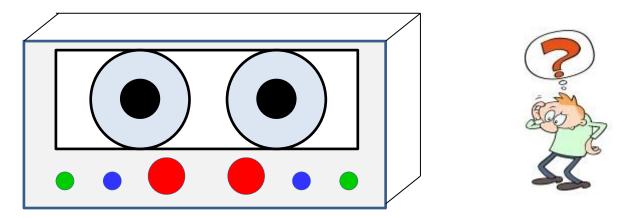


Machine Learning for Signal Processing Latent Variable Models and Signal Separation

Bhiksha Raj Class 13. 15 Oct 2013

11-755 MLSP: Bhiksha Raj

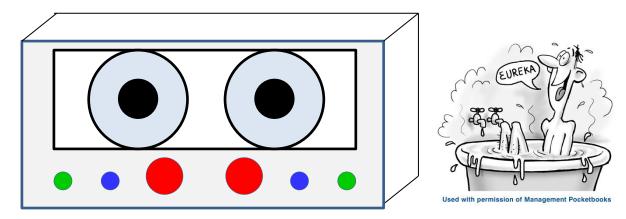
The Great Automatic Grammatinator



IT IT WWAS A AS A BRDAIGRHK T COLAD ND STODARY MY IN NIAPGRHTIL

• The great automatic grammatinator is working hard..

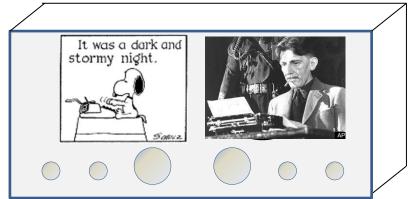
The Great Automatic Grammatinator



IT IT WWAS A AS A BRDAIGRHK T COL AD ND STODARY MY IN NIAPGRHTIL

- The great automatic grammatinator is working hard..
 - But what is it writing?

The Secret of the Great Automatic Grammatinator

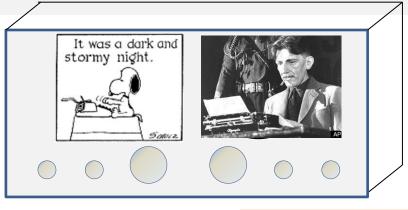


IT WAS A DARK AND STORMY NIGHT... IT WAS A BRIGHT COLD DAY IN APRIL AND THE CLOCKS WERE STRIKING THIRTEEN ...

• The secret of the Grammatinator

The Notion of Latent Structure

IT IT WWAS A AS A BRDAIGRHK T COLAD ND STODARY MY IN NIAPGRHTIL



IT WAS A DARK AND Stormy Night... IT WAS A BRIGHT COLD DAY IN APRIL ...

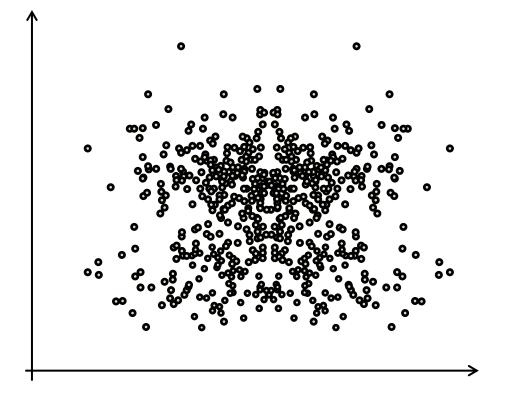
- Structure that is not immediately apparent, but when known helps explain the observed data
- Latent because its hidden
 - *"Latent:* (of a quality or state) existing but not yet developed or manifest; hidden; concealed."

Some other examples of latent structure

• Chiefly three underlying variables

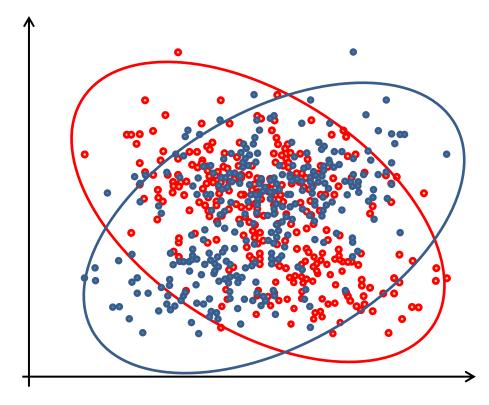
- Varying these can generate many images

Latent Structure in Distributions



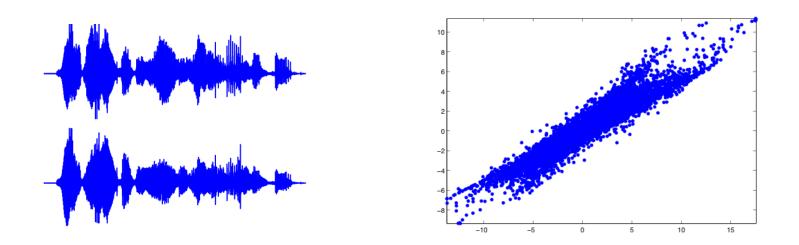
• A circular looking scatter of points

Latent Structure in Distributions



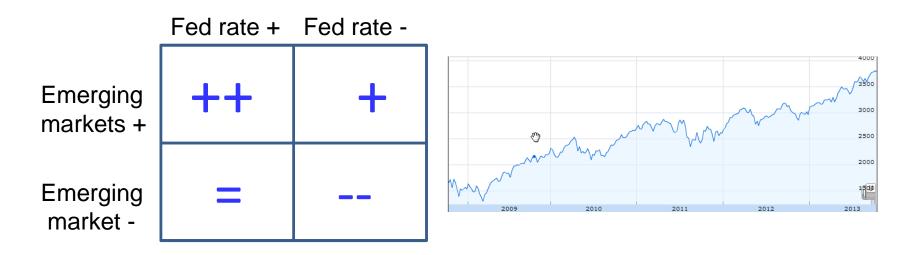
- The data are actually generated by two distributions
 - Generated under two different conditions
 - Knowledge of this helps one tease out factors

Latent Structure Explains Data



• The scatter of samples is better explained if we know there are two independent sources!

Latent Structure in Data



- Stock market table..
 - Knowing the typical effect of different factors on the stock market enables us to understand trends
 - And predict them
 - And make money
 - » Or lose it..

A Gaussian Variable

$$P(X) = N(X; aF_1 + bF_2 + c, \Theta)$$

- Several latent "factors" affecting the data
 - Factors are continuous variables
 - -E.g. X = [BP, Pulse]
 - $-F_1$ = time from exertion
 - $-F_2$ = duration of exertion
 - Typically would be many more factors

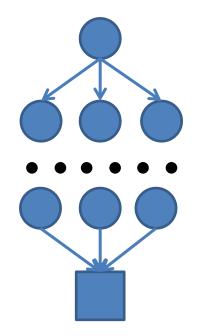
What is a latent structure

- Structure that is not observable, but can help explain data
 - Number of sources
 - Number of factors
 - Potentially observable
 - Could be hierarchical!

What is a Latent Variable Model?

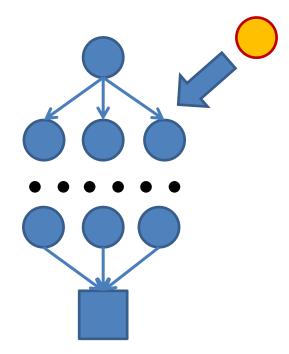
- A *structured* model for observed data that assumes underlying *latent* structure
 - Latent structure expressed through *latent variables*
 - Generally affects observations by affecting parameters of a generating process
- The model structure may
 - Actually map onto *real* structure in the process
 - Impose structure artificially on the process to simplify the model
 - Make estimation/inference computationally tractable
 - "Simplify" \rightarrow reduce the number of parameters

A Typical Symbolic Representation of a Latent Variable Model..



Squares are observations, circles are latent variables

A Typical Symbolic Representation of a Latent Variable Model..



- Squares are observations, circles are latent variables
- Process may have inputs..

Latent Variables

- Latent variables may be categorical
 E.g. "which books is being typed"
- Or continuous
 - E.g "time from exertion"

Examples of Extracting Latent Variables

- Principal Component Analysis / ICA
 - The "notes" are the latent factors
 - Knowing how many notes compose the music explains much of the data
- Factor Analysis
- Mixture models (mixture multinomials, mixture Gaussians, HMMs, hierarchical models, various "graphical" models)
- Techniques for estimation: Most commonly EM

Today

• A simple latent variable model applied to a very complex problem: Signal separation

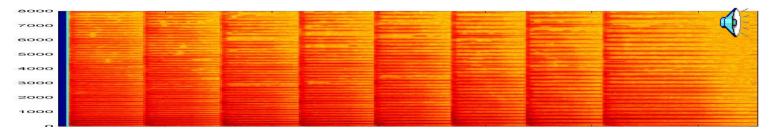
• With surprising success..

Sound separation and enhancement

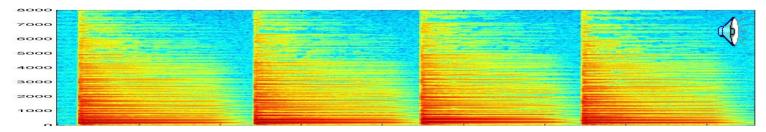
- A common problem: Separate or enhance sounds
 - Speech from noise
 - Suppress "bleed" in music recordings
 - Separate music components..
- Latent variable models: Do this with pots, pans, marbles and expectation maximization
 - Probabilistic latent component analysis
- Tools are applicable to other forms of data as well..

