

Machine Learning for Signal Processing Eigenfaces and Eigenrepresentations Class 6. 17 Sep 2013

Instructor: Bhiksha Raj

Administrivia

- Project teams?
 - By the end of the month..
- Project proposals?
 - Please send proposals to TAs, and cc me
- Reminder: Assignment 1 due in 9 days

Recall: Representing images

aboard Apollo space capsule. 1038 x 1280 - 142k LIFE

Apollo Xi 1280 x 1255 - 226k LIFE

aboard Apollo space capsule. 1029 x 1280 - 128k LIFE

Building Apollo space ship. 1280 x 1257 - 114k LIFE

aboard Apollo space capsule. 1017 x 1280 - 130k LIFE

1228 x 1280 - 181k LIFE

Apollo 10 space ship, w. 1280 x 853 - 72k LIFE

Splashdown of **Apollo** XI mission. 1280 x 866 - 184k LIFE

Earth seen from space during the 1280 x 839 - 60k LIFE

Apollo Xi 844 x 1280 - 123k LIFE

working on Apollo space project. 1280 x 956 - 117k LIFE

the moon as seen from Apollo 8 1223 x 1280 - 214k LIFE

Apollo 11 1280 x 1277 - 142k

Apollo 8 Crew 968 x 1280 - 125k LIFE

- The most common element in the image: background
 - Or rather large regions of relatively featureless shading
 - Uniform sequences of numbers

Checkerboards with different variations

$$\operatorname{Im} age \approx w_{1}B_{1} + w_{2}B_{2} + w_{3}B_{3} + \dots$$

$$W = \begin{bmatrix} w_{1} \\ w_{2} \\ w_{3} \\ \vdots \end{bmatrix} \qquad B = [B_{1} \ B_{2} \ B_{3}]$$

$$BW \approx \operatorname{Im} age$$

$$W = pinv(B) \operatorname{Im} age$$

$$PROJECTION = BW$$

- "Bases" are the "standard" units such that all instances can be expressed a weighted combinations of these units
- Ideal requirements: Bases must be orthogonal
- Checkerboards are one choice of bases
 - Orthogonal
 - But not "smooth"
- Other choices of bases: Complex exponentials, Wavelets, etc..

Data specific bases?

- Issue: All the bases we have considered so far are data agnostic
 - Checkerboards, Complex exponentials, Wavelets..
 - We use the same bases regardless of the data we analyze
 - Image of face vs. Image of a forest
 - Segment of speech vs. Seismic rumble
- How about data specific bases
 - Bases that consider the underlying data
 - E.g. is there something better than checkerboards to describe faces
 - Something better than complex exponentials to describe music?

The Energy Compaction Property

- Define "better"?
- The description

 $X = w_1 B_1 + w_2 B_2 + w_3 B_3 + \dots + w_N B_N$

• The ideal:

$$\hat{X} \approx w_1 B_1 + w_2 B_2$$
 $Error = \left\| X - \hat{X} \right\|^2$

- If the description is terminated at any point, we should still get most of the information about the data
 - Error should be small

Data-specific description of faces

- A collection of images
 - All normalized to 100x100 pixels
- What is common among all of them?
 - Do we have a common descriptor?

A typical face

The typical face

- Every face can be represented by a scaled version of a typical face
- We will denote this face as ${\rm V}$
- Approximate every face f as $f = w_f V$
- Estimate V to minimize the squared error
 - How? What is V?

A collection of least squares typical faces

- Approximate every face f as $f=w_{f,1}~V_1+~w_{f,2}~V_2+~w_{f,3}~V_3+..+~w_{f,k}~V_k$
 - $\,V_2$ is used to "correct" errors resulting from using only $V_1^{}.$ So on average

$$f - (w_{f,1}V_{f,1} + w_{f,2}V_{f,2}) \Big\|^2 < \Big\| f - w_{f,1}V_{f,1} \Big\|^2$$

- $\rm V_3$ corrects errors remaining after correction with $\rm V_2$

$$\left\|f - (w_{f,1}V_{f,1} + w_{f,2}V_{f,2} + w_{f,3}V_{f,3})\right\|^2 < \left\|f - (w_{f,1}V_{f,1} + w_{f,2}V_{f,2})\right\|^2$$

- And so on..
- $\mathbf{V} = [\mathbf{V}_1 \, \mathbf{V}_2 \, \mathbf{V}_3]$
- Estimate V to minimize the squared error
 - How? What is V?

