Machine Learning for Signal
Processing
Independent Component Analysis

Class 8. 23 Sep 2013

Instructor: Bhiksha Raj
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Correlation vs. Causation

* The consumption of burgers has gone up
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The concept of correlation

* Two variables are correlated if knowing the
value of one gives you information about the
expected value of the other

De
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Penguin population

- > :
Time Burger consumption
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The statistical concept of
correlatedness

 Two variables X and Y are correlated if If
knowing X gives you an expected value of Y

« XandY are uncorrelated if knowing X tells you
nothing about the expected value of Y

— Although it could give you other information
— How?
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A brief review of basic probability

e Uncorrelated: Two random variables X and Y are
uncorrelated iff:

— The average value of the product of the variables equals the
product of their individual averages

e Setup: Each draw produces one instance of X and one
instance of Y

— |l.e one instance of (X,Y)
e E[XY] = E[X]E[Y]

* The average value of X is the same regardless of the value
of Y
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Uncorrelatedness

 Which of the above represent uncorrelated RVs?
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The statistical concept of
Independence

 Two variables X and Y are dependent if If
knowing X gives you any information about Y

« XandY are independent if knowing X tells you
nothing at all of Y
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A brief review of basic probability

* Independence: Two random variables X and Y are
independent iff:

— Their joint probability equals the product of their
individual probabilities

* P(X,Y) = P(X)P(Y)
* Independence implies uncorrelatedness

— The average value of X is the same regardless of the
value of Y

e E[X]Y]=E[X]
— But not the other way
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A brief review of basic probability

* Independence: Two random variables X and Y
are independent iff:

* The average value of any function of X is the
same regardless of the value of Y

— Or any function of Y

 E[f(X)g(Y)] = E[f(X)] E[g(Y)] for all f(), g()
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Independence

* Which of the above represent independent RVs?

* Which represent uncorrelated RVs?

23 Sep 2013 11755/18797

10



A brief review of basic probability

y =1(x)

-0 /5t
F !

B — e

* The expected value of an odd function of an
RVis O if
— The RV is 0 mean
— The PDF is of the RV is symmetric around O

 E[f(X)] = Oif f(X) is odd symmetric
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A brief review of basic info. theory

e T (all), M(ed), S(hort)...
H(X) =Y P(X)[-log P(X)]

* Entropy: The minimum average number of bits
to transmit to convey a symbol

T, M, S...

MF F M.
H(X,Y)=Y P(X,Y)[-log P(X,Y)]

e Joint entropy: The minimum averagé number of
bits to convey sets (pairs here) of symbols
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A brief review of basic info. theory

P(Y)D P(X|Y)[=log P(X |Y)]= > P(X,Y)[~log P(X |Y)]

* Conditional Entropy: The minimum average
number of bits to transmit to convey a symbol
X, after symbol Y has already been conveyed

— Averaged over all values of X and Y
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A brief review of basic info. theory
H(X[Y) =Z,P(Y); P(X |Y)[-log P(X IY)]=;P(Y);P(X)[—|09 P(X)]=H(X)

e Conditional entropy of X = H(X) if X is
independent of Y
H(X,Y)=XZY:P(X,Y)[—Iog P(X,Y)]:XZY:P(X,Y)[—Iog P(X)P(Y)]
:—XZY:I;(X,Y)Iog P(X)—XZY:P(X,Y')Iog P(Y)=H(X)+H(Y)
* Joint entfopy of X and Y is the sum of the
entropies of X and Y if they are independent
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We're actually computing a score

e
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So what are we doing here?

H=2

lll

1L lllll....
.I“lll“lnllllllllll

* M ~WH is an approximation
e Given W, estimate H to minimize error

H=argmin | M—WH ||Z=arg min ZZ(MU. —(WH), )2
O

* Must ideally find transcription of given notes
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Going the other way..

1 M
H [ i T 1
1 n  p— 1

i

* M ~WH is an approximation
 Given H, estimate W to minimize error

W =argmin, || M —WH ||Z=arg min ZZ(MU. —(WH), )2
O

 Must ideally find the notes corresponding to the
..franscription 1175518757 .



When both parameters are unknown

H="?

W=7 approx(M) = ?

e Must estimate both H and W to best
approximate M

* |deally, must learn both the notes and their
transcription!
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A least squares solution

W,H=argmin - | M—WH |2

WH|

e Unconstrained

— For any W, H that minimizes the error, W’=WA,
H’=A"1H also minimizes the error for any
invertible A

1 M

H [ i T 1
1 n I L 1

w

* Too many solutions
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A constrained least squares solution

W, H =argming 5 | M—WH ||Z

1 M
H [ i T 1
1 n  p— 1

* For our problem, lets consider the “truth”..