Sounds – an example

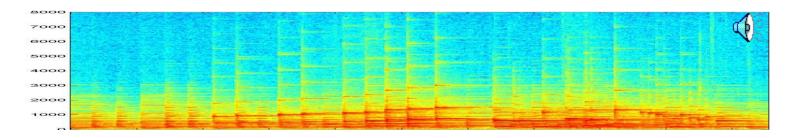
• A sequence of notes



• Chords from the same notes

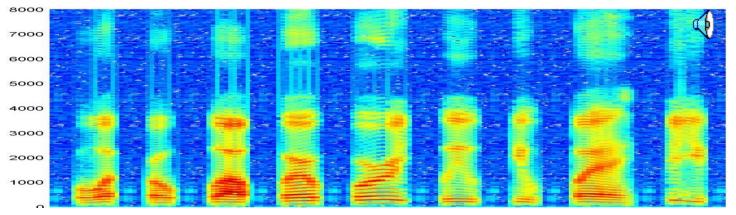


• A piece of music from the same (and a few additional) notes

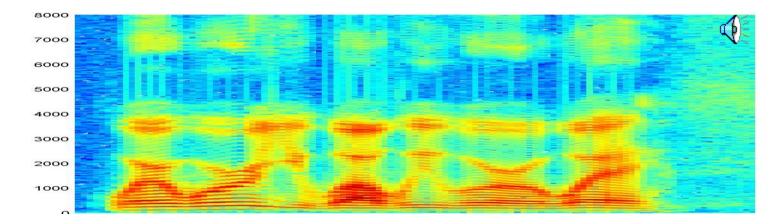


Sounds – an example

• A sequence of sounds



• A proper speech utterance from the same sounds

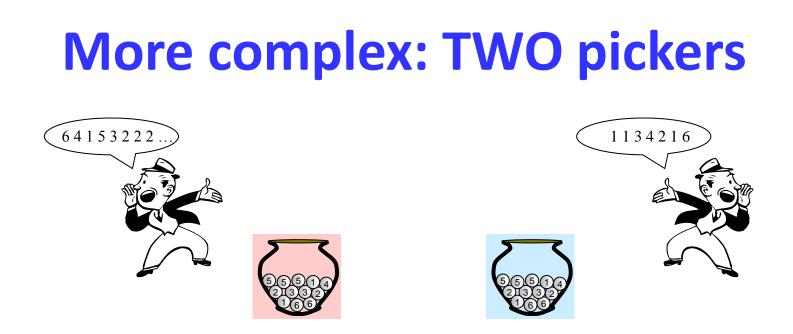


Template Sounds Combine to Form a Signal

- The individual component sounds "combine" to form the final complex sounds that we perceive
 - Notes form music
 - Phoneme-like structures combine in utterances
- Sound in general is composed of such "building blocks" or themes
 - Which can be simple e.g. notes, or complex, e.g. phonemes
 - These units represent the *latent building blocks of sounds*
- Claim: Learning the building blocks enables us to manipulate sounds

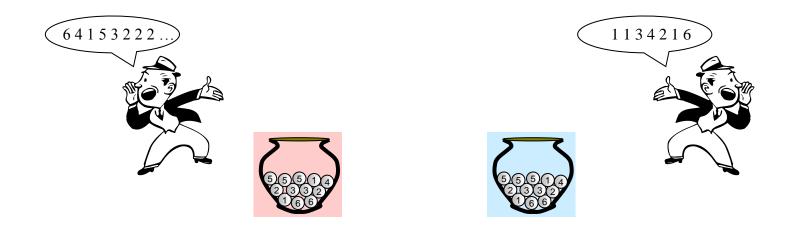
The Mixture Multinomial

- A person drawing balls from a pair of urns
 - Each ball has a number marked on it
- You only hear the number drawn
 - No idea of which urn it came from
- Estimate various facets of this process..



- Two *different* pickers are drawing balls from the *same* pots
 - After each draw they call out the number and replace the ball
- They select the pots with different probabilities
- From the numbers they call we must determine
 - Probabilities with which each of them select pots
 - The distribution of balls within the pots

Solution



- Analyze each of the callers separately
- Compute the probability of selecting pots separately for each caller
- But *combine* the counts of balls in the pots!!

Recap with only one picker and two pots

Probability of Red urn:

- P(1 | Red) = 1.71/7.31 = 0.234
- P(2 | Red) = 0.56/7.31 = 0.077
- P(3 | Red) = 0.66/7.31 = 0.090
- P(4 | Red) = 1.32/7.31 = 0.181
- P(5 | Red) = 0.66/7.31 = 0.090
- □ P(6 | Red) = 2.40/7.31 = 0.328

Probability of Blue urn:

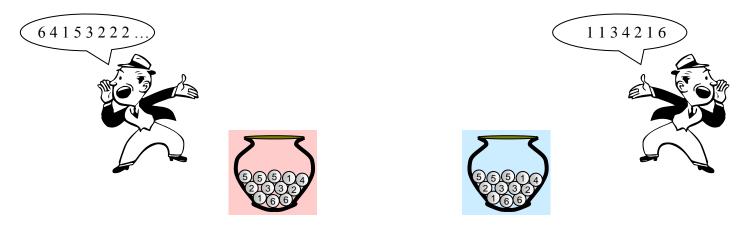
- □ P(1 | Blue) = 1.29/11.69 = 0.122
- □ P(2 | Blue) = 0.56/11.69 = 0.322
- P(3 | Blue) = 0.66/11.69 = 0.125
- □ P(4 | Blue) = 1.32/11.69 = 0.250
- □ P(5 | Blue) = 0.66/11.69 = 0.125
- P(6 | Blue) = 2.40/11.69 = 0.056
- P(Z=Red) = 7.31/18 = 0.41
- P(Z=Blue) = 10.69/18 = 0.59
 11-755 MLSP: Bhiksha Rai

Called	P(red X)	P(blue X)
6	.8	.2
6 4	.33	.67
5 1 2 3 4 5 2 2 1	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4 3 4	.33	.67
3	.33	.67
4	.33	.67
6 2 1	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

Two pickers

- Probability of drawing a number X for the first picker:
 - $P_1(X) = P_1(red)P(X|red) + P_1(blue)P(X|blue)$
- Probability of drawing X for the second picker
 - $P_2(X) = P_2(red)P(X|red) + P_2(blue)P(X|blue)$
- Note: P(X|red) and P(X|blue) are the same for both pickers
 - The pots are the same, and the probability of drawing a ball marked with a particular number is the same for both
- The probability of *selecting* a particular pot is different for both pickers
 - $P_1(X)$ and $P_2(X)$ are not related

Two pickers



- Probability of drawing a number X for the first picker:
 - $P_1(X) = P_1(red)P(X|red) + P_1(blue)P(X|blue)$
- Probability of drawing X for the second picker
 - $P_2(X) = P_2(red)P(X|red) + P_2(blue)P(X|blue)$
- Problem: From set of numbers called out by both pickers estimate
 - $P_1(color)$ and $P_2(color)$ for both colors
 - P(X | red) and P(X | blue) for all values of X

With TWO pickers

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
4 5 1 2 3	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5 2 2 1	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
	.14	.86
2 1	.57	.43
6	.8	.2

7.31

PICKER 1

10.69

PICKER 2

Called	P(red X)	P(blue X)
4	.57	.43
4	.57	.43
3	.57	.43
2	.27	.73
1	.75	.25
6	.90	.10
5	.57	.43

- Two tables
- The probability of *selecting* pots is independently computed for the two pickers

With TWO pickers

Called	P(red X)	P(blue X)	
6	.8	.2	
4	.33	.67	
5 1 2 3 4 5 2 2 2 1 4	.33	.67	
1	.57	.43	
2	.14	.86	
3	.33	.67	
4	.33	.67	
5	.33	.67	
2	.14	.86	
2	.14	.86	
1	.57	.43	
4	.33	.67	
3	.33	.67	/
4	.33	.67	
6	.8	.2	
6 2 1 6	.14	.86	
1	.57	.43	
6	.8	.2	
CKER 1	7.31	10.69)

PICKER 1

PICKER 2

Called	P(red X)	P(blue X)
4	.57	.43
4	.57	.43
3	.57	.43
2	.27	.73
1	.75	.25
6	.90	.10
5	.57	.43

4.20

2.80

P(RED | PICKER1) = 7.31 / 18

P(BLUE | PICKER1) = 10.69 / 18

P(RED | PICKER2) = 4.2 / 7

P(BLUE | PICKER2) = 2.8 / 7

With TWO pickers

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
5 1 2 3 4	.14	.86
3	.33	.67
4	.33	.67
5 2 2 1	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
2 1	.57	.43
6	.8	.2

Called	P(red X)	P(blue X)
4	.57	.43
4	.57	.43
3	.57	.43
2	.27	.73
1	.75	.25
6	.90	.10
5	.57	.43

- To compute probabilities of numbers *combine* the tables
- Total count of Red: 11.51
- Total count of Blue: 13.49

With TWO pickers: The SECOND picker

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5 1 2 3 4	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5 2 2 1	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
<mark>6</mark> 2 1	.14	.86
1	.57	.43
6	.8	.2

Called	P(red X)	P(blue X)
4	.57	.43
4	.57	.43
3	.57	.43
2	.27	.73
1	.75	.25
6	.90	.10
5	.57	.43

- Total count for "Red" : 11.51
- Red:
 - Total count for 1: 2.46
 - Total count for 2: 0.83
 - Total count for 3: 1.23
 - Total count for 4: 2.46
 - Total count for 5: 1.23
 - Total count for 6: 3.30

- P(6|RED) = 3.3 / 11.51 = 0.29

In Squiggles

- Given a sequence of observations $O_{k,1}$, $O_{k,2}$, .. from the k^{th} picker
 - $-\ N_{k,X}$ is the number of observations of color X drawn by the k^{th} picker
- Initialize $P_k(Z)$, P(X|Z) for pots Z and colors X
- Iterate:
 - For each Color X, for each pot Z and each observer k:
 - Update probability of numbers for the pots:
 - Update the mixture weights: probability of urn selection for each picker

$$P_{k}(Z \mid X) = \frac{P(X \mid Z)P_{k}(Z)}{\sum_{Z'} P_{k}(Z')P(X \mid Z')}$$

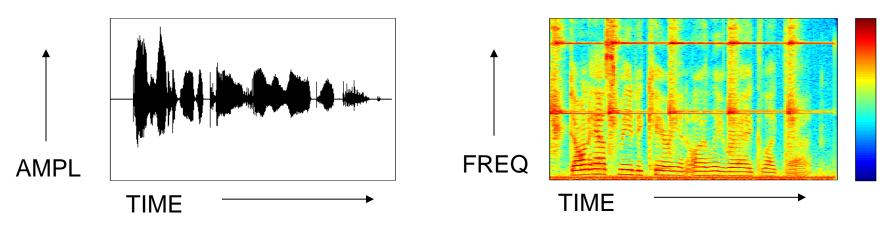
$$P(X \mid Z) = \frac{\sum_{k} N_{k,X}P_{k}(Z \mid X)}{\sum_{k} \sum_{Z'} N_{k,X}P_{k}(Z' \mid X)}$$

$$P_{k}(Z) = \frac{\sum_{X} N_{k,X}P_{k}(Z \mid X)}{\sum_{Z'} \sum_{X} N_{k,X}P_{k}(Z' \mid X)}$$

Signal Separation with the Urn model

- What does the probability of drawing balls from Urns have to do with sounds?
 - Or Images?
- We shall see..