A recollection

 $U = NS \approx M$ S = pinv(N)M

- Finding the best explanation of music ${\rm M}$ in terms of notes ${\rm N}$
- Also finds the score S of M in terms of N

11-755/18-797

- Finding the notes ${\bf N}$ given music ${\bf M}$ and score ${\bf S}$
- Also finds best explanation of ${\rm M}$ in terms of ${\rm S}$

11-755/18-797

Find the four notes and their score that generate the closest approximation to M

17 Sep 2013

11-755/18-797

The same problem

- Here W, V and U are ALL unknown and must be determined
 - Such that the squared error between U and M is minimum

• Each "point" represents a face in "pixel space"

- Each "point" represents a face in "pixel space"
- Any "typical face" ${\rm V}$ is a vector in this space

- Each "point" represents a face in "pixel space"
- The "typical face" V is a vector in this space
- The *approximation* W_f V for any face f is the *projection* of f onto V
- The distance between f and its projection $W_f V$ is the *projection error* for f

- Every face in our data will suffer error when approximated by its projection on ${\rm V}$
- The total squared length of all error lines is the *total* squared projection error

- The problem of finding the first typical face V_1 : Find the V for which the total projection error is minimum!
- This "minimum squared error" V is our "best" first typical face
- It is also the first *Eigen face*

- Consider: approximating x = wv
 - E.g \boldsymbol{x} is a face, and " \boldsymbol{v} " is the "typical face"
- Finding an approximation wv which is closest to x
 - In a Euclidean sense
 - Basically projecting ${\bf x}$ onto ${\bf v}$

Formalizing the Problem: Error from ^{MLSP} approximating a single vector

- Projection of a vector **x** on to a vector **v** $\hat{\mathbf{x}} = \mathbf{v} \frac{\mathbf{v}^T \mathbf{x}}{|\mathbf{v}|}$
- Assuming v is of unit length: $\hat{\mathbf{x}} = \mathbf{v}\mathbf{v}^T\mathbf{x}$

error =
$$\mathbf{x} - \hat{\mathbf{x}} = \mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}$$
 squared error = $\|\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}\|^2$

 Minimum squared approximation error from approximating x as it as wv

х

$$e(\mathbf{x}) = \|\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}\|^2$$

• Optimal value of w: $w = \mathbf{v}^{\mathrm{T}} \mathbf{x}$

• Error from projecting a vector \mathbf{x} on to a vector onto a unit vector \mathbf{v} $e(\mathbf{x}) = \|\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}\|^2$

х

$$e(\mathbf{x}) = (\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})^T(\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}) = (\mathbf{x}^T - \mathbf{x}^T\mathbf{v}\mathbf{v}^T)(\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})$$
$$= \mathbf{x}^T\mathbf{x} - \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{x} - \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{x} + \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{v}^T\mathbf{x}$$

• Error from projecting a vector \mathbf{x} on to a vector onto a unit vector \mathbf{v} $e(\mathbf{x}) = \|\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}\|^2$

х

$$e(\mathbf{x}) = (\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})^T(\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}) = (\mathbf{x}^T - \mathbf{x}^T\mathbf{v}\mathbf{v}^T)(\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})$$
$$= \mathbf{x}^T\mathbf{x} - \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{x} - \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{x} + \mathbf{x}^T\mathbf{v}\frac{\mathbf{v}^T\mathbf{v}}{\mathbf{v}}\mathbf{v}^T\mathbf{x}$$
$$= \mathbf{1}$$

• Error from projecting a vector \mathbf{x} on to a vector onto a unit vector \mathbf{v} $e(\mathbf{x}) = \|\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}\|^2$

х

$$e(\mathbf{x}) = (\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})^T (\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}) = (\mathbf{x}^T - \mathbf{x}^T\mathbf{v}\mathbf{v}^T)(\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})$$

$$= \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x} - \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x} + \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x}$$
$$e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x}$$

This is the very familiar pythogoras' theorem!!

