

Machine Learning for Signal Processing Hidden Markov Models

Bhiksha Raj 24 Oct 2013

Prediction : a holy grail

- Physical trajectories
	- Automobiles, rockets, heavenly bodies
- Natural phenomena
	- Weather
- Financial data
	- Stock market
- World affairs
	- Who is going to have the next XXXX spring?
- Signals
	- Audio, video..

A Common Trait

- *Series data with trends*
- Stochastic functions of stochastic functions (of stochastic functions of …)
- An underlying process that progresses (seemingly) randomly
	- E.g. Current position of a vehicle
	- E.g. current sentiment in stock market
	- Current state of social/economic indicators
- Random expressions of underlying process
	- E.g what you *see* from the vehicle
	- E.g. current stock prices of various stock
	- E.g. do populace stay quiet / protest on streets / topple dictator..

What a sensible agent must do

- *Learn* about the process
	- From whatever they know
	- Basic requirement for other procedures

• *Track* underlying processes

• Predict future values

A Specific Form of Process..

• Doubly stochastic processes

- One random process generates an X – Random process $X \rightarrow P(X; \Theta)$
- Second-level process generates observations as a function of
- Random process $Y \rightarrow P(Y; f(X, \Lambda))$

Doubly Stochastic Processes

- Doubly stochastic processes are *models*
	- May not be a *true* representation of process underlying actual data

- First level variable may be a *quantifiable* variable
	- Position/state of vehicle
	- Second level variable is a stochastic function of position
- First level variable may *not* have meaning
	- "Sentiment" of a stock market
	- "Configuration" of vocal tract

Stochastic Function of a Markov Chain

 X \rightarrow Y

• First-level variable is *usually* abstract

- The first level variable assumed to be the output of a Markov Chain
- The second level variable is a function of the output of the Markov Chain
- Also called an HMM
- Another variant stochastic function of Markov *process*
	- *Kalman Filtering..*

Markov Chain

- Process can go through a number of states
	- Random walk, Brownian motion..
- From each state, it can go to any other state with a probability
	- Which only depends on the current state
- Walk goes on forever
	- Or until it hits an "absorbing wall"
- Output of the process $-$ a sequence of states the process went through

MLS Stochastic Function of a Markov Chain

• Output:

$$
-Y \rightarrow P(Y; f([s_1, s_2, ...], \Lambda))
$$

• Specific to HMM:

$$
-Y == Y_1 Y_2 ...
$$

$$
-Y_i \rightarrow P(Y_i; f(s_i), \Lambda)
$$

Stochastic function of Markov Chains (HMMS)

- Problems:
- Learn the nature of the process from data
- Track the underlying state
	- Semantics
- Predict the future

Fun stuff with HMMs..

The little station between the mall and the city

- A little station between the city and a mall
	- Inbound trains bring people back from the mall
		- Mainly shoppers
		- Occasional mall employee
			- Who may have shopped..
	- Outbound trains bring back people from the city
		- Mainly office workers
		- But also the occasional shopper
			- Who may be from an office..

The Turnstile

- One jobless afternoon you amuse yourself by observing the turnstile at the station
	- Groups of people exit periodically
	- Some people are wearing casuals, others are formally dressed
	- Some are carrying shopping bags, other have briefcases
	- Was the last train an incoming train or an outgoing one

The Turnstile

• One jobless afternoon you amuse yourself by observing the turnstile at the station

• What you know:

– ….

- People shop in casual attire
	- Unless they head to the shop from work
- Shoppers carry shopping bags, people from offices carry briefcases
	- Usually
- There are more shops than offices at the mall
- There are more offices than shops in the city
- Outbound trains follow inbound trains
	- Usually

Modelling the problem

- Inbound trains (from the mall) have
	- more casually dressed people
	- more people carrying shopping bags
- The number of people leaving at any time may be small
	- Insufficient to judge

24 Oct 2013 11755/18797 15

Modelling the problem

- P(attire, luggage | outbound) = ?
- P (attire, luggage | inbound) = ?
- $P($ outbound | inbound) = ?
- P (inbound | outbound) = ?
- If you know all this, how do you decide the direction of the train
- How do you estimate these terms?

