =

U =

?

MNSU 

The same problem

• Here W, V and U are ALL unknown and must be determined

– Such that the squared error between U and M is minimum

17 Sep 2013 11-755/18-797 14

M =

U = Approximation

W

V

Typical faces

Abstracting the problem:
Finding the FIRST typical face

• Each “point” represents a face in “pixel space”

17 Sep 2013 11-755/18-797 15

Pixel 1

P
ix

el
 2

Abstracting the problem:
Finding the FIRST typical face

• Each “point” represents a face in “pixel space”

• Any “typical face” V is a vector in this space

17 Sep 2013 11-755/18-797 16

Pixel 1

P
ix

el
 2

V

Abstracting the problem:
Finding the FIRST typical face

• Each “point” represents a face in “pixel space”

• The “typical face” V is a vector in this space

• The approximation Wf, V for any face f is the projection of f onto V

• The distance between f and its projection WfV is the projection error for f

17 Sep 2013 11-755/18-797 17

Pixel 1

P
ix

el
 2

V

f

error

Abstracting the problem:
Finding the FIRST typical face

• Every face in our data will suffer error when
approximated by its projection on V

• The total squared length of all error lines is the total
squared projection error

17 Sep 2013 11-755/18-797 18

Pixel 1

P
ix

el
 2

V

Abstracting the problem:
Finding the FIRST typical face

• The problem of finding the first typical face V1:
Find the V for which the total projection error is minimum!

• This “minimum squared error” V is our “best” first typical face

• It is also the first Eigen face

17 Sep 2013 11-755/18-797 19

Pixel 1

P
ix

el
 2

V

Abstracting the problem:
Finding the FIRST typical face

• The problem of finding the first typical face V1:
Find the V for which the total projection error is minimum!

• This “minimum squared error” V is our “best” first typical face

• It is also the first Eigen face

17 Sep 2013 11-755/18-797 20

Pixel 1

P
ix

el
 2

V

Abstracting the problem:
Finding the FIRST typical face

• The problem of finding the first typical face V1:
Find the V for which the total projection error is minimum!

• This “minimum squared error” V is our “best” first typical face

• It is also the first Eigen face

17 Sep 2013 11-755/18-797 21

Pixel 1

P
ix

el
 2

V

Abstracting the problem:
Finding the FIRST typical face

• The problem of finding the first typical face V1:
Find the V for which the total projection error is minimum!

• This “minimum squared error” V is our “best” first typical face

• It is also the first Eigen face

17 Sep 2013 11-755/18-797 22

Pixel 1

P
ix

el
 2

V

Abstracting the problem:
Finding the FIRST typical face

• The problem of finding the first typical face V1:
Find the V for which the total projection error is minimum!

• This “minimum squared error” V is our “best” first typical face

• It is also the first Eigen face

17 Sep 2013 11-755/18-797 23

Pixel 1

P
ix

el
 2

V1

Formalizing the Problem: Error from
approximating a single vector

• Consider: approximating x = wv

– E.g x is a face, and “v” is the “typical face”

• Finding an approximation wv which is closest to x

– In a Euclidean sense

– Basically projecting x onto v

17 Sep 2013 11-755/18-797 24

x

y

v

x

Approximating: x = wv

Formalizing the Problem: Error from
approximating a single vector

• Projection of a vector x on to a vector v

• Assuming v is of unit length:

