

Machine Learning for Signal Processing Hidden Markov Models

Bhiksha Raj 24 Oct 2013

Prediction: a holy grail

- Physical trajectories
 - Automobiles, rockets, heavenly bodies
- Natural phenomena
 - Weather
- Financial data
 - Stock market
- World affairs
 - Who is going to have the next XXXX spring?
- Signals
 - Audio, video...

A Common Trait

- Series data with trends
- Stochastic functions of stochastic functions (of stochastic functions of ...)
- An underlying process that progresses (seemingly) randomly
 - E.g. Current position of a vehicle
 - E.g. current sentiment in stock market
 - Current state of social/economic indicators
- Random expressions of underlying process
 - E.g what you see from the vehicle
 - E.g. current stock prices of various stock
 - E.g. do populace stay quiet / protest on streets / topple dictator..

What a sensible agent must do

- Learn about the process
 - From whatever they know
 - Basic requirement for other procedures

Track underlying processes

Predict future values

A Specific Form of Process...

Doubly stochastic processes

- One random process generates an X
 - Random process $X \rightarrow P(X; \Theta)$
- Second-level process generates observations as a function of
- Random process $Y \rightarrow P(Y; f(X, \Lambda))$

Doubly Stochastic Processes

- Doubly stochastic processes are models
 - May not be a true representation of process underlying actual data

- First level variable may be a quantifiable variable
 - Position/state of vehicle
 - Second level variable is a stochastic function of position
- First level variable may not have meaning
 - "Sentiment" of a stock market
 - "Configuration" of vocal tract

Stochastic Function of a Markov Chain

First-level variable is usually abstract

- The first level variable assumed to be the output of a Markov Chain
- The second level variable is a function of the output of the Markov Chain
- Also called an HMM
- Another variant stochastic function of Markov process
 - Kalman Filtering..

Markov Chain

- Process can go through a number of states
 - Random walk, Brownian motion..
- From each state, it can go to any other state with a probability
 - Which only depends on the current state
- Walk goes on forever
 - Or until it hits an "absorbing wall"
- Output of the process a sequence of states the process went through

Stochastic Function of a Markov Chain

• Output:

$$-Y \rightarrow P(Y; f([s_1, s_2, ...], \Lambda))$$

• Specific to HMM:

$$- Y == Y_1 Y_2 ...$$

$$-Y_i \rightarrow P(Y_i; f(s_i), \Lambda)$$

Stochastic function of Markov Chains (HMMS)

- Problems:
- Learn the nature of the process from data
- Track the underlying state
 - Semantics
- Predict the future

Fun stuff with HMMs..

The little station between the mall and the city

- A little station between the city and a mall
 - Inbound trains bring people back from the mall
 - Mainly shoppers
 - Occasional mall employee
 - Who may have shopped..
 - Outbound trains bring back people from the city
 - Mainly office workers
 - But also the occasional shopper
 - Who may be from an office..

The Turnstile

- One jobless afternoon you amuse yourself by observing the turnstile at the station
 - Groups of people exit periodically
 - Some people are wearing casuals, others are formally dressed
 - Some are carrying shopping bags, other have briefcases
 - Was the last train an incoming train or an outgoing one

The Turnstile

- One jobless afternoon you amuse yourself by observing the turnstile at the station
 - **—**
- What you know:
 - People shop in casual attire
 - Unless they head to the shop from work
 - Shoppers carry shopping bags, people from offices carry briefcases
 - Usually
 - There are more shops than offices at the mall
 - There are more offices than shops in the city
 - Outbound trains follow inbound trains
 - Usually

Modelling the problem

- Inbound trains (from the mall) have
 - more casually dressed people
 - more people carrying shopping bags
- The number of people leaving at any time may be small
 - Insufficient to judge

Modelling the problem

- P(attire, luggage | outbound) = ?
- P (attire, luggage | inbound) = ?
- P(outbound | inbound) = ?
- P(inbound | outbound) = ?
- If you know all this, how do you decide the direction of the train
- How do you estimate these terms?

What is an HMM

- "Probabilistic function of a markov chain"
- Models a dynamical system
- System goes through a number of states
 - Following a Markov chain model
- On arriving at any state it generates observations according to a state-specific probability distribution

A Thought Experiment

- Two "shooters" roll dice
- A caller calls out the number rolled. We only get to hear what he calls out
- The caller behaves randomly
 - If he has just called a number rolled by the blue shooter, his next call is that of the red shooter
 70% of the time
 - But if he has just called the red shooter, he has only a 40% probability of calling the red shooter again in the next call
- How do we characterize this?

A Thought Experiment

- The dots and arrows represent the "states" of the caller
 - When he's on the blue circle he calls out the blue dice
 - When he's on the red circle he calls out the red dice
 - The histograms represent the probability distribution of the numbers for the blue and red dice

A Thought Experiment

- When the caller is in any state, he calls a number based on the probability distribution of that state
 - We call these state output distributions
- At each step, he moves from his current state to another state following a probability distribution
 - We call these transition probabilities
- The caller is an HMM!!!