24 Oct 2013 11755/18797 16

What is an HMM

- "Probabilistic function of a markov chain"
- Models a dynamical system
- System goes through a number of states
	- Following a Markov chain model
- On arriving at any state it generates observations according to a state-specific probability distribution

A Thought Experiment

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 …

- Two "shooters" roll dice
- A caller calls out the number rolled. We only get to hear what he calls out
- The caller behaves randomly
	- If he has just called a number rolled by the blue shooter, his next call is that of the red shooter 70% of the time
	- But if he has just called the red shooter, he has only a 40% probability of calling the red shooter again in the next call
- How do we characterize this? $11755/18797$

A Thought Experiment

- The dots and arrows represent the "states" of the caller
	- When he's on the blue circle he calls out the blue dice
	- When he's on the red circle he calls out the red dice
	- The histograms represent the probability distribution of the numbers for the blue and red dice

A Thought Experiment

- When the caller is in any state, he calls a number based on the probability distribution of that state
	- We call these state output distributions
- At each step, he moves from his current state to another state following a probability distribution
	- We call these transition probabilities
- $\frac{1}{24}$ Oct 2013 **Caller is an HMM!!!** 24 Oct 2013 11755/18797

What is an HMM

- HMMs are statistical models for (causal) processes
- The model assumes that the process can be in one of a number of states at any time instant
- The state of the process at any time instant depends only on the state at the previous instant (causality, Markovian)
- At each instant the process generates an observation from a probability distribution that is specific to the current state
- The generated observations are all that we get to see
	- the actual state of the process is not directly observable
		- Hence the qualifier hidden

Hidden Markov Models

- A Hidden Markov Model consists of two components
	- A state/transition backbone that specifies how many states there are, and how they can follow one another
	- A set of probability distributions, one for each state, which specifies the distribution of all vectors in that state

- This can be factored into two separate probabilistic entities
	- A probabilistic Markov chain with states and transitions
	- A set of data probability distributions, associated with the states

How an HMM models a process

HMM assumed to be generating data

HMM Parameters

- The *topology* of the HMM
	- Number of states and allowed transitions
	- E.g. here we have 3 states and cannot go from the blue state to the red
- The transition probabilities
	- Often represented as a matrix as here
	- $-$ T_{ii} is the probability that when in state i, the process will move to j
- The probability π_i of beginning at any state *s*ⁱ
	- The complete set is represented as π
- The *state output distributions*

HMM state output distributions

- The state output distribution is the distribution of data produced from any state
- Typically modelled as Gaussian

$$
P(x \mid s_i) = Gaussian(x; \mu_i, \Theta_i) = \frac{1}{\sqrt{(2\pi)^d |\Theta_i|}} e^{-0.5(x - \mu_i)^T \Theta_i^{-1}(x - \mu_i)}
$$

- The paremeters are μ_i and Θ_i
- More typically, modelled as Gaussian mixtures

$$
P(x | s_i) = \sum_{j=0}^{K-1} w_{i,j}Gaussian(x; \mu_{i,j}, \Theta_{i,j})
$$

\n• Other distributions may also be used
\n• E.g. histograms in the dice case
\n^{24 Oct 2013}

- Other distributions may also be used
- E.g. histograms in the dice case

The Diagonal Covariance Matrix

- For GMMs it is frequently assumed that the feature vector dimensions are all *independent* of each other
- *Result*: The covariance matrix is reduced to a diagonal form
	- $-$ The determinant of the diagonal Θ matrix is easy to $\underset{24 \text{ Oct } 2013}{\text{compute}}$ 24 Oct 2013 11755/18797 26

Three Basic HMM Problems

- What is the probability that it will generate a specific observation sequence
- Given a observation sequence, how do we determine which observation was generated from which state
	- The state segmentation problem
- How do we *learn* the parameters of the HMM from observation sequences

Computing the Probability of an Observation Sequence

- Two aspects to producing the observation:
	- Progressing through a sequence of states
	- Producing observations from these states

Progressing through states

- The process begins at some state (red) here
- From that state, it makes an allowed transition
	- To arrive at the same or any other state
- From that state it makes another allowed transition
	- And so on

Probability that the HMM will follow a particular state sequence

$$
P(s_1, s_2, s_3, \dots) = P(s_1) P(s_2 | s_1) P(s_3 | s_2) \dots
$$

- *P*(*s¹*) is the probability that the process will initially be in state *s¹*
- *P*(s ^{*i*} / s ^{*j*}) is the transition probability of moving to state s ^{*i*} at the next time instant when the system is currently in *sⁱ P*(*s*₁, *s*₂, *s*₃,....) = *P*(*s*₁) *P*(*s*₂|*s*₁) *P*(*s*₃|*s*₂)...