* When one note occurs, the other does not
— hiThj =0 foralli'!=j

 The rows of H are uncorrelated



A least squares solution

1 M
H [ i T 1
1 n  p— 1

i

e Assume: HHT = |
— Normalizing all rows of H to length 1
» pinv(H) = HT
* Projecting M onto H
— W =M pinv(H) = MHT'
~WH=MHTH
W,H =argmingy, ; | M—WH ||Z

H=argmin; | M—MH"H |2 constraint: Rank(H) = 4



Finding the notes

e Add the constraint; HH' = |
H=argmin_ |[M-MH"H | +A(ﬁﬁT)

* The solution is obtained through Eigen
decomposition

Correlation(M' )H = HA

* Note: we are considering the correlation of
MT
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So how does that work?

 There are 12 notes in the segment, hence we
try to estimate 12 notes..
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So how does that work?

e The scores of the first three “notes” and their
contributions



Finding the notes

 Can find W instead of H
W =argming | M-W'WM |2

* Assume the columns of W are orthogonal

* This results in the more conventional Eigen
decomposition

Correlation(M)W = WA
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L} f &

So how does that work?

 There are 12 notes in the segment, hence we
try to estimate 12 notes..

e Results are not good again
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Our notes are not orthogonal

N

M

A A A &k

|

l_.l  }

| .
l.ullll.l.

-

Ll“nllllllllll_

* QOverlap

ning frequencies

* Note occur concurrently

— Harmonica continues to resonate to previous note

 More generally, simple orthogonality will not give
us the desired solution
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Eigendecomposition and SVD

M =USV' M =WH

Matrix M can be decomposed as M = USVT

* When we assume the scores are orthogonal, we get
H=VT, W=US

* When we assume the notes are orthogonal, we get

W=U, H=SVT

In either case the results are the same

— The notes are orthogonal and so are the scores

— Not good in our problem
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Orthogonality

M = WH

* |n any least-squared error decomposition
M=WH, if the columns of W are orthogonal,
the rows of H will also be orthogonal

* Sometimes mere orthogonality is not enough

23 Sep 2013 11755/18797

35



What else can we look for?

[ L] 1
) 7] [ ]
M1 gl

 Assume: The “transcription” of one note does
not depend on what else is playing

— Or, in a multi-instrument piece, instruments are
playing independently of one another

* Not strictly true, but still..

23 Sep 2013 11755/18797



Formulating it with Independence

W,H=argmin_. . | M—WH |2 +A(rows.of .H.are.independent)
W, H F

* Impose statistical independence constraints
on decomposition
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Changing problems for a bit

o/

Y
m, (t) = W21h1 (t) + szhz (t) <

h, (1)

 Two people speak simultaneously
* Recorded by two microphones
* Each recorded signal is a mixture of both signals
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A Separation Problem

M W H
/\/M/\/\/\M Wy Wy /\A,\/\/\/V\A/\/\/\
A NWIMAINT | g, wy, UW\\J\/\AN\M\
\
Signal from speaker 1
+ M=WH |
. _ Signal at mic 1 Signal from speaker 2
— M = “mixed” signal
Signal at mic 2

— W = “notes”

— H = “transcription”

e Separation challenge: Given only M estimate H
* |dentical to the problem of “finding notes”
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Imposing Statistical Constraints

M W H
/W\/\f\/\/\/\/\ Wy Wy AA/\/\/\/\/\/\’\/\/\
AN =y g, ||V VN

. M=WH

* Given only M estimate H

c H=W'M = AM

* Only known constraint: The rows of H are
independent

e Estimate A such that the components of AM are
statistically independent

— Ais the unmixing matrix
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Statistical Independence

* M=WH
T Remember this form

* Emulating independence

— Compute W (or A) and H such that H has
statistical characteristics that are observed in
statistically independent variables

* Enforcing independence

— Compute W and H such that the components of
M are independent

23 Sep 2013 11755/18797
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Emulating Independence

H

NN AN NN
NIAVE NN AVAVAYA VAN

 The rows of H are uncorrelated
- E[hihj] = E[hi]E[hj]
— h; and h; are the i*" and j*" components of any vector in H