What is an HMM

- HMMs are statistical models for (causal) processes
- The model assumes that the process can be in one of a number of states at any time instant
- The state of the process at any time instant depends only on the state at the previous instant (causality, Markovian)
- At each instant the process generates an observation from a probability distribution that is specific to the current state
- The generated observations are all that we get to see
 - the actual state of the process is not directly observable
 - Hence the qualifier hidden

Machine Learning for Signa Processing Group

Hidden Markov Models

- A Hidden Markov Model consists of two components
 - A state/transition backbone that specifies how many states there are, and how they can follow one another
 - A set of probability distributions, one for each state, which specifies the distribution of all vectors in that state

Markov chain

Data distributions

- This can be factored into two separate probabilistic entities
 - A probabilistic Markov chain with states and transitions
 - A set of data probability distributions, associated with the states

How an HMM models a process

HMM assumed to be generating data

HMM Parameters

- The topology of the HMM
 - Number of states and allowed transitions
 - E.g. here we have 3 states and cannot go from the blue state to the red
- The transition probabilities
 - Often represented as a matrix as here
 - T_{ij} is the probability that when in state i, the process will move to j
- The probability π_i of beginning at any state s_i
 - The complete set is represented as π
- The state output distributions

$$T = \begin{pmatrix} .6 & .4 & 0 \\ 0 & .7 & .3 \\ .5 & 0 & .5 \end{pmatrix}$$

HMM state output distributions

- The state output distribution is the distribution of data produced from any state
- Typically modelled as Gaussian

$$P(x \mid s_i) = Gaussian(x; \mu_i, \Theta_i) = \frac{1}{\sqrt{(2\pi)^d |\Theta_i|}} e^{-0.5(x - \mu_i)^T \Theta_i^{-1}(x - \mu_i)}$$

- The paremeters are μ_i and Θ_i
- More typically, modelled as Gaussian mixtures

$$P(x \mid s_i) = \sum_{j=0}^{K-1} w_{i,j} Gaussian(x; \mu_{i,j}, \Theta_{i,j})$$

- Other distributions may also be used
- E.g. histograms in the dice case

The Diagonal Covariance Matrix

Diagonal covariance: off-diagonal elements are zero

- For GMMs it is frequently assumed that the feature vector dimensions are all *independent* of each other
- Result: The covariance matrix is reduced to a diagonal form
 - The determinant of the diagonal Θ matrix is easy to compute 24 Oct 2013

Three Basic HMM Problems

- What is the probability that it will generate a specific observation sequence
- Given a observation sequence, how do we determine which observation was generated from which state
 - The state segmentation problem
- How do we *learn* the parameters of the HMM from observation sequences

Computing the Probability of an Observation Sequence

- Two aspects to producing the observation:
 - Progressing through a sequence of states
 - Producing observations from these states

Progressing through states

HMM assumed to be generating data

state sequence

- The process begins at some state (red) here
- From that state, it makes an allowed transition
 - To arrive at the same or any other state
- From that state it makes another allowed transition
 - And so on

Probability that the HMM will follow a particular state sequence

$$P(s_1, s_2, s_3,...) = P(s_1)P(s_2|s_1)P(s_3|s_2)...$$

- $P(s_1)$ is the probability that the process will initially be in state s₁
- $P(s_i \mid s_i)$ is the transition probability of moving to state s_i at the next time instant when the system is currently in s_i
 - Also denoted by T_{ii} earlier

30 24 Oct 2013 11755/18797

Generating Observations from States

 At each time it generates an observation from the state it is in at that time

24 Oct 2013 11755/18797 31

Probability that the HMM will generate a particular observation sequence given a state sequence (state sequence known)

$$P(o_1, o_2, o_3, \dots | s_1, s_2, s_3, \dots) = P(o_1 | s_1) P(o_2 | s_2) P(o_3 | s_3) \dots$$

Computed from the Gaussian or Gaussian mixture for state s₁

• $P(o_i \mid s_i)$ is the probability of generating observation o_i when the system is in state s_i

Proceeding through States and Producing Observations

 At each time it produces an observation and makes a transition

Probability that the HMM will generate a particular state sequence and from it, a particular observation sequence

$$P(o_{1}, o_{2}, o_{3}, ..., s_{1}, s_{2}, s_{3}, ...) =$$

$$P(o_{1}, o_{2}, o_{3}, ... | s_{1}, s_{2}, s_{3}, ...) P(s_{1}, s_{2}, s_{3}, ...) =$$

$$P(o_{1}|s_{1}) P(o_{2}|s_{2}) P(o_{3}|s_{3}) ... P(s_{1}) P(s_{2}|s_{1}) P(s_{3}|s_{2}) ...$$

Probability of Generating an Observation Sequence

- The precise state sequence is not known
- All possible state sequences must be considered

$$P(o_{1}, o_{2}, o_{3},...) = \sum_{\substack{all.possible \\ state.sequences}} P(o_{1}, o_{2}, o_{3},..., s_{1}, s_{2}, s_{3},...) =$$

$$\sum_{\substack{all.possible\\state.sequences}} P(o_1|s_1)P(o_2|s_2)P(o_3|s_3)...P(s_1)P(s_2|s_1)P(s_3|s_2)...$$

Computing it Efficiently

- Explicit summing over all state sequences is not tractable
 - A very large number of possible state sequences
- Instead we use the forward algorithm
- A dynamic programming technique.