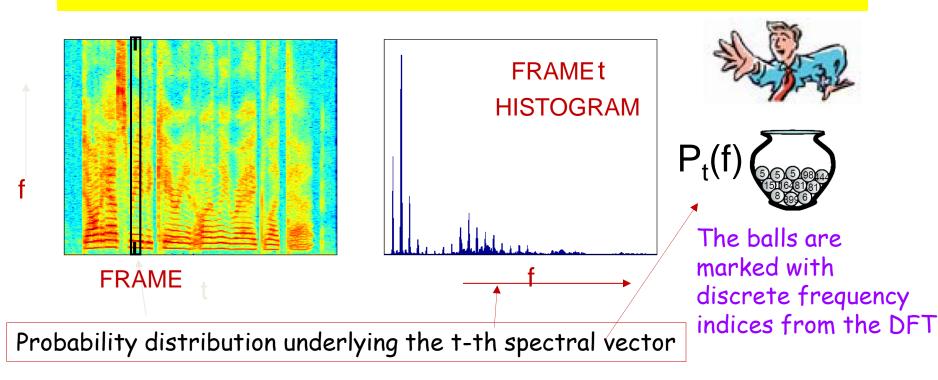
The representation



- We represent signals spectrographically
 - Sequence of magnitude spectral vectors estimated from (overlapping) segments of signal
 - Computed using the short-time Fourier transform
 - Note: Only retaining the magnitude of the STFT for operations
 - We will, need the phase later for conversion to a signal

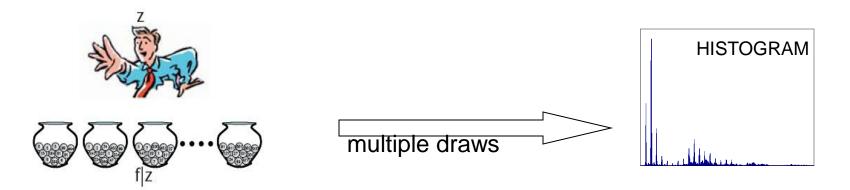
A Multinomial Model for Spectra

- A generative model for one frame of a spectrogram
 - A magnitude spectral vector obtained from a DFT represents spectral magnitude against discrete frequencies
 - This may be viewed as a histogram of draws from a multinomial

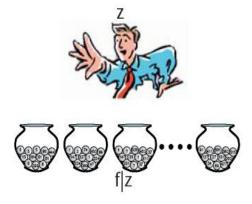


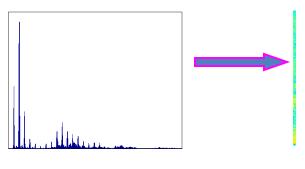
A more complex model

- A "picker" has multiple urns
- In each draw he first selects an urn, and then a ball from the urn
 - Overall probability of drawing f is a *mixture multinomial*
 - Since several multinomials (urns) are combined
 - Two aspects the probability with which he selects any urn, and the probability of frequencies with the urns

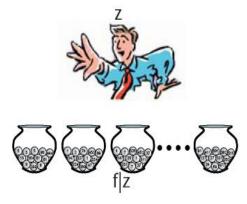


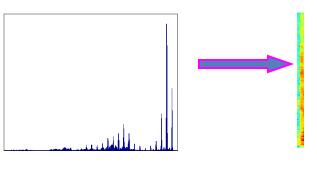
- The picker has a fixed set of Urns
 - Each urn has a different probability distribution over f
- He draws the spectrum for the first frame
 - In which he selects urns according to some probability $P_0(z)$
- Then draws the spectrum for the second frame
 - In which he selects urns according to some probability $P_1(z)$
- And so on, until he has constructed the entire spectrogram



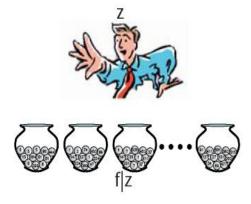


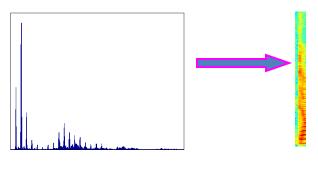
- The picker has a fixed set of Urns
 - Each urn has a different probability distribution over f
- He draws the spectrum for the first frame
 - In which he selects urns according to some probability $P_0(z)$
- Then draws the spectrum for the second frame
 - In which he selects urns according to some probability $P_1(z)$
- And so on, until he has constructed the entire spectrogram



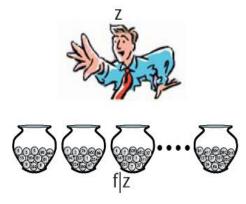


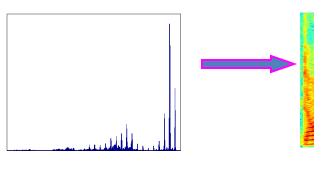
- The picker has a fixed set of Urns
 - Each urn has a different probability distribution over f
- He draws the spectrum for the first frame
 - In which he selects urns according to some probability $P_0(z)$
- Then draws the spectrum for the second frame
 - In which he selects urns according to some probability $P_1(z)$
- And so on, until he has constructed the entire spectrogram



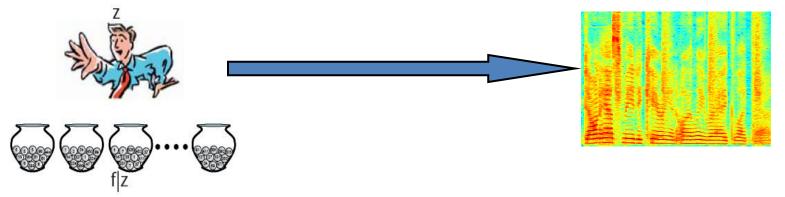


- The picker has a fixed set of Urns
 - Each urn has a different probability distribution over f
- He draws the spectrum for the first frame
 - In which he selects urns according to some probability $P_0(z)$
- Then draws the spectrum for the second frame
 - In which he selects urns according to some probability $P_1(z)$
- And so on, until he has constructed the entire spectrogram

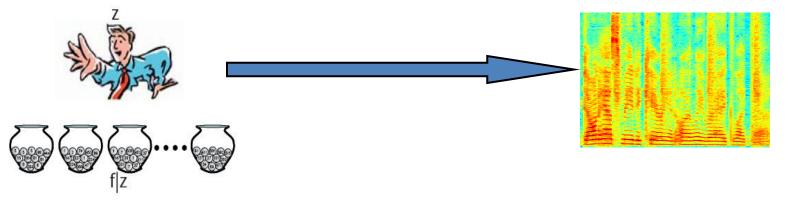




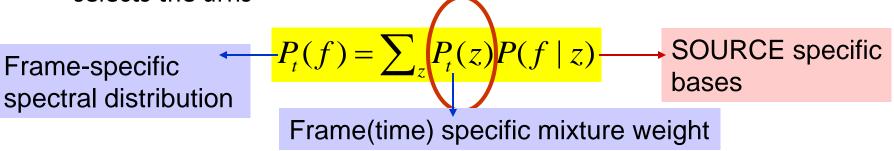
- The picker has a fixed set of Urns
 - Each urn has a different probability distribution over f
- He draws the spectrum for the first frame
 - In which he selects urns according to some probability $P_0(z)$
- Then draws the spectrum for the second frame
 - In which he selects urns according to some probability $P_1(z)$
- And so on, until he has constructed the entire spectrogram

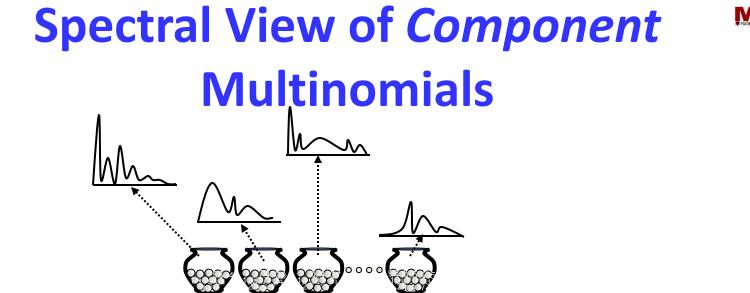


- The picker has a fixed set of Urns
 - Each urn has a different probability distribution over f
- He draws the spectrum for the first frame
 - In which he selects urns according to some probability $P_0(z)$
- Then draws the spectrum for the second frame
 - In which he selects urns according to some probability $P_{l}(z)$
- And so on, until he has constructed the entire spectrogram
 - The number of draws in each frame represents the RMS energy in that frame



- The URNS are the same for every frame
 - These are the *component multinomials* or *bases* for the source that generated the signal
- The only difference between frames is the probability with which he selects the urns





- Each component multinomial (urn) is actually a normalized histogram over frequencies P(f | z)
 - I.e. a spectrum
- Component multinomials represent *latent spectral structures* (bases) for the given sound source
- The spectrum for *every* analysis frame is explained as an additive combination of these latent spectral structures

Spectral View of Component Multinomials

- By "learning" the mixture multinomial model for any sound source we "discover" these latent spectral structures for the source
- The model can be learnt from spectrograms of a small amount of audio from the source using the EM algorithm

EM learning of bases

- Initialize bases
 - -P(f|z) for all z, for all f

- Must decide on the number of urns
- For each frame
 - Initialize $P_t(z)$

EM Update Equations

- Iterative process:
 - Compute a posteriori probability of the zth urn for the source for each f

$$P_{t}(z \mid f) = \frac{P_{t}(z)P(f \mid z)}{\sum_{z'} P_{t}(z')P(f \mid z')}$$

