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MLSP
The Great Automatic Grammatinator

@@

ITIT WWAS A AS A BRDAIGRHK T COLAD ND STODARY MY IN
NIAPGRHTIL

* The great automatic grammatinator is working
hard..
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MLSP
The Great Automatic Grammatinator

SR

IT IT WWAS A AS A BRDAIGRHK T COLJAD ND STODARY MY [N
NIAPGRHTIL

* The great automatic grammatinator is working
hard..

— But what is it writing?
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The Secret of the Great Automatic

Grammatinator

It was a dark and
stormy night.
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I'T WAS A DARK AND IT WAS A BRIGHT COLD

STORMY NIGHT... DAY IN APRIL AND THE
CLOCKS WERE STRIKING
THIRTEEN ...

e The secret of the Grammatinator
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MLSP
The Notion of Latent Structure

ITIT WWAS A AS A BRDAIGRHK T COLAD ND STODARY MY IN
NIAPGRHTIL

It was a dark and

stormy night.
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IT WAS A DARK AND IT WAS A BRIGHT COLD
STORMY NIGHT... DAY IN APRIL ...

e Structure that is not immediately apparent, but when
known helps explain the observed data
e Latent because its hidden

— “Latent: (of a quality or state) existing but not yet developed or
manifest; hidden; concealed.”
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Some other examples of latent "™

structure
- EauLEREEEEEIIIII93
scale EEEBEEEEEEHH”“HEH“
e EEEEEEEESSRODORG B S

* Chiefly three underlying variables
— Varying these can generate many images
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Latent Structure in Distributions

N

v

* A circular looking scatter of points
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MLSP
Latent Structure in Distributions

N

 The data are actually generated by two distributions
— Generated under two different conditions
— Knowledge of this helps one tease out factors
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MLSP
Latent Structure Explains Data

s
s

* The scatter of samples is better explained if
we know there are two independent sources!
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MLSP
Latent Structure in Data

Fed rate + Fed rate -

Emerging | 4 = e
markets + o /“f’\""‘; ..J\.m/ﬂ o
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market -

e Stock market table..

— Knowing the typical effect of different factors on the stock
market enables us to understand trends
* And predict them

— And make money

» Or lose it..
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MLSP

A Gaussian Variable

P(X)=N(X;aF, +bF, +c,®)

e Several latent “factors” affecting the data
— Factors are continuous variables
— E.g. X=[BP, Pulse]
— F, = time from exertion
— F, = duration of exertion
— Typically would be many more factors
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What is a latent structure

e Structure that is not observable, but can
help explain data
— Number of sources
— Number of factors
— Potentially observable

— Could be hierarchical!
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MLSE

What is a Latent Variable Model?

e A structured model for observed data that
assumes underlying latent structure
— Latent structure expressed through latent variables

— Generally affects observations by affecting parameters
of a generating process

* The model structure may
— Actually map onto real structure in the process
— Impose structure artificially on the process to simplify
the model

* Make estimation/inference computationally tractable

e “Simplify” = reduce the number of parameters
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A Typical Symbolic Representation of
a Latent Variable Model..

1T

e Sguares are observations, circles are latent
variables
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A Typical Symbolic Representation of™*
a Latent Variable Model..

v

e Sguares are observations, circles are latent
variables

* Process may have inputs..
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Latent Variables

e Latent variables may be categorical
— E.g. “which books is being typed”

e Or continuous

— E.g “time from exertion”

11-755 MLSP: Bhiksha Raj

MLSP

Vichielzaming for SaraProcessing Gt



MLSP
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Examples of Extracting Latent
Variables

Principal Component Analysis / ICA
— The “notes” are the latent factors

— Knowing how many notes compose the music explains
much of the data

Factor Analysis

Mixture models (mixture multinomials, mixture
Gaussians, HMMs, hierarchical models, various
“sraphical” models)

Techniques for estimation: Most commonly EM
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MLSP

Today

* Asimple latent variable model applied to a
very complex problem: Signal separation

* With surprising success..
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MLSP

Sound separation and enhancement

* Acommon problem: Separate or enhance sounds
— Speech from noise

— Suppress “bleed” in music recordings
— Separate music components..