Illustrative Example

- Example: a generic HMM with 5 states and a "terminating state".
 - Left to right topology
 - $P(s_i) = 1$ for state 1 and 0 for others
 - The arrows represent transition for which the probability is not 0
- Notation:
 - $-P(s_i \mid s_i) = T_{ij}$
 - We represent $P(o_t \mid s_i) = b_i(t)$ for brevity

Diversion: The Trellis

- The trellis is a graphical representation of all possible paths through the HMM to produce a given observation
- The Y-axis represents HMM states, X axis represents observations
- Every edge in the graph represents a valid transition in the HMM over a single time step
- Every node represents the event of a particular observation being generated from a particular state

$$\alpha(s,t) = P(x_1, x_2, ..., x_t, state(t) = s)$$

• $\alpha(s,t)$ is the total probability of ALL state sequences that end at state s at time t, and all observations until x_t

$$\alpha(s,t) = P(x_1, x_2, ..., x_t, state(t) = s)$$

• $\alpha(s,t)$ can be recursively computed in terms of $\alpha(s',t')$, the forward probabilities at time t-1

$$Totalprob = \sum_{s} \alpha(s, T)$$

- In the final observation the alpha at each state gives the probability of all state sequences ending at that state
- General model: The total probability of the observation is the sum of the alpha values at all states

The absorbing state

- Observation sequences are assumed to end only when the process arrives at an absorbing state
 - No observations are produced from the absorbing state

 Absorbing state model: The total probability is the alpha computed at the absorbing state after the final observation

Problem 2: State segmentation

 Given only a sequence of observations, how do we determine which sequence of states was followed in producing it?

The HMM as a generator

 The process goes through a series of states and produces observations from them

States are hidden

HMM assumed to be generating data

• The observations do not reveal the underlying state

The state segmentation problem

State segmentation: Estimate state sequence given observations

Estimating the State Sequence

- Many different state sequences are capable of producing the observation
- Solution: Identify the most *probable* state sequence
 - The state sequence for which the probability of progressing through that sequence and generating the observation sequence is maximum

i.eis maximum

$$P(o_1, o_2, o_3, ..., s_1, s_2, s_3, ...)$$

Estimating the state sequence

- Once again, exhaustive evaluation is impossibly expensive
- But once again a simple dynamic-programming solution is available

$$P(o_1, o_2, o_3, ..., s_1, s_2, s_3, ...) =$$

$$P(o_1|s_1)P(o_2|s_2)P(o_3|s_3)...P(s_1)P(s_2|s_1)P(s_3|s_2)...$$

Needed:

$$\arg\max_{s_1, s_2, s_3, \dots} P(o_1 \mid s_1) P(s_1) P(o_2 \mid s_2) P(s_2 \mid s_1) P(o_3 \mid s_3) P(s_3 \mid s_2)$$

Estimating the state sequence

- Once again, exhaustive evaluation is impossibly expensive
- But once again a simple dynamic-programming solution is available

$$P(o_1, o_2, o_3, ..., s_1, s_2, s_3, ...) =$$

$$P(o_1|s_1)P(o_2|s_2)P(o_3|s_3)...P(s_1)P(s_2|s_1)P(s_3|s_2)...$$

Needed:

$$\arg\max_{s_1, s_2, s_3, \dots} P(o_1 | s_1) P(s_1) P(o_2 | s_2) P(s_2 | s_1) P(o_3 | s_3) P(s_3 | s_2)$$

The HMM as a generator

 Each enclosed term represents one forward transition and a subsequent emission

The state sequence

• The probability of a state sequence $?,?,?,s_x,s_y$ ending at time t, and producing all observations until o_t

$$- P(o_{1..t-1}, ?,?,?,?, s_x, o_t,s_y) = P(o_{1..t-1},?,?,?,?, s_x)$$

$$P(o_t|s_y)P(s_y|s_x)$$

• The *best* state sequence that ends with s_x , s_y at t will have a probability equal to the probability of the best state sequence ending at t-l at s_x times $P(o_t|s_y)P(s_y|s_x)$

Extending the state sequence

- The probability of a state sequence $?,?,?,s_x,s_y$ ending at time t and producing observations until o_t
 - $P(o_{1..t-1}, o_t, ?, ?, ?, ?, ?, s_x, s_y) = P(o_{1..t-1}, ?, ?, ?, ?, s_x) P(o_t | s_y) P(s_y | s_x)$

Trellis

 The graph below shows the set of all possible state sequences through this HMM in five time instants

24 Oct 2013

The cost of extending a state sequence

• The cost of extending a state sequence ending at s_x is only dependent on the transition from s_x to s_v , and the observation probability at s_v

The cost of extending a state sequence

• The best path to s_v through s_x is simply an extension of the best path to s_{ν}

The Recursion

• The overall best path to s_v is an extension of the best path to one of the states at the previous time

24 Oct 2013 57

The Recursion

• Prob. of best path to $s_v =$ Max_{s_x} BestP($o_{1..t-1}$,?,?,?,?, s_x) P($o_t|s_y$)P($s_y|s_x$)

Finding the best state sequence

- The simple algorithm just presented is called the VITERBI algorithm in the literature
 - After A.J.Viterbi, who invented this dynamic programming algorithm for a completely different purpose: decoding error correction codes!

