
Machine Learning for Signal 
Processing 

Linear Gaussian Models 

Class 21.  12 Nov 2013 

 

Instructor: Bhiksha Raj 
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Administrivia 

• HW3 is up 

– . 

• Projects – please send us an update 
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Recap: MAP Estimators 

• MAP (Maximum A Posteriori): Find a “best 

guess” for y (statistically), given known x 

    y = argmax Y P(Y|x) 
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Recap: MAP estimation 

• x and y are jointly Gaussian 
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• z is Gaussian 
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MAP estimation: Gaussian PDF 
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MAP estimation: The Gaussian at a 
particular value of X 
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Conditional Probability of y|x 

• The conditional probability of y given x is also Gaussian 

– The slice in the figure is Gaussian 

• The mean of this Gaussian is a function of x 

• The variance of y reduces if x is known 

– Uncertainty is reduced 
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F1 

MAP estimation: The Gaussian at a 
particular value of X 
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MAP Estimation of a Gaussian RV 
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Its also a minimum-mean-squared 
error estimate 

• Minimize error: 

 

 

 

• Differentiating and equating to 0: 
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For the Gaussian: MAP = MMSE 
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   Would be true of any symmetric distribution 



MMSE estimates for mixture 
distributions 

12 

 Let P(y|x) be a mixture density 

 The MMSE estimate of y is given by 

 Just a weighted combination of the MMSE 
estimates from the component distributions  
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MMSE estimates from a Gaussian 
mixture 

12 Nov 2013 11755/18797 13 

 P(y|x) is also a Gaussian mixture 

 Let P(x,y) be a Gaussian Mixture 
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MMSE estimates from a Gaussian 
mixture 
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 Let P(y|x) is a Gaussian Mixture 
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MMSE estimates from a Gaussian 
mixture 
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 E[y|x] is also a mixture 

 P(y|x) is a mixture Gaussian density 
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MMSE estimates from a Gaussian 
mixture 
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 Weighted combination of MMSE estimates 
obtained from individual Gaussians! 

 Weight P(k|x) is easily computed too.. 
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MMSE estimates from a Gaussian 
mixture 
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 A mixture of estimates from individual Gaussians 



Voice Morphing 

• Align training recordings from both speakers 

– Cepstral vector sequence 

• Learn a GMM on joint vectors 

• Given speech from one speaker, find MMSE estimate of the other 

• Synthesize from cepstra 
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MMSE with GMM: Voice 
Transformation  

- Festvox GMM transformation suite (Toda)                

                       awb     bdl     jmk     slt 

            awb 

             bdl 

             jmk 

              slt 
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MAP / ML / MMSE 

• General statistical estimators 

• All used to predict a variable, based on other 
parameters related to it.. 

 

• Most common assumption: Data are Gaussian, all 
RVs are Gaussian 

– Other probability densities may also be used.. 
 

• For Gaussians relationships are linear as we saw.. 
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Gaussians and more Gaussians.. 

• Linear Gaussian Models.. 

 

• But first a recap 
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A Brief Recap 

• Principal component analysis:  Find the K bases that 

best explain the given data 

• Find B and C such that the difference between D and 

BC is minimum 

– While constraining that the columns of  B are orthonormal 
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Remember Eigenfaces 

• Approximate every face f as  
f  = wf,1 V1+ wf,2 V2 + wf,3 V3 +.. + wf,k Vk  

• Estimate V to minimize the squared error 

 

• Error is unexplained by V1.. Vk 

• Error is orthogonal to Eigenfaces 
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Karhunen Loeve vs. PCA 

• Eigenvectors of the Correlation 
matrix: 
– Principal directions of tightest 

ellipse centered on origin 

– Directions that retain 
maximum energy 
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Karhunen Loeve vs. PCA 

• Eigenvectors of the Correlation 
matrix: 
– Principal directions of tightest 

ellipse centered on origin 

– Directions that retain 
maximum energy 
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• Eigenvectors of the Covariance 
matrix: 
– Principal directions of tightest 

ellipse centered on data 

– Directions that retain maximum 
variance 



Karhunen Loeve vs. PCA 

• Eigenvectors of the Correlation 
matrix: 
– Principal directions of tightest 

ellipse centered on origin 

– Directions that retain 
maximum energy 
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• Eigenvectors of the Covariance 
matrix: 
– Principal directions of tightest 

ellipse centered on data 

– Directions that retain maximum 
variance 



Karhunen Loeve vs. PCA 

• Eigenvectors of the Correlation 
matrix: 
– Principal directions of tightest 

ellipse centered on origin 

– Directions that retain 
maximum energy 
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• Eigenvectors of the Covariance 
matrix: 
– Principal directions of tightest 

ellipse centered on data 

– Directions that retain maximum 
variance 



Karhunen Loeve vs. PCA 

• If the data are naturally centered at origin, KLT == PCA 

 

• Following slides refer to PCA! 

