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Correlation vs. Causation 

• The consumption of burgers has gone up 

steadily in the past decade 

 

 

• In the same period, the penguin population of 

Antarctica has gone down 
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The concept of correlation 

• Two variables are correlated if knowing the 
value of one gives you information about the 
expected value of the other 
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The statistical concept of 
correlatedness 

• Two variables X and Y are correlated if If 
knowing X gives you an expected value of Y 

 

• X and Y are uncorrelated if knowing X tells you 
nothing about the expected value of Y 

– Although it could give you other information 

– How?  
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A brief review of basic probability 

• Uncorrelated:  Two random variables X and Y are 
uncorrelated iff: 

– The average value of the product of the variables equals the 
product of their individual averages 

 

• Setup:  Each draw produces one instance of X and one 
instance of Y  

– I.e one instance of (X,Y) 

• E[XY] =  E[X]E[Y] 
 

• The average value of X is the same regardless of the value 
of Y 
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Uncorrelatedness 

• Which of the above represent uncorrelated RVs? 
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The statistical concept of 
Independence 

• Two variables X and Y are dependent if If 
knowing X gives you any information about Y 

 

• X and Y are independent if knowing X tells you 
nothing at all of Y 
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A brief review of basic probability 

• Independence:  Two random variables X and Y are 

independent iff: 

– Their joint probability equals the product of their 

individual probabilities 

• P(X,Y) =  P(X)P(Y) 

• Independence implies uncorrelatedness 

– The average value of X is the same regardless of the 

value of Y 

• E[X|Y] = E[X] 

– But not the other way 
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A brief review of basic probability 

• Independence:  Two random variables X and Y 

are independent iff: 

• The average value of any function of X is the 

same regardless of the value of Y 

– Or any function of Y 

• E[f(X)g(Y)]  =  E[f(X)] E[g(Y)]   for all f(), g() 
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Independence 

• Which of the above represent independent RVs? 

• Which represent uncorrelated RVs? 

23 Sep 2013 11755/18797 10 



A brief review of basic probability 

• The expected value of an odd function of an 

RV is 0 if 

– The RV is 0 mean 

– The PDF is of the RV is symmetric around 0 

• E[f(X)]  =  0 if f(X) is odd symmetric 
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A brief review of basic info. theory 

• Entropy:  The minimum average number of bits 
to transmit to convey a symbol 

 

 

 

• Joint entropy:  The minimum average number of 
bits to convey sets (pairs here) of symbols 
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A brief review of basic info. theory 

• Conditional Entropy:  The minimum average 

number of bits to transmit to convey a symbol 

X, after symbol Y has already been conveyed 

– Averaged over all values of X and Y 
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A brief review of basic info. theory 

• Conditional entropy of X = H(X) if X is 

independent of Y 

 

 

• Joint entropy of X and Y is the sum of the 

entropies of X and Y if they are independent 
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Onward.. 
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Projection: multiple notes 
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 P = W (WTW)-1 WT 

 Projected Spectrogram = PM 
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We’re actually computing a score 
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 M ~  WH 
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So what are we doing here? 

• M ~ WH is an approximation 

• Given W, estimate H to minimize error 

 

 

• Must ideally find transcription of given notes 
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How about the other way? 
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Going the other way.. 

• M ~ WH is an approximation 

• Given H, estimate W to minimize error 
 

 

• Must ideally find the notes corresponding to the 
transcription 
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When both parameters are unknown 

• Must estimate both H and W to best 
approximate M 

• Ideally, must learn both the notes and their 
transcription! 

W =?  

H = ?  

approx(M) = ?  
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A least squares solution 

• Unconstrained 

– For any W, H that minimizes the error,  W’=WA,  

H’=A-1H also minimizes the error for any 
invertible A 

 

 

 

 

• Too many solutions 
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A constrained least squares solution 

 

 

 

• For our problem, lets consider the “truth”.. 

• When one note occurs, the other does not 

– hi
Thj = 0  for all i != j 

• The rows of H are uncorrelated 
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A least squares solution 

• Assume: HHT = I 

– Normalizing all rows of H to length 1 

• pinv(H) =  HT 

• Projecting M onto H 

– W = M pinv(H) =  MHT 

– WH = M HTH 

H 
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Finding the notes 

• Add the constraint:  HHT = I 

 

 

• The solution is obtained through Eigen 
decomposition 

 

 

 

• Note: we are considering the correlation of 
MT 
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So how does that work? 

• There are 12 notes in the segment, hence we 
try to estimate 12 notes.. 
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So how does that work? 

• The scores of the first three “notes” and their 
contributions 
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Finding the notes 

• Can find W instead of H 

 
 

• Assume the columns of W are orthogonal 

• This results in the more conventional Eigen 
decomposition 
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So how does that work? 

