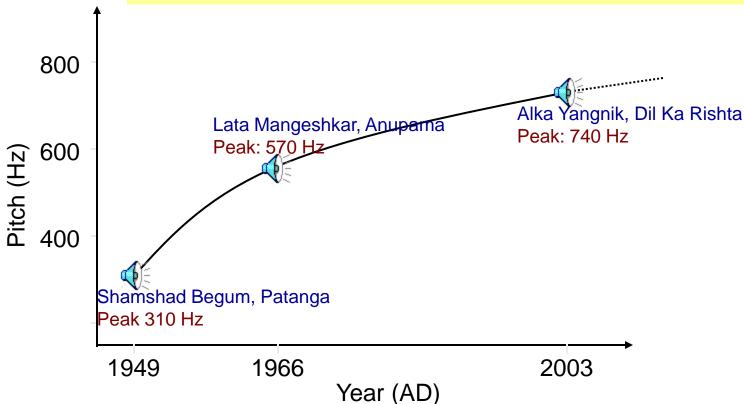
Machine Learning for Signal Processing Expectation Maximization Mixture Models

Bhiksha Raj Class 10. 3 Oct 2013

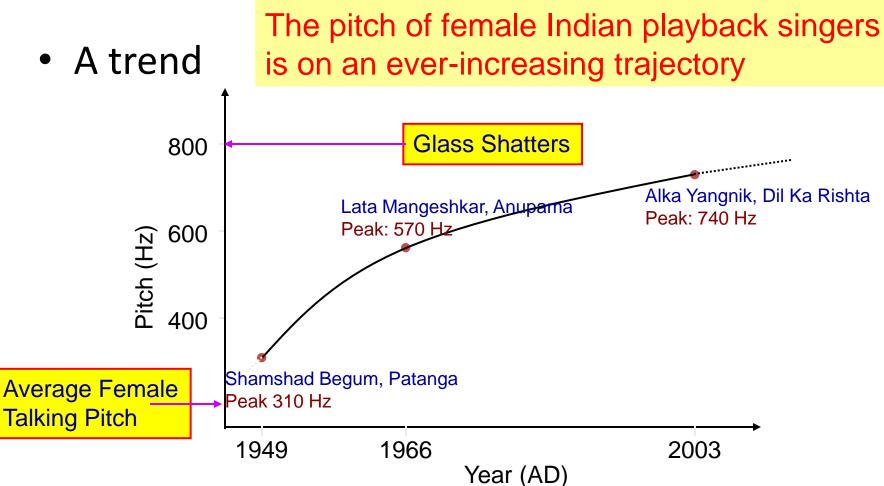

Administrivia

- HW2 is up
 - A final problem will be added
 - You have four weeks
 - It's a loooooong homework
 - About 12-24 hours of work
- Does everyone have teams/project proposals
- Begin working on your projects immediately...

A Strange Observation

A trend

The pitch of female Indian playback singers is on an ever-increasing trajectory



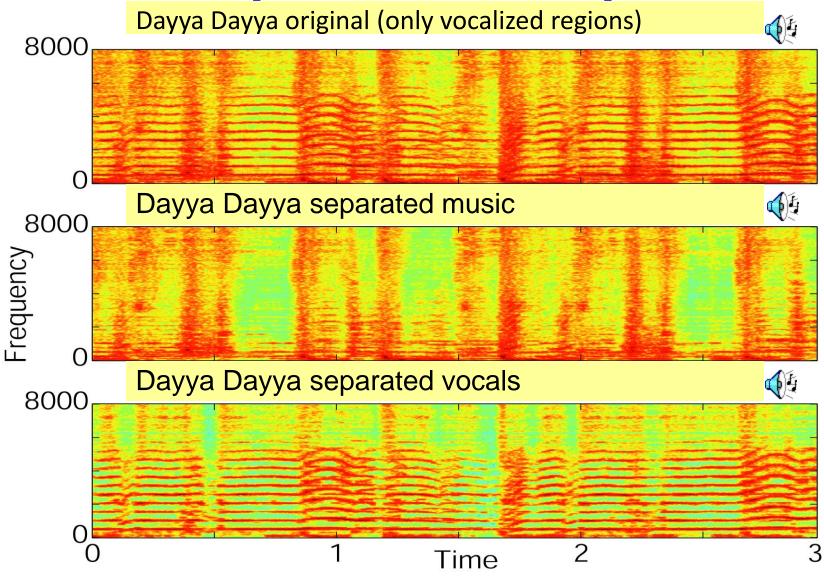
Mean pitch values: 278Hz, 410Hz, 580Hz

I'm not the only one to find the high-pitched stuff annoying

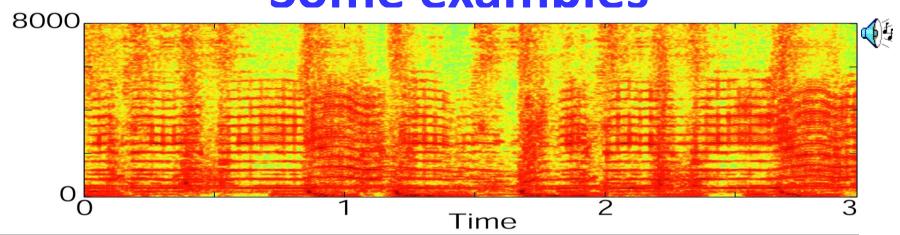
- Sarah McDonald (Holy Cow): ".. shrieking..."
- Khazana.com: ".. female Indian movie playback singers who can produce ultra high frequncies which only dogs can hear clearly.."
- www.roadjunky.com: ".. High pitched female singers doing their best to sound like they were seven years old .."

