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Statistical Modelling and Latent 
Structure 

• Much of statistical modelling attempts to identify latent structure in 
the data 

– Structure that is not immediately apparent from the observed data 

– But which, if known, helps us explain it better, and make predictions 
from or about it 

 

• Clustering methods attempt to extract such structure from 
proximity 

– First-level structure (as opposed to deep structure) 
 

• We will see other forms of latent structure discovery later in the 
course 
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Clustering 
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Clustering 

• What is clustering 

– Clustering is the determination of 
naturally occurring grouping of 
data/instances (with low within-
group variability and high between-
group variability) 
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Why Clustering 

• Automatic grouping into “Classes” 
– Different clusters may show different behavior 

 

• Quantization 
– All data within a cluster are represented by a 

single point 

 

• Preprocessing step for other algorithms 
– Indexing, categorization, etc. 
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Finding natural structure in data 

• Find natural groupings in data for further analysis 

• Discover latent structure in data 
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Some Applications of Clustering 

• Image segmentation 
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Representation: Quantization 

• Quantize every vector to one of K (vector) values 

• What are the optimal  K  vectors?  How do we find them?  How do 
we perform the quantization? 

• LBG algorithm 13 

TRAINING QUANTIZATION 

x 

x 



Representation: BOW 

• How to retrieve all music videos by this guy? 
• Build a classifier 

– But how do you represent the video? 
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Representation: BOW 

• Bag of words representations of 
video/audio/data 

10 Oct 2013 15 

Representation: Each number is the 

#frames assigned to the codeword 
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Training: Each point is a video frame 



Obtaining “Meaningful” Clusters 

• Two key aspects: 

– 1. The feature representation used to characterize 
your data 

– 2.  The “clustering criteria” employed 
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Clustering Criterion 

• The “Clustering criterion” actually has two 
aspects 

 

• Cluster compactness criterion 
– Measure that shows how “good” clusters are 

• The objective function 

 

• Distance of a point from a cluster 
– To determine the cluster a data vector belongs to 
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“Compactness” criteria for clustering 

• Distance based measures 
– Total distance between each 

element in the cluster and 
every other element in the 
cluster 
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“Compactness” criteria for clustering 

• Distance based measures 
– Total distance between each 

element in the cluster and every 
other element in the cluster 

 

– Distance between the two farthest 
points in the cluster 

 

– Total distance of every element in 
the cluster from the centroid of the 
cluster 

 

– Distance measures are often 
weighted Minkowski metrics 
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Clustering: Distance from cluster 

• How far is a data point from a 
cluster? 

– Euclidean or Minkowski distance 
from the centroid of the cluster 

 

– Distance from the closest point in 
the cluster 

 

– Distance from the farthest point in 
the cluster 

 

– Probability of data measured on 
cluster distribution 
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Clustering: Distance from cluster 

• How far is a data point from a 
cluster? 
– Euclidean or Minkowski distance 

from the centroid of the cluster 
 

– Distance from the closest point in 
the cluster 

 

– Distance from the farthest point in 
the cluster 

 

– Probability of data measured on 
cluster distribution 

 

– Fit of data to cluster-based 
regression 
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Optimal clustering: Exhaustive enumeration 

• All possible combinations of data must be evaluated 

– If there are M data points, and we desire N clusters, the 
number of ways of separating M instances into N clusters is 

 

 

 

– Exhaustive enumeration based clustering requires that the 
objective function (the “Goodness measure”) be evaluated 
for every one of these, and the best one chosen 

 

• This is the only correct way of optimal clustering 

– Unfortunately, it is also computationally unrealistic 
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Not-quite non sequitur:  Quantization 

• Linear quantization (uniform quantization): 

– Each digital value represents an equally wide range of analog values 

– Regardless of distribution of data 

– Digital-to-analog conversion represented by a “uniform” table 
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Signal Value Bits Mapped to 

S >= 3.75v 11 3 * const 

3.75v > S >= 2.5v 10 2 * const 

2.5v > S >= 1.25v 01 1 * const 

1.25v > S >= 0v 0 0  
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Not-quite non sequitur:  Quantization 