Error for many vectors

- Error for one vector: $e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x}$
- Error for many vectors

$$E = \sum_{i} e(\mathbf{x}_{i}) = \sum_{i} \left(\mathbf{x}_{i}^{T} \mathbf{x}_{i} - \mathbf{x}_{i}^{T} \mathbf{v} \mathbf{v}^{T} \mathbf{x}_{i} \right) = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{x}_{i}^{T} \mathbf{v} \mathbf{v}^{T} \mathbf{x}_{i}$$

• Goal: Estimate v to minimize this error!

Error for many vectors

- Total error: $E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} \sum_{i} \mathbf{x}_{i}^{T} \mathbf{v} \mathbf{v}^{T} \mathbf{x}_{i}$
- Add constraint: $\mathbf{v}^{\mathrm{T}}\mathbf{v} = 1$
- Constrained objective to minimize:

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{x}_{i}^{T} \mathbf{v} \mathbf{v}^{T} \mathbf{x}_{i} + \lambda (\mathbf{v}^{T} \mathbf{v} - 1)$$

Two Matrix Identities

• Derivative w.r.t v

$$\frac{d\mathbf{v}^T\mathbf{v}}{d\mathbf{v}} = 2\mathbf{v}$$

$$\frac{d\mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x}}{d\mathbf{v}} = 2\mathbf{x} \mathbf{x}^T \mathbf{v}$$

Minimizing error

• Differentiating w.r.t v and equating to 0

$$-2\sum_{i}\mathbf{x}_{i}\mathbf{x}_{i}^{T}\mathbf{v}+2\lambda\mathbf{v}=0$$

$$\left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}\right) \mathbf{v} = \lambda \mathbf{v}$$

The correlation matrix

$$\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{v} = \lambda \mathbf{v}$$

• The encircled term is the *correlation matrix*

The best "basis"

- The minimum-error basis is found by solving $\mathbf{R}\mathbf{v} = \lambda \mathbf{v}$
- ${\bf v}$ is an Eigen vector of the correlation matrix ${\bf R}$ $-\,\lambda$ is the corresponding Eigen value

What about the total error?

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{x}_{i}^{T} \mathbf{v} \mathbf{v}^{T} \mathbf{x}_{i}$$

• $\mathbf{x}^{\mathrm{T}}\mathbf{v} = \mathbf{v}^{\mathrm{T}}\mathbf{x}$ (inner product)

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{v}^{T} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{v} = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \mathbf{v}^{T} \left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \right) \mathbf{v}$$

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \mathbf{v}^{T} \mathbf{R} \mathbf{v} = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \mathbf{v}^{T} \lambda \mathbf{v} = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \lambda \mathbf{v}^{T} \mathbf{v}$$

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \lambda$$

Minimizing the error

• The total error is $E = \sum \mathbf{x}_i^T \mathbf{x}_i - \lambda$

- We already know that the optimal basis is an Eigen vector
- The total error depends on the *negative* of the corresponding Eigen value
- To *minimize* error, we must *maximize* λ
- i.e. Select the Eigen vector with the largest Eigen value

The typical face

The typical face

- Compute the correlation matrix for your data • - Arrange them in matrix **X** and compute $\mathbf{R} = \mathbf{X}\mathbf{X}^{\mathsf{T}}$
- Compute the *principal* Eigen vector of R •
 - The Eigen vector with the largest Eigen value
- This is the typical face

- Approximate every face f as $f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k$
- Here W, V and U are ALL unknown and must be determined
 - Such that the squared error between U and M is minimum

With multiple bases

- Assumption: all bases v₁ v₂ v₃... are unit length
- Assumption: all bases are orthogonal to one another: $v_i^T v_i = 0$ if i != j
 - We are trying to find the optimal K-dimensional subspace to project the data
 - Any set of vectors in this subspace will define the subspace
 - Constraining them to be orthogonal does not change this
- I.e. if $V = [v_1 v_2 v_3 ...], V^T V = I$
 - Pinv(V) = V^T
- Projection matrix for $\mathbf{V} = \mathbf{V} \mathsf{Pinv}(\mathbf{V}) = \mathbf{V} \mathbf{V}^{\mathsf{T}}$

With multiple bases

- Optimal projection for a vector $\hat{\mathbf{x}} = \mathbf{V}\mathbf{V}^T\mathbf{x}$
- Error vector = $\mathbf{x} \hat{\mathbf{x}} = \mathbf{x} \mathbf{V}\mathbf{V}^T\mathbf{x}$

• Error length =
$$e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{V} \mathbf{V}^T \mathbf{x}$$

With multiple bases

• Error for one vector:

$$e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{V} \mathbf{V}^T \mathbf{x}$$

• Error for many vectors

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{x}_{i}^{T} \mathbf{V} \mathbf{V}^{T} \mathbf{x}_{i}$$

• Goal: Estimate V to minimize this error!