* Latent variable models: Do this with pots, pans,
marbles and expectation maximization

— Probabilistic latent component analysis

* Tools are applicable to other forms of data as well..
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Sounds — an example

A sequence of notes

Chords from the same notes
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A piece of music from the same (and a few additional) notes
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Sounds — an example

* A sequence of sounds

8000

e o —

kgelelely - =

0000

000000

* A proper speech utterance from the same sounds
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Template Sounds Combine to Form a
Signal

The individual component sounds “combine” to form the
final complex sounds that we perceive

— Notes form music
— Phoneme-like structures combine in utterances

Sound in general is composed of such “building blocks” or
themes

— Which can be simple — e.g. notes, or complex, e.g. phonemes
— These units represent the latent building blocks of sounds

Claim: Learning the building blocks enables us to manipulate
sounds

22



MLSP
The Mixture Multinomial

* A person drawing balls from a pair of urns

— Each ball has a number marked on it

* You only hear the number drawn

— No idea of which urn it came from

* Estimate various facets of this process..

11-755 MLSP: Bhiksha Raj



More complex: TWO pickers

* Two different pickers are drawing balls from the same pots
— After each draw they call out the number and replace the ball

* They select the pots with different probabilities

* From the numbers they call we must determine
— Probabilities with which each of them select pots
— The distribution of balls within the pots
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MLSP

Solution

* Analyze each of the callers separately

 Compute the probability of selecting pots
separately for each caller

* But combine the counts of balls in the pots!!



Recap with only one picker and two pots

= Probability of Red urn:

P(1 | Red) = 1.71/7.31 = 0.234
P(2 | Red) = 0.56/7.31 = 0.077
P(3 | Red) = 0.66/7.31 = 0.090
P(4 | Red) = 1.32/7.31 = 0.181
P(5 | Red) = 0.66/7.31 = 0.090
P(6 | Red) = 2.40/7.31 = 0.328

= Probability of Blue urn:

P(1 | Blue) = 1.29/11.69 = 0.122
P(2 | Blue) = 0.56/11.69 = 0.322
P(3 | Blue) = 0.66/11.69 = 0.125
P(4 | Blue) = 1.32/11.69 = 0.250
P(5 | Blue) = 0.66/11.69 = 0.125
P(6 | Blue) = 2.40/11.69 = 0.056

* P(Z=Red) = 7.31/18 = 0.41
* P(Z=Blue) = 10.69/18 = 0.59

0O O 0 0O 0O O

0O 0O 0 0O O O

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




MLSP

Two pickers

Probability of drawing a number X for the first picker:
— P,(X) = P,(red)P(X|red) + P,(blue)P(X|blue)

Probability of drawing X for the second picker

— P,(X) = P,(red)P(X | red) + P,(blue)P(X | blue)

Note: P(X|red) and P(X|blue) are the same for both pickers

— The pots are the same, and the probability of drawing a ball marked
with a particular number is the same for both

The probability of selecting a particular pot is different for
both pickers
— P,(X) and P,(X) are not related
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Two pickers

CI) (D)

Probability of drawing a number X for the first picker:
— P,(X) = P,(red)P(X|red) + P,(blue)P(X]|blue)

Probability of drawing X for the second picker

— P,(X) = P,(red)P(X|red) + P,(blue)P(X| blue)

Problem: From set of numbers called out by both pickers estimate

— P,(color) and P,(color) for both colors

— P(X | red) and P(X | blue) for all values of X
11-755 MLSP: Bhiksha Raj



With TWO pickers

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

PickeEr1 (.31 10.69

PICKER 2
Called | P(red|X) | P(blue|X)
4 57 43
4 57 43
3 57 43
2 27 73
1 75 .25
6 .90 10
5 57 43
4.20 2.80

e Two tables

* The probability of selecting
pots is independently
computed for the two

pickers




With TWO pickers

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

PIckeEr1 _ /.31  10.69

PICKER 2
Called | P(red|X) | P(blue|X)
4 57 43
4 57 43
3 57 43
2 27 73
1 75 .25
6 .90 .10
5 57 43
4.20 2.80

(RED | PICKER1) = 7.31/ 18

P(BLUE | PICKER1) = 10.69 / 18

P(RED | PICKER2) = 4.2/ 7
P(BLUE | PICKER2) =2.8/7




With TWO pickers

Called | Plred|X) EEEINEES Called | P(red|X) | P(bluelX)
6 8 Z 4 57 43

4 .33 .67 4 57 43

> = 187 3 57 43

1 57 43 2 27 73

2 1e 55 1 75 25

3 .33 .67 6 .90 10

4 .33 .67 5 57 43

5 .33 .67

2 14 86 -

2 14 86  To compute probabilities of
y — 23 numbers combine the tables
3 .33 .67 ° .