• *P*(*s*₁) is the probability that the process will initially be in state *s*₁

• *P*(*s*₁/*s*₁) is the transition probabi
	- Also denoted by T_{ii} earlier

Generating Observations from States

At each time it generates an observation from the state it is in at that time

24 Oct 2013 11755/18797 31

Probability that the HMM will generate a particular observation sequence given a state sequence (state sequence known)

$$
P(o_1, o_2, o_3, \dots | s_1, s_2, s_3, \dots) = P(o_1 | s_1) P(o_2 | s_2) P(o_3 | s_3) \dots
$$

Computed from the Gaussian or Gaussian mixture for state s_1

• *P*(*o_i* | *s_i*) is the probability of generating observation *oⁱ* when the system is in state *sⁱ*

Proceeding through States and MLSF Producing Observations HMM assumed to be generating data state **sequence** state distributions[®] observation **sequence**

At each time it produces an observation and makes a transition

24 Oct 2013 11755/18797 33

Probability that the HMM will generate a particular state sequence and from it, a particular observation sequence

$$
P(o1, o2, o3,...,s1, s2, s3,...) =
$$

\n
$$
P(o1, o2, o3,...|s1, s2, s3,...) P(s1, s2, s3,...) =
$$

\n
$$
P(o1|s1) P(o2|s2) P(o3|s3)... P(s1) P(s2|s1) P(s3|s2)...
$$

Probability of Generating an Observation Sequence

- The precise state sequence is not known
- All possible state sequences must be considered

$$
P(O_1, O_2, O_3, ...) = \sum_{all. possible} P(O_1, O_2, O_3, ..., S_1, S_2, S_3, ...)
$$

$$
P(o_1, o_2, o_3, ...) = \sum_{all. possible} P(o_1, o_2, o_3, ..., s_1, s_2, s_3, ...) =
$$

$$
\sum_{state. sequences} P(o_1|s_1) P(o_2|s_2) P(o_3|s_3) ... P(s_1) P(s_2|s_1) P(s_3|s_2) ...
$$

state. sequences

Computing it Efficiently

- Explicit summing over all state sequences is not tractable
	- A very large number of possible state sequences
- Instead we use the forward algorithm
- A dynamic programming technique.

Illustrative Example

- Example: a generic HMM with 5 states and a "terminating" state".
	- Left to right topology
		- $P(s_i) = 1$ for state 1 and 0 for others
	- The arrows represent transition for which the probability is not 0
- *Notation:*
	- $P(s_i | s_i) = T_{ij}$
	- $-$ We represent $P(o_t | s_i) = b_i(t)$ for brevity

- The trellis is a graphical representation of all possible paths through the HMM to produce a given observation
- The Y-axis represents HMM states, X axis represents observations
- Every edge in the graph represents a valid transition in the HMM over a single time step
- Every node represents the event of a particular observation being generated from a particular state

24 Oct 2013 11755/18797 38

The Forward Algorithm

• $\alpha(s,t)$ is the total probability of ALL state sequences that end at state *s* at time *t*, and all observations until x_t

The Forward Algorithm

 $\alpha(s,t)$ can be recursively computed in terms of α (s',t'), the forward probabilities at time t-1

$Totalprob = \sum \alpha(s,T)$ *s* **The Forward Algorithm**

State index

- In the final observation the alpha at each state gives the probability of all state sequences ending at that state
- General model: The total probability of the observation is the sum of the alpha values at all states

The absorbing state

- Observation sequences are assumed to end only when the process arrives at an absorbing state
	- No observations are produced from the absorbing state

24 Oct 2013 11755/18797 42

The Forward Algorithm

• Absorbing state model: The total probability is the alpha computed at the absorbing state after the final observation

Problem 2: State segmentation

• Given only a sequence of observations, how do we determine which sequence of states was followed in producing it?

The HMM as a generator

HMM assumed to be generating data

The process goes through a series of states and produces observations from them

States are hidden

HMM assumed to be generating data

• The observations do not reveal the underlying state

The state segmentation problem

HMM assumed to be generating data

State segmentation: Estimate state sequence given observations

Estimating the State Sequence

- Many different state sequences are capable of producing the observation
- Solution: Identify the most *probable* state sequence
	- The state sequence for which the probability of progressing through that sequence and generating the observation sequence is maximum
	- $P(o_1, o_2, o_3, \ldots, s_1, s_2, s_3, \ldots)$ – i.e is maximum

Estimating the state sequence

- Once again, exhaustive evaluation is impossibly expensive
- But once again a simple dynamic-programming solution is available

 $P(o_1, o_2, o_3, \ldots, s_1, s_2, s_3, \ldots) =$

 $\begin{aligned} &\frac{P(o_1|s_1)P(o_2|s_2)P(o_3|s_3)...P(s_1)P(s_2|s_1)P(s_3|s_2)...}{\text{speeded:}}\ &\text{arg}\max_{s_1,s_2,s_3,...}P(o_1|s_1)P(s_1)P(o_2|s_2)P(s_2|s_1)P(o_3|s_3)P(s_3|s_4)\ &\text{arg}\max_{s_1,s_2,s_3,...}P(o_1|s_1)P(s_1)P(s_2|s_2)P(s_3|s_3)P(s_4|s_4)\ &\text{arg}\max_{s_1,s_2,s_3,...}P(o_1$ 1^{10} 1 $(0^{210}2)^{1}$ $(0^{310}3)^{11}$ $(0^{11}$ $(0^{210}1)^{1}$ $(0^{310}2)^{1}$