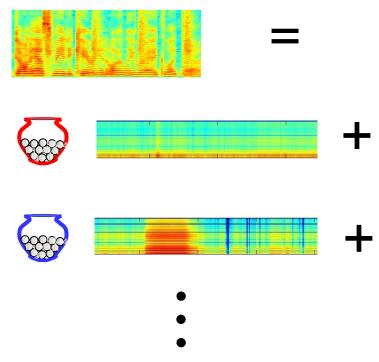
– Compute mixture weight of zth urn

$$P_{t}(z) = \frac{\sum_{f} P_{t}(z \mid f) S_{t}(f)}{\sum_{z'} \sum_{f} P_{t}(z' \mid f) S_{t}(f)}$$

- Compute the probabilities of the frequencies for the zth urn $\sum P(z \mid f) S(f)$

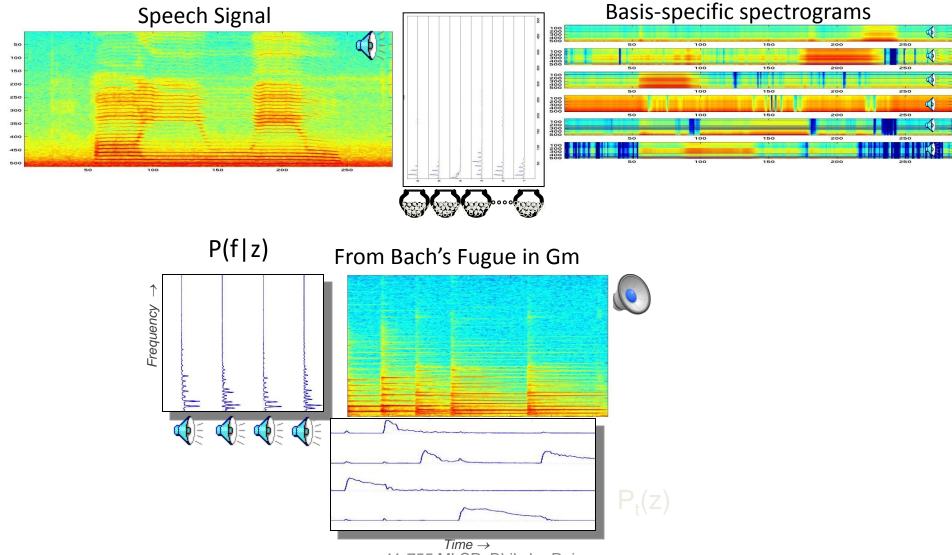
$$P(f \mid z) = \frac{\sum_{t} P_{t}(z \mid f) S_{t}(f)}{\sum_{f'} \sum_{t} P_{t}(z \mid f') S_{t}(f')}$$

How the bases compose the signal



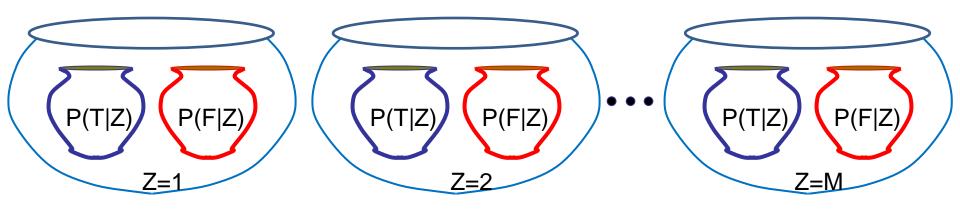
- The overall signal is the sum of the contributions of individual urns
 - Each urn contributes a different amount to each frame
- The contribution of the z-th urn to the t-th frame is given by P(f|z)P_t(z)S_t
 - $S_t = \Sigma_f S_t (f)$

Learning Structures

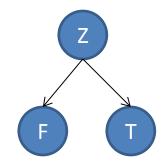


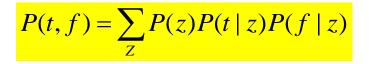
11-755 MLSP: Bhiksha Raj

Bag of Spectrograms PLCA Model

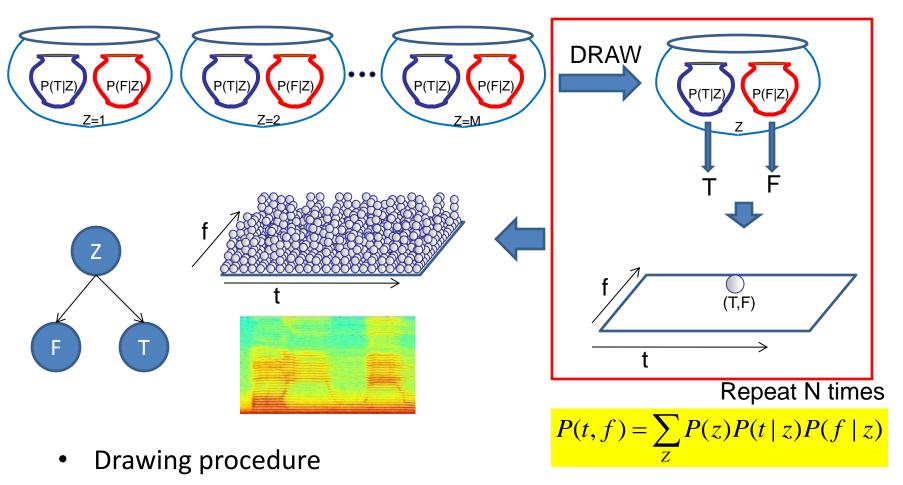


- Compose the entire spectrogram all at once
- Urns include two types of balls
 - One set of balls represents frequency F
 - The second has a distribution over time T
- Each draw:
 - Select an urn
 - Draw "F" from frequency pot
 - Draw "T" from time pot
 - Increment histogram at (-7,55)MLSP: Bhiksha Raj



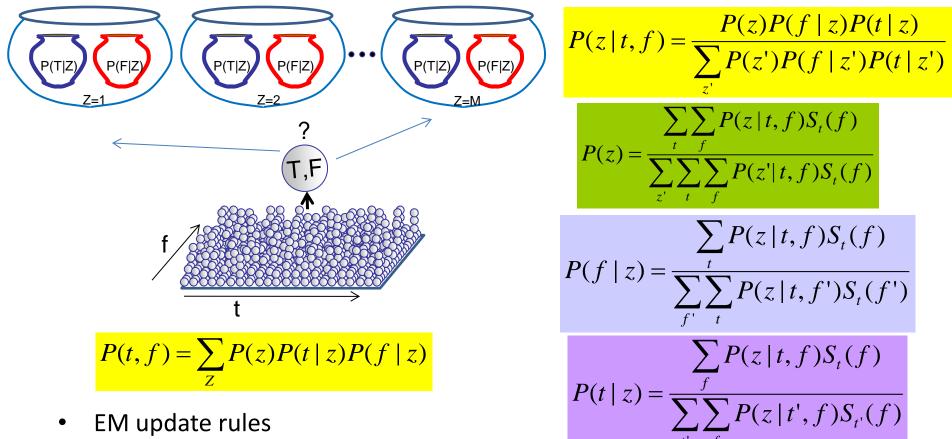


The bag of spectrograms



- Fundamentally equivalent to bag of frequencies model
 - With some minor differences in estimation

Estimating the bag of spectrograms



- EM update rules
 - Can learn all parameters
 - Can learn P(T|Z) and P(Z) only given P(f|Z)
 - Can learn only P(Z)

How meaningful are these structures

• Are these really the "notes" of sound

• To investigate, lets go back in time..

The Engineer and the Musician

Once upon a time a rich potentate discovered a previously unknown recording of a beautiful piece of music. Unfortunately it was badly damaged.

He greatly wanted to find out what it would sound like if it were not.

So he hired an engineer and a musician to solve the problem..

The Engineer and the Musician

The engineer worked for many years. He spent much money and published many papers.

	$L_{0} = FAL^{0} C_{1}^{(A)} C_{1}^{(A)}$ $L_{0} = FAL^{0} C_{0}^{(A)} C_{1}^{(A)} C_{1}^$
1100	$L_{0} = FAk_{0} \frac{C(\omega R)}{C_{0}} - \frac{A}{R} \frac{(\kappa (\omega R))}{C_{k}} \frac{(1-\omega)k_{0}}{C_{k}} \frac{(1-\omega)k_{0}}{C_{k}}$ $i = \left[\frac{C(\omega R)}{C_{0}} - \frac{A}{R} \frac{(1-\omega)R}{C_{k}}\right]$ $n = RT [n = -\frac{RT}{C_{0}}]$ $n = RT [n = -\frac{RT}{C_{0}}]$
	$n = RT \ln b - \frac{RT}{\sqrt{E}} \ln i$ $n = RT \ln b - \frac{RT}{\sqrt{E}} \ln i$ $R_{LT} = \frac{RL}{R_{LT}} u: Vi$ $R_{LT} = \frac{RL}{\sqrt{E}} K = F \le 2; u: G$ $Zc \in (RT_{T}r^{L}) K = F \le 2; u: G$ $b_{1} = \frac{2; u: G}{\sqrt{2}} (D = T_{T})^{2}$
	b = <u>7 23</u> 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Finally he had a somewhat scratchy restoration of the music..

The musician listened to the music carefully for a day, transcribed it, broke out his trusty keyboard and replicated the music.

11-755 MLSP: Bhiksha Raj

The Prize

Who do you think won the princess?