A Disturbing Observation

Mean pitch values: 278Hz, 410Hz, 580Hz

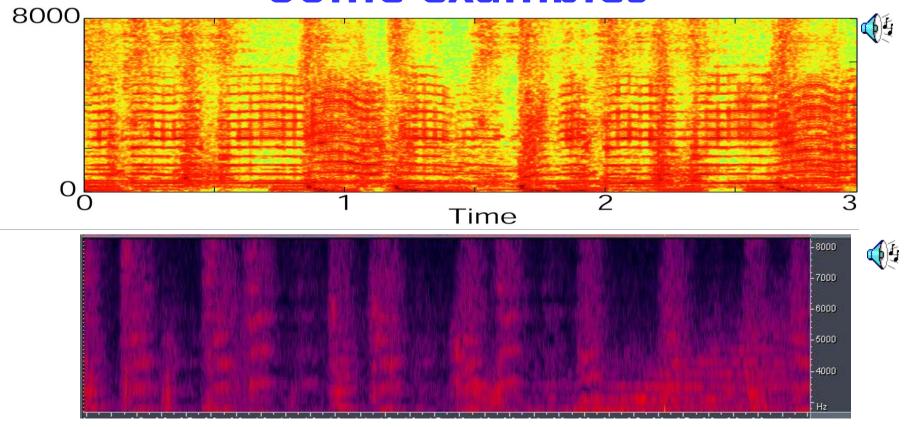

Lets Fix the Song

- The pitch is unpleasant
- The melody isn't bad
- Modify the pitch, but retain melody
- Problem:
 - Cannot just shift the pitch: will destroy the music
 - The music is fine, leave it alone
 - Modify the singing pitch without affecting the music


"Personalizing" the Song

- Separate the vocals from the background music
 - Modify the separated vocals, keep music unchanged
- Separation need not be perfect
 - Must only be sufficient to enable pitch modification of vocals
 - Pitch modification is tolerant of low-level artifacts
 - For octave level pitch modification artifacts can be undetectable.

Separation example



Example 1: Vocals shifted down by 4 semitones

- Example 1: Vocals shifted down by 4 semitones
- Example 2: Gender of singer partially modified

Techniques Employed

- Signal separation
 - Employed a simple latent-variable based separation method
- Voice modification
 - Equally simple techniques

 Separation: Extensive use of Expectation Maximization

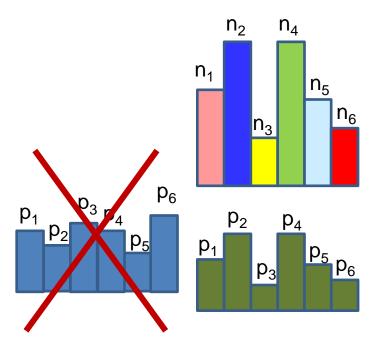
Learning Distributions for Data

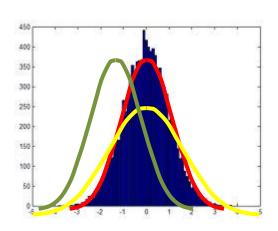
- Problem: Given a collection of examples from some data, estimate its distribution
- Solution: Assign a model to the distribution
 - Learn parameters of model from data
- Models can be arbitrarily complex
 - Mixture densities, Hierarchical models.
- Learning must be done using Expectation Maximization
- Following slides: An intuitive explanation using a simple example of multinomials

A Thought Experiment

63154124...

- A person shoots a loaded dice repeatedly
- You observe the series of outcomes
- You can form a good idea of how the dice is loaded
 - Figure out what the probabilities of the various numbers are for dice
- P(number) = count(number)/sum(rolls)
- This is a maximum likelihood estimate
 - Estimate that makes the observed sequence of numbers most probable


The Multinomial Distribution


 A probability distribution over a discrete collection of items is a Multinomial

P(X : X belongs to a discrete set) = P(X)

- E.g. the roll of dice
 - -X:X in (1,2,3,4,5,6)
- Or the toss of a coin
 - X : X in (head, tails)

Maximum Likelihood Estimation

- Basic principle: Assign a form to the distribution
 - E.g. a multinomial
 - Or a Gaussian
- Find the distribution that best fits the histogram of the data

Defining "Best Fit"

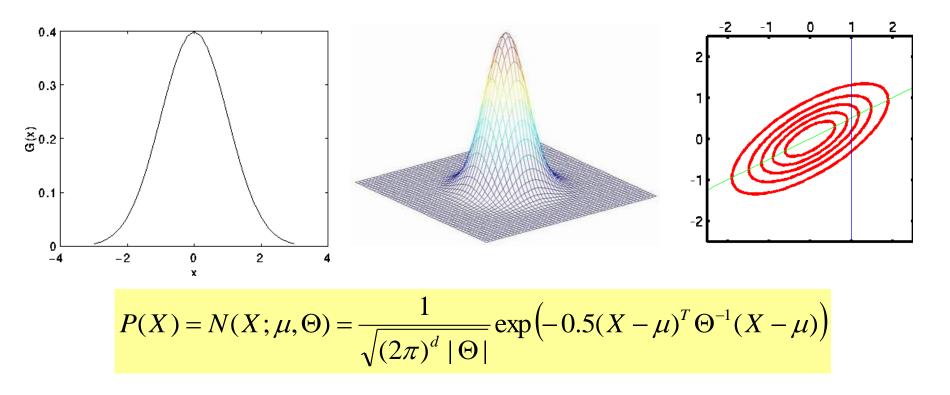
- The data are generated by draws from the distribution
 - I.e. the generating process draws from the distribution
- Assumption: The world is a boring place
 - The data you have observed are very typical of the process
- Consequent assumption: The distribution has a high probability of generating the observed data
 - Not necessarily true
- Select the distribution that has the *highest* probability of generating the data
 - Should assign lower probability to less frequent observations and vice versa

Maximum Likelihood Estimation: Multinomial

Probability of generating (n₁, n₂, n₃, n₄, n₅, n₆)

$$P(n_1, n_2, n_3, n_4, n_5, n_6) = Const \prod_i p_i^{n_i}$$

- Find $p_1, p_2, p_3, p_4, p_5, p_6$ so that the above is maximized
- Alternately maximize


$$\log(P(n_1, n_2, n_3, n_4, n_5, n_6)) = \log(Const) + \sum_{i} n_i \log(p_i)$$

- Log() is a monotonic function
- $\operatorname{argmax}_{x} f(x) = \operatorname{argmax}_{x} \log(f(x))$
- Solving for the probabilities gives us
 - Requires constrained optimization to ensure probabilities sum to 1

$$p_i = \frac{n_i}{\sum_{j} n_j}$$

EVENTUALLY ITS JUST COUNTING!