Initial state initialized with path-score = $P(s_1)b_1(1)$

time

- State with best path-score
- State with path-score < best</p>
- State without a valid path-score

$$P_{j}(t) = \max_{i} \left[P_{i}(t-1) t_{ij} b_{j}(t) \right]$$

State transition probability, i to j

Score for state *j*, given the input at time *t*

Total path-score ending up at state *j* at time *t*

time

$$P_{j}(t) = \max_{i} \left[P_{i}(t-1) t_{ij} b_{j}(t) \right]$$

State transition probability, i to j

Score for state j, given the input at time t

Total path-score ending up at state j at time t

time

THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION

Problem3: Training HMM parameters

- We can compute the probability of an observation, and the best state sequence given an observation, using the HMM's parameters
- But where do the HMM parameters come from?
- They must be learned from a collection of observation sequences

Learning HMM parameters: Simple procedure – counting

- Given a set of training instances
- Iteratively:
- 1. Initialize HMM parameters
- 2. Segment all training instances
- 3. Estimate transition probabilities and state output probability parameters by counting

Learning by counting example

- Explanation by example in next few slides
- 2-state HMM, Gaussian PDF at states, 3 observation sequences
- Example shows ONE iteration
 - How to count after state sequences are obtained

- We have an HMM with two states s1 and s2.
- Observations are vectors x_{ii}
 - i-th sequence, j-th vector

- We are given the following three observation sequences
 - And have already estimated state sequences

Observation 1

Time	1	2	3	4	5	6	7	8	9	10
state	S1	S1	S2	S2	S2	S1	S1	S2	S1	S1
Obs	X_{a1}	X _{a2}	X_{a3}	X_{a4}	X_{a5}	X_{a6}	X_{a7}	X_{a8}	X_{a9}	$\mathbf{X}_{\mathrm{a}10}$

Observation 2

Time	1	2	3	4	5	6	7	8	9
state	S2	S2	S1	S1	S2	S2	S2	S2	S1
Obs	X_{b1}	X_{b2}	X_{b3}	X_{b4}	X_{b5}	X_{b6}	X_{b7}	X_{b8}	X_{b9}

Time	1	2	3	4	5	6	7	8
state	S1	S2	S1	S1	S1	S2	S2	S2
Obs	X_{c1}	X_{c2}	X_{c3}	X_{c4}	X_{c5}	Xc6	X_{c7}	X_{c8}

• Initial state probabilities (usually denoted as π):

- We have 3 observations
- 2 of these begin with S1, and one with S2
- $\pi(S1) = 2/3, \pi(S2) = 1/3$

Observation 1

Time	1	2	3	4	5	6	7	8	9	10
stat	S1	1	S2	S2	S2	S1	S1	S2	S1	S1
Obs	λ_{a1}	X_{a2}	X_{a3}	X_{a4}	X_{a5}	X_{a6}	X_{a7}	X_{a8}	X_{a9}	$\mathbf{X}_{\mathrm{a}10}$

Observation 2

Time	1	2	3	4	5	6	7	8	9
stat	S2	§ 2	S1	S1	S2	S2	S2	S2	S1
Obs	A _{b1}	X_{b2}	X_{b3}	X_{b4}	X_{b5}	X_{b6}	X_{b7}	X_{b8}	X_{b9}

Time	1	2	3	4	5	6	7	8
stat	S1	§ 2	S1	S1	S1	S2	S2	S2
Obs	A _{c1}	X_{c2}	X_{c3}	X_{c4}	X _{c5}	X _{c6}	X _{c7}	X_{c8}

Transition probabilities:

State S1 occurs 11 times in non-terminal locations

Observation 1

Time	1	2	3	4	5	6	7	8	9	10
state	S1	S1	S2	S2	S2	S1	S1	S2	S1	S1
Obs	Xal	Xa2	$\overline{\mathbf{X}}_{\mathbf{a3}}$	X _{a4}	X _{a5}	X a6	X _{a7}	X _{a8}	X _{a9}	Aalu

Observation 2

Time	1	2	3	4	5	6	7	8	0
state	S2	S2	S1	S1	52	S2	S2	S2	S1
Obs	X_{b1}	X_{b2}	X _{b3}	X _{b4}	X_{b5}	X_{b6}	X_{b7}	X_{b8}	X _{b9}

Time	1	2	2	1	5	6	7	8
state	S1	S2	S1	S1	S1	S2	S2	S2
Obs	Λ_{c1}	X _{c2}	Λ_{c3}	λ_{c4}	Λ_{c5}	X _{c6}	X_{c7}	X_{c8}

Transition probabilities:

- State S1 occurs 11 times in non-terminal locations
- Of these, it is followed immediately by S1 6 times

Observation 1

Time	1_/	2	3	4	5	6	1	8	9	
state	S1	S1	S2	S2	S2	S1	S1	S	S1	S1
Obs	X _{a1}	A 22	\mathbf{Y}_{a3}	X_{a4}	X _{a5}	Y _{a6}	X ₃₇	X_{a8}	Xa9	A al0

Observation 2

Time	1	2	2	4	3	6	7	8	0
state	S2	S2	S1	S1	32	S2	S2	S2	S1
Obs	X_{b1}	X_{b2}	$\lambda_{\rm b3}$	X_{b4}	Y ₀₅	X_{b6}	X_{b7}	X_{b8}	X _{b9}

Time	1	2	2	1		Č.	7	8
state	S1	S2	S1	S1		S2	S2	S2
Obs	Λ_{c1}	X_{c2}	Λ_{c3}	Λ_{c4}	1 2c5	Y c6	X_{c7}	X_{c8}

Transition probabilities:

- State S1 occurs 11 times in non-terminal locations
- Of these, it is followed immediately by S1 6 times
- It is followed immediately by S2 5 times