The Engineer and the Musician

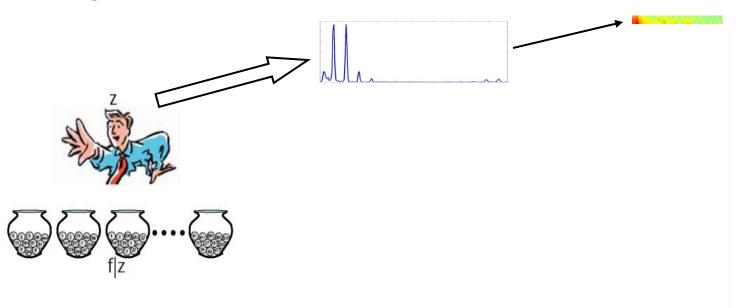
- The Engineer works on the signal
 - *Restore* it
- The musician works on his familiarity with music
 - He knows how music is composed
 - He can identify notes and their cadence
 - But took many many years to learn these skills
 - He uses these skills to *recompose* the music

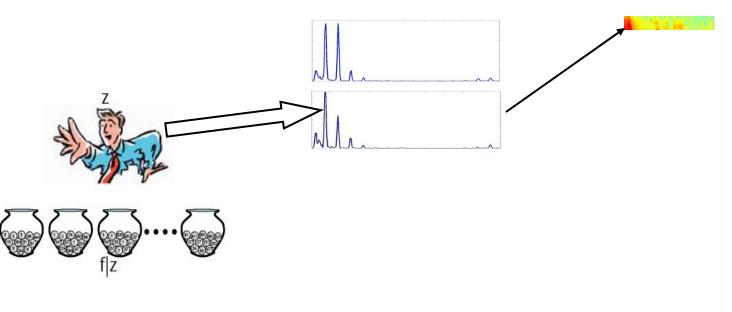
What the musician can do

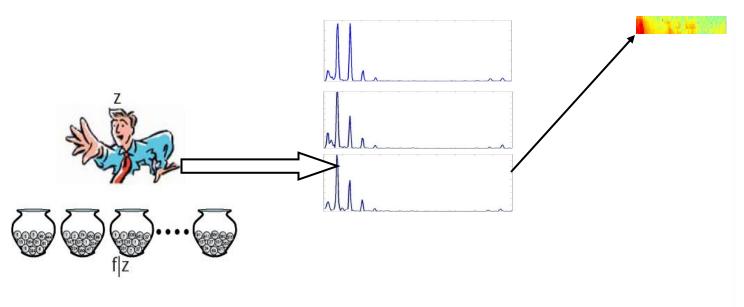
- Notes are distinctive
- The musician knows notes (of all instruments)
- He can
 - Detect notes in the recording
 - Even if it is scratchy
 - Reconstruct damaged music
 - Transcribe individual components
 - Reconstruct separate portions of the music

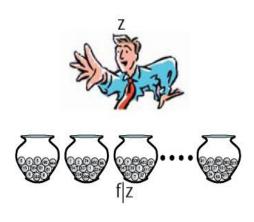
Music over a telephone

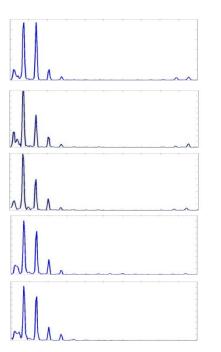
- The King actually got music over a telephone
- The musician must restore it..
- Bandwidth Expansion
 - Problem: A given speech signal only has frequencies in the 300Hz-3.5Khz range
 - Telephone quality speech
 - Can we estimate the rest of the frequencies

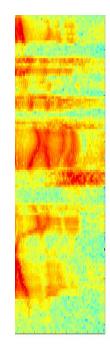




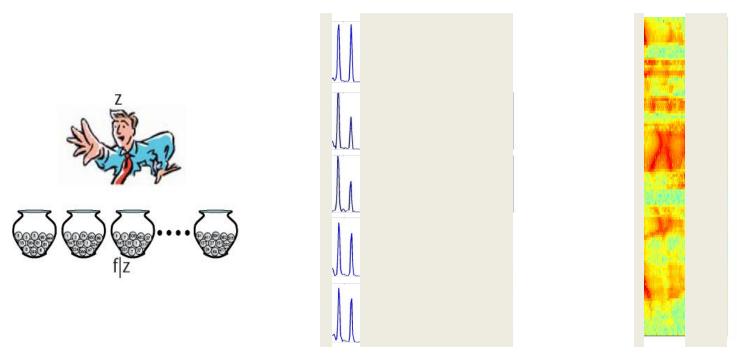








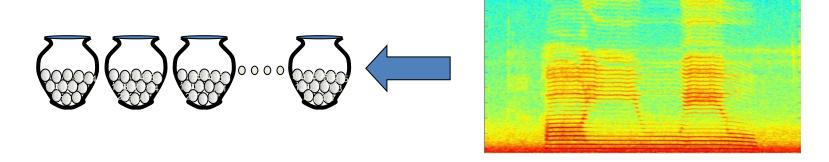
 The picker has drawn the histograms for every frame in the signal



- However, we are only able to observe the number of draws of some frequencies and not the others
- We must estimate the draws of the unseen frequencies

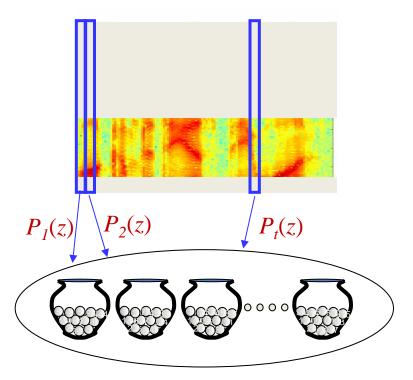
11-755 MLSP: Bhiksha Raj

Bandwidth Expansion: Step 1 – Learning



- From a collection of *full-bandwidth* training data that are similar to the bandwidth-reduced data, learn spectral bases
 - Using the procedure described earlier
 - Each magnitude spectral vector is a mixture of a common set of bases
 - Use the EM to learn bases from them
 - Basically learning the "notes"

Bandwidth Expansion: Step 2 – Estimation



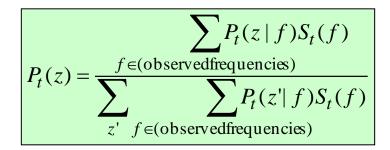
- Using only the observed frequencies in the bandwidth-reduced data, estimate mixture weights for the bases learned in step 1
 - Find out which notes were active at what time

Step 2

- Iterative process: "Transcribe"
 - Compute a posteriori probability of the zth urn for the speaker for each *f*

$$P_{t}(z \mid f) = \frac{P_{t}(z)P(f \mid z)}{\sum_{z'} P_{t}(z')P(f \mid z')}$$

Compute mixture weight of zth urn for each frame t



P(f|z) was obtained from training data and will not be reestimated

Step 3 and Step 4: Recompose

• Compose the complete probability distribution for each frame, using the mixture weights estimated in Step 2

$$P_t(f) = \sum_{z} P_t(z) P(f \mid z)$$

- Note that we are using mixture weights estimated from the reduced set of observed frequencies
 - This also gives us estimates of the probabilities of the unobserved frequencies
- Use the complete probability distribution P_t(f) to predict the unobserved frequencies!

Predicting from P_t(f): Simplified Example

- A single Urn with only red and blue balls
- Given that out an unknown number of draws, exactly *m* were red, how many were blue?
- One Simple solution:
 - Total number of draws N = m / P(red)
 - The number of tails drawn = N*P(blue)
 - Actual multinomial solution is only slightly more complex

The negative multinomial

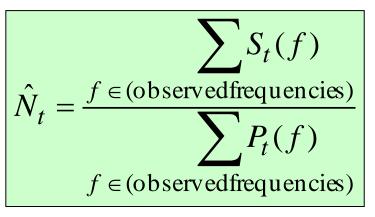
- Given P(X) for all outcomes X
- Observed n(X₁), n(X₂)..n(X_k)
- What is n(X_{k+1}), n(X_{k+2})...

$$P(n(X_{k+1}), n(X_{k+2}), ...) = \frac{\Gamma\left(N_o + \sum_{i>k} n(X_i)\right)}{\Gamma(N_o)\Gamma\left(\sum_{i>k} n(X_i)\right)} P_o \prod_{i>k} P(X_i)^{n(X_i)}$$

- N_o is the total number of observed counts - $n(X_1) + n(X_2) + ...$
- P_o is the total probability of observed events - $P(X_1) + P(X_2) + ...$

Estimating unobserved frequencies

• Expected value of the number of draws from a negative multinomial:

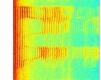


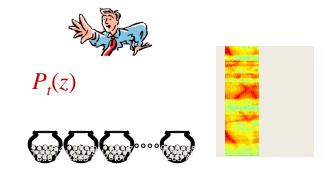
Estimated spectrum in unobserved frequencies

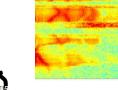
$$\hat{S}_t(f) = N_t P_t(f)$$

Overall Solution

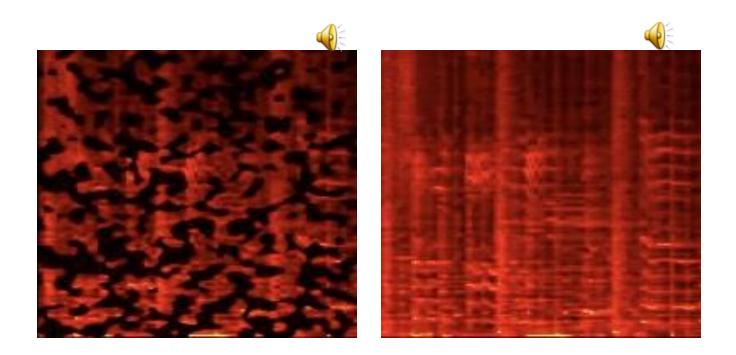
- Learn the "urns" for the signal source from broadband training data
- For each frame of the reduced bandwidth test utterance, find mixture weights for the urns
 - Ignore (marginalize) the unseen frequencies
- Given the complete mixture multinomial distribution for each frame, estimate spectrum (histogram) at unseen frequencies