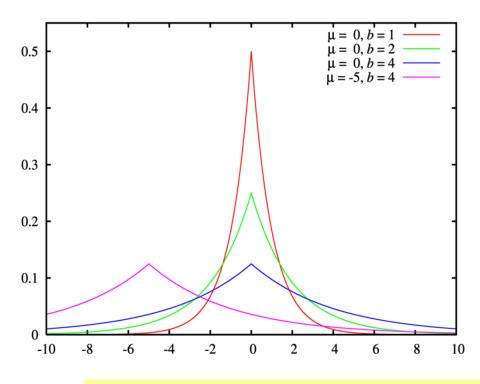
Segue: Gaussians

- Parameters of a Gaussian:
 - Mean μ , Covariance Θ

Maximum Likelihood: Gaussian

• Given a collection of observations $(X_1, X_2,...)$, estimate mean μ and covariance Θ

$$P(X_1, X_2, ...) = \prod_{i} \frac{1}{\sqrt{(2\pi)^d |\Theta|}} \exp\left(-0.5(X_i - \mu)^T \Theta^{-1}(X_i - \mu)\right)$$


$$\log(P(X_1, X_2,...)) = C - 0.5 \sum_{i} (\log(|\Theta|) + (X_i - \mu)^T \Theta^{-1}(X_i - \mu))$$

• Maximizing w.r.t μ and Θ gives us

$$\mu = \frac{1}{N} \sum_{i} X_{i} \qquad \Theta = \frac{1}{N} \sum_{i} (X_{i} - \mu)(X_{i} - \mu)^{T}$$

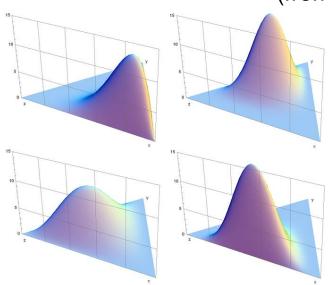
Laplacian

$$P(x) = L(x; \mu, b) = \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right)$$

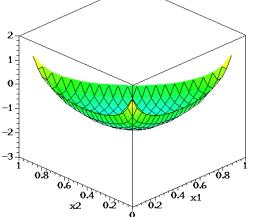
• Parameters: Mean μ , scale b (b > 0)

Maximum Likelihood: Laplacian

• Given a collection of observations $(x_1, x_2,...)$, estimate mean μ and scale b


$$\log(P(x_1, x_2,...)) = C - N\log(b) - \sum_{i} \frac{|x_i - \mu|}{b}$$

• Maximizing w.r.t μ and b gives us


$$\mu = \frac{1}{N} \sum_{i} x_{i} \qquad b = \frac{1}{N} \sum_{i} |x_{i} - \mu|$$

(from wikipedia)

K=3. Clockwise from top left: a=(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4)

log of the density as we change a from a=(0.3, 0.3, 0.3) to (2.0, 2.0, 2.0), keeping all the individual ai's equal to each other.

$$P(X) = D(X; \alpha) = \frac{\prod_{i} \Gamma(\alpha_{i})}{\Gamma\left(\sum_{i} \alpha_{i}\right)} \prod_{i} x_{i}^{\alpha_{i}-1}$$

- Parameters are α s
 - Determine mode and curvature
- Defined only of probability vectors

$$- X = [x_1 \ x_2 ... x_K], \Sigma_i \ x_i = 1, \ x_i >= 0$$
 for all i

Maximum Likelihood: Dirichlet

• Given a collection of observations $(X_1, X_2,...)$, estimate α

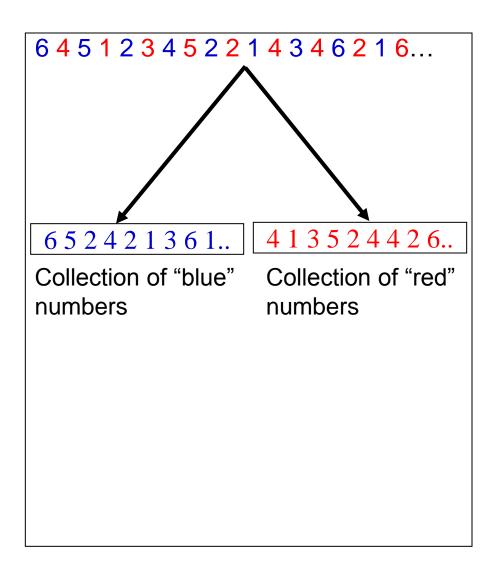
$$\log(P(X_1, X_2, \dots)) = \sum_{j} \sum_{i} (\alpha_i - 1) \log(X_{j,i}) + N \sum_{i} \log(\Gamma(\alpha_i)) - N \log\left(\Gamma\left(\sum_{i} \alpha_i\right)\right)$$

- No closed form solution for αs .
 - Needs gradient ascent
- Several distributions have this property: the ML estimate of their parameters have no closed form solution

Continuing the Thought Experiment

44163212...

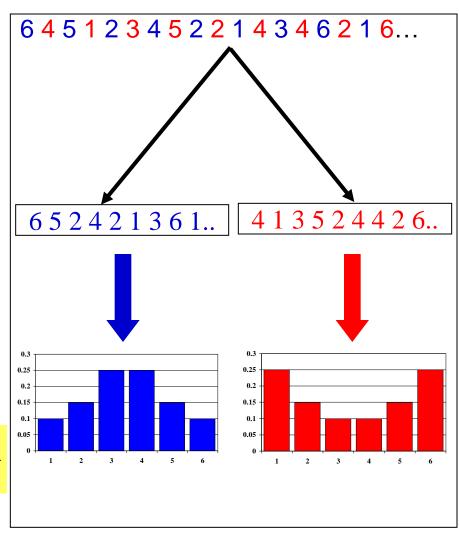
- Two persons shoot loaded dice repeatedly
 - The dice are differently loaded for the two of them
- We observe the series of outcomes for both persons
- How to determine the probability distributions of the two dice?


Estimating Probabilities

- Observation: The sequence of numbers from the two dice
 - As indicated by the colors, we know who rolled what number

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6...