Observation 1

Time	1	2	3	4	5	6	7	8	0	10_
state	S1	S	S2	\$2	S2	S1	S ₁	S2	S1	S1
Obs	w _{a1}	X_{a2}	X _{a3}	X_{a4}	X _{a5}	3 23a6	X_{a7}	X_{a8}	71a9	Xalo

Observation 2

Time	1	2	2	4	2	6	7	8	0
state	S2	S2	S1	S1	S2	S ₂	S2	S2	S1
Obs	X_{b1}	X_{b2}	X_{b3}	X_{b4}	X_{b5}	Y b6	X_{b7}	X_{b8}	X _{b9}

Time	1	2	3	1	5	6	X	8
state	S1	S2	SI	S1	S1	S2	S	S2
Obs	Λ_{c1}	X_{c2}	A _{c3}	X _{c4}	X _{c5}	X	X _{c7}	X_{c8}

Transition probabilities:

- State S1 occurs 11 times in non-terminal locations
- Of these, it is followed immediately by S1 6 times
- It is followed immediately by S2 5 times
- P(S1 | **S1**) = 6/11; P(S2 | **S1**) = 5/11

Observation 1

Time	1	2	3	4	5	6	7	8	9	10
state	S1	S1	S2	S2	S2	S1	S1	S2	S1	S1
Obs	X_{a1}	X _{a2}	X_{a3}	X_{a4}	X_{a5}	X_{a6}	X_{a7}	X_{a8}	X_{a9}	$\mathbf{X}_{\mathrm{a}10}$

Observation 2

Time	1	2	3	4	5	6	7	8	9
state	S2	S2	S1	S1	S2	S2	S2	S2	S1
Obs	X_{b1}	X_{b2}	X_{b3}	X_{b4}	X_{b5}	X_{b6}	X_{b7}	X_{b8}	X_{b9}

Time	1	2	3	4	5	6	7	8
state	S1	S2	S1	S1	S1	S2	S2	S2
Obs	X_{c1}	X _{c2}	X_{c3}	X_{c4}	X _{c5}	Xc6	X _{c7}	X_{c8}

• Transition probabilities:

State S2 occurs 13 times in non-terminal locations

Observation 1

Time	1	2	Ĵ	4	5	6	7	ô	9	10
state	S1	S1	S2	S2	S2	S1	S1	S2	S1	S1
Obs.	X_{a1}	X_{a2}	X _{a3}	X _{a4}	X _{a5}	X _{a6}	X _{a7}	X _{a8}	X _a	\mathbf{X}_{a10}

Observation 2

Time	1	2	3	4	5	6	7	0	9
state	S2	S2	S1	S1	S2	S2	S2	S2	S1
Obs	λ_{b1}	X _{b2}	X_{b3}	X_{b4}	X _{b5}	λ_{b6}	λ_{b7}	λ_{b8}	X_{b9}

Time	1	2	3	4	5	6	7	8
state	S1	S2	S1	S1	S1	S2	S2	S2
Obs	X_{c1}	Λ_{c2}	X_{c3}	X_{c4}	X_{c5}	X _{c6}	A _{c7}	λ_{c8}

- State S2 occurs 13 times in non-terminal locations
- Of these, it is followed immediately by S1 5 times

Observation 1

Time	1	2	3	4	5	6		ô	9	10
state	S1	S1	S2	S2	S2	S1	S1	S ₂	S1	\$1
Obs	X_{a1}	X _{a2}	X _{a3}	X_{a4}	X_{a5}	Y _{ab}	X_{a7}	X _{a8}	V	X_{a10}

Observation 2

Time	1	2	3	4	5	6	7	9	9	
state	S2	S ₁	S1	\$1	S2	S2	S2 (S2	S1	
Obs	$\lambda_{\rm b1}$	$\lambda_{\rm b2}$	X	X_{b4}	λ_{b5}	λ_{b6}	A _{b7}	λ_{b8}	Y	

Time	1	2	3	4	5	6	7	8
state	S1	S ₂	S 1	§ 1	S1	S2	S2	S2
Obs	X_{c1}	$\Lambda_{\rm c2}$	X	X_{c4}	X _{c5}	X _{c6}	A _{c7}	λ_{c8}

Transition probabilities:

- State S2 occurs 13 times in non-terminal locations
- Of these, it is followed immediately by S1 5 times
- It is followed immediately by S2 8 times

Observation 1

Time	1	2	3	+		Y	7	ô	9	10
state	S1	S1	S	S ₂	32	9 1	S1	S2	S1	S1
Obs	X_{a1}	X_{a2}	X_{a3}	7 324	Y 25	X_{a6}	X_{a7}	X _{a8}	X_{a9}	$\mathbf{X}_{\mathrm{a}10}$

Observation 2

Time	1	2	3	4	5	16	17	13	3
state	S2	S 1	S1	§1	S2	1 S2	(1) S2(()S2	S 1
Obs	$\lambda_{\rm b1}$		X	X_{b4}	$\lambda_{\rm b5}$	Al	Aller	ALC	$\Lambda_{\rm b9}$

Time	1	2	3	4	5	6	17	
state	S1	S2	S1	S1	S1	S2) S2	\circ S2
Obs	X_{c1}	Λ_{c2}	X_{c3}	X_{c4}	X_{c5}	λ_{c6}	1	

Transition probabilities:

- State S2 occurs 13 times in non-terminal locations
- Of these, it is followed immediately by S1 5 times
- It is followed immediately by S2 8 times
- P(S1 | S2) = 5 / 13; P(S2 | S2) = 8 / 13

