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Recap: MAP Estimators 

• MAP (Maximum A Posteriori): Find a “best 

guess” for y (statistically), given known x 

    y = argmax Y P(Y|x) 
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Recap: MAP estimation 

• x and y are jointly Gaussian 
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• z is Gaussian 
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MAP estimation: Gaussian PDF 
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MAP estimation: The Gaussian at a 
particular value of X 
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Conditional Probability of y|x 

• The conditional probability of y given x is also Gaussian 

– The slice in the figure is Gaussian 

• The mean of this Gaussian is a function of x 

• The variance of y reduces if x is known 

– Uncertainty is reduced 
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F1 

MAP estimation: The Gaussian at a 
particular value of X 
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MAP Estimation of a Gaussian RV 
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Gaussians and more Gaussians.. 

• Linear Gaussian Models.. 

 

• PCA to develop the idea of LGM 
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A Brief Recap 

• Principal component analysis:  Find the K bases that 

best explain the given data 

• Find B and C such that the difference between D and 

BC is minimum 

– While constraining that the columns of  B are orthonormal 
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Karhunen Loeve vs. PCA 

• Eigenvectors of the Correlation 
matrix: 
– Principal directions of tightest 

ellipse centered on origin 

– Directions that retain 
maximum energy 
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• Eigenvectors of the Covariance 
matrix: 
– Principal directions of tightest 

ellipse centered on data 

– Directions that retain maximum 
variance 



Karhunen Loeve vs. PCA 

• If the data are naturally centered at origin, KLT == PCA 

 

• Following slides refer to PCA! 

– Assume data centered at origin for simplicity 

• Not essential, as we will see.. 
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PCA In Vector Form 

11755/18797 13 

Xi = w1iV1 + w2iV2 + ei 
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• K-dimensional representation 
• x is a D dimensional vector 
• V is a D x K matrix 
• w is a K dimensional vector 
• e is a D dimensional vector 



Learning PCA 

• For the given data: find the K-dimensional 
subspace such that it captures most of the 
variance in the data 

– Variance in remaining subspace is minimal 
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A Statistical Formulation of PCA 

• x is a random variable generated according to a linear relation 

• w is drawn from an K-dimensional Gaussian with diagonal 

covariance 

• e is drawn from a 0-mean (D-K)-rank D-dimensional Gaussian 

• Estimate V (and B) given examples of x 
15 
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Linear Gaussian Models!! 

• x is a random variable generated according to a linear relation 

• w is drawn from a Gaussian 

• e is drawn from a 0-mean Gaussian 

• Estimate V given examples of x 

– In the process also estimate B and E 16 
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Linear Gaussian Models!! 

• x is a random variable generated according to a linear relation 

• w is drawn from a Gaussian 

• e is drawn from a 0-mean Gaussian 

• Estimate V given examples of x 

– In the process also estimate B and E 17 
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Linear Gaussian Models 

• Observations are linear functions of two uncorrelated 
Gaussian random variables 

– A “weight” variable w 

– An “error” variable e 

– Error not correlated to weight:  E[eTw] = 0 

• Learning LGMs:   Estimate parameters of the model 
given instances of x 

– The problem of learning the distribution of a Gaussian RV 
18 
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LGMs:  Probability Density 

• The mean of x: 
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The probability of x 

• x is a linear function of Gaussians: x is also Gaussian 

• Its mean and variance are as given 
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Estimating the variables of the 
model 

• Estimating the variables of the LGM is 
equivalent to estimating P(x) 

– The variables are , V, B and E 
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Estimating the model 

• The model is indeterminate: 

– Vw = VCC-1w = (VC)(C-1w) 

– We need extra constraints to make the solution unique 

• Usual constraint :  B = I 

– Variance of w is an identity matrix 
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Estimating the variables of the 
model 

• Estimating the variables of the LGM is 
equivalent to estimating P(x) 

– The variables are , V, and E 
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The Maximum Likelihood Estimate 

• The ML estimate of  does not depend on the 
covariance of the Gaussian 
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Centered Data 

• We can safely assume “centered” data 

–  = 0 

• If the data are not centered, “center” it 

– Estimate mean of data 

• Which is the maximum likelihood estimate 

– Subtract it from the data 
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Simplified Model 

• Estimating the variables of the LGM is 
equivalent to estimating P(x) 

– The variables are V, and E 
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Estimating the model 

• Given a collection of xi terms 

– x1, x2,..xN 

• Estimate V and E 

• w is unknown for each x 

• But if assume we know w for each x, then 
what do we get: 
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Estimating the Parameters 

• We will use a maximum-likelihood estimate 

• The log-likelihood of  x1..xN knowing their wis 
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Maximizing the log-likelihood 

• Differentiating w.r.t.  V and setting to 0 
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Estimating LGMs: If we know w 

• But in reality we don’t know the w for each x 

– So how to deal with this? 