 The fourth order moments are independent
— E[hihhyh] = E[h]E[N]E[N]JE[N]
— E[h 2h ihd = E[hZ]E[h]E[N,]
— E_ hi?] = E[hZ]E[h, 2]
— Etc.
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Zero Mean

e Usual to assume zero mean Processes
— Otherwise, some of the math doesn’t work well

c M=WH H=AM

* Ifmean(M)=0 => mean(H)=0
— E[H]=AE[M]=A0=0
— First step of ICA: Set the meanof Mto 0

1
Hm = cols(M) 2.m,

m; =M, — 44, Vi

— m, are the columns of M

23 Sep 2013 11755/18797
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Emulating Independence..

Diagonal
H J H=AM
_ + rankl
H’ — matrix A=BC
H=BCM

* Independence =2 Uncorrelatedness

* Estimate a C such that CM is uncorrelated

e« X=CM
— E[xpx] = EDGIE[] = ©; [since M is now “centered”]
— XXT =]

* In reality, we only want this to be a diagonal matrix, but we’ll
make it identity
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Decorrelating

H Diagonal
H=AM
_ + rankl
H — matrix A=BC
H=BCM
e« X=CM
« XXT=]

* Eigen decomposition MMT= ESET
¢ Let C = S 12ET
~ X = SWETM
— XXT=WMMTWT = S12ETESETES-12 = |
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Decorrelating

H’

« X=CM
« XXT=]

* Eigen decomposition MMT= ESET
¢ LetC=SW2ET

— X=SETM

— WMMTWT = S 12ETESETES 12 = |

e X is called the whitened version of M

Diagonal

— The process of decorrelating M is called whitening

— C is the whitening matrix

23 Sep 2013 11755/18797
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H=AM

A=BC
H=BCM
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Uncorrelated != Independent

 Whitening merely ensures that the resulting shat
signals are uncorrelated, i.e.

E[xx]=01fi!=)

* This does not ensure higher order moments are also
decoupled, e.g. it does not ensure that

E[xi*x;"] = EDX’]E [X7]

* This is one of the signatures of independent RVs
* Lets explicitly decouple the fourth order moments

23 Sep 2013 11755/18797
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Decorrelating

H Diagonal

+ rankl
H matrix

« X=CM
« XXT=]

*  Will multiplying X by B re-correlate the components?
 Not if Bis unitary
— BBT=B™B=1
« HHT=BXX'™BT=BBT =
* So we want to find a unitary matrix

— Since the rows of H are uncorrelated
e Because they are independent

23 Sep 2013 11755/18797
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ICA: Freeing Fourth Moments

We have E[x; x;] =0 ifi!=]
— Already been decorrelated

A=BC, H=BCM, X=CM, > H=BX

The fourth moments of H have the form:
E[h; h; hy h]

If the rows of H were independent
E[h; hj h.h] =E[h] E[hj] E[hJ E[h]

Solution: Compute B such that the fourth moments of H = BX
are decoupled

— While ensuring that B is Unitary
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ICA: Freeing Fourth Moments

* Create a matrix of fourth moment terms that would be
diagonal were the rows of H independent and diagonalize it

A good candidate

— Good because it incorporates the energy in all rows of H

d11 d12 d13
D = d21 d22 d23

— Where
d; = E[Z, hZh; h]
— i.e.
D=E[hTh h hT]
* hare the columns of H
* Assuming his real, else replace transposition with Hermition
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ICA: The D matrix

d, d, d; . 1 2
d:=E[Z . h2h h]= h.h .h
D=|d,, d, dy . = ELAAC Y COls(H)Zm:Zk: memem

Sum of squares
ofallc

omponent
2
sh,

* Average above term across all columns of H

jt component

N
hi by
heh; h
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D=

* If the h; terms were independent
— Foril=j

e shinn, |-ebileh, | ehileln -

dll
d,,

d
d

ICA: The D matrix

12
22

d
d

13
23

dij:E[zkhk i J]_

k#i,K# |

coIs(H)

— Centered: E[h]=0 = E[Z, h2h; h]=0fori!l=]

— Fori=]

E{Zk:hﬁhihj} —E|h! ]+ E[n2|> Elnz =0

ki

* Thus, if the h; terms were independent, d; = 0 if i != ]
* i.e, ifh; wereindependent, D would be a diagonal matrix

— Let us diagonalize D

23 Sep 2013
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Diagonalizing D

 Compose a fourth order matrix from X
— Recall: X=CM, H=BX=BCM
B is what we’re trying to learn to make H independent

— Compose D’ = E[x" x x X']

* Diagonalize D’ via Eigen decomposition
D’ =UAUT'

e B=UT
— That’s it!!!!