• Needed:

 $\arg \max_{s_1, s_2, s_3, \dots} P(o_1 | s_1) P(s_1) P(o_2 | s_2) P(s_2 | s_1) P(o_3 | s_3) P(s_3 | s_2)$

Estimating the state sequence

- Once again, exhaustive evaluation is impossibly expensive
- But once again a simple dynamic-programming solution is available

 $P(o_1, o_2, o_3, \ldots, s_1, s_2, s_3, \ldots) =$

 $P(o_1|S_1) P(o_2|S_2) P(o_3|S_3) ... P(S_1) P(S_2|S_1) P(S_3|S_2) ...$

Needed: $\arg \max_{s_1, s_2, s_3, \dots} \left(P(o_1 \mid s_1) P(s_1) \right) P(o_2 \mid s_2) P(s_2 \mid s_1) \right) P(o_3 \mid s_3) P(s_3 \mid s_2)$ $P(o_1|s_1)P(o_2|s_2)P(o_3|s_3)...P(s_1)P(s_2|s_1)P(s_3|s_2)...$

• Needed:
 $\text{arg max}_{s_1, s_2, s_3...}\left(P(o_1|s_1)P(s_1)P(o_2|s_2)P(s_2|s_1)P(o_3|s_3)P(s_3|s_4)\right)$

The HMM as a generator

Each enclosed term represents one forward transition and a subsequent emission

The state sequence

• The probability of a state sequence $?$, ?, ?, S_x , S_y ending at time t , and producing all observations until o_t

$$
- P(o_{1..t-1}, ?, ?, ?, s_x , o_t, s_y) = P(o_{1..t-1}, ?, ?, ?, s_x)
$$

$$
P(o_t|s_y)P(s_y|s_x)
$$

• The *best* state sequence that ends with s_x, s_y at *t* will have a probability equal to the probability of the best state sequence ending at t -1 at s_x times $P(o_t|s_y)P(s_y|s_x)$

Extending the state sequence

• The probability of a state sequence ?,?,?,?,s_x,s_y ending at time *t* and producing observations until o_t

 $-$ P($o_{1..t-1}, o_t, ?, ?, ?, s_x, s_y$) = P($o_{1..t-1}, ?, ?, ?, s_x$)P($o_t|s_y$)P($s_y|s_x$)

24 Oct 2013 11755/18797 53

Trellis

• The graph below shows the set of all possible state sequences through this HMM in five time instants

The cost of extending a state sequence

• The cost of *extending* a state sequence ending at s_x is only dependent on the transition from *s^x* to *s^y* , and the observation probability at *s^y*

The cost of extending a state sequence

• The best path to *s^y* through *s^x* is simply an extension of the best path to s_x

The Recursion

• The overall best path to *s^y* is an extension of the best path to one of the states at the previous time

The Recursion

Prob. of best path to $s_v =$ Max_{s_x} BestP($o_{1..t-1}$,?,?,?,?, s_x)P(o_t |s_y)P(s_y |s_x)

Finding the best state sequence

- The simple algorithm just presented is called the VITERBI algorithm in the literature
	- After A.J.Viterbi, who invented this dynamic programming algorithm for a completely different purpose: decoding error correction codes!

State with best path-score

State with path-score < best

State without a valid path-score

$$
P_j(t) = \max_{i} [P_i(t-1) t_{ij} b_j(t)]
$$

State transition probability, *i* to *j*

Score for state *j*, given the input at time *t*

Total path-score ending up at state *j* at time *t*

time

State transition probability, *i* to *j*

Score for state *j*, given the input at time *t*

Total path-score ending up at state *j* at time *t*

time

 \blacktriangleright

+ time

THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION

24 Oct 2013 11755/18797 70

Problem3: Training HMM parameters

- We can compute the probability of an observation, and the best state sequence given an observation, using the HMM's parameters
- But where do the HMM parameters come from?
- They must be learned from a collection of observation sequences

Learning HMM parameters: Simple procedure – counting

- Given a set of training instances
- Iteratively:
- 1. Initialize HMM parameters
- 2. Segment all training instances
- 3. Estimate transition probabilities and state output probability parameters by counting

Learning by counting example

- Explanation by example in next few slides
- 2-state HMM, Gaussian PDF at states, 3 observation sequences
- Example shows ONE iteration
	- How to count after state sequences are obtained

- We have an HMM with two states s1 and s2.
- Observations are vectors x_{ii}
	- i-th sequence, j-th vector
- We are given the following three observation sequences
	- And have already estimated state sequences