17 Sep 2013 11-755/18-797 25

x

y

v

x

v

xv
vx

T

ˆ

xvvx
Tˆ

xvvxxx
Terror  ˆ

vvTx

x-vvTx

2

 error squared xvvx
T

Approximating: x = wv

Error from approximating a single
vector

• Minimum squared approximation error from
approximating x as it as wv

• Optimal value of w: w = vTx

17 Sep 2013 11-755/18-797 26

x

y

v

x

vvTx

x-vvTx

2

)(xvvxx
Te 

Error from approximating a single
vector

• Error from projecting a vector x on to a vector
onto a unit vector v

17 Sep 2013 11-755/18-797 27

x

y

v

x

vvTx

x-vvTx

2

)(xvvxx
Te 

      xvvxvvxxxvvxxvvxx
TTTTTTTe )(

xvvvvxxvvxxvvxxx
TTTTTTTT 

Error from approximating a single
vector

• Error from projecting a vector x on to a vector
onto a unit vector v

17 Sep 2013 11-755/18-797 28

x

y

v

x

vvTx

x-vvTx

xvvvvxxvvxxvvxxx
TTTTTTTT 

=1

      xvvxvvxxxvvxxvvxx
TTTTTTTe )(

2

)(xvvxx
Te 

Error from approximating a single
vector

• Error from projecting a vector x on to a vector
onto a unit vector v

17 Sep 2013 11-755/18-797 29

x

y

v

x

vvTx

x-vvTx

xvvxxvvxxvvxxx
TTTTTTT 

xvvxxxx
TTTe )(

      xvvxvvxxxvvxxvvxx
TTTTTTTe )(

2

)(xvvxx
Te 

Error from approximating a single
vector

17 Sep 2013 11-755/18-797 30

x

y

v

x

vvTx

x-vvTx

This is the very familiar pythogoras’ theorem!!

e(x) = xTx – xTv.vTx

Length of projection

Error for many vectors

• Error for one vector:

• Error for many vectors

• Goal: Estimate v to minimize this error!

17 Sep 2013 11-755/18-797 31

xvvxxxx
TTTe )(

x

y

v

  
i

i

TT

ii

T

i

i

ieE xvvxxxx)( 
i i

i

TT

ii

T

i xvvxxx

Error for many vectors

• Total error:

• Add constraint: vTv = 1

• Constrained objective to minimize:

17 Sep 2013 11-755/18-797 32

x

y

v

 1   vvxvvxxx
T

i i

i

TT

ii

T

iE 

 
i i

i

TT

ii

T

iE xvvxxx

Two Matrix Identities

• Derivative w.r.t v

17 Sep 2013 11-755/18-797 33

vxx
v

xvvx T
TT

d

d
2

v
v

vv
2

d

d T

Minimizing error

• Differentiating w.r.t v and equating to 0

17 Sep 2013 11-755/18-797 34

x

y

v

 
i

T

ii 022 vvxx 

 1   vvxvvxxx
T

i i

i

TT

ii

T

iE 

vvxx 









i

T

ii

The correlation matrix

• The encircled term is the correlation matrix

17 Sep 2013 11-755/18-797 35

vvxx 









i

T

ii

X = Data Matrix

X
T
 =

 T
ra

n
s
p
o
s
e
d

D
a
ta

 M
a
tr

ix

Correlation =

 NxxxX ... 21
RXXxx  T

i

T

ii

The best “basis”

• The minimum-error basis is found by solving

• v is an Eigen vector of the correlation matrix R

–  is the corresponding Eigen value

17 Sep 2013 11-755/18-797 36

x

y

v

vRv 

What about the total error?

• xTv = vTx (inner product)

17 Sep 2013 11-755/18-797 37

 
i i

i

TT

ii

T

iE xvvxxx

 
i i

T

ii

T

i

T

iE vxxvxx

 
i

T

i

T

i

i

T

i

T

i

i

T

i

T

iE vvxxvvxxRvvxx 

 
i

i

T

iE xx

  









i i

T

ii

T

i

T

i vxxvxx

Minimizing the error
• The total error is

• We already know that the optimal basis is an
Eigen vector

• The total error depends on the negative of the
corresponding Eigen value

• To minimize error, we must maximize 

• i.e. Select the Eigen vector with the largest
Eigen value

17 Sep 2013 11-755/18-797 38

 
i

i

T

iE xx

The typical face

• Compute the correlation matrix for your data
– Arrange them in matrix X and compute R = XXT