• There are 12 notes in the segment, hence we 
try to estimate 12 notes.. 

• Results are not good again 

23 Oct 2012 11755/18797 31 



Our notes are not orthogonal 

• Overlapping frequencies 

• Note occur concurrently 
– Harmonica continues to resonate to previous note 

• More generally, simple orthogonality will not give 
us the desired solution 
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Eigendecomposition and SVD 

• Matrix M can be decomposed as M = USVT 

• When we assume the scores are orthogonal, we get  

            H = VT,  W = US 

• When we assume the notes are orthogonal, we get  

              W = U,  H = SVT 

• In either case the results are the same 

– The notes are orthogonal and so are the scores 

– Not good in our problem 
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Orthogonality 

• In any least-squared error decomposition 
M=WH,  if the columns of W are orthogonal, 
the rows of H will also be orthogonal 

 

• Sometimes mere orthogonality is not enough 
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What else can we look for? 

• Assume: The “transcription” of one note does 
not depend on what else is playing 

– Or, in a multi-instrument piece, instruments are 
playing independently of one another 

• Not strictly true, but still.. 
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Formulating it with Independence 

• Impose statistical independence constraints 
on decomposition 
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Changing problems for a bit 

• Two people speak simultaneously 
• Recorded by two microphones 
• Each recorded signal is a mixture of both signals 
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A Separation Problem 

• M = WH 

– M = “mixed” signal 

– W = “notes” 

– H = “transcription” 
 

• Separation challenge: Given only M estimate H 

• Identical to the problem of “finding notes” 
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Imposing Statistical Constraints 

• M = WH 

• Given only M estimate H 

• H = W-1M  =   AM 

• Only known constraint:  The rows of H are 
independent 

• Estimate A such that the components of AM are 
statistically independent 

– A is the unmixing matrix 
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Statistical Independence 

• M = WH      H = AM 
 

• Emulating independence 

– Compute W (or A) and H such that H has 
statistical characteristics that are observed in 
statistically independent variables 

 

• Enforcing independence 

– Compute W and H such that the components of 
M are independent 
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Emulating Independence 

• The rows of H are uncorrelated 
– E[hihj] = E[hi]E[hj] 

– hi and hj are the ith and jth components of any vector in H 
 

• The fourth order moments are independent 
– E[hihjhkhl] = E[hi]E[hj]E[hk]E[hl] 

– E[hi
2hjhk] = E[hi

2]E[hj]E[hk] 

– E[hi
2hj

2] = E[hi
2]E[hj

2] 

– Etc. 
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Zero Mean 
• Usual to assume zero mean processes 

– Otherwise, some of the math doesn’t work well 
 

• M = WH      H = AM 
 

• If mean(M) = 0  =>  mean(H) = 0 
– E[H] = A.E[M] = A0 = 0 

– First step of ICA:  Set  the mean of M to 0 
 

 

 

 

 

 

– mi are the columns of M 
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Emulating Independence.. 

• Independence   Uncorrelatedness 

• Estimate a C such that CM is uncorrelated 

• X = CM 

– E[xixj] = E[xi]E[xj]  =  dij  [since M is now “centered”] 

– XXT = I 

• In reality, we only want this to be a diagonal matrix, but we’ll 
make it identity 
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Decorrelating 

• X = CM 

• XXT = I 
 

• Eigen decomposition MMT= ESET 

• Let C = S-1/2ET 

– X = S-1/2ETM 

– XXT = WMMTWT = S-1/2ET ESETES-1/2 = I 
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Decorrelating 

• X = CM 

• XXT = I 
 

• Eigen decomposition MMT= ESET 

• Let C = S-1/2ET 

– X = S-1/2ETM 

– WMMTWT = S-1/2ET ESETES-1/2 = I 
 

• X is called the whitened version of M 

– The process of decorrelating M is called whitening 

– C is the whitening matrix 
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Uncorrelated != Independent 

• Whitening merely ensures that the resulting shat 
signals are uncorrelated, i.e. 

 

                 E[xixj] = 0 if i != j             
 

• This does not ensure higher order moments are also 
decoupled, e.g. it does not ensure that 

 

                   E[xi
2xj

2] = E[xi
2]E [xj

2] 
 

• This is one of the signatures of independent RVs 

• Lets explicitly decouple the fourth order moments 
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Decorrelating 

• X = CM 

• XXT = I 
 

• Will multiplying X by B re-correlate the components? 