 

• EM.. 
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Recall EM 

• We figured out how to compute parameters if we knew the 
missing information 

• Then we “fragmented” the observations according to the 
posterior probability P(z|x) and counted as usual 

• In effect we took the expectation with respect to the a 
posteriori probability of the missing data:  P(z|x) 
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EM for LGMs 

• Replace unseen data terms with expectations 
taken w.r.t.  P(w|xi) 
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EM for LGMs 

• Replace unseen data terms with expectations 
taken w.r.t.  P(w|xi) 
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Expected Value of w given x 

• x and w are jointly Gaussian! 

– x is Gaussian 

– w is Gaussian 

– They are linearly related 
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Expected Value of w given x 

• x and w are jointly Gaussian! 
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The conditional expectation of w 
given z 

• P(w|z) is a Gaussian 
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LGM: The complete EM algorithm 

• Initialize V and E 

• E step: 

 

 

• M step: 

 

 

•   
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So what have we achieved 

• Employed a complicated EM algorithm to learn a 
Gaussian PDF for a variable x 

• What have we gained??? 
 

• Example uses: 

– PCA 

• Sensible PCA 

• EM algorithms for PCA 

– Factor Analysis 

• FA for feature extraction 
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• Find directions that capture most of the 
variation in the data 

• Error is orthogonal to principal directions 

– VTe = 0;  eTV = 0 
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Some Observations: 1 

• The covariance E of e is orthogonal to V 
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Observation 2 
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Observation 3 
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LGM: The complete EM algorithm 

• Initialize V and E 

• E step: 

 

 

• M step: 
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LGM: The complete EM algorithm 

• Initialize V and E 

• E step: 

 

 

• M step: 
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LGM: The complete EM algorithm 

• Initialize V and E 

• E step: 

 

 

• M step: 
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LGM: The complete EM algorithm 

• Initialize V and E 

• E step: 

 

 

• M step: 

 

 

  
11755/18797 46 

1

][][



















 

i

T

i

T

i ii
EE wwwxV xw|xw|

 
i

T

i

i

T

ii i
E

NN
E xwVxx xw| ][

11

ii pinv xVw )(

TTTT

iii
EEEIE ][][)(][ ||

1

| wwVVVVww xwxwxw  

VWXeVwx         



LGM: The complete EM algorithm 

• Initialize V and E 

• E step: 

 

 

• M step: 
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LGM: The complete EM algorithm 

• Initialize V and E 

• E step: 

 

 

• M step: 
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EM for PCA 

• Initialize V and E 

• E step: 

 

 

• M step: 
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EM for PCA 

• Initialize V and E 

• E step: 

 

 

• M step: 
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EM for PCA 

• Initialize V and E 

• E step: 

 

 

• M step: 
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EM for PCA 

• Initialize V and E 

• E step: 

 

 

• M step: 
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EM for PCA 

• Initialize V and E 

• E step: 

 

 

• M step: 
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EM for PCA 

• Initialize V and E 

• E step: 

 

 

• M step: 
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EM for PCA 

• Initialize V and E 

• E step: 

 

 

• M step: 
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EM for PCA 

• Initialize V and E 

• E step: 

 

 

• M step: 
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EM for PCA 

• Initialize V and E 

• E step: 

 

 

• M step: 
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EM for PCA 

• Initialize V 

• Iterate 

 

 

 

• Note: V will not be actual eigenvectors, but a set of 

bases in space spanned by principal eigenvectors 

– Additional decorrelation within PC space may be needed 
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Why EM PCA? 

• Example:  Computing eigenfaces 

• Each face is 100x100 : 10000 dimensional 

• But only 300 examples 

– X is 10000 x 300 

• What is the size of the covariance matrix? 