Prediction of Audio



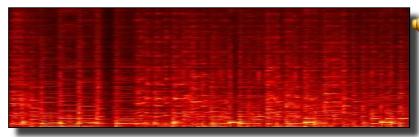
• An example with random spectral holes

Predicting frequencies

•Reduced BW data

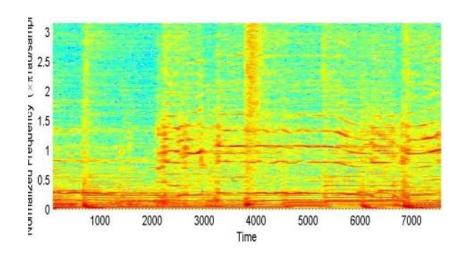
•Bases learned from this

Bandwidth expanded version



11-755 MLSP: Bhiksha Raj

Resolving the components

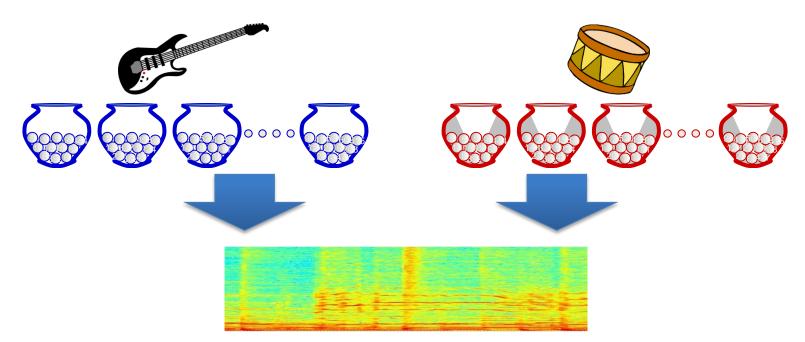


- The musician wants to follow the individual tracks in the recording..
 - Effectively "separate" or "enhance" them against the background

Signal Separation from Monaural Recordings

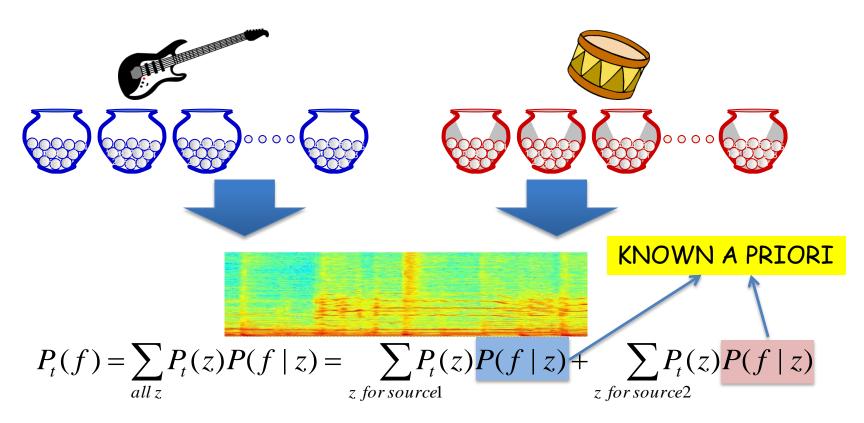
- Multiple sources are producing sound simultaneously
- The combined signals are recorded over a single microphone
- The goal is to selectively separate out the signal for a target source in the mixture
 - Or at least to enhance the signals from a selected source

Supervised separation: Example with two sources

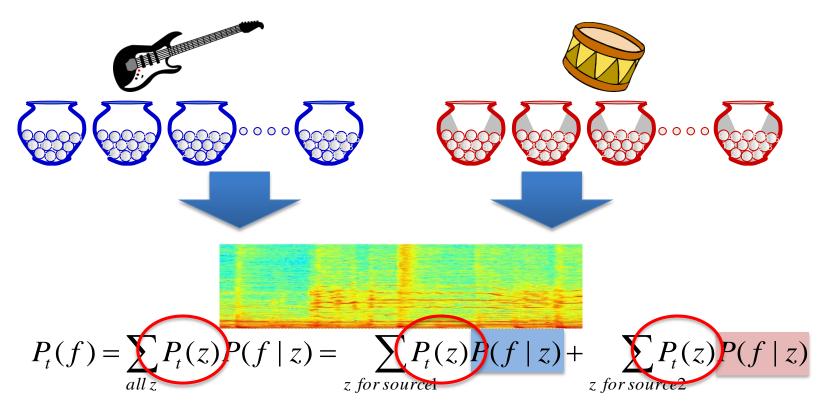


- Each source has its own bases
 - Can be learned from unmixed recordings of the source
- All bases combine to generate the mixed signal
- Goal: Estimate the contribution of individual sources

Supervised separation: Example with two sources

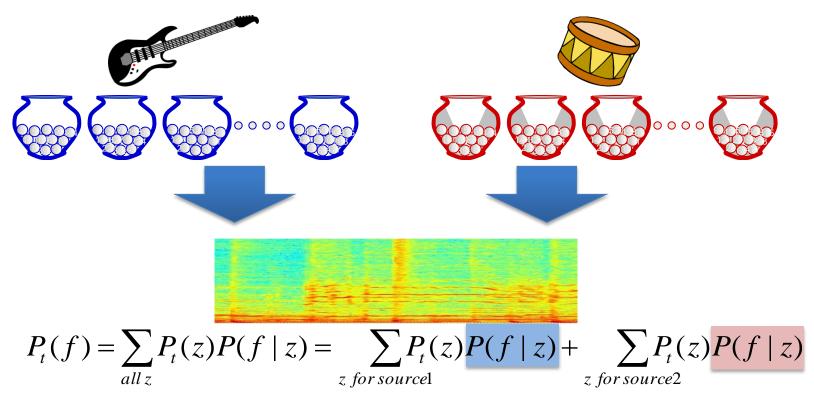


Supervised separation: Example with two sources



• Find mixture weights for all bases for each frame

Supervised separation: Example with two sources



- Find mixture weights for all bases for each frame
- Segregate contribution of bases from each source

$$P_t^{\text{sourcel}}(f) = \sum_{z \text{ for sourcel}} P_t(z) P(f \mid z)$$

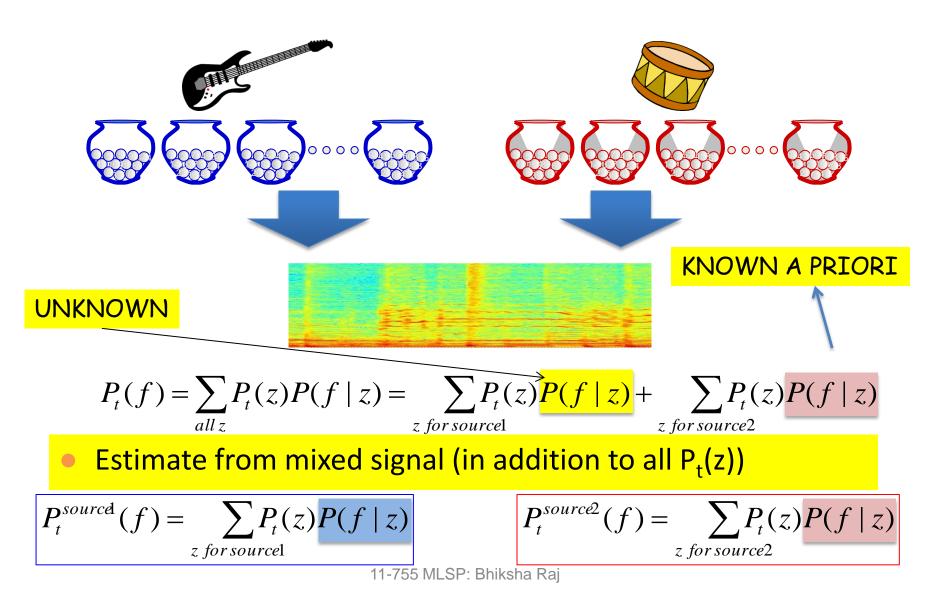
$$P_t^{source^2}(f) = \sum_{z \text{ for source}^2} P_t(z) P(f \mid z)$$

Separating the Sources: Cleaner Solution

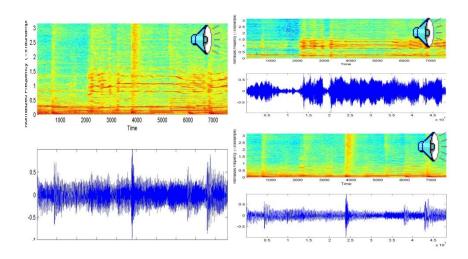
- For each frame:
- Given
 - $-S_t(f)$ The spectrum at frequency f of the mixed signal
- Estimate
 - S_{t,i}(f) The spectrum of the separated signal for the ithe source at frequency f
- A simple maximum a posteriori estimator

$$\hat{S}_{t,i}(f) = S_t(f) \frac{\sum_{z \text{ for sourcei}} P_t(z)P(f \mid z)}{\sum_{all z} P_t(z)P(f \mid z)}$$

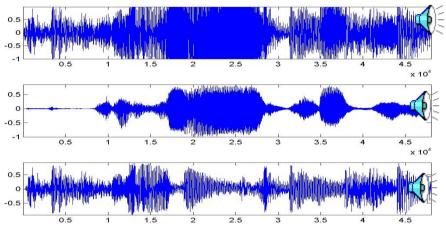
Semi-supervised separation: Example with two sources



Separating Mixed Signals: Examples



- "Raise my rent" by David Gilmour
- Background music "bases" learnt from 5-seconds of music-only segments within the song
- Lead guitar "bases" bases learnt from the rest of the song

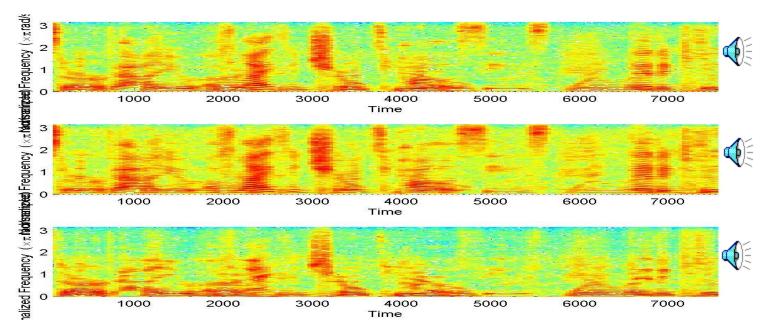


- Norah Jones singing "Sunrise"
- A more difficult problem:
 Original audio clipped!
- Background music bases learnt from 5 seconds of music-only segments

Where it works

- When the spectral structures of the two sound sources are distinct
 - Don't look much like one another
 - E.g. Vocals and music
 - E.g. Lead guitar and music
- Not as effective when the sources are similar
 Voice on voice

Separate overlapping speech



- Bases for both speakers learnt from 5 second recordings of individual speakers
- Shows improvement of about 5dB in Speaker-to-Speaker ratio for both speakers
 - Improvements are worse for same-gender mixtures

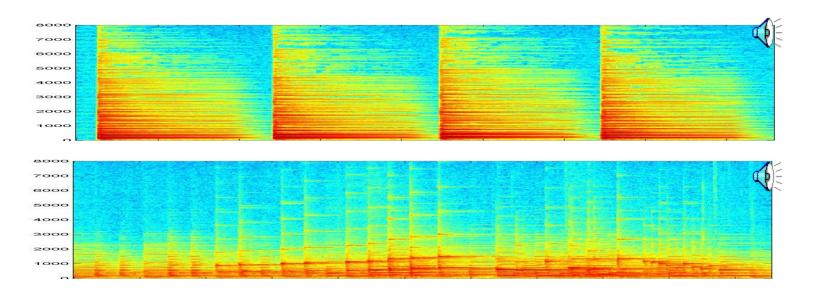
Can it be improved?