• Compute the principal Eigen vector of R
– The Eigen vector with the largest Eigen value

• This is the typical face

17 Sep 2013 11-755/18-797 39

The typical face

With many typical faces

• Approximate every face f as f = wf,1 V1+ wf,2 V2 +... + wf,k Vk

• Here W, V and U are ALL unknown and must be determined
– Such that the squared error between U and M is minimum

17 Sep 2013 11-755/18-797 40

M =

U = Approximation

W

V

Typical faces

With multiple bases

• Assumption: all bases v1 v2 v3.. are unit length

• Assumption: all bases are orthogonal to one another: vi
Tvj = 0 if i != j

– We are trying to find the optimal K-dimensional subspace to project the data

– Any set of vectors in this subspace will define the subspace

– Constraining them to be orthogonal does not change this

• I.e. if V = [v1 v2 v3 …], VTV = I

– Pinv(V) = VT

• Projection matrix for V = VPinv(V) = VVT

17 Sep 2013 11-755/18-797 41

With multiple bases

• Optimal projection for a vector

• Error vector =

• Error length =

17 Sep 2013 11-755/18-797 42

xVVxxxx
TTTe )(

xVVx
Tˆ

xVVxxx
T ˆ

x

y

V

x

VVTx

x-VVTx

Represents a

K-dimensional subspace

With multiple bases

• Error for one vector:

• Error for many vectors

• Goal: Estimate V to minimize this error!

17 Sep 2013 11-755/18-797 43

xVVxxxx
TTTe )(

x

y

 
i i

i

TT

ii

T

iE xVVxxx

V

Minimizing error

• With regularization VTV = I, objective to
minimize

– Note: now L is a diagonal matrix

– The regularization simply ensures that vTv = 1 for
every basis

• Differentiating w.r.t V and equating to 0

17 Sep 2013 11-755/18-797 44

  IVVxVVxxx L   T

i i

i

TT

ii

T

i traceE

022 L







  VVxx

i

T

ii VRV L

 



i

K

j

ji

T

iE
1

xx

Finding the optimal K bases

• Compute the Eigendecompsition of the
correlation matrix

• Select K Eigen vectors

• But which K?

• Total error =

• Select K eigen vectors corresponding to the K
largest Eigen values

17 Sep 2013 11-755/18-797 45

VRV L

Eigen Faces!

• Arrange your input data into a matrix X

• Compute the correlation R = XXT

• Solve the Eigen decomposition: RV = LV

• The Eigen vectors corresponding to the K largest eigen values
are our optimal bases

• We will refer to these as eigen faces.

17 Sep 2013 11-755/18-797 46

How many Eigen faces

• How to choose “K” (number of Eigen faces)

• Lay all faces side by side in vector form to form a matrix
– In my example: 300 faces. So the matrix is 10000 x 300

• Multiply the matrix by its transpose
– The correlation matrix is 10000x10000

17 Sep 2013 11-755/18-797 47

M = Data Matrix

M
T
 =

 T
ra

n
s
p
o
s
e
d

D
a
ta

 M
a
tr

ix

Correlation =

10000x300

300x10000

10000x10000

Eigen faces

• Compute the eigen vectors
– Only 300 of the 10000 eigen values are non-zero

• Why?

• Retain eigen vectors with high eigen values (>0)
– Could use a higher threshold

17 Sep 2013 11-755/18-797 48

[U,S] = eig(correlation)

























10000

2

1

.0.0

.....

.....

0.00

0.0.







S





















U

e
ig

e
n
fa

c
e
1

e
ig

e
n
fa

c
e
2

Eigen Faces

• The eigen vector with the highest eigen value is the first typical face

• The vector with the second highest eigen value is the second typical
face.

• Etc.