> - &, Total count of Red: 11.51

6 £ 2 * Total count of Blue: 13.49

2 14 86

1 57 43

6 .8 2




With TWO pickers: The SECOND picker

Called | P(red|X) | P(blue|X)
6 .8 2
4 .33 .67
5 .33 .67
1 57 43
2 14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 14 .86
2 14 .86
1 57 43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 2
2 14 .86
1 57 43
6 .8 2

Called | P(red|X) | P(blue|X)
4 57 43
4 57 43
3 57 43
2 27 73
1 75 25
6 .90 10
5 57 43

Total count for “Red” : 11.51

Red:

— Total count for 1: 2.46
— Total count for 2: 0.83
— Total count for 3: 1.23
— Total count for 4: 2.46
— Total count for 5: 1.23
— Total count for 6: 3.30

— P(6|RED)=3.3/11.51=0.29
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* Given a sequence of observations O, ;, O, ,, .. from the k™ picker

In Squiggles

— N, 4 is the number of observations of color X drawn by the k' picker

Initialize P, (Z), P(X|Z) for pots Z and colors X

lterate:

— For each Color X, for each
pot Z and each observer k:

Pk(z | X):

P(X]Z)R(2)

> P(Z")P(X

Z')

— Update probability of
numbers for the pots:

D Ny P (Z1X)

P(X |Z) = <

2.2 NixR(Z'1X)

— Update the mixture
weights: probability
of urn selection for each
picker

Y N xP(ZX)
Pk(z): g

>SN R %)

MLSP
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MLSP
Signal Separation with the Urn model

 What does the probability of drawing balls
from Urns have to do with sounds?

— Or Images?

e \We shall see..
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 We represent signals spectrographically

— Sequence of magnitude spectral vectors estimated from
(overlapping) segments of signal

— Computed using the short-time Fourier transform

— Note: Only retaining the magnitude of the STFT for operations
— We will, need the phase later for conversion to a signal
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A Multinomial Model for Spectra

A generative model for one frame of a spectrogram

— A magnitude spectral vector obtained from a DFT represents spectral

magnitude against discrete frequencies

— This may be viewed as a histogram of draws from a multinomial

. =l S

e 5 FRAME t

e | I HISTOGRAM

BEpas el Jhddhuuu -
FRAME f

e

Probability distribution underlying the t-th spectral vector
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The balls are

marked with
discrete frequency
indices from the DFT



A more complex model

* A “picker” has multiple urns

* |n each draw he first selects an urn, and then a ball from
the urn
— Overall probability of drawing fis a mixture multinomial
* Since several multinomials (urns) are combined

— Two aspects — the probability with which he selects any urn, and
the probability of frequencies with the urns

HISTOGRAM

|
multiple draws > m
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MLSP
The Picker Generates a Spectrogram

* The picker has a fixed set of Urns

— Each urn has a different probability distribution over f
 He draws the spectrum for the first frame

— In which he selects urns according to some probability P,(z)
 Then draws the spectrum for the second frame

— In which he selects urns according to some probability P,(z)
 And so on, until he has constructed the entire spectrogram

11-755 MLSP: Bhiksha Raj



MLSP
The Picker Generates a Spectrogram

 —— |

* The picker has a fixed set of Urns

— Each urn has a different probability distribution over f
 He draws the spectrum for the first frame

— In which he selects urns according to some probability P,(z)
 Then draws the spectrum for the second frame

— In which he selects urns according to some probability P,(z)
 And so on, until he has constructed the entire spectrogram
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MLSP
The Picker Generates a Spectrogram

 —— i

* The picker has a fixed set of Urns

— Each urn has a different probability distribution over f
 He draws the spectrum for the first frame

— In which he selects urns according to some probability P,(z)
 Then draws the spectrum for the second frame

— In which he selects urns according to some probability P,(z)
 And so on, until he has constructed the entire spectrogram
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MLSP
The Picker Generates a Spectrogram

— 1

The picker has a fixed set of Urns

— Each urn has a different probability distribution over f
He draws the spectrum for the first frame

— In which he selects urns according to some probability P,(z)
Then draws the spectrum for the second frame

— In which he selects urns according to some probability P,(z)
And so on, until he has constructed the entire spectrogram



MLSP
The Picker Generates a Spectrogram

——— > 1

1
[Pt

* The picker has a fixed set of Urns

— Each urn has a different probability distribution over f
 He draws the spectrum for the first frame

— In which he selects urns according to some probability P,(z)
 Then draws the spectrum for the second frame