- Yes
- Tweaking
 - More training data per source
 - More bases per source
 - Typically about 40, but going up helps.
 - Adjusting FFT sizes and windows in the signal processing
- And / Or algorithmic improvements
 - Sparse overcomplete representations
 - Nearest-neighbor representations
 - Etc..

More on the topic

• Shift-invariant representations

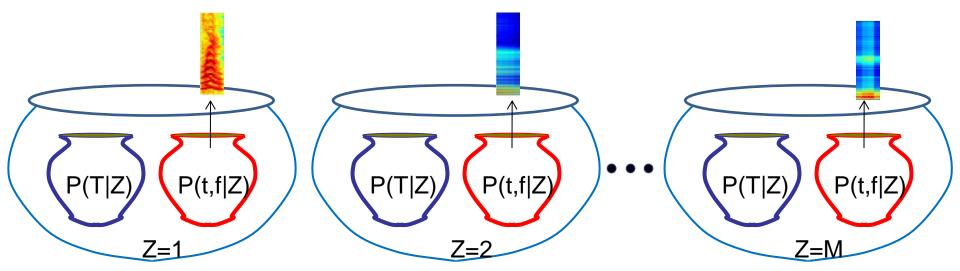
Patterns extend beyond a single frame



- Four bars from a music example
- The spectral patterns are actually patches

 Not all frequencies fall off in time at the same rate
- The basic unit is a spectral patch, not a spectrum
- Extend model to consider this phenomenon

Shift-Invariant Model



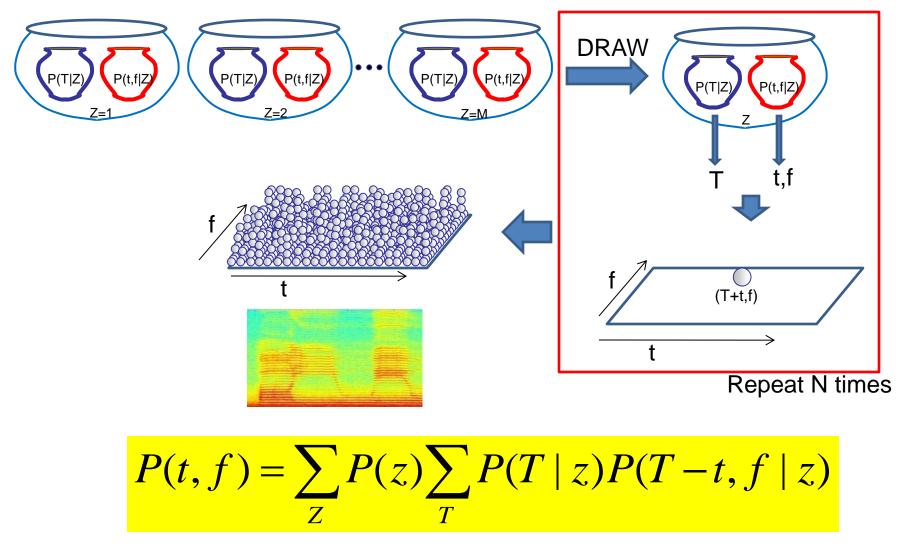
- Employs bag of spectrograms model
- Each "super-urn" (z) has two sub urns

One suburn now stores a bi-variate distribution

- Each ball has a (t,f) pair marked on it the bases
- Balls in the other suburn merely have a time "T" marked on them – the "location"

11-755 MLSP: Bhiksha Raj

The shift-invariant model



11-755 MLSP: Bhiksha Raj

Estimating Parameters

- Maximum likelihood estimate follows fragmentation and counting strategy
- Two-step fragmentation
 - Each instance is fragmented into the super urns
 - The fragment in each super-urn is further fragmented into each time-shift
 - Since one can arrive at a given (t,f) by selecting any T from P(T|Z) and the appropriate shift t-T from P(t,f|Z)

Shift invariant model: Update Rules

- Given data (spectrogram) S(t,f)
- Initialize P(Z), P(T|Z), P(t,f | Z)
- Iterate

$$P(t, f, Z) = P(Z) \sum_{T} P(T \mid Z) P(t - T, f \mid Z) \qquad P(T, t, f \mid Z) = P(T \mid Z) P(t - T, f \mid Z)$$

$$P(Z \mid t, f) = \frac{P(t, f, Z)}{\sum_{Z'} P(t, f, Z')} \qquad \text{Fragment} \qquad P(T \mid Z, t, f) = \frac{P(T, t - T, f \mid Z)}{\sum_{T'} P(T', t - T', f \mid Z)}$$

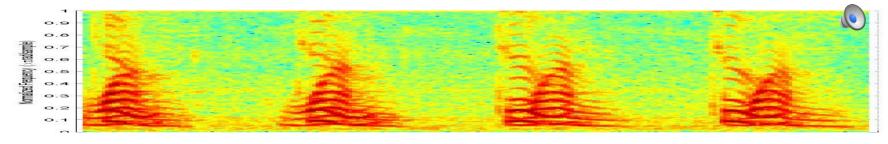
$$P(Z) = \frac{\sum_{t} \sum_{f} P(Z \mid t, f) S(t, f)}{\sum_{Z'} \sum_{t} \sum_{f} P(Z \mid t, f) S(t, f)} \qquad P(T \mid Z) = \frac{\sum_{t} \sum_{f} P(Z \mid t, f) P(T \mid Z, t, f) S(t, f)}{\sum_{T'} \sum_{t} \sum_{f} P(Z \mid T, f) P(T - t \mid Z, T, f) S(T, f)} \qquad Count$$

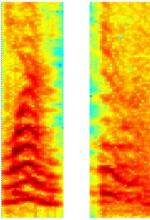
11-755 MLSP: Bhiksha Raj

An Example

 Two distinct sounds occuring with different repetition rates within a signal

INPUT SPECTROGRAM





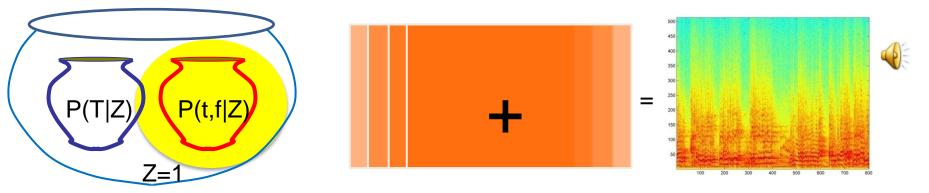
0.8

Normalized Frequency (xarad/sample 0.6 0.4 0.2 0 2000 1000 3000 4000 5000 6000 7000 8000 9000 Time malized Frequency (xrrad/sample) 0.8 0.6 0.4 0.2 0

Discovered "patch" bases

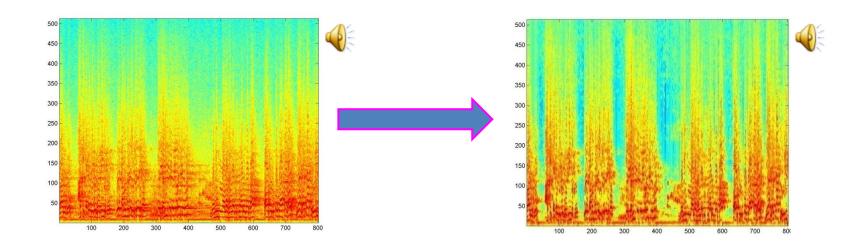
Contribution of individual bases to the recording 11-755 MLSP: Bhiksha Raj

Another example: Dereverberation



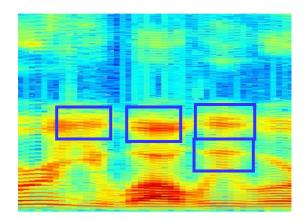
- Assume generation by a single latent variable
 Super urn
- The t-f basis is the "clean" spectrogram

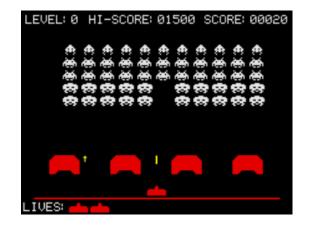
Dereverberation: an example



- "Basis" spectrum must be made sparse for effectiveness
- Dereverberation of gamma-tone spectrograms is also particularly effective for speech recognition