17 Sep 2013 11-755/18-797 49





















U

e
ig

e
n
fa

c
e
1

e
ig

e
n
fa

c
e
2

eigenface1
eigenface2

eigenface3

Representing a face

• The weights with which the eigen faces must
be combined to compose the face are used to
represent the face!

17 Sep 2013 11-755/18-797 50

= w1 + w2 + w3

Representation = [w1 w2 w3 ….]T





















Energy Compaction Example

• One outcome of the “energy compaction
principle”: the approximations are
recognizable

• Approximating a face with one basis:

17 Sep 2013 11-755/18-797 51

11vwf 

Energy Compaction Example

• One outcome of the “energy compaction
principle”: the approximations are
recognizable

• Approximating a face with one Eigenface:

17 Sep 2013 11-755/18-797 52

11vwf 

Energy Compaction Example

• One outcome of the “energy compaction
principle”: the approximations are
recognizable

• Approximating a face with 10 eigenfaces:

17 Sep 2013 11-755/18-797 53

10102211 ... vvv wwwf 

Energy Compaction Example

• One outcome of the “energy compaction
principle”: the approximations are
recognizable

• Approximating a face with 30 eigenfaces:

17 Sep 2013 11-755/18-797 54

303010102211 vvvv wwwwf 

Energy Compaction Example

• One outcome of the “energy compaction
principle”: the approximations are
recognizable

• Approximating a face with 60 eigenfaces:

17 Sep 2013 11-755/18-797 55

6060303010102211 vvvvv wwwwwf 

How did I do this?

• Hint: only changing weights assigned to Eigen faces..

17 Sep 2013 11-755/18-797 56

Class specificity

• The Eigenimages (bases) are very specific to
the class of data they are trained on

– Faces here

• They will not be useful for other classes

17 Sep 2013 11-755/18-797 57

eigenface1 eigenface2

eigenface3

Class specificity

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces

17 Sep 2013 11-755/18-797 58

Class specificity

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces

• With 1 basis

17 Sep 2013 11-755/18-797 59

11vwf 

Class specificity

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces

• With 10 bases

17 Sep 2013 11-755/18-797 60

10102211 ... vvv wwwf 

Class specificity

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces

• With 30 bases

17 Sep 2013 11-755/18-797 61

303010102211 vvvv wwwwf 

Class specificity

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces

• With 100 bases

17 Sep 2013 11-755/18-797 62

100100303010102211 vvvvv wwwwwf 

Universal bases
• Universal bases..

• End up looking a lot like discrete cosine transforms!!!!
• DCTs are the best “universal” bases

– If you don’t know what your data are, use the DCT

17 Sep 2013 11-755/18-797 63

SVD instead of Eigen

• Do we need to compute a 10000 x 10000 correlation matrix and
then perform Eigen analysis?
– Will take a very long time on your laptop

• SVD
– Only need to perform “Thin” SVD. Very fast

• U = 10000 x 300
– The columns of U are the eigen faces!

– The Us corresponding to the “zero” eigen values are not computed

• S = 300 x 300

• V = 300 x 300

17 Sep 2013 11-755/18-797 64

M = Data Matrix

10000x300

U=10000x300
S=300x300 V=300x300

=




















U

e
ig

e
n
fa

c
e
1

e
ig

e
n
fa

c
e
2

Using SVD to compute Eigenbases

 [U, S, V] = SVD(X)

• U will have the Eigenvectors

• Thin SVD for 100 bases:

 [U,S,V] = svds(X, 100)

• Much more efficient

17 Sep 2013 11-755/18-797 65

Eigenvectors and scatter

• Turns out: Eigenvectors represent the major and minor
axes of an ellipse centered at the origin which encloses
the data most compactly

• The SVD of data matrix X uncovers these vectors
17 Sep 2013 11-755/18-797 66

Pixel 1

P
ix

el
 2

What about sound?