23 Sep 2013 11755/18797
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B frees the fourth moment

D’ =UAUT ; B=UT
U is a unitary matrix, i.e. UTU = UUT = | (identity)
H=BX=UTX

h=UTx

The fourth moment matrix of H is
E[hThhh™] = E[xTUUTX UTx x"U]
= E[x"™x UTx xTU]
= UTE[x"™x xx"U
=U"D’ U
=UTUAUTU=A
The fourth moment matrix of H = UTX is Diagonal!!

23 Sep 2013 11755/18797
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Overall Solution

H=AM=BCM

— Cis the (transpose of the) matrix of Eigen vectors of MMT
X=CM
A= BC=U'C

— B is the (transpose of the) matrix of Eigenvectors of
X.diag(XT"X).XT

23 Sep 2013 11755/18797
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Independent Component Analysis

e Goal: to derive a matrix A such that the rows of AM are
independent

* Procedure:

1.
2.
3.

0 N U os

“Center” M

Compute the autocorrelation matrix Ry,, of M

Compute whitening matrix C via Eigen decomposition
Rywv = ESET, C=S2ET

Compute X =CM

Compute the fourth moment matrix D’ = E[X"xxX]

Diagonalize D’ via Eigen decomposition

D’ = UAUT

Compute A=UTC

 The fourth moment matrix of H=AM is diagonal

23 Sep 2013

Note that the autocorrelation matrix of H will also be diagonal
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ICA by diagonalizing moment
matrices

* The procedure just outlined, while fully functional, has
shortcomings
— Only a subset of fourth order moments are considered

— There are many other ways of constructing fourth-order moment
matrices that would ideally be diagonal

* Diagonalizing the particular fourth-order moment matrix we have chosen
is not guaranteed to diagonalize every other fourth-order moment matrix

* JADE: (Joint Approximate Diagonalization of Eigenmatrices),
J.F. Cardoso
— Jointly diagonalizes several fourth-order moment matrices

— More effective than the procedure shown, but computationally more
expensive
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Enforcing Independence

» Specifically ensure that the components of H are
independent

- H=AM

e Contrast function: A non-linear function that has a
minimum value when the output components are
independent

e Define and minimize a contrast function
» F(AM)

* Contrast functions are often only approximations too..
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A note on pre-whitening

* The mixed signal is usually “prewhitened”
— Normalize variance along all directions

— Eliminate second-order dependence

* Eigen decomposition MMT = ESET
e C=SI2ET

e Can use first K columns of E only if only K independent
sources are expected

— In microphone array setup — only K < M sources

X=CM
— E[xx] = EDG]E[X;] = §;; for centered signal
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The contrast function

e Contrast function: A non-linear function that
has a minimum value when the output
components are independent

* An explicit contrast function

I(H) =Y H(R,)-H (R)

e With constraint: H=BX
— Xis “whitened” M

23 Sep 2013 11755/18797
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Linear Functions

e h=BX
— Individual columns of the H and X matrices
— X is mixed signal, B is the unmixing matrix

R.() =R, (B ) B["

H () = [ P(x) log P(x)dx

H(h)=H(X)+log|B|

23 Sep 2013 11755/18797
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The contrast function

[(H)= Y H (h,)—H (H)

I(H)= Y H(R,)-H(x)-log| B|

* Ignoring H(X) (Const)
J(H)=> H(h,)-log|B|
* Minimize the above to obtain B

23 Sep 2013 11755/18797
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An alternate approach

e Recall PCA

e M =WH, the columns of W must be
uncorrelated

 Leadsto: miny||M-WTWM| |2+Atrace(WWT)
— Error minimization framework to estimate W

e Can we arrive at an error minimization
framework for ICA

* Define an “Error” objective that represents
independence
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An alternate approach

* Definition of Independence —if Xand y are
independent:

— E[f()a(y)] = E[f(X)]E[g(Y)]
— Must hold for every f() and g()!!