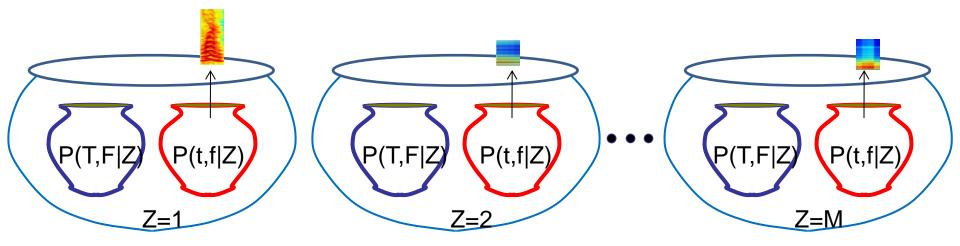
Shift-Invariance in Two dimensions





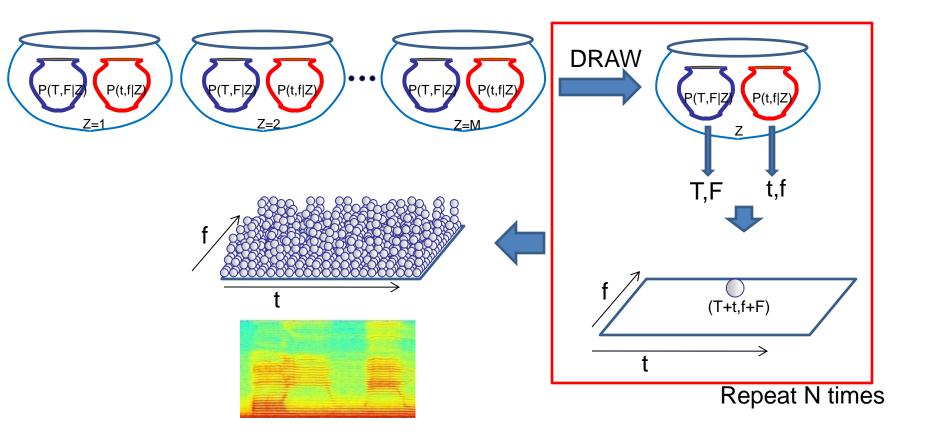
- Patterns may be substructures
 - Repeating patterns that may occur anywhere
 - Not just in the same frequency or time location
 - More apparent in image data

The two-D Shift-Invariant Model



- Both sub-pots are distributions over (T,F) pairs
 - One subpot represents the basic pattern
 - Basis
 - The other subpot represents the *location*

The shift-invariant model

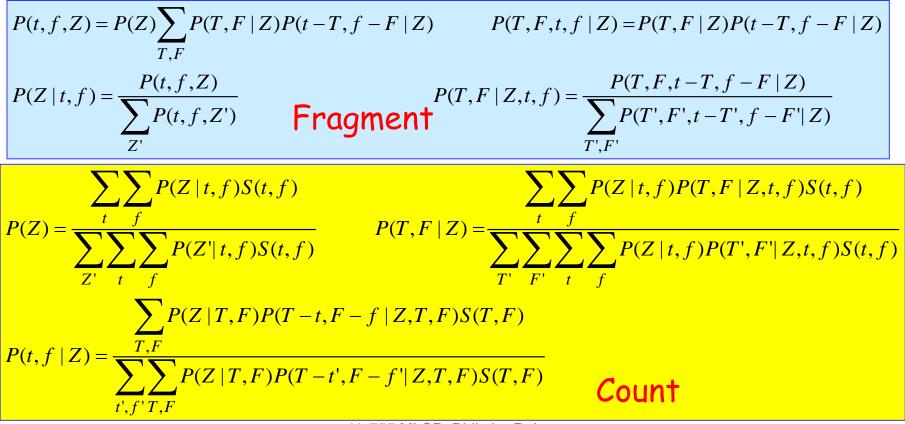


 $P(t, f) = \sum_{Z} P(z) \sum_{T} \sum_{F} P(T, F \mid z) P(T - t, f - F \mid z)$

11-755 MLSP: Bhiksha Raj

Two-D Shift Invariance: Estimation

- Fragment and count strategy
- Fragment into superpots, but also into each T and F
 - Since a given (t,f) can be obtained from any (T,F)



11-755 MLSP: Bhiksha Raj

Shift-Invariance: Comments

- P(T,F|Z) and P(t,f|Z) are symmetric
 - Cannot control which of them learns patterns and which the locations
- Answer: Constraints
 - Constrain the size of P(t,f|Z)
 - I.e. the size of the basic patch
 - Other tricks e.g. sparsity

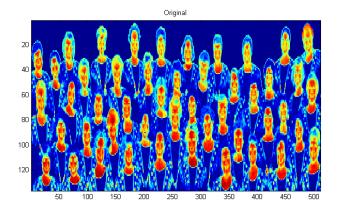
Shift-Invariance in Many Dimensions

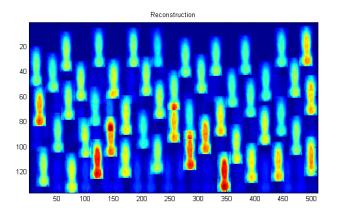
 The generic notion of "shift-invariance" can be extended to multivariate data

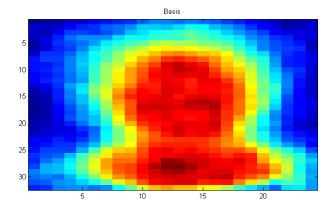
Not just two-D data like images and spectrograms

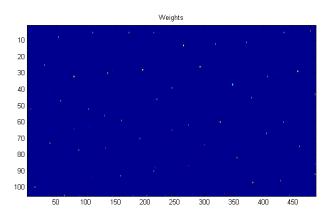
Shift invariance can be applied to any subset of variables

Example: 2-D shift invariance





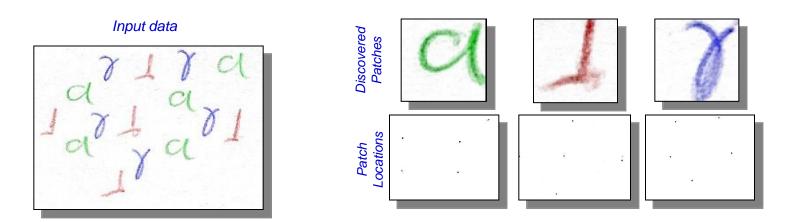




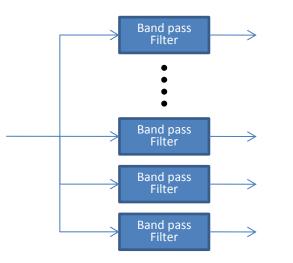
11-755 MLSP: Bhiksha Raj

Example: 3-D shift invariance

- The original figure has multiple handwritten renderings of three characters
 - In different colours
- The algorithm learns the three characters and identifies their locations in the figure

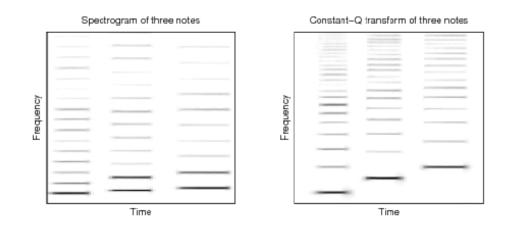


The constant Q transform



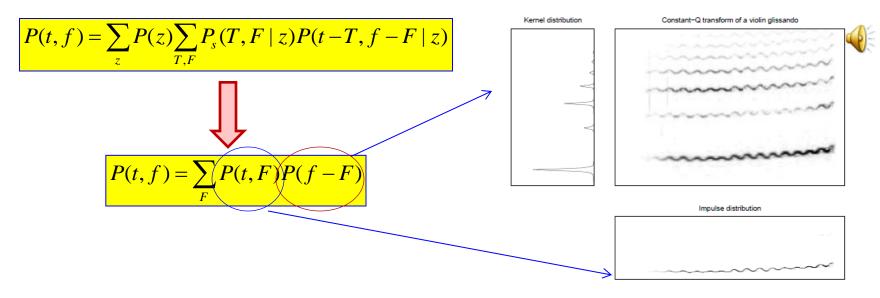
- Spectrographic analysis with a bank of constant Q filters
 - The bandwidth of filters increases with center frequency.
 - The spacing between filter center frequencies increases with frequency
 - Logarithmic spacing

Constant Q representation of Speech



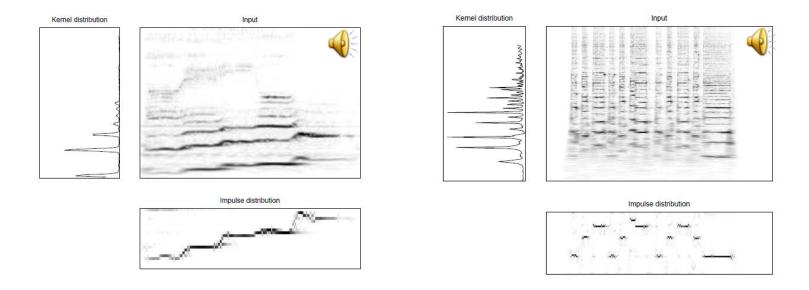
- Energy at the output of a bank of filters with logarithmically spaced center frequencies
 - Like a spectrogram with non-linear frequency axis
- Changes in pitch become vertical translations of spectrogram
 - Different notes of an instrument will have the same patterns at different vertical locations

Pitch Tracking



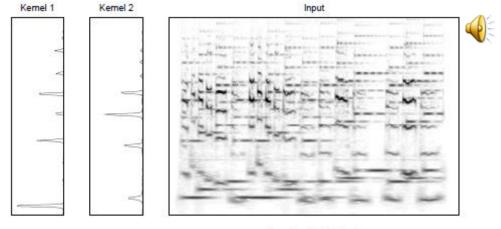
- Changing pitch becomes a vertical shift in the location of a basis
- The constant-Q spectrogram is modeled as a single pattern modulated by a vertical shift
 - P(f) is the "Kernel" shown to the left

Pitch Tracking



- Left: A vocalized "song"
- Right: Chord sequence
- "Impulse" distribution captures the "melody"!

Pitch Tracking



Impulse distribution 1

	the second se	
the laboration of the laborati	States - States -	the second se
-		

Impulse distribution 2

44	5.			-	~	-
· .		-	in.	-	~	~

- Having more than one basis (z) allows simultaneous pitch tracking of multiple sources
- Example: A voice and an instrument overlaid
 - The "impulse" distribution shows pitch of both separately

In Conclusion

- Surprising use of EM for estimation of latent structure for audio analysis
- Various extensions
 - Sparse estimation
 - Exemplar based methods..
- Related deeply to non-negative matrix factorization
 - TBD..