• Finding Eigen bases for speech signals:

• Look like DFT/DCT

• Or wavelets

• DFTs are pretty good most of the time

17 Sep 2013 11-755/18-797 67

Eigen Analysis

• Can often find surprising features in your data

• Trends, relationships, more

• Commonly used in recommender systems

• An interesting example..

17 Sep 2013 11-755/18-797 68

Eigen Analysis

• Cheng Liu’s research on pipes..
• SVD automatically separates useful and uninformative

features

17 Sep 2013 11-755/18-797 69

Eigen Analysis

• But for all of this, we need to “preprocess”
data

• Eliminate unnecessary aspects

– E.g. noise, other externally caused variations..

17 Sep 2013 11-755/18-797 70

NORMALIZING OUT VARIATIONS

17 Sep 2013 11-755/18-797 71

Images: Accounting for variations

• What are the obvious differences in the above
images

• How can we capture these differences

– Hint – image histograms..

17 Sep 2013 11-755/18-797 72

Images -- Variations

• Pixel histograms: what are the differences

17 Sep 2013 11-755/18-797 73

Normalizing Image Characteristics

• Normalize the pictures

– Eliminate lighting/contrast variations

– All pictures must have “similar” lighting

• How?

• Lighting and contrast are represented in the image histograms:

17 Sep 2013 11-755/18-797 74

Histogram Equalization
• Normalize histograms of images

– Maximize the contrast

• Contrast is defined as the “flatness” of the histogram

• For maximal contrast, every greyscale must happen as frequently as every other
greyscale

• Maximizing the contrast: Flattening the histogram

– Doing it for every image ensures that every image has the same constrast

• I.e. exactly the same histogram of pixel values

– Which should be flat

17 Sep 2013 11-755/18-797 75

0 255

Histogram Equalization

• Modify pixel values such that histogram becomes “flat”.

• For each pixel
– New pixel value = f(old pixel value)

– What is f()?

• Easy way to compute this function: map cumulative
counts

17 Sep 2013 11-755/18-797 76

Cumulative Count Function

• The histogram (count) of a pixel value X is the number of
pixels in the image that have value X
– E.g. in the above image, the count of pixel value 180 is about

110

• The cumulative count at pixel value X is the total number
of pixels that have values in the range 0 <= x <= X
– CCF(X) = H(1) + H(2) + .. H(X)

17 Sep 2013 11-755/18-797 77

Cumulative Count Function

• The cumulative count function of a uniform
histogram is a line

• We must modify the pixel values of the image
so that its cumulative count is a line

17 Sep 2013 11-755/18-797 78

Mapping CCFs

• CCF(f(x)) -> a*f(x) [or a*(f(x)+1) if pixels can take value 0]
– x = pixel value

– f() is the function that converts the old pixel value to a new
(normalized) pixel value

– a = (total no. of pixels in image) / (total no. of pixel levels)
• The no. of pixel levels is 256 in our examples

• Total no. of pixels is 10000 in a 100x100 image

17 Sep 2013 11-755/18-797 79

Move x axis levels around until the plot to the left

looks like the plot to the right

Mapping CCFs

• For each pixel value x:
– Find the location on the red line that has the closet Y value to

the observed CCF at x

17 Sep 2013 11-755/18-797 80

Mapping CCFs

• For each pixel value x:
– Find the location on the red line that has the closet Y value to

the observed CCF at x

17 Sep 2013 11-755/18-797 81

x1

x2

f(x1) = x2

x3

x4

f(x3) = x4

Etc.

Mapping CCFs

• For each pixel in the image to the left

– The pixel has a value x

– Find the CCF at that pixel value CCF(x)

– Find x’ such that CCF(x’) in the function to the right equals
CCF(x)

• x’ such that CCF_flat(x’) = CCF(x)

– Modify the pixel value to x’

17 Sep 2013 11-755/18-797 82

Move x axis levels around until the plot to the left

looks like the plot to the right

Doing it Formulaically

• CCFmin is the smallest non-zero value of CCF(x)

– The value of the CCF at the smallest observed pixel value

• Npixels is the total no. of pixels in the image

– 10000 for a 100x100 image

• Max.pixel.value is the highest pixel value

– 255 for 8-bit pixel representations

17 Sep 2013 11-755/18-797 83


















 valuepixelMax

CCFNpixels

CCFxCCF
roundxf ..