• What is its rank? 
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PCA on illconditioned data 

• Few instances of high-dimensional data 

– No. instances < dimensionality 

• Covariance matrix is very large 

– Eigen decomposition is expensive 

– E.g. 1000000-dimensional data:  Covariance has 
1012 elements 

• But the rank of the covariance is low 

– Only the no. of instances of data 
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Why EM PCA? 

• Consequence of low rank X 

– The actual number of bases is limited to the rank of X 

• Note actual size of V 

– Max number of columns = min(dimension, no. data points) 

– No. of columns = rank of (XXT) 

• Note size of W 

– Max number of rows = min(dimension, no. of data points) 
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Why EM PCA? 

• If X is high dimensional 

– Particularly if the number of vectors in X is smaller 
than the dimensionality 

 

• Pinv(V) and pinv(W) are efficient to compute 

– V will have a max of 300 columns in the example 

– W will have a max of 300 rows 
11755/18797 62 

VWX 

300 x 300 
V

W
X

10000 x 300 

10000 x 300, 



PCA as an instance of LGM 

• Viewing PCA as an instance of linear Gaussian 
models leads to EM solution 

• Very effective in dealing with high-
dimensional and/or data poor situations 

 

• An aside: Another simpler solution for the 
same situation.. 
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An Aside: The GRAM trick 

• The number of non-zero Eigen values is no more than the 
length of the smallest “edge” of X 

– 300 in this case 

• This leads to the “gram” trick.. 

 

• Assumption XTX is invertible: the instances are linearly 
independent 
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An Aside: The GRAM trick 

• XXT is large but XTX is not 

If X is 10000 x 300, 

XXT = 10000 x 10000 

X

T
X

T
X

X

If X is 10000 x 300, 

XTX = 300 x 300 

• Difficult to compute Eigen vectors of XXT  

• But easy to compute Eigen vectors of XTX 
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The Gram Trick 

• To compute principal vectors we 
Eigendecompose XXT 
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   EEXX
T

• Let us find the Eigen vectors of XTX instead 

   ˆˆˆ EEXX
T

• Manipulating it slightly 

  ˆˆˆˆˆ 5.05.0
EEXX

TNote that for a diagonal matrix: 

-0.5 = -0.5 



The Gram Trick 

• Eigendecompose XTX instead of XXT 
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   ˆˆˆ EEXX
T

• Letting:  

  ˆˆˆˆˆ 5.05.0
EEXX

T

      ˆˆˆˆˆ 5.05.0
EXEXXX

T

• E is the matrix of Eigenvectors of XXT!!! 

   ˆEEXX
T

EEX  5.0ˆˆ



The Gram Trick 

• When X is low rank or XXT is too large: 
 

• Compute XTX instead 

– Will be manageable size 

• Perform Eigen Decomposition of XTX 

 

• Compute Eigenvectors of XXT as 

 

• These are the principal components of X 
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Why EM PCA 

• Dimensionality / Rank has alternate potential 
solution 

– Gram Trick 
 

• Other uses? 

– Noise 

– Incomplete data 
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• Error is orthogonal to principal directions 

– VTe = 0;  eTV = 0 

• Noise is isotropic 

– B is diagonal 

– Noise is not orthogonal to either V or e 
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LGM: The complete EM algorithm 

• Initialize V and E 

• E step: 

 

 

• M step: 
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PCA with Noisy Data 

• Initialize V and B 

• E step: 

 

 

• M step: 
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PCA with Incomplete Data 

• How to compute principal directions when 
some components in your training data are 
missing? 

 

• Eigen decomposition is not possible 

– Cannot compute correlation matrix with missing 
data 
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PCA with missing data 

• How it goes 

• Given  :  X =  {Xc, Xm} 

– Xm are missing components 

1. Initialize:  Initialize Xm 

2. Build “complete” data X = {Xc, Xm} 

3. PCA  (X = VW):   Estimate V 

– V must have fewer bases than dimensions of X 

4. W = VTX 

5.       = VW 

6. Select Xm from 

7. Return to 2 
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LGM for PCA 

• Obviously many uses: 

– Ill-conditioned data 

– Noise 

– Missing data 

 

– Any combination of the above.. 
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• The full covariance matrix of a Gaussian has D2 terms 

• Fully captures the relationships between variables 

• Problem: Needs a lot of data to estimate robustly  
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LGMs  :  Application 2 
Learning with insufficient data 