— In which he selects urns according to some probability P,(z)
 And so on, until he has constructed the entire spectrogram
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MLSP

The Picker Generates a Spectrogram

Z ig

: - | : &
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e === 1

* The picker has a fixed set of Urns
— Each urn has a different probability distribution over f

 He draws the spectrum for the first frame
— In which he selects urns according to some probability P,(2)
* Then draws the spectrum for the second frame
— In which he selects urns according to some probability P,(z)
 And so on, until he has constructed the entire spectrogram
— The number of draws in each frame represents the RMS energy in that
frame
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MLSP
The Picker Generates a Spectrogram
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 The URNS are the same for every frame

— These are the component multinomials or bases for the source that
generated the signal

* The only difference between frames is the probability with which he
selects the urns

—P(f)= ZZ P (2)P(f | z) —— SOURCE specific

Frame-specific
bases

spectral distribution
Frame(time) specific mixture weight
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MLSP

Spectral View of Component "
Multinomials

Each component multinomial (urn) is actually a normalized histogram
over frequencies P(f | z)
— l.e. a spectrum

Component multinomials represent latent spectral structures (bases)
for the given sound source

The spectrum for every analysis frame is explained as an additive
combination of these latent spectral structures
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Spectral View of Component ™

Multinomials

By “learning” the mixture multinomial model for any
sound source we “discover” these latent spectral
structures for the source

The model can be learnt from spectrograms of a small
amount of audio from the source using the EM algorithm
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MLSP
EM learning of bases

* |nitialize bases
— P(f|z) for all z, for all f

e Must decide on the number of urns

* For each frame

— Initialize P,(z)
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MLSP

EM Update Equations

* |terative process:

— Compute a posteriori probability of the zt" urn for
the source for each f

R(DP(f |2)
> R@)P(f[2)

P(z| )=

— Compute mixture weight of zt" urn

SRl 1S, (1)
Sy RETS (M

— Compute the probabilities of the frequencies for

th
the zt" urn S P2 £)5.(F)
P(f [2) = <2
S REI s (1)

frot




MLSP
How the bases compose the signal

s
[l

* The overall signal is the sum of the contributions of individual urns
— Each urn contributes a different amount to each frame

* The contribution of the z-th urn to the t-th frame is given by
P(f|z)P.(z)S,
— S, =25, (f)
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Learning Structures

UBUNS  OBUNS  BAUNS  BBUNS  UAUNS  OBWNS
00000 00000 00000 00000 00000 00000
00000 00000 00000 00000 00000 00000

Frequency —

Time —»
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MLSP

Bag of Spectrograms PLCA Model

o
/= /= /=

 Compose the entire spectrogram all at once

* Urns include two types of balls
— One set of balls represents frequency F
— The second has a distribution over time T
 Each draw:
— Select an urn
— Draw “F” from frequency pot P(t, T)= ; P(2)P(t|2)P(1 |2)
— Draw “T” from time pot

— Increment histogram at{TF)vLsr: Bhiksha Rraj



The bag of spectrograms

T F

\ 4

Repeat N times

P(t, f) =ZP(Z)P(t |2)P(f | 2)

* Drawing procedure

— Fundamentally equivalent to bag of frequencies model

* With some minor differences in estimation
11-755 MLSP: Bhiksha Raj



MLSP
Estimating the bag of spectrograms

P(z)P(f [2)P(t]2)

R CELUBCIR

ZZP(ZH £)S,(f)

P(z
(&)= ZZZP(ZH f)S,(f)
R ZP(ZIL f)S,(f)
Ry P(f|z)=
: ZZP( |t, £)S,(f)
P(t,f)=ZP(z)P(t|z)P(f|z) ZP(z|t,f)St(f)
Z
P(t|z)=
« EM update rules ZZP(Z“ f)S.(f)

— Can learn all parameters
— Can learn P(T|Z) and P(Z) only given P(f|Z2)

— Can learn only P(2) _ _
11-755 MLSP: Bhiksha Raj



MLSP
How meaningful are these structures

* Are these really the “notes” of sound

* To investigate, lets go back in time..

11-755 MLSP: Bhiksha Raj



Once upon a time a rich potentate
discovered a previously unknown
recording of a beautiful piece of
music. Unfortunately it was badly
damaged.

He greatly wanted to find out what it would sound like if
it were not.

So he hired an engineer and a
musician to solve the problem..
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MLSP
The Engineer and the Musician

The engineer worked for many years. *
He spent much money and published
many papers.