– Assume data centered at origin for simplicity 

• Not essential, as we will see.. 
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Remember Eigenfaces 

• Approximate every face f as  
f  = wf,1 V1+ wf,2 V2 + wf,3 V3 +.. + wf,k Vk  

• Estimate V to minimize the squared error 

 

• Error is unexplained by V1.. Vk 

• Error is orthogonal to Eigenfaces 
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Eigen Representation 

• K-dimensional representation 

– Error is orthogonal to representation 

– Weight and error are specific to data instance 
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Representation 

• K-dimensional representation 

– Error is orthogonal to representation 

– Weight and error are specific to data instance 
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Representation 

• K-dimensional representation 

– Error is orthogonal to representation 
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w 

All data with the same 
representation wV1 
lie a plane orthogonal to 
wV1 

0 



With 2 bases 

• K-dimensional representation 

– Error is orthogonal to representation 

– Weight and error are specific to data instance 
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With 2 bases 

• K-dimensional representation 

– Error is orthogonal to representation 

– Weight and error are specific to data instance 
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In Vector Form 

• K-dimensional representation 

– Error is orthogonal to representation 

– Weight and error are specific to data instance 
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Xi = w1iV1 + w2iV2 + ei 
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In Vector Form 
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Xi = w1iV1 + w2iV2 + ei 

e2 

w12 

Error is at 90o 

to the eigenface 

w22 

V1 

V2 D2 

eVwx 

• K-dimensional representation 
• x is a D dimensional vector 
• V is a D x K matrix 
• w is a K dimensional vector 
• e is a D dimensional vector 



Learning PCA 

• For the given data: find the K-dimensional 
subspace such that it captures most of the 
variance in the data 

– Variance in remaining subspace is minimal 
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Constraints 

38 

eVwx 

• VTV = I  :  Eigen vectors are orthogonal to each other 

• For every vector, error is orthogonal to Eigen vectors 

– eTV = 0 

• Over the collection of data 

– Average  wTw = Diagonal  :  Eigen representations are uncorrelated 

– Determinant eTe = minimum: Error variance is minimum 

• Mean of error is 0 
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A Statistical Formulation of PCA 

• x is a random variable generated according to a linear relation 

• w is drawn from an K-dimensional Gaussian with diagonal 

covariance 

• e is drawn from a 0-mean (D-K)-rank D-dimensional Gaussian 

• Estimate V (and B) given examples of x 
39 
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Linear Gaussian Models!! 

• x is a random variable generated according to a linear relation 

• w is drawn from a Gaussian 

• e is drawn from a 0-mean Gaussian 

• Estimate V given examples of x 

– In the process also estimate B and E 40 
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Linear Gaussian Models!! 

• x is a random variable generated according to a linear relation 

• w is drawn from a Gaussian 

• e is drawn from a 0-mean Gaussian 

• Estimate V given examples of x 

– In the process also estimate B and E 41 
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Linear Gaussian Models 

• Observations are linear functions of two uncorrelated 
Gaussian random variables 

– A “weight” variable w 

– An “error” variable e 

– Error not correlated to weight:  E[eTw] = 0 

• Learning LGMs:   Estimate parameters of the model 
given instances of x 

– The problem of learning the distribution of a Gaussian RV 
42 
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LGMs:  Probability Density 

• The mean of x: 
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The probability of x 

• x is a linear function of Gaussians: x is also Gaussian 

• Its mean and variance are as given 
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Estimating the variables of the 
model 

• Estimating the variables of the LGM is 
equivalent to estimating P(x) 

– The variables are , V, B and E 
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Estimating the model 

• The model is indeterminate: 

– Vw = VCC-1w = (VC)(C-1w) 

– We need extra constraints to make the solution unique 

• Usual constraint :  B = I 

– Variance of w is an identity matrix 
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Estimating the variables of the 
model 

• Estimating the variables of the LGM is 
equivalent to estimating P(x) 

– The variables are , V, and E 
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The Maximum Likelihood Estimate 

• The ML estimate of  does not depend on the 
covariance of the Gaussian 
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Centered Data 

• We can safely assume “centered” data 

–  = 0 

• If the data are not centered, “center” it 

– Estimate mean of data 

• Which is the maximum likelihood estimate 

– Subtract it from the data 
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Simplified Model 

• Estimating the variables of the LGM is 
equivalent to estimating P(x) 

– The variables are V, and E 
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Estimating the model 

• Given a collection of xi terms 

– x1, x2,..xN 

• Estimate V and E 

• w is unknown for each x 

• But if assume we know w for each x, then 
what do we get: 
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Estimating the Parameters 

• We will use a maximum-likelihood estimate 

• The log-likelihood of  x1..xN knowing their wis 
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Maximizing the log-likelihood 

• Differentiating w.r.t.  V and setting to 0 
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Estimating LGMs: If we know w 

• But in reality we don’t know the w for each x 

– So how to deal with this? 

 

• EM.. 
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Recall EM 

• We figured out how to compute parameters if we knew the 
missing information 

• Then we “fragmented” the observations according to the 
posterior probability P(z|x) and counted as usual 

• In effect we took the expectation with respect to the a 
posteriori probability of the missing data:  P(z|x) 
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EM for LGMs 

• Replace unseen data terms with expectations 
taken w.r.t.  P(w|xi) 
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EM for LGMs 

• Replace unseen data terms with expectations 
taken w.r.t.  P(w|xi) 
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Expected Value of w given x 

• x and w are jointly Gaussian! 

– x is Gaussian 

– w is Gaussian 

– They are linearly related 
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Expected Value of w given x 

• x and w are jointly Gaussian! 
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The conditional expectation of w 
given z 

• P(w|z) is a Gaussian 
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LGM: The complete EM algorithm 

• Initialize V and E 

• E step: 

 

 

• M step: 

 

 

•   
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So what have we achieved 

• Employed a complicated EM algorithm to learn a 
Gaussian PDF for a variable x 

• What have we gained??? 
 

• Next class: 

– PCA 

• Sensible PCA 

• EM algorithms for PCA 

– Factor Analysis 

• FA for feature extraction 
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• Find directions that capture most of the 
variation in the data 

• Error is orthogonal to these variations 
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LGMs  :  Application 1 
Learning principal components 



• The full covariance matrix of a Gaussian has D2 terms 

• Fully captures the relationships between variables 

• Problem: Needs a lot of data to estimate robustly  
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LGMs  :  Application 2 
Learning with insufficient data 

FULL COV FIGURE 



To be continued.. 

• Other applications.. 

• Next class 
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