Observation 3

Time 1 2 3 4 5 6 7 8 9 10

• **Initial state probabilities (usually denoted as** p**):**

- We have 3 observations
- 2 of these begin with S1, and one with S2
- $-\pi(S1) = 2/3$, $\pi(S2) = 1/3$

Observation 1

Observation 2

• **Transition probabilities:**

– State S1 occurs 11 times in non-terminal locations

Observation 1

Observation 2

Observation 3

24 Oct 2013 11755/18797 76

• **Transition probabilities:**

Of these, it is followed immediately by S1 6 times

Observation 1

Observation 2

Observation 3

24 Oct 2013 11755/18797 77

• **Transition probabilities:**

- State S1 occurs 11 times in non-terminal locations
- Of these, it is followed immediately by S1 6 times
- It is followed immediately by S2 5 times

Observation 1

Observation 2

Observation 3

• **Transition probabilities:**

- State S1 occurs 11 times in non-terminal locations
- Of these, it is followed immediately by S1 6 times
- It is followed immediately by S2 5 times
- $P(S1 | S1) = 6/11; P(S2 | S1) = 5/11$

Observation 1

Observation 3

• **Transition probabilities:**

– State S2 occurs 13 times in non-terminal locations

• **Transition probabilities:**

– State S2 occurs 13 times in non-terminal locations

Of these, it is followed immediately by S1 5 times

• **Transition probabilities:**

- State S2 occurs 13 times in non-terminal locations
- Of these, it is followed immediately by S1 5 times
- It is followed immediately by S2 8 times

Observation 1

Observation 2

Observation 3

• **Transition probabilities:**

- Of these, it is followed immediately by S1 5 times
- It is followed immediately by S2 8 times
- $P(S1 | S2) = 5 / 13; P(S2 | S2) = 8 / 13$

Observation 1

Parameters learnt so far

- State initial probabilities, often denoted as π
	- $\pi(S1) = 2/3 = 0.66$
	- $\pi(S2) = 1/3 = 0.33$
- State transition probabilities
	- $-$ P(S1 | S1) = 6/11 = 0.545; P(S2 | S1) = 5/11 = 0.455
	- $P(S1 | S2) = 5/13 = 0.385; P(S2 | S2) = 8/13 = 0.615$
	- Represented as a transition matrix

$$
A = \begin{pmatrix} P(S1|S1) & P(S2|S1) \\ P(S1|S2) & P(S2|S2) \end{pmatrix} = \begin{pmatrix} 0.545 & 0.455 \\ 0.385 & 0.615 \end{pmatrix}
$$

Each row of this matrix must sum to 1.0
24 Oct 2013

Each row of this matrix must sum to 1.0

- State output probability for S1
	- There are 13 observations in S1

- State output probability for S1
	- There are 13 observations in S1
	- Segregate them out and count

• Compute parameters (mean and variance) of Gaussian output density for state S1

$$
P(X \mid S_1) = \frac{1}{\sqrt{(2\pi)^d |\Theta_1|}} \exp(-0.5(X - \mu_1)^T \Theta_1^{-1}(X - \mu_1))
$$

$$
\mu_{1} = \frac{1}{13} \left(\frac{X_{a1} + X_{a2} + X_{a6} + X_{a7} + X_{a9} + X_{a10} + X_{b3} + X_{b4} + X_{b5} + X_{b6} + X_{c1} + X_{c2} + X_{c4} + X_{c5} \right)
$$

Obs ^Xc1 ^Xc2 ^Xc4 ^Xc5 exp 0.5() () Q 13 1 1 1 1 1 2 1 2 1 3 1 3 1 4 1 4 1 1 1 1 1 2 1 2 1 1 *T c c T c c T b b T b b T a a T a a X X X X X X X X X X X X* m m m m m m m m m m m m

24 Oct 2013 11755/18797 86

- State output probability for S2
	- There are 14 observations in S2

- State output probability for S2
	- There are 14 observations in S2

- Segregate them out and count
	- Compute parameters (mean and variance) of Gaussian output density for state S2

$$
P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d |\Theta_2|}} \exp(-0.5(X - \mu_2)^T \Theta_2^{-1}(X - \mu_2))
$$

State	S2	S2	S2	S2	S2	
Obs	X_{a3}	X_{a4}	X_{a5}	X_{a8}	$P(X S_2) = \frac{1}{\sqrt{(2\pi)^d \Theta_2 }} \exp(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2))$	
Time	1	2	5	6	7	8
State	S2	S2	S2	S2	S2	S2
Obs	X_{h1}	X_{h2}	X_{h5}	X_{h6}	X_{h7}	X_{h8}
Time	2	6	7	8		
Time	2	6	7	8		
State	S2	S2	S2	S2		
S2	S2	S2	S2			
Obs	X_{c2}	S2	S2			
Obs	X_{c2}	X_{c6}	X_{c7}	X_{c8}	$\Theta = \frac{1}{\sqrt{(X - \mu)Y - \mu Y + \mu}}$	