Finally he had a somewhat scratchy
restoration of the music..

The musician listened to the music
carefully for a day, transcribed it,
broke out his trusty keyboard and
replicated the music.
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MLSP

The Prize

Who do you think won the princess?
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Carneg%%
The Engineer and the Musician

* The Engineer works on the signal

— Restore it

 The musician works on his familiarity with
music

— He knows how music is composed

— He can identify notes and their cadence

* But took many many years to learn these skills

— He uses these skills to recompose the music

11-755 MLSP: Bhiksha Raj



What the musician can do

* Notes are distinctive
 The musician knows notes (of all instruments)

* He can
— Detect notes in the recording

e Even ifitis scratchy
e Reconstruct damaged music

— Transcribe individual components

* Reconstruct separate portions of the music

11-755 MLSP: Bhiksha Raj
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MLSP
Music over a telephone

 The King actually got music over a telephone
* The musician must restore it..

 Bandwidth Expansion

— Problem: A given speech signal only has frequencies in the
300Hz-3.5Khz range
* Telephone quality speech

— Can we estimate the rest of the frequencies

11-755 MLSP: Bhiksha Raj



MLSP

Bandwidth Expansion

* The picker has drawn the histograms for every frame in the
signal

/ .

11-755 MLSP: Bhiksha Raj



MLSP

Bandwidth Expansion

* The picker has drawn the histograms for every frame in the
signal

11-755 MLSP: Bhiksha Raj



MLSP

Bandwidth Expansion

* The picker has drawn the histograms for every frame in the
signal

.

| PO
| PO
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MLSP

Bandwidth Expansion

* The picker has drawn the histograms for every frame in the
signal

[ =
N N ~E
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MLSP
Bandwidth Expansion

* The picker has drawn the histograms for every frame in

the signal

b

I

L ¥

UL i

»

J |

I A

= However, we are only able to observe the number of
draws of some frequencies and not the others

= We must estimate the draws of the unseen frequencies

11-755 MLSP: Bhiksha Raj



MLSP

Bandwidth Expansion: Step 1 — Learning

@ Y &

* From a collection of full-bandwidth training data
that are similar to the bandwidth-reduced data,

learn spectral bases

— Using the procedure described earlier
e Each magnitude spectral vector is a mixture of a common set

of bases
e Use the EM to learn bases from them

— Basically learning the “notes”

)
i

1
l

i

11-755 MLSP: Bhiksha Raj



MLSP
Bandwidth Expansion: Step 2 — Estimation

* Using only the observed frequencies in the
bandwidth-reduced data, estimate mixture
weights for the bases learned in step 1

— Find out which notes were active at what time

11-755 MLSP: Bhiksha Raj



— Compute mixture weight of zt" urn for each frame t

Step 2

* |terative process: “Transcribe”

— Compute a posteriori probability of the zth urn for the
speaker for each f

P(z| )=

R(@)P(f |2)

> R@)P(f[2)

> Rzl £)8(f)

f e(observedfrequencies)
R(z) =

> D R )8(f)

z' fe(observedfrequencies)

MLSP

Vichielzaming for SaraProcessing Gt

— P(f|z) was obtained from training data and will not be

reestimated



MLSP

Step 3 and Step 4: Recompose -

« Compose the complete probability distribution for each
frame, using the mixture weights estimated in Step 2

R(F)=> R@P(f2)

= Note that we are using mixture weights estimated from
the reduced set of observed frequencies

o This also gives us estimates of the probabilities of the
unobserved frequencies

= Use the complete probability distribution P2,(£) to predict
the unobserved frequencies!
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MLSP
Predicting from P.(f ): Simplified Example

* Asingle Urn with only red and blue balls

* Given that out an unknown number of draws, exactly m
were red, how many were blue?

* One Simple solution:
— Total number of draws N = m / P(red)
— The number of tails drawn = N*P(blue)
— Actual multinomial solution is only slightly more complex

11-755 MLSP: Bhiksha Raj



The negative multinomial

Given P(X) for all outcomes X
Observed n(X,), n(X,)..n(X,)
What is n(X,,,), n(X,,,)...

NO+Zn(Xi)j

i
P(n(xk+1)’n(xk+2),...): i>k

F(NO)F[ZH(X,)

i>k

J

P TTPOX)"

i>k

N, is the total number of observed counts

— n(X;) + n(X,) + ...

P is the total probability of observed events

— P(X,) + P(X,) + ...