• Non-Linear quantization: 

– Each digital value represents a different range of analog values 

• Finer resolution in high-density areas 

• Mu-law / A-law assumes a Gaussian-like distribution of data 

– Digital-to-analog conversion represented by a “non-uniform” table 
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Signal Value Bits Mapped to 

S >= 4v 11 4.5 

4v > S >= 2.5v 10 3.25 

2.5v > S >= 1v 01 1.25 

1.0v > S >= 0v 0 0.5 



Non-uniform quantization 

• If data distribution is not Gaussian-ish? 
– Mu-law / A-law are not optimal 

– How to compute the optimal ranges for quantization? 
• Or the optimal table 
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The Lloyd Quantizer 

• Lloyd quantizer: An iterative algorithm for computing optimal 
quantization tables for non-uniformly distributed data 

• Learned from “training” data 
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Lloyd Quantizer 

• Randomly initialize 
quantization points 

– Right column entries of 
quantization table 

 

• Assign all training points to the 
nearest quantization point 

 

• Reestimate quantization 
points 

 

• Iterate until convergence 
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– Draw boundaries 
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• Iterate until convergence 
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Generalized Lloyd Algorithm: K–means clustering 

• K means is an iterative algorithm for clustering vector 

data 

– McQueen, J. 1967. “Some methods for classification and 

analysis of multivariate observations.” Proceedings of the Fifth 

Berkeley Symposium on Mathematical Statistics and Probability, 

281-297  
 

• General procedure: 

– Initially group data into the required number of clusters 

somehow (initialization) 

– Assign each data point to the closest cluster 

– Once all data points are assigned to clusters, redefine clusters 

– Iterate  
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K–means 

• Problem: Given a set of data 
vectors, find natural clusters 

 

• Clustering criterion is scatter: 
distance from the centroid 

– Every cluster has a centroid 

– The centroid represents the cluster 
 

• Definition:  The centroid is the 
weighted mean of the cluster 

– Weight = 1 for basic scheme 
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K–means 
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1. Initialize a set of centroids 
randomly 

 

2. For each data point x, find the 
distance from the centroid for 
each cluster 

•  
 
 

3. Put data point in the cluster of the 
closest centroid 

• Cluster for which dcluster is 
minimum 
 

4. When all data points clustered, 
recompute cluster centroid 

 

 
 

5. If not converged, go back to 2 
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K–means 
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K–means 
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K–means 
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K-Means comments 

• The distance metric determines the clusters 

– In the original formulation, the distance is L2 distance 

• Euclidean norm, wi = 1 

 

 

 

– If we replace every x by mcluster(x), we get Vector 
Quantization 

• K-means is an instance of generalized EM 

• Not guaranteed to converge for all distance 
metrics 
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Initialization 

• Random initialization 

• Top-down clustering 

–  Initially partition the data into two (or a small 
number of) clusters using K means 

– Partition each of the resulting clusters into two 
(or a small number of) clusters, also using K 
means 

– Terminate when the desired number of clusters 
is obtained 

10 Oct 2013 53 



K-Means for Top–Down clustering 
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1. Start with one cluster  
 

2. Split each cluster into two: 
 Perturb centroid of cluster slightly  (by < 5%) to 

generate two centroids 
 

3. Initialize K means with new set of 
centroids 

 

4. Iterate Kmeans until convergence 
 

5. If the desired number of clusters is not 
obtained, return to 2 
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Non-Euclidean clusters 

• Basic K-means results in good clusters in 
Euclidean spaces 

– Alternately stated, will only find clusters that are 
“good” in terms of Euclidean distances 

• Will not find other types of clusters 
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• For other forms of clusters we must modify the distance measure 

– E.g. distance from a circle 

• May be viewed as a distance in a higher dimensional space 

– I.e Kernel distances 

– Kernel K-means 

• Other related clustering mechansims: 

– Spectral clustering 
– Non-linear weighting of adjacency 

– Normalized cuts.. 
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f([x,y]) -> [x,y,z] 

x = x 

y = y 

z = a(x2 + y2) 

Non-Euclidean clusters 



• Transform the data into a synthetic higher-dimensional space where 
the desired patterns become natural clusters 

– E.g. the quadratic transform above 
 

• Problem: What is the function/space? 
 