Obs
$$
\mathbf{X}_{c2}
$$
 \mathbf{X}_{c6} \mathbf{X}_{c7} \mathbf{X}_{c8} $\Theta_1 = \frac{1}{14} ((X_{a3} - \mu_2)(X_{a3} - \mu_2)^T + ...)$

We have learnt all the HMM parmeters

- State initial probabilities, often denoted as π
	- $-\pi(S1) = 0.66$ $\pi(S2) = 1/3 = 0.33$
- State transition probabilities

$$
A = \begin{pmatrix} 0.545 & 0.455 \\ 0.385 & 0.615 \end{pmatrix}
$$

• State output probabilities

State output probability for S1 State output probability for S2

• **State output probabilities**
\n**State output probability for S1**
\n**EXECUTE:** State output probability for S2
\n
$$
P(X|S_1) = \frac{1}{\sqrt{(2\pi)^d |\Theta_1|}} exp(-0.5(X - \mu_1)^T \Theta_1^{-1}(X - \mu_1))
$$

\n $P(X|S_2) = \frac{1}{\sqrt{(2\pi)^d |\Theta_2|}} exp(-0.5(X - \mu_2)^T \Theta_2^{-1}(X - \mu_2))$
\n $P(X|S_2) = \frac{1}{\sqrt{(2\pi)^d |\Theta_2|}} exp(-0.5(X - \mu_2)^T \Theta_2^{-1}(X - \mu_2))$
\n $11755/18797$

Update rules at each iteration

2

2
 $S_j | S_i) = \frac{\sum_{obs \; \text{tstate}(t) = s_j, \& \text{state}(t+1) = s_j}{\sum_{obs \; \text{tstate}(t) = s_i}} 1$
 $\mu_i = \frac{\sum_{obs \; \text{tstate}(t) = s_i}{\sum_{obs \; \text{tstate}(t) = s_i}} \sum_{obs \; \text{tstate}(t) = s_i}}{L_i = \sum_{obs \; \text{tstate}(t) = s_i}}$
 $\Theta_i = \frac{\sum_{obs \; \text{tstate}(t) = s_i}{\sum_{obs \; \text{tstate}(t) = s_i}}}{\sum_{obs \; \text{tstate}(t) = s_i}}$ S_i) = $\frac{No. of observation sequences that start at state}{No. of observation sequences that start at state}$ *i i s* $\pi(s_i) =$ \sum \sum \sum obs *t***:***state*(*t*)= s_i . $=\frac{obs\ t:state(t)=s_i\cdot\&\ state(t+1)=s}{\sum_{i=1}^{n} s_i}$ *j i* $P(s_i | s_i) = \frac{obs \; t: state(t) = s_i \cdot \& . state(t+1) = s_j}{\sum_{i=1}^{n} s_i}$ 1 1 $(s_i | s_i)$ \sum \sum $\sum X_{obs,t}$ $obs\ t: state(t)=s_i.$ $=\frac{obs\tt:state(t)=s}{\sqrt{2s}}$ *i* : $state(t)=s_i$ 1 $\mu_{\scriptscriptstyle\! i}$ \sum \sum \sum \sum $obs\ t: state(t)=s_i.$ $=$ $-\mu_i(X_{obst} \Theta_i = \frac{obs \; t:state(t) = s}{s}$ *T* $\partial_{\theta} b_{s,t}$ μ_i μ_i $\Delta_{\theta} b_{s,t}$ μ_i *i i* $X_{obst} - \mu_i(X)$ $: state(t)$ μ_i , μ_i , μ_A _{obs,} 1 $(X_{\text{obs},t} - \mu_i)(X_{\text{obs},t} - \mu_i)$

• Assumes state output PDF = Gaussian

– For GMMs, estimate GMM parameters from

Training by segmentation: Viterbi training

Initialize all HMM parameters

- Segment all training observation sequences into states using the Viterbi algorithm with the current models
- Using estimated state sequences and training observation sequences, reestimate the HMM parameters
- This method is also called a "segmental k-means" learning procedure

Alternative to counting: SOFT counting

- Expectation maximization
- *Every* observation contributes to every state

Update rules at each iteration

$$
\pi(s_i) = \frac{\sum_{obs} P(state(t=1) = si | Obs)}{\text{Total no. of observation sequences}}
$$

$$
P(s_j \mid s_i) = \frac{\sum_{obs} \sum_{t} P(state(t) = s_i, state(t+1) = s_j | Obs)}{\sum_{obs} \sum_{t} P(state(t) = s_i | Obs)}
$$

$$
\mu_i = \frac{\sum_{obs} P(state(t) = s_i | Obs) X_{Obs,t}}{\sum_{obs} \sum_{t} P(state(t) = s_i | Obs)}
$$