Estimating Probabilities


- Observation: The sequence of numbers from the two dice
 - As indicated by the colors, we know who rolled what number
- Segregation: Separate the blue observations from the red

Estimating Probabilities

- Observation: The sequence of numbers from the two dice
 - As indicated by the colors, we know who rolled what number
- Segregation: Separate the blue observations from the red
- From each set compute probabilities for each of the 6 possible outcomes

 $P(number) = \frac{\text{no. of times number was rolled}}{\text{total number of observed rolls}}$

A Thought Experiment

63154124...

44163212...

- Now imagine that you cannot observe the dice yourself
- Instead there is a "caller" who randomly calls out the outcomes
 - 40% of the time he calls out the number from the left shooter, and 60% of the time, the one from the right (and you know this)
- At any time, you do not know which of the two he is calling out
- How do you determine the probability distributions for the two dice?

3 Oct 2011 11755/18797 28

A Thought Experiment

- How do you now determine the probability distributions for the two sets of dice ...
- .. If you do not even know what fraction of time the blue numbers are called, and what fraction are red?

A Mixture Multinomial

- The caller will call out a number X in any given callout IF
 - He selects "RED", and the Red die rolls the number X
 - OR
 - He selects "BLUE" and the Blue die rolls the number X
- P(X) = P(Red)P(X|Red) + P(Blue)P(X|Blue)
 - E.g. P(6) = P(Red)P(6|Red) + P(Blue)P(6|Blue)
- A distribution that combines (or mixes) multiple multinomials is a mixture multinomial

$$P(X) = \sum_{Z} P(Z)P(X \mid Z)$$
Mixture weights Component multinomials

Mixture Distributions

$$P(X) = \sum_{Z} P(Z)P(X \mid Z)$$

$$P(X) = \sum_{Z} P(Z)N(X; \mu_z, \Theta_z)$$

Mixture Gaussian

$$P(X) = \sum_{Z} P(Z)N(X; \mu_{z}, \Theta_{z})$$

Mixture weights Component distributions

Mixture of Gaussians and Laplacians

$$P(X) = \sum_{Z} P(Z)N(X; \mu_{z}, \Theta_{z}) + \sum_{Z} P(Z) \prod_{i} L(X_{i}; \mu_{z}, b_{z,i})$$

- Mixture distributions mix several component distributions
 - Component distributions may be of varied type
- Mixing weights must sum to 1.0
- Component distributions integrate to 1.0
- Mixture distribution integrates to 1.0

Maximum Likelihood Estimation

• For our problem:

$$P(X) = \sum_{Z} P(Z)P(X \mid Z)$$

-Z = color of dice

$$P(n_1, n_2, n_3, n_4, n_5, n_6) = Const \prod_{X} P(X)^{n_X} = Const \prod_{X} \left(\sum_{Z} P(Z) P(X \mid Z) \right)^{n_X}$$

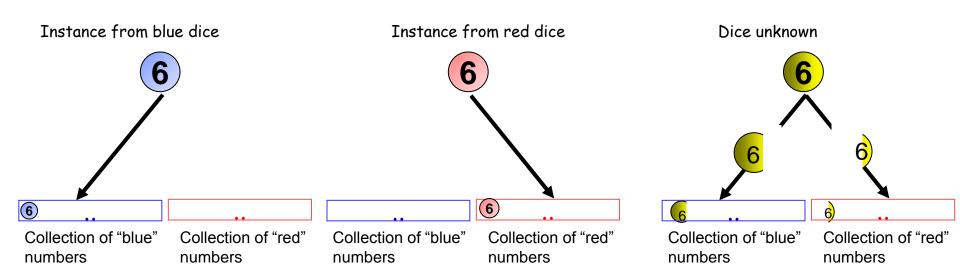
Maximum likelihood solution: Maximize

$$\log(P(n_1, n_2, n_3, n_4, n_5, n_6)) = \log(Const) + \sum_{X} n_X \log\left(\sum_{Z} P(Z)P(X \mid Z)\right)$$

- No closed form solution (summation inside log)!
 - In general ML estimates for mixtures do not have a closed form
 - USE EM!

Expectation Maximization

- It is possible to estimate all parameters in this setup using the Expectation Maximization (or EM) algorithm
- First described in a landmark paper by Dempster, Laird and Rubin
 - Maximum Likelihood Estimation from incomplete data, via the EM Algorithm, Journal of the Royal Statistical Society, Series B, 1977
- Much work on the algorithm since then
- The principles behind the algorithm existed for several years prior to the landmark paper, however.


Expectation Maximization

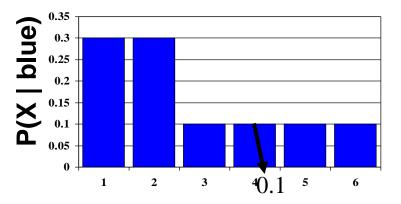
- Iterative solution
- Get some initial estimates for all parameters
 - Dice shooter example: This includes probability distributions for dice AND the probability with which the caller selects the dice
- Two steps that are iterated:
 - Expectation Step: Estimate statistically, the values of unseen variables
 - Maximization Step: Using the estimated values of the unseen variables as truth, estimates of the model parameters

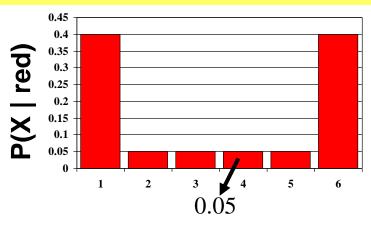
EM: The auxiliary function

- EM iteratively optimizes the following auxiliary function
- $Q(\theta, \theta') = \sum_{Z} P(Z|X,\theta') \log(P(Z,X \mid \theta))$
 - Z are the unseen variables
 - Assuming Z is discrete (may not be)
- θ ' are the parameter estimates from the previous iteration
- θ are the estimates to be obtained in the current iteration

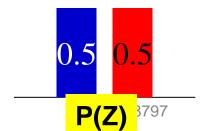
Expectation Maximization as counting

- Hidden variable: Z
 - Dice: The identity of the dice whose number has been called out
- If we knew Z for every observation, we could estimate all terms
 - By adding the observation to the right bin
- Unfortunately, we do not know Z it is hidden from us!
- Solution: FRAGMENT THE OBSERVATION