• Problem: Distances in higher dimensional-space are more expensive 
to compute 

– Yet only carry the same information in the lower-dimensional space  
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Distance in higher-dimensional space 

• Transform data x through a possibly unknown 
function F(x) into a higher (potentially infinite) 
dimensional space 

– z = F(x) 
 

• The distance between two points is computed in 
the higher-dimensional space 

– d(x1, x2) =  ||z1- z2||2 = ||F(x1) – F(x2)||2 

 

• d(x1, x2) can be computed without computing z 

– Since it is a direct function of x1 and x2 
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Distance in higher-dimensional space 

• Distance in lower-dimensional space: A combination of 

dot products 

– ||z1- z2||2 = (z1- z2)T(z1- z2) = z1.z1 + z2.z2 -2 z1.z2 
 

• Distance in higher-dimensional space 

– d(x1, x2) =||F(x1) – F(x2)||2  

             = F(x1). F(x1) + F(x2). F(x2) -2 F(x1). F(x2) 
 

• d(x1, x2) can be computed without knowing F(x) if: 

– F(x1). F(x2) can be computed for any x1 and x2 without 

knowing F(.) 
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The Kernel function 

• A kernel function K(x1,x2) is a function such that: 

– K(x1,x2) = F(x1). F(x2)  
 

• Once such a kernel function is found, the distance 
in higher-dimensional space can be found in 
terms of the kernels 

– d(x1, x2) =||F(x1) – F(x2)||2  
             = F(x1). F(x1) + F(x2). F(x2) -2 F(x1). F(x2) 
             = K(x1,x1) + K(x2,x2) - 2K(x1,x2) 

 

• But what is K(x1,x2)? 
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A property of the dot product 

• For any vector v, vTv = ||v||2  >= 0 

– This is just the length of v and is therefore non-
negative 

 

• For any vector u = Si ai vi,  ||u||2 >=0 

=> (Si ai vi)
T(Si ai vi) >= 0 

=> Si Sj ai aj vi .vj   >= 0 

 

• This holds for ANY real {a1, a2, …} 
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The Mercer Condition 

• If z = F(x) is a high-dimensional vector derived 
from x then for all real {a1, a2, …} and any set  {z1, 
z2, … } = {F(x1), F(x2),…} 

– Si Sj ai aj zi .zj   >= 0 

– Si Sj ai aj F(xi).F(xj)   >= 0 
 

• If K(x1,x2) = F(x1). F(x2) 

> Si Sj ai aj K(xi,xj)   >= 0 
 

• Any function K() that satisfies the above condition 
is a valid kernel function 
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The Mercer Condition 

• K(x1,x2) = F(x1). F(x2) 

> Si Sj ai aj K(xi,xj)   >= 0 
 

• A corollary: If any kernel K(.) satisfies the Mercer 
condition  
d(x1, x2) = K(x1,x1) + K(x2,x2) - 2K(x1,x2)  
satisfies the following requirements for a 
“distance” 

– d(x,x) = 0 

– d(x,y) >= 0 

– d(x,w) + d(w,y) >= d(x,y) 
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Typical Kernel Functions 

• Linear: K(x,y) = xTy + c 
 

• Polynomial K(x,y) = (axTy + c)n 

 

• Gaussian: K(x,y) = exp(-||x-y||2/s2) 
 

• Exponential: K(x,y) =  exp(-||x-y||/l) 
 

• Several others 
– Choosing the right Kernel with the right 

parameters for your problem is an artform 
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• Perform the K-mean in the Kernel space 

– The space of z = F(x) 

 

• The algorithm.. 
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K(x,y)= (xT y + c)2 

Kernel K-means 



The mean of a cluster 

• The average value of the points in the cluster computed in the 
high-dimensional space 

 

 

 

 

 

 

 

• Alternately the weighted average 
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The mean of a cluster 

• The average value of the points in the cluster computed in the 
high-dimensional space 

 

 

 

 

 

 

 

• Alternately the weighted average 
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RECALL: We may never actually be able to compute this mean because 

F(x) is not known  



K–means 

• Initialize the clusters with a  
random set of K points 

– Cluster has 1 point 
 

• For each data point x, find the closest cluster 
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Computed entirely using only the kernel function! 