Observation 1

Time	1	2	3	4	5	6	7	8	9	10
state	S1	S1	S2	S2	S2	S1	S1	S2	S1	S1
Obs	X_{a1}	X _{a2}	X_{a3}	X_{a4}	X_{a5}	X_{a6}	X_{a7}	X_{a8}	X_{a9}	$\mathbf{X}_{\mathrm{a}10}$

Observation 2

Time	1	2	3	4	5	6	7	8	9
state	S2	S2	S1	S1	S2	S2	S2	S2	S1
Obs	X_{b1}	X_{b2}	X_{b3}	X_{b4}	X_{b5}	X_{b6}	X_{b7}	X_{b8}	X_{b9}

Time	1	2	3	4	5	6	7	8
state	S1	S2	S1	S1	S1	S2	S2	S2
Obs	X_{c1}	X_{c2}	X_{c3}	X_{c4}	X _{c5}	Xc6	X_{c7}	X_{c8}

Parameters learnt so far

• State initial probabilities, often denoted as π

$$-\pi(S1) = 2/3 = 0.66$$

$$-\pi(S2) = 1/3 = 0.33$$

State transition probabilities

$$- P(S1 \mid S1) = 6/11 = 0.545; P(S2 \mid S1) = 5/11 = 0.455$$

$$- P(S1 \mid S2) = 5/13 = 0.385; P(S2 \mid S2) = 8/13 = 0.615$$

Represented as a transition matrix

$$A = \begin{pmatrix} P(S1 \mid S1) & P(S2 \mid S1) \\ P(S1 \mid S2) & P(S2 \mid S2) \end{pmatrix} = \begin{pmatrix} 0.545 & 0.455 \\ 0.385 & 0.615 \end{pmatrix}$$

Each row of this matrix must sum to 1.0

- State output probability for S1
 - There are 13 observations in S1

Observation 1

Time	1	2	3	4	5	6	7	8	9	10
state	S1	S1	S2	S2	S2	S1	S1	S2	S1	S1
Obs	X_{a1}	X _{a2}	X_{a3}	X_{a4}	X_{a5}	X _{a6}	X _{a7}	X_{a8}	X _{a9}	X_{a10}

Observation 2

Time	1	2	3	4	5	6	7	8	9
state	S2	S2	S1	S1	S2	S2	S2	S2	S1
Obs	X_{b1}	X _{b2}	X_{b3}	X_{b4}	X _{b5}	X _{b6}	X _{b7}	X_{b8}	X_{b9}

Time	1	2	3	4	5	6	7	8
state	S1	S2	S1	S1	S1	S2	S2	S2
Obs	X_{c1}	X_{c2}	X_{c3}	X_{c4}	X_{c5}	X_{c6}	X_{c7}	X_{c8}

- State output probability for S1
 - There are 13 observations in S1

- Segregate them out and count
 - Compute parameters (mean and variance) of Gaussian output density for state S1

Time	1	2	6	7	9	10
state	S1	S1	S1	S1	S1	S1
Obs	X_{a1}	X_{a2}	X_{a6}	X_{a7}	X_{a9}	X_{a10}

$$P(X \mid S_1) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_1 \mid}} \exp\left(-0.5(X - \mu_1)^T \Theta_1^{-1}(X - \mu_1)\right)$$

Time	3	4	9
state	S1	S1	S1
Obs	X_{b3}	X_{b4}	X_{b9}

$$\mu_{1} = \frac{1}{13} \begin{pmatrix} X_{a1} + X_{a2} + X_{a6} + X_{a7} + X_{a9} + X_{a10} + X_{b3} + \\ X_{b4} + X_{b9} + X_{c1} + X_{c2} + X_{c4} + X_{c5} \end{pmatrix}$$

Time	1	3	4	5
state	S1	S1	S1	S1
Obs	X_{c1}	X_{c2}	X_{c4}	X_{c5}

$$\Theta_{1} = \frac{1}{13} \begin{pmatrix} (X_{a1} - \mu_{1})(X_{a1} - \mu_{1})^{T} + (X_{a2} - \mu_{1})(X_{a2} - \mu_{1})^{T} + \dots \\ (X_{b3} - \mu_{1})(X_{b3} - \mu_{1})^{T} + (X_{b4} - \mu_{1})(X_{b4} - \mu_{1})^{T} + \dots \\ (X_{c1} - \mu_{1})(X_{c1} - \mu_{1})^{T} + (X_{c2} - \mu_{1})(X_{c2} - \mu_{1})^{T} + \dots \end{pmatrix}$$

- State output probability for S2
 - There are 14 observations in S2

Observation 1

Time	1	2	3	4	5	6	7	8	9	10
state	S1	S1	S2	S2	S2	S1	S1	S2	S1	S1
Obs	X _{a1}	X _{a2}	X _{a3}	X ₂₄	X ₂₅	X _{a6}	X _{a7}	X _{a8}	X _{a0}	\mathbf{X}_{a10}

Observation 2

Time	1	2	3	4	5	6	7	8	9
state	S2	S2	S1	S1	S2	S2	S2	S2	S1
Obs	X_{b1}	X_{b2}	X _{b3}	X_{b4}	X_{b5}	X_{b6}	X_{b7}	X_{b8}	X_{b9}