Minimizing error

• With regularization $\mathbf{V}^{\mathrm{T}}\mathbf{V} = \mathbf{I}$, objective to minimize

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{x}_{i}^{T} \mathbf{V} \mathbf{V}^{T} \mathbf{x}_{i} + trace \left(\Lambda \left(\mathbf{V}^{T} \mathbf{V} - \mathbf{I} \right) \right)$$

- Note: now Λ is a diagonal matrix
- The regularization simply ensures that $\mathbf{v}^{\mathrm{T}}\mathbf{v} = 1$ for every basis
- Differentiating w.r.t $\,{\bf V}$ and equating to 0

$$-2\left(\sum_{i}\mathbf{x}_{i}\mathbf{x}_{i}^{T}\right)\mathbf{V}+2\Lambda\mathbf{V}=0$$

Finding the optimal K bases

$\mathbf{RV} = \Lambda \mathbf{V}$

- Compute the Eigendecompsition of the correlation matrix
- Select *K* Eigen vectors
- But which K?
- Total error =

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{j=1}^{K} \lambda_{j}$$

 Select K eigen vectors corresponding to the K largest Eigen values

Eigen Faces!

- Arrange your input data into a matrix ${\bf X}$
- Compute the correlation $\mathbf{R} = \mathbf{X}\mathbf{X}^{\mathrm{T}}$
- Solve the Eigen decomposition: $\mathbf{RV} = \Lambda \mathbf{V}$
- The Eigen vectors corresponding to the K largest eigen values • are our optimal bases
- We will refer to these as eigen faces.

How many Eigen faces

- How to choose "K" (number of Eigen faces)
- Lay all faces side by side in vector form to form a matrix
 In my example: 300 faces. So the matrix is 10000 x 300
- Multiply the matrix by its transpose
 - The correlation matrix is 10000x10000

Eigen faces

- Compute the eigen vectors
 - Only 300 of the 10000 eigen values are non-zero
 - Why?
- Retain eigen vectors with high eigen values (>0)
 - Could use a higher threshold

eigenface3

- The eigen vector with the highest eigen value is the first typical face
- The vector with the second highest eigen value is the second typical face.
- Etc.

Representing a face

Representation

 $[\mathbf{w}_1 \ \mathbf{w}_2 \ \mathbf{w}_3 \ \dots \]^\mathsf{T}$

+ W₃

 The weights with which the eigen faces must be combined to compose the face are used to represent the face!

 One outcome of the "energy compaction principle": the approximations are recognizable

• Approximating a face with one basis:

$$f = w_1 \mathbf{v}_1$$

 One outcome of the "energy compaction principle": the approximations are recognizable

• Approximating a face with one Eigenface:

$$f = w_1 \mathbf{v}_1$$

 One outcome of the "energy compaction principle": the approximations are recognizable

• Approximating a face with 10 eigenfaces: $f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots w_{10} \mathbf{v}_{10}$

 One outcome of the "energy compaction principle": the approximations are recognizable

• Approximating a face with 30 eigenfaces:

 $f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots + w_{10} \mathbf{v}_{10} + \dots + w_{30} \mathbf{v}_{30}$

 One outcome of the "energy compaction principle": the approximations are recognizable

• Approximating a face with 60 eigenfaces:

 $f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots + w_{10} \mathbf{v}_{10} + \dots + w_{30} \mathbf{v}_{30} + \dots + w_{60} \mathbf{v}_{60}$

How did I do this?