23 Sep 2013 11755/18797
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An alternate approach

* Define g(H) = g(BX) (component-wise
function)

gthy)  9(hy)
a(hy)  glhy,)

. Define f(H.) = f(BX)

f(hy)  T(hy)
f(h)  T(hy)
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An alternate approach
» P=g(H) f(H)" = g(BX) f(BX)T

b - e T R = Z g(hy ) T(hy)
. . K

This is a square matrix

 Must ideally be
Q11 Q21

Q: Q2 Q; :Zg(hik)Zf(hjl) | # |
. . Q; :Zg(hik)f(hil)

Q:

* Error = ||P-Q||¢?
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An alternate approach

* |deal value for Q

Qu Qyn - Qlj — Z g(hlk)z f (hjl) I a J
Qi = Z g(h) T(hy)

* |f g() and h() are odd symmetric functions
2.g(h;;) =0 foralli
— Since = %h; =0 (H is centered)
— Q is a Diagonal Matrix!!!
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An alternate approach
* Minimize Error

P =g(BX)f(BX)’
Q = Diagonal

error 5| P-Q||2

* Leads to trivial Widrow Hopf type iterative
le: .
e E = Diag —g(BX)f(BX)"
B=B+ 77EBT
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Update Rules

 Multiple solutions under different
assumptions for g() and f()

« H=BX
* B=B+nAB
e Jutten Herraut : Online update

— ABy; =1(hy)g(h;); -- actually assumed a recursive
neural network

* Bell Sejnowski
—AB = ([B']"* - g(H)X")
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Update Rules

 Multiple solutions under different
assumptions for g() and f()

. H=BX
- B=B+nAB

* Natural gradient -- f() = identity function
- AB=(1 -—g(HH")W

* Cichoki-Unbehaeven
—AB = (1 - g(H)f(H)")W
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What are G() and H()

Must be odd symmetric functions
Multiple functions proposed

X +tanh(x) X issuperGaussian
X —tanh(x) XIssub Gaussian

g<x>:{

Audio signals in general

— AB = (I — HHT-Ktanh(H)HT)W
Or simply

— AB = (I -Ktanh(H)H")W

23 Sep 2013 11755/18797
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So how does it work?

ZZ' ' ¢
 Example with instantaneous mixture of two
speakers

* Natural gradient update
 Works very well!
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Another example!

Input Mix Output
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Another Example

e Three instruments..

23 Sep 2013 11755/18797
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ICA Feature 1

= T———— T =

| . . .

L
50 100 150 200 250 300

ICA Feature 2

e T ———

|

| i

|

|

I/ 1
L L i L L L L
50 100 150 200 250 300
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The Notes

e Three instruments..
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ICA for data exploration

e The “bases” in PCA

represent the “building
blocks”

— |deally notes

I
(e

* Very successfully used

 So can ICA be used to
do the same?

IR
|

ALt

Il
IHITNEI
|
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ICA vs PCA bases

= Motivation for using ICA vs PCA

= PCA will indicate orthogonal directions

of maximal variance

= May not align with the datal!

= |CA finds directions that are
independent

= More likely to “align” with the data

23 Sep 2013
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Finding useful transforms with ICA

Audio preprocessing
example

Take a lot of audio snippets
and concatenate themina
big matrix, do component
analysis

PCA results in the DCT bases

|ICA returns time/freq
localized sinusoids which is a
better way to analyze sounds

Ditto for images

— ICA returns localizes edge
filters

23 Sep 2013
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Example case: ICA-faces vs. Eigenfaces

ICA-faces Eigenfaces

=S SRS
SENS SEEN
ME=d SaEE
o= B EEE
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ICA for Signal Enhncement

* Very commonly used to enhance EEG signals

 EEG signals are frequently corrupted by
heartbeats and biorhythm signals

* |CA can be used to separate them out
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So how does that work?

 There are 12 notes in the segment, hence we
try to estimate 12 notes..
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PCA solution

 There are 12 notes in the segment, hence we
try to estimate 12 notes..



So how does this work: ICA solution

o R T R
I I
|
|/
Lo
|
L 1 I |
50 100 150 200 250 300
T T
| ”
|
-
I Il ‘l
O It b [ e e R
! M .
50 10
p .
|\ ‘
Cy
f I
( 1| ‘\ |
L 7“|\ i - _
| [V
Better..

— But not much

e But the issues here?
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ICA Issues

No sense of order

— Unlike PCA
Get K independent directions, but does not have a notion
of the “best” direction

— So the sources can come in any order

— Permutation invariance

Does not have sense of scaling

— Scaling the signal does not affect independence

Outputs are scaled versions of desired signals in permuted
order

— In the best case

— In worse case, output are not desired signals at all..



What else went wrong?

* Notes are not independent
— Only one note plays at a time

— If one note plays, other notes are not playing

 Will deal with these later in the course..
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