• Assume the covariance is diagonal 

– Gaussian is aligned to axes : no correlation between dimensions 

– Covariance has only D terms 

• Needs less data 

• Problem : Model loses all information about correlation 
between dimensions 
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Is There an Intermediate 

• Capture the most important correlations 

• But require less data 

 

• Solution:  Find the key subspaces in the data 

– Capture the complete correlations in these 
subspaces 

– Assume data is otherwise uncorrelated 
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Factor Analysis 

• E is a full rank diagonal matrix 

• V has K columns:  K-dimensional subspace 

– We will capture all the correlations in the 
subspace represented by V 

• Estimated covariance:  Diagonal covariance E 
plus the covariance between dimensions in V 
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Factor Analysis 

• Initialize V and E 

• E step: 

 

 

• M step: 
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• Will get a full covariance matrix 

• But only estimate  DK terms 

• Data insufficiency less of a problem 
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FA Gaussian 



The Factor Analysis Model 

• Often used to learn distribution of data when 
we have insufficient data 

• Often used in psychometrics 

– Underlying model:  The actual systematic 
variations in the data are totally explained by a 
small number of “factors” 

– FA uncovers these factors 
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FA: Example 

• Hypothesis:  there are two kinds 
of intelligence, "verbal" and "mathematical",  

– neither is directly observed.  

– Evidence sought from examination scores from 
each of 10 different academic fields of 1000 
students.  

• Solution: Find out if distribution is well 
explained by two factors 

– Hack: Attempt to relate factors to verbal and math 
IQ  
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FA, PCA etc. 

• Note: distinction between PCA and FA is only 
in the assumptions about e 

• FA looks a lot like PCA with noise 

• FA can also be performed with incomplete 
data 
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FA, PCA etc. 

• PCA:  Error is always at 90 degrees to the bases in V 
 

• FA:  Error may be at any angle 

• PCA used mainly to find principal directions that 
capture most of the variance 
– Bases in V will be orthogonal to one another 

• FA tries to capture most of the covariance 
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FA: A very successful use 

• Voice biometrics:    Speaker identification 

 

• Given:  Only a small amount of training data 
from a speaker, learn model for speaker 

– Use to verify speaker later 
 

• Problem: Immense variation in ways people 
can speak 

– 15 minutes of training data totally insufficient! 
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Speaker Verification 

• A model represents distribution of cepstral vectors for the 
speaker 

• A second model represents everyone else (potential 
imposters) 

• The cepstra computed from a test recording are “scored” 
against both models 

– Accept the speaker if the speaker model scores higher 
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Speaker Verification 

• Problem:  One typically has only a few seconds or 
minutes of training data from the speaker 

• Hard to estimate speaker model 

• Test data may be spoken differently, or come over a 
different channel, or in noise 

– Wont really match 
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Hypothesis 

• Variations between different instances of the utterance 
spoken by the same speaker related to only a few factors 

• Factors are common to all speakers 

• Solution:  Learn factors by analyzing many speakers 

– Use learned factors to predict variations for a given speaker 

– Can provide robust models for a speaker from very little data 
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Representing the Data: “super 
vectors” 

• Convert recordings to a sequence of feature 
vectors 
– Cepstra 

• Compute the probability distribution for the data 
– Modeled as a Gaussian mixture 

• The data are represented by the parameters of 
the distribution 
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Representing the Data: “super 
vectors” 

11755/18797 91 

 
k

kkk XNwXP ),;()( 



















k






2

1

This “supervector” is 
the feature that 
represents the 
recording  



Training 

• Supervectors are obtained for each training 
speaker by adapting a “Universal background 
model” trained from large amounts of data 
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Training the Factor Analyzer 

• The supervectors are assumed to be the 
output of a linear Gaussian process 

• Use FA to estimate V 

– V are the factors that cause variations 

– The real information is in the factor w 
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Training models for a speaker 

• From training data: estimate the means for the speaker to conform 
to the factor analysis 

– Constrained estimation:  requires much less data 

• Use the estimated means as the distribution for the speaker 

– Solves data insufficiency problem 

– Also solves the problem of variations 
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Many other applications.. 

• Exploratory FA 

• Confirmatory FA.. 
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Good Luck.. 

• Project abstracts due by Nov 30th. 

 

• Presentation on 4th at 4.30 PM 

 

• Demos and posters 

 

• HWs due by 3rd. 
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