11-755 MLSP: Bhiksha Raj

MLSP



MLSP

Vichielzaming for SaraProcessing Gt

Estimating unobserved frequencies

* Expected value of the number of draws from a
negative multinomial:

N

Nt:

D si(f)

f e (observedfrequencies)

D R(f)

f e (observedfrequencies)

= Estimated spectrum in unobservec

St(f) = NR(f)

11-755 MLSP: Bhiksha Raj
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Overall Solution

Learn the “urns” for the signal source
from broadband training data

For each frame of the reduced
bandwidth test utterance, find
mixture weights for the urns

— lgnore (marginalize) the unseen
frequencies

Given the complete mixture
multinomial distribution for each
frame, estimate spectrum (histogram)
at unseen frequencies

11-755 MLSP: Bhiksha Raj
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Prediction of Audio

* An example with random spectral holes

11-755 MLSP: Bhiksha Raj



Reduced BW data

Bases learned from this

*Bandwidth expanded version

11-755 MLSP: Bhiksha Raj



MLSP
Resolving the components

Time

e The musician wants to follow the individual
tracks in the recording..

— Effectively “separate” or “enhance” them against
the background

11-755 MLSP: Bhiksha Raj
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Signal Separation from Monaural
Recordings

* Multiple sources are producing sound
simultaneously

* The combined signals are recorded over a
single microphone

 The goal is to selectively separate out the
signal for a target source in the mixture

— Or at least to enhance the signals from a selected
source

11-755 MLSP: Bhiksha Raj



Supervised separation: Example with™"

two sources

 Each source has its own bases
— Can be learned from unmixed recordings of the source

* All bases combine to generate the mixed signal
e Goal: Estimate the contribution of individual sources

11-755 MLSP: Bhiksha Raj



Supervised separation: Example with"

two sources

KNOWN A PRIORI

R(T)= ZP(Z)P(f IZ)= ZP(Z)P(f IZ)4/('Z)P(f | 2)

all z z forsourcel Z forsourceZ

11-755 MLSP: Bhiksha Raj



Supervised separation: Example with"™*
two sources

(f 12)
z forsou

* Find mixture weights for all bases for each frame

11-755 MLSP: Bhiksha Raj



Supervised separation: Example with"==
two sources

R(f) = ZP(Z)P(fIZ)— zp(z)E? 129+ S R@P(T2)

all z z forsourcel z forsource2

* Find mixture weights for all bases for each frame
e Segregate contribution of bases from each source

R (f)= 2 R(@P(f2) Re=(f)= > R(@)P(f[2)

z forsourcel z forsource2

1T-755 MLSP: Bhiksha Raj
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Separating the Sources: Cleaner

Solution
For each frame:

Given
— S,(f) — The spectrum at frequency f of the mixed signal

Estimate

— S, (f) — The spectrum of the separated signal for the i-
the source at frequency f

A simple maximum a posteriori estimator

2 R (2)P(f|2)

SN =8N

all z

o9 VILOor . DITRSITA IRd]




Semi-supervised separation: Example™=*
with two sources

s e o KNOWN A PRIORT
UNKNOWN .- = = ’\

R(f)=2 R@P(flz)= > R@P(fl2)+ > R(2)P(f|2)

all z z forsourcel z forsource2
Estimate from mixed signal (in addition to all P,(z))
PE(f) = D> R@)P(f]2) P (f)=" > R(2)P(f|2)
z forsourcel z forsource2
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MLSP
Separating Mixed Signals: Examples

0 x‘y|||| || |4||| i

* “Raise my rent” by David Gilmour Norah Jones singing “Sunrise”

« Background music “bases” learnt A more difficult problem:
from 5-seconds of music-only — Original audio clipped!

segments within the song _
e Background music bases learnt

from 5 seconds of music-only
° M4 o ”
Lead guitar “bases” bases learnt segments

from the rest of the song

11-755 MLSP: Bhiksha Raj
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Where it works

 When the spectral structures of the two
sound sources are distinct

— Don’t look much like one another
— E.g. Vocals and music
— E.g. Lead guitar and music

* Not as effective when the sources are similar

— Voice on voice

11-755 MLSP: Bhiksha Raj



Separate overlapping speech

= N

1alized Frequency (xr Molfsmtipbel Frequency (xr Notiseinde) Frequency («rradk
Q

Bases for both speakers learnt from 5 second recordings
of individual speakers

Shows improvement of about 5dB in Speaker-to-Speaker
ratio for both speakers

— Improvements are worse for same-gender mixtures

11-755 MLSP: Bhiksha Raj
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Can it be improved?