K–means 
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1. Initialize a set of clusters 
randomly 

 

2. For each data point x, find the 
distance from the centroid for 
each cluster 

•  
 
 

3. Put data point in the cluster of the 
closest centroid 

• Cluster for which dcluster is 
minimum 
 

4. When all data points clustered, 
recompute cluster centroid 

 

 
 

5. If not converged, go back to 2 
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1. Initialize a set of clusters 
randomly 

 

2. For each data point x, find the 
distance from the centroid for 
each cluster 
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3. Put data point in the cluster of the 
closest centroid 
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4. When all data points clustered, 
recompute cluster centroid 
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The centroids are virtual:  
we don’t actually compute  
them explicitly! 
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1. Initialize a set of clusters 
randomly 

 

2. For each data point x, find the 
distance from the centroid for 
each cluster 

•  
 
 

3. Put data point in the cluster of the 
closest centroid 

• Cluster for which dcluster is 
minimum 
 

4. When all data points clustered, 
recompute cluster centroid 
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1. Initialize a set of clusters 
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1. Initialize a set of clusters 
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1. Initialize a set of clusters 
randomly 
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1. Initialize a set of clusters 
randomly 
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each cluster 
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1. Initialize a set of clusters 
randomly 

 

2. For each data point x, find the 
distance from the centroid for 
each cluster 

•  
 
 

3. Put data point in the cluster of the 
closest centroid 

• Cluster for which dcluster is 
minimum 
 

4. When all data points clustered, 
recompute cluster centroid 
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1. Initialize a set of clusters 
randomly 

 

2. For each data point x, find the 
distance from the centroid for 
each cluster 

•  
 
 

3. Put data point in the cluster of the 
closest centroid 

• Cluster for which dcluster is 
minimum 
 

4. When all data points are 
clustered, recompute centroids 

 

 
 

5. If not converged, go back to 2 

),( clustercluster mxd distance


 




clusteri

ii

clusteri

i

cluster xw
w

m
1

• We do not explicitly compute the 

means 

• May be impossible – we do not 

know the high-dimensional 

space 

• We only know how to compute  

inner products in it 
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1. Initialize a set of clusters 
randomly 

 

2. For each data point x, find the 
distance from the centroid for 
each cluster 

•  
 
 

3. Put data point in the cluster of the 
closest centroid 

• Cluster for which dcluster is 
minimum 
 

4. When all data points are 
clustered, recompute centroids 

 

 
 

5. If not converged, go back to 2 
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• We do not explicitly compute the 

means 

• May be impossible – we do not 

know the high-dimensional 

space 

• We only know how to compute  

inner products in it 



How many clusters? 

• Assumptions: 

– Dimensionality of kernel space > no. of clusters 

– Clusters represent separate directions in Kernel spaces 
 

• Kernel correlation matrix K 

– Kij = K(xi,xj) 

• Find Eigen values L and Eigen vectors e of kernel 

matrix 

– No. of clusters = no. of dominant li (1
Tei) terms 
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Spectral Methods 

• “Spectral” methods attempt to find “principal” 
subspaces of the high-dimensional kernel space 

• Clustering is performed in the principal subspaces 

– Normalized cuts 

– Spectral clustering 

• Involves finding Eigenvectors and Eigen values of 
Kernel matrix 

• Fortunately, provably analogous to Kernel K-
means 
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Other clustering methods 

• Regression based clustering 

• Find a regression representing each cluster 

• Associate each point to the cluster with the 
best regression 

– Related to kernel methods 
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Clustering.. 

• Many many other variants 

• Many applications.. 

 

• Important: Appropriate choice of feature 

– Appropriate choice of feature may eliminate need 
for kernel trick.. 

 

– Google is your friend. 
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