Time	1	2	3	4	5	6	7	8
state	S1	S2	S1	S1	S1	S2	S2	S2
Obs	X_{c1}	X _{c2}	X_{c3}	X_{c4}	X _{c5}	Xc6	X_{c7}	X_{c8}

- State output probability for S2
 - There are 14 observations in S2

- Segregate them out and count
 - Compute parameters (mean and variance) of Gaussian output density for state S2

Time	3	4	5	8
state	S2	S2	S2	S2
Obs	X_{a3}	X_{a4}	X_{a5}	X_{a8}

$$P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1}(X - \mu_2)\right)$$

Time	1	2	5	6	7	8
state	S2	S2	S2	S2	S2	S2
Obs	X_{b1}	X_{b2}	X_{b5}	X_{b6}	X_{b7}	X_{b8}

Time	2	6	7	8
state	S2	S2	S2	S2
Obs	X_{c2}	X_{c6}	X_{c7}	X_{c8}

$$\mu_{2} = \frac{1}{14} \begin{pmatrix} X_{a3} + X_{a4} + X_{a5} + X_{a8} + X_{b1} + X_{b2} + X_{b5} + \\ X_{b6} + X_{b7} + X_{b8} + X_{c2} + X_{c6} + X_{c7} + X_{c8} \end{pmatrix}$$

$$\Theta_1 = \frac{1}{14} \left((X_{a3} - \mu_2)(X_{a3} - \mu_2)^T + \dots \right)$$

We have learnt all the HMM parmeters

• State initial probabilities, often denoted as π

$$-\pi(S1) = 0.66$$
 $\pi(S2) = 1/3 = 0.33$

State transition probabilities

$$A = \begin{pmatrix} 0.545 & 0.455 \\ 0.385 & 0.615 \end{pmatrix}$$

State output probabilities

State output probability for S1

State output probability for S2

$$P(X \mid S_1) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_1 \mid}} \exp\left(-0.5(X - \mu_1)^T \Theta_1^{-1}(X - \mu_1)\right)$$

$$P(X \mid S_1) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_1 \mid}} \exp\left(-0.5(X - \mu_1)^T \Theta_1^{-1} (X - \mu_1)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right)$$

Update rules at each iteration

 $\pi(s_i) = \frac{\text{No. of observation sequences that start at state } s_i}{\text{Total no. of observation sequences}}$

$$P(s_j \mid s_i) = \frac{\sum_{obs \ t:state(t) = s_i.\&.state(t+1) = s_j}}{\sum_{obs \ t:state(t) = s_i.}}$$

$$\mu_{i} = \frac{\sum_{obs \ t:state(t)=s_{i}} X_{obs,t}}{\sum_{obs \ t:state(t)=s_{i}} 1}$$

$$\Theta_{i} = \frac{\sum_{obs} \sum_{t:state(t)=s_{i}} (X_{obs,t} - \mu_{i})(X_{obs,t} - \mu_{i})^{T}}{\sum_{obs} \sum_{t:state(t)=s_{i}} 1}$$

- Assumes state output PDF = Gaussian
- For GMMs, estimate GMM parameters from 24 Oct 201 Collection of observations at any state

Training by segmentation: Viterbi training

- Initialize all HMM parameters
- Segment all training observation sequences into states using the Viterbi algorithm with the current models
- Using estimated state sequences and training observation sequences, reestimate the HMM parameters
- This method is also called a "segmental k-means" learning procedure

24 Oct 2013 11755/18797

Alternative to counting: SOFT counting

- Expectation maximization
- Every observation contributes to every state

Update rules at each iteration

$$\pi(s_i) = \frac{\sum_{Obs} P(state(t=1) = si \mid Obs)}{\text{Total no. of observation sequences}}$$

$$P(s_{j} | s_{i}) = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i}, state(t+1) = s_{j} | Obs)}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} | Obs)}$$

$$\mu_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs) X_{Obs,t}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

$$\Theta_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)(X_{Obs,t} - \mu_{i})(X_{Obs,t} - \mu_{i})^{T}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

Every observation contributes to every state

Update rules at each iteration

$$\pi(s_i) = \frac{\sum_{Obs} P(state(t=1) = s_i \mid Obs)}{\text{Total no. of observation sequences}}$$

$$P(s_{j} | s_{i}) = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i}, state(t+1) = s_{j} | Obs)}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} | Obs)}$$

$$\mu_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs) X_{Obs,t}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

$$\Theta_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)(X_{Obs,t} - \mu_{i})(X_{Obs,t} - \mu_{i})^{T}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

Where did these terms come from?

$$P(state(t) = s \mid Obs)$$

- The probability that the process was at s when it generated X_t given the entire observation
 - Dropping the "Obs" subscript for brevity

$$P(state(t) = s \mid X_1, X_2, ..., X_T) \propto P(state(t) = s, X_1, X_2, ..., X_T)$$

- We will compute $\frac{P(state(t) = s_i, x_1, x_2, ..., x_T)}{\text{first}}$
 - This is the probability that the process visited s at time t while producing the entire observation

$$P(state(t) = s, x_1, x_2, ..., x_T)$$

 The probability that the HMM was in a particular state s when generating the observation sequence is the probability that it followed a state sequence that passed through s at time t

$$P(state(t) = s, x_1, x_2, ..., x_T)$$

- This can be decomposed into two multiplicative sections
 - The section of the lattice leading into state s at time t and the section leading out of it