* Yes

* Tweaking
— More training data per source

— More bases per source
 Typically about 40, but going up helps.
— Adjusting FFT sizes and windows in the sighal processing

* And / Or algorithmic improvements
— Sparse overcomplete representations
— Nearest-neighbor representations
— Etc..

11-755 MLSP: Bhiksha Raj
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More on the topic

e Shift-invariant representations

11-755 MLSP: Bhiksha Raj



Patterns extend beyond a single frame

Four bars from a music example

The spectral patterns are actually patches
— Not all frequencies fall off in time at the same rate

The basic unit is a spectral patch, not a spectrum
Extend model to consider this phenomenon

11-755 MLSP: Bhiksha Raj
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Shift-Invariant Model

 Employs bag of spectrograms model

* Each “super-urn” (z) has two sub urns

— One suburn now stores a bi-variate distribution
* Each ball has a (t,f) pair marked on it — the bases

— Balls in the other suburn merely have a time “T”
marked on them — the “location”

11-755 MLSP: Bhiksha Raj



MLSP
The shift-invariant model

T tf

t % Q
(T+t,f)

t

2 )
‘%«. O,
.\”.

N W

LX) .‘\ )

OO0

S

Repeat N times

P(t, f)=> P(z)> P(T |2)P(T —t, f|z)
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MLSP

Estimating Parameters

e Maximum likelihood estimate follows

fragmentation and counting strategy

* Two-step fragmentation

— Each instance is fragmented into the super urns

— The fragment in each super-urn is further fragmented
into each time-shift

* Since one can arrive at a given (t,f) by selectingany T

from P(T|Z) and the appropriate shift t-T from P(t,f|Z2)

11-755 MLSP: Bhiksha Raj



Shift invariant mode
e Given data (spectrogram) S(t,f)
* |Initialize P(Z), P(T|2), P(t,f | 2)
* |[terate

MLSP

Vichielzaming for SaraProcessing Gt

|: Update Rules

P(t, f,2) = P(Z)ZP(T |Z)P(t—T,f|2)
T

P(Z|t, f)= Fragment

P(T,t,f|Z2)=P(T|Z2)Pt-T,f|Z2)

P(T,t-T,f|2)
ZP(T',t—T',f 12)
=

P(T|Z,t f)=

ZZP(Z It, £)S(t, )
t f
ZZZ P(Z'|t, )S(t, T)
Z' t f

Zp(z IT, f)P(T —t|Z,T, £)S(T, f)
P, f|Z)=—

P(Z) =

P(T[Z)=

D D PEItHOPTIZ,t s f)

t f
ZZZP(Z |t, F)P(T| Z,t, )S(t, f)
T t f

ZZP(Z|T,f)P(T—t'|Z,T,f)S(T,f) Count
tt T

11-755 MLSP: Bhiksha Raj



[5is

-

An Example

* Two distinct sounds occuring with different
repetition rates within a signal

INPUT SPECTROGRAM

Oo.8
0_21

covered “patch” Contribution of individual bases to the recording

bases 11-755 MLSP: Bhiksha Raj




Another example: Dereverberation

 Assume generation by a single latent variable

— Super urn

* The t-f basis is the “clean” spectrogram

11-755 MLSP: Bhiksha Raj



L
Dereverberation: an example

500 F o w7 R
r Y ) \ I
450 450+ | ¥ }‘
, ’|.j k I |
400 LI ! i \
4001 Tj f i'ﬁ
i
301 ol N b ol [kt
% . I figu )
4 3 Yy '
L i } |
300 g i ‘;:ﬁ 3 i :
i 0 b ; i
7% e | b 1
UMM adned NG it
T § il Wil
R W "wilw 3
§ ) L L IS
A LA e "" :’,‘
) b " I N
g " A
!

e “Basis” spectrum must be made sparse for
effectiveness

* Dereverberation of gamma-tone spectrograms is
also particularly effective for speech recognition
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Patterns may be substructures

— Repeating patterns that may occur anywhere
* Not just in the same frequency or time location
* More apparent in image data

11-755 MLSP: Bhiksha Raj



MLSP

The two-D Shift-Invariant Model

* Both sub-pots are distributions over (T,F) pairs

— One subpot represents the basic pattern
* Basis

— The other subpot represents the location

11-755 MLSP: Bhiksha Raj



MLSP
The shift-invariant model

DRAW

= (6

TE tf

\ 4

f

(T+t,F+F)