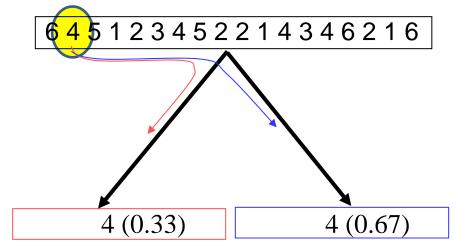

Fragmenting the Observation

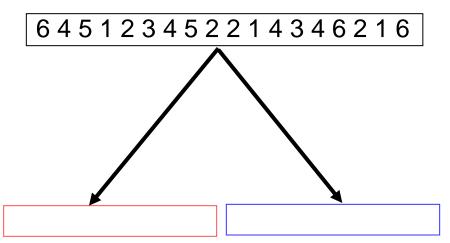

- EM is an iterative algorithm
 - At each time there is a current estimate of parameters
- The "size" of the fragments is proportional to the a
 posteriori probability of the component distributions
 - The *a posteriori* probabilities of the various values of *Z* are computed using Bayes' rule:

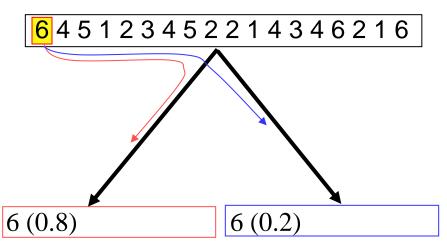
$$P(Z \mid X) = \frac{P(X \mid Z)P(Z)}{P(X)} = CP(X \mid Z)P(Z)$$

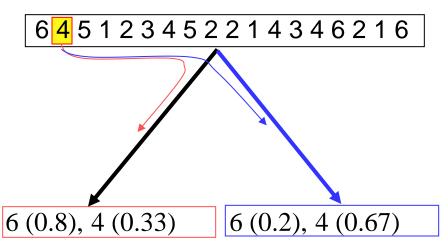

Every dice gets a fragment of size P(dice | number)

- Hypothetical Dice Shooter Example:
- We obtain an initial estimate for the probability distribution of the two sets of dice (somehow):

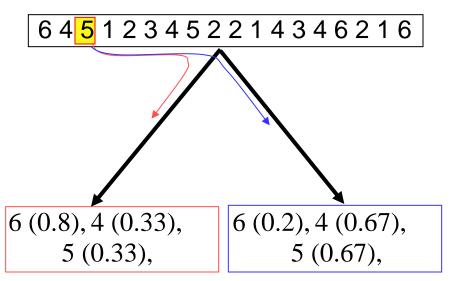

 We obtain an initial estimate for the probability with which the caller calls out the two shooters (somehow)

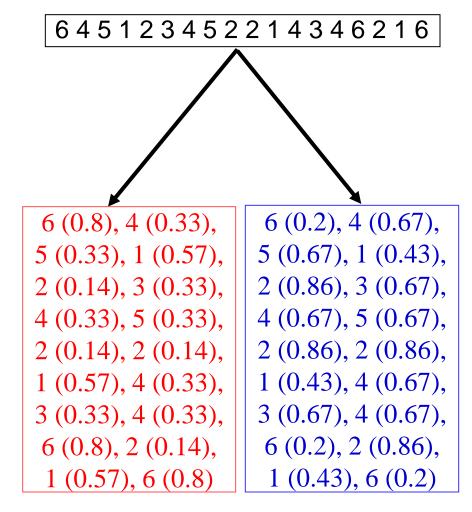



- Hypothetical Dice Shooter Example:
- Initial estimate:
 - P(blue) = P(red) = 0.5
 - $P(4 \mid blue) = 0.1$, for $P(4 \mid red) = 0.05$
- Caller has just called out 4
- Posterior probability of colors:


$$P(red \mid X = 4) = CP(X = 4 \mid Z = red)P(Z = red) = C \times 0.05 \times 0.5 = C0.025$$

 $P(blue \mid X = 4) = CP(X = 4 \mid Z = blue)P(Z = blue) = C \times 0.1 \times 0.5 = C0.05$


Normalizin g: $P(\text{red} \mid X = 4) = 0.33$; $P(\text{blue} \mid X = 4) = 0.67$



- Every observed roll of the dice contributes to both "Red" and "Blue"
- Total count for "Red" is the sum of all the posterior probabilities in the red column
 - -7.31
- Total count for "Blue" is the sum of all the posterior probabilities in the blue column
 - -10.69
 - Note: 10.69 + 7.31 = 18 = the total number of instances

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6	.57	.43
6	.8	.2

7.31

Total count for "Red": 7.31

• Red:

Total count for 1: 1.71

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6	.57	.43
6	.8	.2

7.31

Total count for "Red": 7.31

• Red:

Total count for 1: 1.71

Total count for 2: 0.56

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

7.31

Total count for "Red": 7.31

Red:

Total count for 1: 1.71

Total count for 2: 0.56

Total count for 3: 0.66

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6	.57	.43
6	.8	.2

7.31

Total count for "Red": 7.31

Red:

Total count for 1: 1.71

Total count for 2: 0.56

Total count for 3: 0.66

Total count for 4: 1.32

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6	.57	.43
6	.8	.2

7.31

Total count for "Red": 7.31

Red:

Total count for 1: 1.71

Total count for 2: 0.56

Total count for 3: 0.66

Total count for 4: 1.32

Total count for 5: 0.66

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6	.57	.43
6	.8	.2

7.31

Total count for "Red": 7.31

Red:

Total count for 1: 1.71

Total count for 2: 0.56

Total count for 3: 0.66

Total count for 4: 1.32

Total count for 5: 0.66

Total count for 6: 2.4

Called	P(red X)	P(blue X)
6	.8	.2
6 4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
5 1 2 3 4 5 2 2 1 4 3 4 6 2	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

7.31

Total count for "Red": 7.31

Red:

Total count for 1: 1.71

Total count for 2: 0.56

Total count for 3: 0.66

Total count for 4: 1.32

Total count for 5: 0.66

Total count for 6: 2.4

Updated probability of Red dice:

_	P(1	l Red) = 1.71	/7.31 =	0.234
			, – ±•, ±	, , .J - -	U. 237

$$-$$
 P(2 | Red) = 0.56/7.31 = 0.077

$$-$$
 P(3 | Red) = 0.66/7.31 = 0.090

$$-$$
 P(4 | Red) = 1.32/7.31 = 0.181

$$-$$
 P(5 | Red) = 0.66/7.31 = 0.090

$$-$$
 P(6 | Red) = 2.40/7.31 = 0.328

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6	.57	.43
6	.8	.2

7.31

Total count for "Blue": 10.69

Blue:

Total count for 1: 1.29

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4 5 1 2 3 4 5 2 2 1 4 3 4	.33	.67
6	.8	.2
2	.14	.86
6 2 1 6	.57	.43
6	.8	.2

7.31

Total count for "Blue": 10.69

Blue:

Total count for 1: 1.29

Total count for 2: 3.44

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6	.57	.43
6	.8	.2

7.31

Total count for "Blue": 10.69

Blue:

Total count for 1: 1.29

Total count for 2: 3.44

Total count for 3: 1.34

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4 5 1 2 3 4 5 2 2 1 4 3 4	.33	.67
6	.8	.2
2	.14	.86
6 2 1	.57	.43
6	.8	.2

7.31

Total count for "Blue": 10.69

Blue:

Total count for 1: 1.29

Total count for 2: 3.44

Total count for 3: 1.34

Total count for 4: 2.68

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6	.57	.43
6	.8	.2

7.31

Total count for "Blue": 10.69

Blue:

Total count for 1: 1.29

Total count for 2: 3.44

Total count for 3: 1.34

Total count for 4: 2.68

Total count for 5: 1.34

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
4 5 1 2 3 4 5 2 2 1 4 3 4 6 2	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

7.31

Total count for "Blue": 10.69

Blue:

Total count for 1: 1.29

Total count for 2: 3.44

Total count for 3: 1.34

Total count for 4: 2.68

Total count for 5: 1.34

Total count for 6: 0.6

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

7.31

- Total count for "Blue": 10.69
- Blue:
 - Total count for 1: 1.29
 - Total count for 2: 3.44
 - Total count for 3: 1.34
 - Total count for 4: 2.68
 - Total count for 5: 1.34
 - Total count for 6: 0.6
- Updated probability of Blue dice:

F	= /	= (1
Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

7.31

- Total count for "Red": 7.31
- Total count for "Blue": 10.69
- Total instances = 18
 - Note 7.31+10.69 = 18
- We also revise our estimate for the probability that the caller calls out Red or Blue
 - i.e the fraction of times that he calls Red and the fraction of times he calls Blue
- P(Z=Red) = 7.31/18 = 0.41
- P(Z=Blue) = 10.69/18 = 0.59

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

7.31

The updated values

- Probability of Red dice:
 - P(1 | Red) = 1.71/7.31 = 0.234
 - $P(2 \mid Red) = 0.56/7.31 = 0.077$
 - $P(3 \mid Red) = 0.66/7.31 = 0.090$
 - $P(4 \mid Red) = 1.32/7.31 = 0.181$
 - $P(5 \mid Red) = 0.66/7.31 = 0.090$
 - $P(6 \mid Red) = 2.40/7.31 = 0.328$
- Probability of Blue dice:
 - P(1 | Blue) = 1.29/11.69 = 0.122
 - $P(2 \mid Blue) = 0.56/11.69 = 0.322$
 - P(3 | Blue) = 0.66/11.69 = 0.125
 - P(4 | Blue) = 1.32/11.69 = 0.250
 - P(5 | Blue) = 0.66/11.69 = 0.125
 - $P(6 \mid Blue) = 2.40/11.69 = 0.056$
- P(Z=Red) = 7.31/18 = 0.41
- P(Z=Blue) = 10.69/18 = 0.59

Called	P(red X)	P(blue X)
	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
6 4 5 1 2 3 4 5 2 2 1 4 3 4	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6 2 1	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

THE UPDATED VALUES CAN BE USED TO REPEAT THE PROCESS. ESTIMATION IS AN ITERATIVE PROCESS

The Dice Shooter Example

63154124...

44163212...

- 1. Initialize P(Z), $P(X \mid Z)$
- 2. Estimate $P(Z \mid X)$ for each Z, for each called out number
 - Associate X with each value of Z, with weight P(Z | X)
- 3. Re-estimate $P(X \mid Z)$ for every value of X and Z
- 4. Re-estimate P(Z)
- 5. If not converged, return to 2

In Squiggles

- Given a sequence of observations O₁, O₂, ...
 - $-N_x$ is the number of observations of number X
- Initialize P(Z), P(X|Z) for dice Z and numbers X
- Iterate:
 - For each number X:

$$P(Z \mid X) = \frac{P(X \mid Z)P(Z)}{\sum_{Z'} P(Z')P(X \mid Z')}$$

– Update:

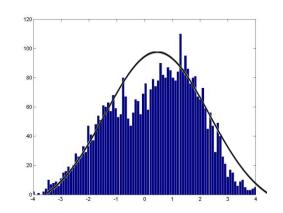
$$P(X \mid Z) = \frac{\sum_{O \text{ such that } O == X} P(Z \mid X)}{\sum_{O} P(Z \mid O)} = \frac{N_X P(Z \mid X)}{\sum_X N_X P(Z \mid X)}$$

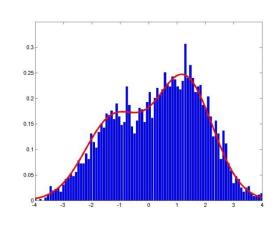
$$P(Z) = \frac{\sum_{X} N_X P(Z \mid X)}{\sum_{Z'} \sum_{X} N_X P(Z' \mid X)}$$

Solutions may not be unique

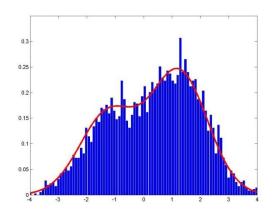
- The EM algorithm will give us one of many solutions, all equally valid!
 - The probability of 6 being called out:

$$P(6) = \alpha P(6 \mid red) + \beta P(6 \mid blue) = \alpha P_r + \beta P_b$$


- Assigns P_r as the probability of 6 for the red die
- Assigns P_b as the probability of 6 for the blue die
- The following too is a valid solution [FIX]