The Forward Paths

- The probability of the red section is the total probability of all state sequences ending at state s at time t
 - This is simply $\alpha(s,t)$
 - Can be computed using the forward algorithm

time

1

The Backward Paths

- The blue portion represents the probability of all state sequences that began at state s at time t
 - Like the red portion it can be computed using a backward recursion

The Backward Recursion

$$\beta(s,t) = P(x_{t+1}, x_{t+2}, ..., x_T \mid state(t) = s)$$

$$\beta(s,t) = \sum_{s'} \beta(s',t+1) P(s'|s) P(x_{t+1}|s')$$

- $\beta(s,t)$ is the total probability of ALL state sequences that depart from s at time t, and all observations after x_t
 - $-\beta(s,T)=1$ at the final time instant for all valid final states

The complete probability

$$\alpha(s,t)\beta(s,t) = P(x_{t+1}, x_{t+2}, ..., x_T, state(t) = s)$$

Posterior probability of a state

The probability that the process was in state s
 at time t, given that we have observed the
 data is obtained by simple normalization

$$P(state(t) = s \mid Obs) = \frac{P(state(t) = s, x_1, x_2, ..., x_T)}{\sum_{s'} P(state(t) = s, x_1, x_2, ..., x_T)} = \frac{\alpha(s, t)\beta(s, t)}{\sum_{s'} \alpha(s', t)\beta(s', t)}$$

• This term is often referred to as the gamma term and denoted by $\gamma_{s.t}$

Update rules at each iteration

$$\pi(s_i) = \frac{\sum_{Obs} P(state(t=1) = s_i \mid Obs)}{\text{Total no. of observation sequences}}$$

$$P(s_{j} | s_{i}) = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i}, state(t+1) = s_{j} | Obs)}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} | Obs)}$$

$$\mu_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs) X_{Obs,t}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

$$\Theta_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)(X_{Obs,t} - \mu_{i})(X_{Obs,t} - \mu_{i})^{T}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

These have been found

Update rules at each iteration

$$\pi(s_i) = \frac{\sum_{Obs} P(state(t=1) = s_i \mid Obs)}{\text{Total no. of observation sequences}}$$

$$P(s_{j} | s_{i}) = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i}, state(t+1) = s_{j} | Obs)}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} | Obs)}$$

$$\mu_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs) X_{Obs,t}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

$$\Theta_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)(X_{Obs,t} - \mu_{i})(X_{Obs,t} - \mu_{i})^{T}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

Where did these terms come from?

$$P(state(t) = s, state(t+1) = s', x_1, x_2, ..., x_T)$$

24 Oct 2013 11755/18797 105

$$P(state(t) = s, state(t+1) = s', x_1, x_2, ..., x_T)$$

 $\alpha(s,t)$

$$P(state(t) = s, state(t+1) = s', x_1, x_2, ..., x_T)$$

$$\alpha(s,t) P(s'|s) P(x_{t+1}|s')$$

24 Oct 2013 11755/18797 107

$$P(state(t) = s, state(t+1) = s', x_1, x_2, ..., x_T)$$

$$\alpha(s,t)P(s'|s)P(x_{t+1}|s')\beta(s',t+1)$$

24 Oct 2013 11755/18797 108

The a posteriori probability of transition

$$P(state(t) = s, state(t+1) = s' | Obs) = \frac{\alpha(s,t)P(s'|s)P(x_{t+1}|s')\beta(s',t+1)}{\sum_{s_1} \sum_{s_2} \alpha(s_1,t)P(s_2|s_1)P(x_{t+1}|s_2)\beta(s_2,t+1)}$$

The a posteriori probability of a transition given an observation

Update rules at each iteration

$$\pi(s_i) = \frac{\sum_{Obs} P(state(t=1) = s_i \mid Obs)}{\text{Total no. of observation sequences}}$$

$$P(s_{j} | s_{i}) = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i}, state(t+1) = s_{j} | Obs)}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} | Obs)}$$

$$\mu_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs) X_{Obs,t}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

$$\Theta_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)(X_{Obs,t} - \mu_{i})(X_{Obs,t} - \mu_{i})^{T}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

These have been found

Training without explicit segmentation: Baum-Welch training

 Every feature vector associated with every state of every HMM with a probability

- Probabilities computed using the forward-backward algorithm
- Soft decisions taken at the level of HMM state
- In practice, the segmentation based Viterbi training is much easier to implement and is much faster
- The difference in performance between the two is small, especially if we have lots of training data

24 Oct 2013 11755/18797

HMM Issues

- How to find the best state sequence: Covered
- How to learn HMM parameters: Covered
- How to compute the probability of an observation sequence: Covered

Magic numbers

- How many states:
 - No nice automatic technique to learn this
 - You choose
 - For speech, HMM topology is usually left to right (no backward transitions)
 - For other cyclic processes, topology must reflect nature of process
 - No. of states 3 per phoneme in speech
 - For other processes, depends on estimated no. of distinct states in process

Applications of HMMs

Classification:

- Learn HMMs for the various classes of time series from training data
- Compute probability of test time series using the HMMs for each class
- Use in a Bayesian classifier
- Speech recognition, vision, gene sequencing, character recognition, text mining...
- Prediction
- Tracking

Applications of HMMs

- Segmentation:
 - Given HMMs for various events, find event boundaries
 - Simply find the best state sequence and the locations where state identities change
- Automatic speech segmentation, text segmentation by topic, geneome segmentation, ...