Repeat N times

P(t, f)=> P(2)> > P(T,F|z)P(T—t,f —F|2)

11-755 MLSP: Bhiksha Raj
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Two-D Shift Invariance: Estimation

* Fragment and count strategy

* Fragment into superpots, but also into each T and F
— Since a given (t,f) can be obtained from any (T,F)

P(t, f,Z) = P(Z)ZP(T,F|Z)P(t—T, f—F|2)
T,F
P(t, f,2)

P(Z|t, )=
ZP(t .23 Fragment

P(T,F|Z,t )=

P(T,F,t,f|Z2)=P(T,F|2)Pt-T,f-F|2)

P(T,F,t—T,f —F|2)
ZP(I",F',t—T',f—F'|Z)
T F'

ZZP(Z It, )S(t, f)

ZZP(ZH fYP(T,F | Z,t, )S(t, T)

7777P<Z|t DPT.F1ZL S f)

P(Z) = P(T,F|Z)=
ZZZ P(Z'|t, F)S(t, f)
Z' t f
ZP(Z IT,F)P(T —t,F — f|Z,T,F)S(T,F)
P(t, f | Z) = <&

t',f'T,F

ZZP(ZH,F)P(T—t',F—f'|Z,T,F)S(T,F) Count

11-755 MLSP: Bhiksha Raj



Shift-Invariance: Comments

e P(T,F|Z) and P(t,f|Z) are symmetric

— Cannot control which of them learns patterns and
which the locations

e Answer: Constraints

— Constrain the size of P(t,f|Z2)

* |.e. the size of the basic patch

— Other tricks — e.g. sparsity

11-755 MLSP: Bhiksha Raj
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Shift-Invariance in Many Dimensions

* The generic notion of “shift-invariance” can be
extended to multivariate data

— Not just two-D data like images and spectrograms

e Shift invariance can be applied to any subset
of variables
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Example: 2-D shift invariance
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Example:

MLSP
3-D shift invariance

* The original figure has multiple handwritten

renderings of t

— In different co

nree characters

ours

* The algorithm
identifies their

Input data

earns the three characters and
locations in the figure

C (

11-755 MLSP: Bhiksha Raj



MLSP

The constant Q transform

Band pass

Filter

Band pass
Filter

Band pass
Filter

Band pass
Filter

e Spectrographic analysis with a bank of constant Q
filters

— The bandwidth of filters increases with center
frequency.

— The spacing between filter center frequencies
increases with frequency

* Logarithmic spacing

11-755 MLSP: Bhiksha Raj



MLSP
Constant Q representation of Speech

Spectrogram of ihree notes Gaonstant-0 transform of three notes

Fraguancy
Fraguency

* Energy at the output of a bank of filters with logarithmically
spaced center frequencies
— Like a spectrogram with non-linear frequency axis
* Changes in pitch become vertical translations of

spectrogram
— Different notes of an instrument will have the same patterns at

different vertical locations
11-755 MLSP: Bhiksha Raj



P(t,f)=ZP(z)ZPS(I' Fl2)P(t-T, f-F|2) o

z

N
T

P(t, f)= P(t F}E(f—)

\ e

* Changing pitch becomes a vertical shift in the location of

a basis
* The constant-Q spectrogram is modeled as a single
pattern modulated by a vertical shift
— P(f) is the “Kernel” shown to the left
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Pitch Tracking

IIIII

Carnegﬁm%

I

i
1

||
.
|

Left: A vocalized “song”

Right: Chord sequence

“Impulse” distribution captures the “melody

11-755 MLSP: Bhiksha Raj
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Carneg%%

Pitch Tracking

Kemel 1 Kemel 2 Input
-%I
1 =t . s . ——
- — L i e ; ~
o oy - — A
b h‘f 3 - - -
e T T S e
Mo — yRRGEL ;. oyl
- o — g
g — - _ = —
- c— - —
Impulse distribution 1
Impulse distribution 2
S~ e
-— - —~—— -

 Having more than one basis (z) allows simultaneous
pitch tracking of multiple sources

 Example: A voice and an instrument overlaid

— The “impulse” distribution shows pitch of both separately
11-755 MLSP: Bhiksha Raj



MLSP

In Conclusion

e Surprising use of EM for estimation of latent
structure for audio analysis
* Various extensions

— Sparse estimation
— Exemplar based methods..

* Related deeply to non-negative matrix
factorization

— TBD..
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