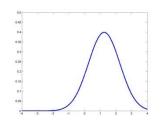

$$P(6) = 1.0(\alpha P_r + \beta P_b) + 0.0 anything$$

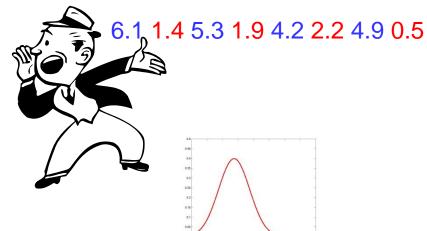
- Assigns 1.0 as the a priori probability of the red die
- Assigns 0.0 as the probability of the blue die
- The solution is NOT unique


A more complex model: Gaussian mixtures

- A Gaussian mixture can represent data distributions far better than a simple Gaussian
- The two panels show the histogram of an unknown random variable
- The first panel shows how it is modeled by a simple Gaussian
- The second panel models the histogram by a mixture of two Gaussians
- Caveat: It is hard to know the optimal number of Gaussians in a mixture

A More Complex Model

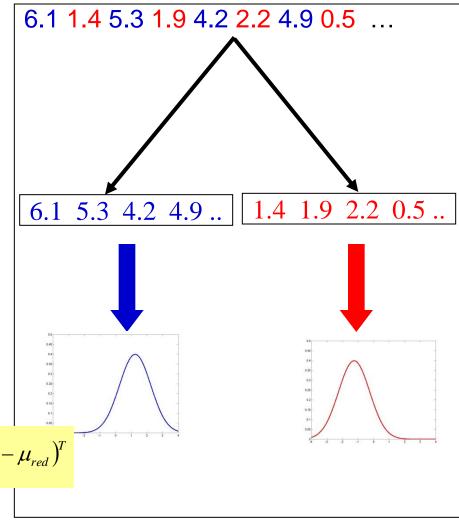



$$P(X) = \sum_{k} P(k)N(X; \mu_{k}, \Theta_{k}) = \sum_{k} \frac{P(k)}{\sqrt{(2\pi)^{d} |\Theta_{k}|}} \exp\left(-0.5(X - \mu_{k})^{T} \Theta_{k}^{-1} (X - \mu_{k})\right)$$

- Gaussian mixtures are often good models for the distribution of multivariate data
- Problem: Estimating the parameters, given a collection of data

Gaussian Mixtures: Generating model

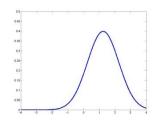
$$P(X) = \sum_{k} P(k)N(X; \mu_{k}, \Theta_{k})$$

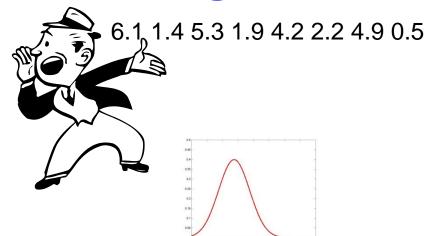

- The caller now has two Gaussians
 - At each draw he randomly selects a Gaussian, by the mixture weight distribution
 - He then draws an observation from that Gaussian
 - Much like the dice problem (only the outcomes are now real numbers and can be anything)

Estimating GMM with complete information

- Observation: A collection of numbers drawn from a mixture of 2 Gaussians
 - As indicated by the colors, we know which Gaussian generated what number
- Segregation: Separate the blue observations from the red
- From each set compute parameters for that Gaussian

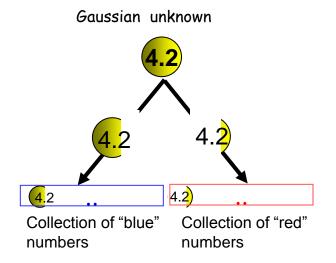
$$\mu_{red} = \frac{1}{N_{red}} \sum_{i \in red} X_i$$


$$\mu_{red} = \frac{1}{N_{red}} \sum_{i \in red} X_i \qquad \Theta_{red} = \frac{1}{N_{red}} \sum_{i \in red} (X_i - \mu_{red}) (X_i - \mu_{red})^T$$



$$P(red) = \frac{N_{red}}{N}$$

Gaussian Mixtures: Generating model


$$P(X) = \sum_{k} P(k)N(X; \mu_{k}, \Theta_{k})$$

- Problem: In reality we will not know which Gaussian any observation was drawn from..
 - The color information is missing

Fragmenting the observation

- The identity of the Gaussian is not known!
- Solution: Fragment the observation
- Fragment size proportional to a posteriori probability

$$P(k \mid X) = \frac{P(X \mid k)P(k)}{\sum_{k'} P(k')P(X \mid k')} = \frac{P(k)N(X; \mu_k, \Theta_k)}{\sum_{k'} P(k')N(X; \mu_{k'}, \Theta_{k'})}$$

- Initialize P(k), μ_k and Θ_k for both Gaussians
 - Important how we do this
 - Typical solution: Initialize means randomly, Θ_k as the global covariance of the data and P(k) uniformly
- Compute fragment sizes for each Gaussian, for each observation

Number	P(red X)	P(blue X)
6.1	.81	.19
1.4	.33	.67
5.3	.75	.25
1.9	.41	.59
4.2	.64	.36
2.2	.43	.57
4.9	.66	.34
0.5	.05	.95

$$P(k \mid X) = \frac{P(k)N(X; \mu_k, \Theta_k)}{\sum_{k'} P(k')N(X; \mu_{k'}, \Theta_{k'})}$$

- Each observation contributes only as much as its fragment size to each statistic
- Mean(red) =
 (6.1*0.81 + 1.4*0.33 + 5.3*0.75 +
 1.9*0.41 + 4.2*0.64 + 2.2*0.43 + 4.9*0.66
 + 0.5*0.05) /
 (0.81 + 0.33 + 0.75 + 0.41 + 0.64 + 0.43 +
 0.66 + 0.05)
 = 17.05 / 4.08 = 4.18

Number	P(red X)	P(blue X)
6.1	.81	.19
1.4	.33	.67
5.3	.75	.25
1.9	.41	.59
4.2	.64	.36
2.2	.43	.57
4.9	.66	.34
0.5	.05	.95