• Not if B is unitary 

– BBT = BTB = I 

• HHT = BXXTBT = BBT = I 

• So we want to find a unitary matrix 

– Since the rows of H are uncorrelated 

• Because they are independent 
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ICA: Freeing Fourth Moments 
• We have E[xi xj] = 0 if i != j 

– Already been decorrelated 
 

• A=BC,     H = BCM,    X = CM,      H = BX 
 

• The fourth moments of H have the form: 
 E[hi hj hk hl]  

 

• If the  rows of H were independent 
 E[hi hj hk hl]  = E[hi] E[hj] E[hk] E[hl] 

 

• Solution:  Compute B such that the fourth moments of H = BX 
are decoupled 
– While ensuring that B is Unitary 
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ICA: Freeing Fourth Moments 
• Create a matrix of fourth moment terms that would be 

diagonal were the rows of H independent and diagonalize it 

• A good candidate 

– Good because it incorporates the energy in all rows of H  
 
 

 

 

 

– Where 
dij = E[ Sk hk

2 hi hj] 

– i.e. 
D = E[hTh h hT] 

• h are the columns of H 

• Assuming h is real,  else replace transposition with Hermition 
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ICA: The D matrix 

• Average above term across all columns of H 
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ICA: The D matrix 

• If the hi terms were independent 
– For i != j 

 

 

 

– Centered:  E[hj] = 0    E[ Sk hk
2 hi hj]=0 for i != j 

– For i = j 

 

 

 

• Thus, if the hi terms were independent, dij = 0  if i != j 

• i.e., if hi  were independent, D would be a diagonal matrix 
– Let us diagonalize D 
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Diagonalizing D 

• Compose a fourth order matrix from X   

– Recall:  X = CM,   H = BX = BCM  

• B is what we’re trying to learn to make H independent 

 

– Compose  D’ = E[xT x x xT]  
 

• Diagonalize D’  via Eigen decomposition 
 D’  = UUT  

• B = UT 

– That’s it!!!! 
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B frees the fourth moment 

D’  = UUT  ;   B = UT 

• U is a unitary matrix, i.e. UTU = UUT = I (identity) 

• H = BX = UTX 
 

• h = UTx 

 

• The fourth moment matrix of H is 
E[hT h h hT] =  E[xTUUTx UT x xTU] 

                            = E[xTx UT x xTU] 
                      = UT E[xTx xxT]U 
                      = UT D’ U  
                      = UT U  U T U =  

• The fourth moment matrix of H = UTX is Diagonal!! 
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Overall Solution 

• H = AM = BCM 
– C is the (transpose of the) matrix of Eigen vectors of MMT 

• X = CM 

• A =  BC = UTC 

– B is the (transpose of the) matrix of Eigenvectors of  
X.diag(XTX).XT 
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Independent Component Analysis 
• Goal: to derive a matrix A such that the rows of AM are 

independent 

• Procedure: 

1. “Center” M 

2. Compute the autocorrelation matrix RMM of M 

3. Compute whitening matrix C  via Eigen decomposition 
    RMM = ESET,    C = S-1/2ET 

4. Compute X = CM 

5. Compute the fourth moment matrix D’ = E[xTxxxT]  

6. Diagonalize D’ via Eigen decomposition 

7. D’ = UUT 

8. Compute A = UTC 

• The fourth moment matrix of H=AM is diagonal 
– Note that the autocorrelation matrix of H will also be diagonal 
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ICA by diagonalizing moment 
matrices 

• The procedure just outlined, while fully functional, has 

shortcomings 

– Only a subset of fourth order moments are considered 

– There are many other ways of constructing fourth-order moment 

matrices that would ideally be diagonal 

• Diagonalizing the particular fourth-order moment matrix we have chosen 

is not guaranteed to diagonalize every other fourth-order moment matrix 
 

• JADE: (Joint Approximate Diagonalization of Eigenmatrices), 

J.F. Cardoso 

– Jointly diagonalizes several fourth-order moment matrices 

– More effective than the procedure shown, but computationally  more 

expensive 
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Enforcing Independence 

• Specifically ensure that the components of H are 
independent 

– H = AM 
 

• Contrast function: A non-linear function that has a 
minimum value when the output components are 
independent 

 

• Define and minimize a contrast function 
» F(AM) 

• Contrast functions are often only approximations too.. 
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A note on pre-whitening 
• The mixed signal is usually “prewhitened” 

– Normalize variance along all directions 

– Eliminate second-order dependence 
 

• Eigen decomposition MMT = ESET 

• C = S-1/2ET 

 

• Can use first K columns of E only if only K independent 
sources are expected 

– In microphone array setup – only K < M sources 
 

• X =  CM 

– E[xixj] = E[xi]E[xj] = dij for centered signal 
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The contrast function 

• Contrast function: A non-linear function that 
has a minimum value when the output 
components are independent 

 

• An explicit contrast function 

 

 

• With constraint :  H = BX 

– X is “whitened” M 
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Linear Functions 