Total no. of observation sequences
\n
$$
P(s_j | s_i) = \frac{\sum_{obs} P(state(t) = s_i, state(t+1) = s_j | Obs)}{\sum_{obs} \sum_{t} P(state(t) = s_i | Obs)}
$$
\n
$$
= \frac{\sum_{obs} P(state(t) = s_i | Obs)
$$
\n
$$
= \frac{\sum_{obs} P(state(t) = s_i | Obs)
$$
\n
$$
\Theta_i = \frac{\sum_{obs} P(state(t) = s_i | Obs)(X_{obs,t} - \mu_i)(X_{obs,t} - \mu_i)^T}{\sum_{obs} \sum_{t} P(state(t) = s_i | Obs)
$$
\n• Every observation contributes to every state

• Every observation contributes to every state

Update rules at each iteration

$$
\pi(s_i) = \frac{\sum_{obs} P(state(t=1) = s_i | Obs)}{\text{Total no. of observation sequences}}
$$
\n
$$
P(s_j | s_i) = \frac{\sum_{obs} P(state(t) = s_i, state(t+1) = s_j | Obs)}{\sum_{obs} \sum_{t} P(state(t) = s_i | Obs)}
$$
\n
$$
\mu_i = \frac{\sum_{obs} P(state(t) = s_i | Obs)}
$$
\n
$$
\mu_i = \frac{\sum_{obs} P(state(t) = s_i | Obs)}
$$
\n
$$
\Theta_i = \frac{\sum_{obs} P(state(t) = s_i | Obs)}{\sum_{obs} P(state(t) = s_i | Obs)} (X_{obs, t} - \mu_i)(X_{obs, t} - \mu_i)^T}{\sum_{obs} \sum_{t} P(state(t) = s_i | Obs)}
$$
\n
$$
\bullet \text{ Where did these terms come from?}
$$

 $P(\text{state}(t) = s | \text{Obs})$

- The probability that the process was at *s* when it generated X_t given the entire observation
	- Dropping the "Obs" subscript for brevity

 $P(\text{state}(t) = s | X_1, X_2, \ldots, X_T) \propto P(\text{state}(t) = s, X_1, X_2, \ldots, X_T)$

- $P(state(t) = s_i, x₁, x₂, ..., x_T)$ • We will compute first <table>\n<tbody>\n<tr>\n<th><i>state</i>(<i>t</i>) = <i>s</i> | <i>X</i>₁, <i>X</i>₂, ..., <i>X</i>_T) ∞ <i>P</i>(<i>state</i>(<i>t</i>) = <i>s</i>, <i>X</i>₁, <i>X</i>₂, ..., <i>X</i>_T)</th>\n</tr>\n<tr>\n<td>• We will compute\n $\frac{P(state(t) = s_i, x_1, x_2, ..., x_T)}{\text{first}}$\n - This is the probability that the process visited <i>s</i> at time <i>t</i> while producing the entire observation\n <math display
	- This is the probability that the process visited *s* at time *t* while producing the entire observation

$$
P(state(t) = s, x_1, x_2, ..., x_T)
$$

• The probability that the HMM was in a particular state *s* when generating the observation sequence is the probability that it followed a state sequence that passed through *s* at time *t*

$$
P(state(t) = s, x_1, x_2, ..., x_T)
$$

- This can be decomposed into two multiplicative sections
	- The section of the lattice leading into state *s* at time t and the section leading out of it

The Forward Paths

- The probability of the red section is the total probability of all state sequences ending at state *s* at time *t*
	- $-$ This is simply $\alpha(s,t)$
	- Can be computed using the forward algorithm

The Backward Paths

- The blue portion represents the probability of all state sequences that began at state *s* at time *t*
	- Like the red portion it can be computed using a *backward recursion*

The Backward Recursion

$$
\beta(s,t) = P(x_{t+1}, x_{t+2},..., x_T \mid state(t) = s)
$$

$$
\beta(s,t) = \sum_{s'} \beta(s', t+1) P(s' | s) P(x_{t+1} | s')
$$

- $\beta(s,t)$ is the total probability of ALL state sequences that depart from *s* at time *t*, and all observations after *x^t*
	- $-\beta(s,T)$ = 1 at the final time instant for all valid final states

The complete probability

Posterior probability of a state

• The probability that the process was in state *s* at time *t*, given that we have observed the data is obtained by simple normalization

$$
P(state(t) = s | Obs) = \frac{P(state(t) = s, x_1, x_2, ..., x_T)}{\sum_{s'} P(state(t) = s, x_1, x_2, ..., x_T)} = \frac{\alpha(s, t) \beta(s, t)}{\sum_{s'} \alpha(s', t) \beta(s', t)}
$$