• Hint: only changing weights assigned to Eigen faces..

eigenface1

eigenface2

eigenface3

- The Eigenimages (bases) are very specific to the class of data they are trained on
 - Faces here
- They will not be useful for other classes

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces

• Eigen bases are class specific

- Composing a fishbowl from Eigenfaces
- With 1 basis

$$f = w_1 \mathbf{v}_1$$

• Eigen bases are class specific

- Composing a fishbowl from Eigenfaces
- With 10 bases

$$f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots + w_{10} \mathbf{v}_{10}$$

• Eigen bases are class specific

- Composing a fishbowl from Eigenfaces
- With 30 bases

$$f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots + w_{10} \mathbf{v}_{10} + \dots + w_{30} \mathbf{v}_{30}$$

• Eigen bases are class specific

- Composing a fishbowl from Eigenfaces
- With 100 bases

 $f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots + w_{10} \mathbf{v}_{10} + \dots + w_{30} \mathbf{v}_{30} + \dots + w_{100} \mathbf{v}_{100}$

Universal bases

• Universal bases..

- End up looking a lot like *discrete cosine transforms*!!!!
- DCTs are the best "universal" bases
 - If you don't know what your data are, use the DCT

SVD instead of Eigen

- Do we need to compute a 10000 x 10000 correlation matrix and then perform Eigen analysis?
 - Will take a very long time on your laptop
- SVD
 - Only need to perform "Thin" SVD. Very fast
 - U = 10000 x 300
 - The columns of U are the eigen faces!
 - The Us corresponding to the "zero" eigen values are not computed
 - S = 300 x 300
 - V = 300 x 300

Using SVD to compute Eigenbases

[U, S, V] = SVD(X)

- U will have the Eigenvectors
- Thin SVD for 100 bases:
 [U,S,V] = svds(X, 100)
- Much more efficient

Eigenvectors and scatter

- Turns out: Eigenvectors represent the major and minor axes of an ellipse centered at the origin which encloses the data most compactly
- The SVD of data matrix X uncovers these vectors

What about sound?

• Finding Eigen bases for speech signals:

- Look like DFT/DCT
- Or wavelets

• DFTs are pretty good most of the time

Eigen Analysis

- Can often find surprising features in your data
- Trends, relationships, more
- Commonly used in recommender systems

• An interesting example..

Eigen Analysis

Figure 1. Experiment setup @Wean Hall mechanical space. Pipe with arrow indicates a 10" diameter hot water pipe carrying pressurized hot water flow, on which piezoelectric sensors are installed every 10 ft. A National instruments data acquisition system is used to acquire and store the data for later processing.

Figure 2. Damage detection results compared with conventional methods. Top: Ground truth of whether the pipe is damaged or not. Middle: Conventional method only captures temperature variations, and shows no indication of the presence of damage. Bottom: The SVD method clearly picks up the steps where damage are introduced and removed.

- Cheng Liu's research on pipes..
- SVD automatically separates useful and uninformative features

Eigen Analysis

 But for all of this, we need to "preprocess" data

• Eliminate unnecessary aspects

- E.g. noise, other externally caused variations..

NORMALIZING OUT VARIATIONS

Images: Accounting for variations

- What are the obvious differences in the above images
- How can we capture these differences

– Hint – image histograms..

Images -- Variations

• Pixel histograms: what are the differences

Normalizing Image Characteristics

- Normalize the pictures
 - Eliminate lighting/contrast variations
 - All pictures must have "similar" lighting
 - How?
- Lighting and contrast are represented in the image histograms:

Histogram Equalization

- Normalize histograms of images
 - Maximize the contrast
 - Contrast is defined as the "flatness" of the histogram
 - For maximal contrast, every greyscale must happen as frequently as every other greyscale

- Maximizing the contrast: Flattening the histogram
 - Doing it for every image ensures that every image has the same constrast
 - I.e. exactly the same histogram of pixel values
 - Which should be flat

Histogram Equalization

- Modify pixel values such that histogram becomes "flat".
- For each pixel
 - New pixel value = f(old pixel value)
 - What is f()?
- Easy way to compute this function: map cumulative counts

Cumulative Count Function

- The *histogram (count)* of a pixel value X is the number of pixels in the image that have value X
 - E.g. in the above image, the count of pixel value 180 is about 110
- The *cumulative count* at pixel value X is the total number of pixels that have values in the range 0 <= x <= X
 - CCF(X) = H(1) + H(2) + ... H(X)