)(
)(

min

min

Or even simpler

• Matlab:

– Newimage = histeq(oldimage)

17 Sep 2013 11-755/18-797 84

Histogram Equalization

• Left column: Original image

• Right column: Equalized image

• All images now have similar contrast levels

17 Sep 2013 11-755/18-797 85

Eigenfaces after Equalization

• Left panel : Without HEQ

• Right panel: With HEQ

– Eigen faces are more face like..

• Need not always be the case

17 Sep 2013 11-755/18-797 86

Detecting Faces in Images

17 Sep 2013 11-755/18-797 87

Detecting Faces in Images

• Finding face like patterns
– How do we find if a picture has faces in it

– Where are the faces?

• A simple solution:
– Define a “typical face”

– Find the “typical face” in the image

17 Sep 2013 11-755/18-797 88

Finding faces in an image

• Picture is larger than the “typical face”

– E.g. typical face is 100x100, picture is 600x800

• First convert to greyscale

– R + G + B

– Not very useful to work in color

17 Sep 2013 11-755/18-797 89

Finding faces in an image

• Goal .. To find out if and where images that
look like the “typical” face occur in the picture

17 Sep 2013 11-755/18-797 90

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

17 Sep 2013 11-755/18-797 91

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

17 Sep 2013 11-755/18-797 92

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

17 Sep 2013 11-755/18-797 93

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

17 Sep 2013 11-755/18-797 94

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

17 Sep 2013 11-755/18-797 95

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

17 Sep 2013 11-755/18-797 96

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

17 Sep 2013 11-755/18-797 97

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

17 Sep 2013 11-755/18-797 98

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

17 Sep 2013 11-755/18-797 99

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

• The “typical face” will explain some spots on
the image much better than others
– These are the spots at which we probably have a

face!

17 Sep 2013 11-755/18-797 100

How to “match”

• What exactly is the “match”

– What is the match “score”

• The DOT Product

– Express the typical face as a vector

– Express the region of the image being evaluated as a vector
• But first histogram equalize the region

– Just the section being evaluated, without considering the rest of the image

– Compute the dot product of the typical face vector and the “region”
vector

17 Sep 2013 11-755/18-797 101

What do we get

• The right panel shows the dot product a
various loctions

– Redder is higher

• The locations of peaks indicate locations of faces!

17 Sep 2013 11-755/18-797 102

What do we get

• The right panel shows the dot product a various loctions
– Redder is higher

• The locations of peaks indicate locations of faces!

• Correctly detects all three faces
– Likes George’s face most

• He looks most like the typical face

• Also finds a face where there is none!
– A false alarm

17 Sep 2013 11-755/18-797 103

Scaling and Rotation Problems

• Scaling

– Not all faces are the same size

– Some people have bigger faces

– The size of the face on the image
changes with perspective

– Our “typical face” only represents
one of these sizes

• Rotation

– The head need not always be
upright!

• Our typical face image was upright

17 Sep 2013 11-755/18-797 104

Solution

• Create many “typical faces”
– One for each scaling factor
– One for each rotation

• How will we do this?

• Match them all

• Does this work
– Kind of .. Not well enough at all
– We need more sophisticated models

17 Sep 2013 11-755/18-797 105

Face Detection: A Quick Historical Perspective

• Many more complex methods
– Use edge detectors and search for face like patterns
– Find “feature” detectors (noses, ears..) and employ them in complex

neural networks..

• The Viola Jones method
– Boosted cascaded classifiers

• Other classifiers

• later in the program..

17 Sep 2013 11-755/18-797 106