4.08

■ Var(red) =
$$((6.1-4.18)^2*0.81 + (1.4-4.18)^2*0.33 + (5.3-4.18)^2*0.75 + (1.9-4.18)^2*0.41 + (4.2-4.18)^2*0.64 + (2.2-4.18)^2*0.43 + (4.9-4.18)^2*0.66 + (0.5-4.18)^2*0.05) / (0.81 + 0.33 + 0.75 + 0.41 + 0.64 + 0.43 + 0.66 + 0.05)$$

$$P(red) = \frac{4.08}{8}$$

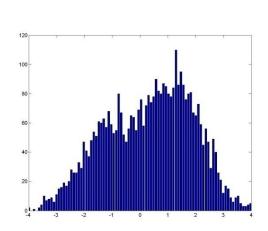
EM for Gaussian Mixtures

- Initialize P(k), μ_k and Θ_k for all Gaussians
- 2. For each observation X compute a posteriori probabilities for all Gaussian

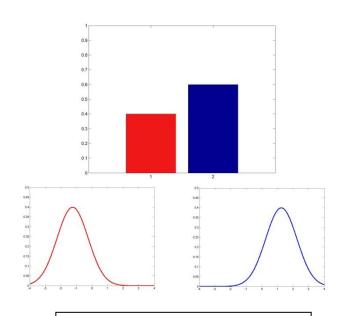
$$P(k \mid X) = \frac{P(k)N(X; \mu_k, \Theta_k)}{\sum_{k'} P(k')N(X; \mu_{k'}, \Theta_{k'})}$$

Update mixture weights, means and variances for all Gaussians

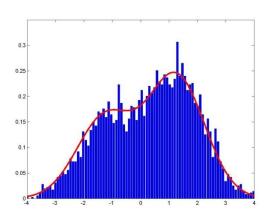
$$P(k) = \frac{\sum_{X} P(k|X)}{N}$$


$$\mu_k = \frac{\sum_{X} P(k|X) X}{\sum_{X} P(k|X)}$$

$$P(k) = \frac{\sum_{X} P(k|X)}{N} \qquad \mu_{k} = \frac{\sum_{X} P(k|X) X}{\sum_{X} P(k|X)} \qquad \Theta_{k} = \frac{\sum_{X} P(k|X) (X - \mu_{k})^{2}}{\sum_{X} P(k|X)}$$


4. If not converged, return to 2

EM estimation of Gaussian Mixtures


An Example

Histogram of 4000 instances of a randomly generated data

Individual parameters of a two-Gaussian mixture estimated by EM

Two-Gaussian mixture estimated by EM

- The same principle can be extended to mixtures of other distributions.
- E.g. Mixture of Laplacians: Laplacian parameters become

$$\mu_{k} = \frac{1}{\sum_{x} P(k \mid x)} \sum_{x} P(k \mid x) x \qquad b_{k} = \frac{1}{\sum_{x} P(k \mid x)} \sum_{x} P(k \mid x) |x - \mu_{k}|$$

 In a mixture of Gaussians and Laplacians, Gaussians use the Gaussian update rules, Laplacians use the Laplacian rule

- The EM algorithm is used whenever proper statistical analysis of a phenomenon requires the knowledge of a hidden or missing variable (or a set of hidden/missing variables)
 - The hidden variable is often called a "latent" variable

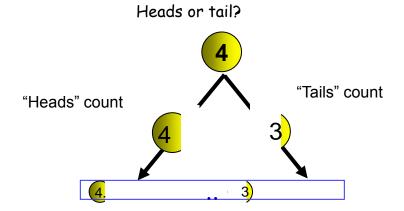
Some examples:

- Estimating mixtures of distributions
 - Only data are observed. The individual distributions and mixing proportions must both be learnt.
- Estimating the distribution of data, when some attributes are missing
- Estimating the dynamics of a system, based only on observations that may be a complex function of system state

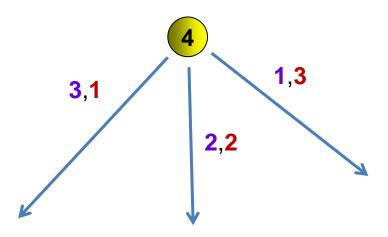
Solve this problem:

Problem 1:

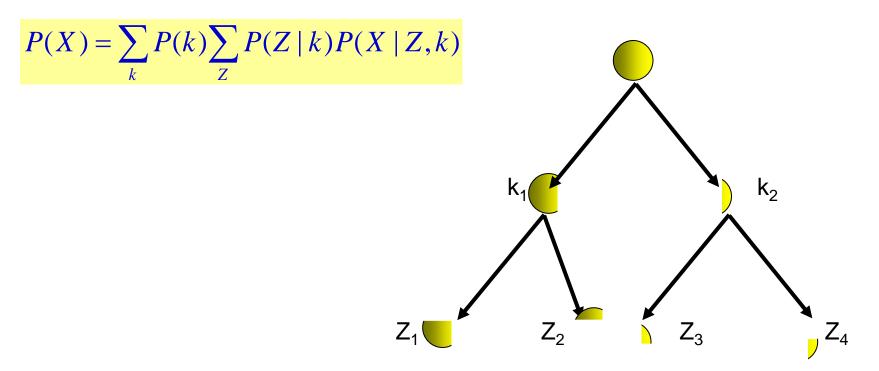
- He calls out the number rolled if the coin shows head
- Otherwise he calls the number+1
- Determine p(heads) and p(number) for the dice from a collection of outputs


Problem 2:

- Caller rolls two dice
- He calls out the sum


Determine P(dice) from a collection of ouputs

The dice and the coin


Unknown: Whether it was head or tails

The two dice

- Unknown: How to partition the number
- Count_{blue}(3) += P(3,1 | 4)
- Count_{blue}(2) += P(2,2 | 4)
- $Count_{blue}(1) += P(1,3 | 4)$

Fragmentation can be hierarchical

- E.g. mixture of mixtures
- Fragments are further fragmented..
 - Work this out

More later

- Will see a couple of other instances of the use of EM
- EM for signal representation: PCA and factor analysis
- EM for signal separation
- EM for parameter estimation

EM for homework...