• This term is often referred to as the gamma term and denoted by $\gamma_{s,t}$ **State (1)** s | Obs) $\overline{\sum_{s'} P(state(t) = s, x_1, x_2, ..., x_T)}$ $\overline{\sum_{s'} \alpha(s', t) \beta(s)}$

• This term is often referred to as the gamma

term and denoted by $\gamma_{s,t}$

Update rules at each iteration

$$
\pi(s_i) = \frac{\sum_{obs} P(state(t=1) = s_i | Obs)}{\text{Total no. of observation sequences}}
$$
\n
$$
P(s_j | s_i) = \frac{\sum_{obs} P(state(t) = s_i, state(t+1) = s_j | Obs)}{\sum_{obs} P(state(t) = s_i | Obs)}
$$
\n
$$
\mu_i = \frac{\sum_{obs} P(state(t) = s_i | Obs)
$$
\n
$$
\mu_i = \frac{\sum_{obs} P(state(t) = s_i | Obs)
$$
\n
$$
\Theta_i = \frac{\sum_{obs} P(state(t) = s_i | Obs) (X_{obs,t} - \mu_i)(X_{obs,t} - \mu_i)^T}{\sum_{obs} P(state(t) = s_i | Obs)
$$
\n• These have been found\n
$$
11755/18797}
$$
\n103

Update rules at each iteration

$$
\pi(s_i) = \frac{\sum_{Obs} P(state(t=1) = s_i | Obs)}{\text{Total no. of observation sequences}}
$$
\n
$$
P(s_j | s_i) = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_i, state(t+1) = s_j | Obs)}{\sum_{Obs} \sum_{t} P(state(t) = s_i | Obs)}
$$
\n
$$
\mu_i = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_i | Obs)
$$
\n
$$
\mu_i = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_i | Obs)}
$$
\n
$$
\Theta_i = \frac{\sum_{obs} \sum_{t} P(state(t) = s_i | Obs)(X_{Obs,t} - \mu_i)(X_{Obs,t} - \mu_i)^T}{\sum_{Obs} \sum_{t} P(state(t) = s_i | Obs)}
$$
\n
$$
\bullet \text{ Where did these terms come from?}
$$
\n
$$
^{11755/18797} \text{ 104}
$$

• Where did these terms come from?

 $P(state(t) = s, state(t+1) = s', x_1, x_2, ..., x_T)$

t

 $P(state(t) = s, state(t+1) = s', x_1, x_2, ..., x_T)$

 $P(state(t) = s, state(t+1) = s', x_1, x_2, ..., x_T)$

$$
\alpha(s,t) P(s' | s) P(x_{t+1} | s')
$$

 $P(state(t) = s, state(t+1) = s', x_1, x_2, ..., x_T)$

 $P(s' | s)P(x_{t+1} | s') P(s', t+1)$

The a posteriori probability of transition

$$
P(state(t) = s, state(t+1) = s'| Obs) = \frac{\alpha(s,t)P(s'| s)P(x_{t+1}| s')\beta(s', t+1)}{\sum_{s_1} \sum_{s_2} \alpha(s_1,t)P(s_2 | s_1)P(x_{t+1}| s_2)\beta(s_2, t+1)}
$$

• The a posteriori probability of a transition given an observation **24** Oct 2013 11755/18797 11755/18797

Update rules at each iteration

Training without explicit segmentation: Baum-Welch training

 Every feature vector associated with every state of every HMM with a probability

- Probabilities computed using the forward-backward algorithm
- Soft decisions taken at the level of HMM state
- In practice, the segmentation based Viterbi training is much easier to implement and is much faster
- The difference in performance between the two is small, especially if we have lots of training data

HMM Issues

- How to find the best state sequence: Covered
- How to learn HMM parameters: Covered
- How to compute the probability of an observation sequence: Covered

Magic numbers

- How many states:
	- No nice automatic technique to learn this
	- You choose
		- For speech, HMM topology is usually left to right (no backward transitions)
		- For other cyclic processes, topology must reflect nature of process
		- No. of states 3 per phoneme in speech
		- For other processes, depends on estimated no. of distinct states in process

Applications of HMMs

- Classification:
	- Learn HMMs for the various classes of time series from training data
	- Compute probability of test time series using the HMMs for each class
	- Use in a Bayesian classifier
	- Speech recognition, vision, gene sequencing, character recognition, text mining…
- Prediction
- Tracking

Applications of HMMs

- Segmentation:
	- Given HMMs for various events, find event boundaries
		- Simply find the best state sequence and the locations where state identities change
- Automatic speech segmentation, text segmentation by topic, geneome segmentation, …