• h = Bx  

– Individual columns of the H and X matrices 

– x is mixed signal, B is the unmixing matrix 
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The contrast function 

 

 

 

 

• Ignoring H(x) (Const) 

 

 

• Minimize  the above to obtain B 
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An alternate approach 

• Recall PCA 

• M = WH,  the columns of W must be 
uncorrelated 

• Leads to:  minW||M –WTWM||2+trace(WWT) 

– Error minimization framework to estimate W 

• Can we arrive at an error minimization 
framework for ICA 

• Define an “Error” objective that represents 
independence 
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An alternate approach 

• Definition of Independence – if x and y are 
independent:    

– E[f(x)g(y)] = E[f(x)]E[g(y)]  

– Must hold for every f() and g()!! 

23 Sep 2013 11755/18797 64 



An alternate approach 

• Define g(H) = g(BX)  (component-wise 
function) 

 

 

 

• Define f(H) = f(BX) 
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An alternate approach 
• P = g(H) f(H)T = g(BX) f(BX)T 

 
 

     
                                    This is a square matrix 
• Must ideally be 

 
 
 
 

• Error = ||P-Q||F
2 
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An alternate approach 

• Ideal value for Q 

 

 

 

 

• If g() and h() are odd symmetric functions  
    Sjg(hij) = 0 for all i 

– Since = Sjhij = 0   (H is centered) 

– Q is a Diagonal Matrix!!! 
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An alternate approach 

• Minimize Error 

 

 

 

 

• Leads to trivial Widrow Hopf type iterative 
rule: 
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Update Rules 

• Multiple solutions under different 
assumptions for g() and f() 

• H = BX 

• B = B +  DB 

• Jutten Herraut : Online update 

– DBij  = f(hi)g(hj);  -- actually assumed a recursive 
neural network 

• Bell Sejnowski 

– DB = ([BT]-1 – g(H)XT) 
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Update Rules 

• Multiple solutions under different 
assumptions for g() and f() 

• H = BX 

• B = B +  DB 
 

• Natural gradient  -- f() = identity function 

– DB = (I – g(H)HT)W 

• Cichoki-Unbehaeven 

– DB = (I – g(H)f(H)T)W 
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What are G() and H() 

• Must be odd symmetric functions 

• Multiple functions proposed 

 

 

 

• Audio signals in general 
– DB = (I – HHT-Ktanh(H)HT)W 

• Or simply 
– DB = (I –Ktanh(H)HT)W 
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So how does it work? 

• Example with instantaneous mixture of two 
speakers 

• Natural gradient update 

• Works very well! 
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Another example! 
Input Mix Output 
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Another Example 

• Three instruments.. 
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The Notes 

• Three instruments.. 

23 Sep 2013 11755/18797 75 



ICA for data exploration 

• The “bases” in PCA 
represent the “building 
blocks” 

– Ideally notes 

• Very successfully used 

• So can ICA be used to 
do the same? 
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ICA vs PCA bases 
Non-Gaussian data 

ICA 

PCA 

 Motivation for using ICA vs PCA 

 PCA will indicate orthogonal directions 

of maximal variance 

 May not align with the data! 

 ICA finds directions that are 

independent 

 More likely to “align” with the data  
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Finding useful transforms with ICA 
• Audio preprocessing 

example 

• Take a lot of audio snippets 
and concatenate them in a 
big matrix, do component 
analysis 

• PCA results in the DCT bases 

• ICA returns time/freq 
localized sinusoids which is a 
better way to analyze sounds 

• Ditto for images 

– ICA returns localizes edge 
filters 
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Example case: ICA-faces vs. Eigenfaces 

ICA-faces Eigenfaces 
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ICA for Signal Enhncement 

• Very commonly used to enhance EEG signals 

• EEG signals are frequently corrupted by 
heartbeats and biorhythm signals 

• ICA can be used to separate them out 
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So how does that work? 

• There are 12 notes in the segment, hence we 
try to estimate 12 notes.. 
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PCA solution 

• There are 12 notes in the segment, hence we 
try to estimate 12 notes.. 
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So how does this work: ICA solution 

• Better.. 

– But not much 

• But the issues here? 
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ICA Issues 

• No sense of order 

– Unlike PCA 

• Get K independent directions, but does not have a notion 
of the “best” direction 

– So the sources can come in any order 

– Permutation invariance 

• Does not have sense of scaling 

– Scaling the signal does not affect independence 

• Outputs are scaled versions of desired signals in permuted 
order 

– In the best case 

– In worse case, output are not desired signals at all.. 
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What else went wrong? 

• Notes are not independent 

– Only one note plays at a time 

– If one note plays, other notes are not playing 

 

• Will deal with these later in the course.. 
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