Cumulative Count Function

• The cumulative count function of a uniform histogram is a line

• We must modify the pixel values of the image so that its cumulative count is a line

Move x axis levels around until the plot to the left looks like the plot to the right

- CCF(f(x)) -> a*f(x) [or a*(f(x)+1) if pixels can take value 0]
 - x = pixel value
 - f() is the function that converts the old pixel value to a new (normalized) pixel value
 - a = (total no. of pixels in image) / (total no. of pixel levels)
 - The no. of pixel levels is 256 in our examples
 - Total no. of pixels is 10000 in a 100x100 image

Mapping CCFs

- For each pixel value x:
 - Find the location on the red line that has the closet Y value to the observed CCF at x

11-755/18-797

Mapping CCFs

- For each pixel value x:
 - Find the location on the red line that has the closet Y value to the observed CCF at x

11-755/18-797

Mapping CCFs

Move x axis levels around until the plot to the left looks like the plot to the right

- For each pixel in the image to the left
 - The pixel has a value x
 - Find the CCF at that pixel value CCF(x)
 - Find x' such that CCF(x') in the function to the right equals
 CCF(x)
 - x' such that CCF_flat(x') = CCF(x)
 - Modify the pixel value to x'

$$f(x) = round \left(\frac{CCF(x) - CCF_{\min}}{Npixels - CCF_{\min}} Max.pixel.value \right)$$

• CCF_{min} is the smallest non-zero value of CCF(x)

The value of the CCF at the smallest observed pixel value

- Npixels is the total no. of pixels in the image
 - 10000 for a 100x100 image
- Max.pixel.value is the highest pixel value
 - 255 for 8-bit pixel representations

Or even simpler

• Matlab:

- Newimage = histeq(oldimage)

Histogram Equalization

- Left column: Original image
- Right column: Equalized image
- All images now have similar contrast levels

Eigenfaces after Equalization

- Left panel : Without HEQ
- Right panel: With HEQ
 - Eigen faces are more face like..
 - Need not always be the case

Detecting Faces in Images

Detecting Faces in Images

- Finding face like patterns
 - How do we find if a picture has faces in it
 - Where are the faces?
- A simple solution:
 - Define a "typical face"
 - Find the "typical face" in the image

- Picture is larger than the "typical face"
 - E.g. typical face is 100x100, picture is 600x800
- First convert to greyscale
 - -R+G+B
 - Not very useful to work in color

• Goal .. To find out if and where images that look like the "typical" face occur in the picture

- Try to "match" the typical face to each location in the picture
- The "typical face" will explain some spots on the image much better than others
 - These are the spots at which we probably have a face!

How to "match"

- What exactly is the "match"
 - What is the match "score"
- The DOT Product
 - Express the typical face as a vector
 - Express the region of the image being evaluated as a vector
 - But first histogram equalize the region
 - Just the section being evaluated, without considering the rest of the image
 - Compute the dot product of the typical face vector and the "region" vector

- The right panel shows the dot product a various loctions
 - Redder is higher
 - The locations of peaks indicate locations of faces!

- The right panel shows the dot product a various loctions
 - Redder is higher
 - The locations of peaks indicate locations of faces!
- Correctly detects all three faces
 - Likes George's face most
 - He looks most like the typical face
- Also finds a face where there is none!
 - A false alarm

Scaling and Rotation Problems

- Scaling
 - Not all faces are the same size
 - Some people have bigger faces
 - The size of the face on the image changes with perspective
 - Our "typical face" only represents one of these sizes
- Rotation
 - The head need not always be upright!
 - Our typical face image was upright

Solution

- One for each scaling factor
- One for each rotation
 - How will we do this?
- Match them all
- Does this work
 - Kind of .. Not well enough at all
 - We need more sophisticated models

Face Detection: A Ouick Historical Perspective

Figure 1: The basic algorithm used for face detection.

- Many more complex methods
 - Use edge detectors and search for face like patterns
 - Find "feature" detectors (noses, ears..) and employ them in complex neural networks..
- The Viola Jones method
 - Boosted cascaded classifiers
- Other classifiers
- later in the program..