

Machine Learning for Signal Processing Fundamentals of Linear Algebra - 2 Class 3. 4 Sep 2014

Instructor: Bhiksha Raj

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Projections
- More on matrix types
- Matrix determinants
- Matrix inversion
- Eigenanalysis
- Singular value decomposition

Orthogonal/Orthonormal vectors

$$A = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad \qquad B = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

 $A.B = 0 \implies xu + yv + zw = 0$

- Two vectors are orthogonal if they are perpendicular to one another
 - A.B = 0
 - A vector that is perpendicular to a plane is orthogonal to *every* vector on the plane
- Two vectors are ortho*normal* if
 - They are orthogonal
 - The length of each vector is 1.0
 - Orthogonal vectors can be made orthonormal by normalizing their lengths to 1.0
 4 Sep 2014
 11-755/18-797
 3

Orthogonal matrices

- Orthogonal Matrix : $AA^{T} = A^{T}A = I$
 - The matrix is square
 - All row vectors are orthonormal to one another
 - Every vector is perpendicular to the hyperplane formed by all other vectors
 - All column vectors are also orthonormal to one another
 - Observation: In an orthogonal matrix if the length of the row vectors is 1.0, the length of the column vectors is also 1.0
 - Observation: In an orthogonal matrix no more than one row can have all entries with the same polarity (+ve or -ve)

- Orthogonal matrices will retain the length and relative angles between transformed vectors
 - Essentially, they are combinations of rotations, reflections and permutations
 - Rotation matrices and permutation matrices are all orthonormal

Orthogonal and Orthonormal Matrices

$$\begin{bmatrix} \sqrt{0.5} & -\sqrt{0.125} & \sqrt{0.375} \\ \sqrt{0.5} & \sqrt{0.125} & -\sqrt{0.375} \\ 0 & \sqrt{0.75} & 0.5 \end{bmatrix}$$

- If the vectors in the matrix are not unit length, it cannot be orthogonal
 - AA^T != I, A^TA != I
 - AA^{T} = Diagonal or $A^{T}A$ = Diagonal, but not both
 - If all the entries are the same length, we can get $AA^T = A^TA = Diagonal$, though
- A non-square matrix cannot be orthogonal
 - $AA^{T}=I$ or $A^{T}A = I$, but not both

Matrix Rank and Rank-Deficient Matrices

- Some matrices will eliminate one or more dimensions during transformation
 - These are *rank deficient* matrices
 - The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Matrix Rank and Rank-Deficient Matrices

- Some matrices will eliminate one or more dimensions during transformation
 - These are *rank deficient* matrices
 - The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Projections are often examples of rank-deficient transforms

- $P = W (W^T W)^{-1} W^T$; Projected Spectrogram = P^*M
- The original spectrogram can never be recovered
 P is rank deficient
- P explains all vectors in the new spectrogram as a mixture of only the 4 vectors in W
 - There are only a maximum of 4 *independent* bases
 - Rank of P is 4

Non-square Matrices

- Non-square matrices add or subtract axes
 - More rows than columns \rightarrow add axes
 - But does not increase the dimensionality of the data

Non-square Matrices

- Non-square matrices add or subtract axes
 - More rows than columns \rightarrow add axes
 - But does not increase the dimensionality of the data
 - Fewer rows than columns \rightarrow reduce axes
 - May reduce dimensionality of the data

The Rank of a Matrix

- The matrix rank is the dimensionality of the transformation of a fulldimensioned object in the original space
- The matrix can never *increase* dimensions
 - Cannot convert a circle to a sphere or a line to a circle
- The rank of a matrix can never be greater than the lower of its two dimensions

The Rank of Matrix

- Projected Spectrogram = P * M
 - Every vector in it is a combination of only 4 bases
- The rank of the matrix is the *smallest* no. of bases required to describe the output
 - E.g. if note no. 4 in P could be expressed as a combination of notes 1,2 and 3, it provides no additional information
 - Eliminating note no. 4 would give us the same projection
 - The rank of P would be 3!

Matrix rank is unchanged by transposition

 If an N-dimensional object is compressed to a K-dimensional object by a matrix, it will also be compressed to a K-dimensional object by the transpose of the matrix

Matrix Determinant

- The determinant is the "volume" of a matrix
- Actually the volume of a parallelepiped formed from its row vectors
 - Also the volume of the parallelepiped formed from its column vectors
- Standard formula for determinant: in text book

Matrix Determinant: Another Perspective

- The determinant is the ratio of N-volumes
 - If V₁ is the volume of an N-dimensional sphere "O" in N-dimensional space
 - O is the complete set of points or vertices that specify the object
 - If V_2 is the volume of the N-dimensional ellipsoid specified by A*O, where A is a matrix that transforms the space
 - $|A| = V_2 / V_1$

Matrix Determinants

- Matrix determinants are *only defined for square matrices*
 - They characterize volumes in linearly transformed space of the same dimensionality as the vectors
- Rank deficient matrices have determinant 0
 - Since they compress full-volumed N-dimensional objects into zerovolume N-dimensional objects
 - E.g. a 3-D sphere into a 2-D ellipse: The ellipse has 0 volume (although it does have area)
- Conversely, all matrices of determinant 0 are rank deficient
 - Since they compress full-volumed N-dimensional objects into zero-volume objects

Multiplication properties

- Properties of vector/matrix products
 - Associative

$$\mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$$

- Distributive

$$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$$

– NOT commutative!!!

$\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$

• *left multiplications ≠ right multiplications*

- Transposition

$$\left(\mathbf{A}\cdot\mathbf{B}\right)^{T}=\mathbf{B}^{T}\cdot\mathbf{A}^{T}$$

Determinant properties

• Associative for square matrices

 $|\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}| = |\mathbf{A}| \cdot |\mathbf{B}| \cdot |\mathbf{C}|$

- Scaling volume sequentially by several matrices is equal to scaling once by the product of the matrices
- Volume of sum != sum of Volumes

```
\left| (\mathbf{B} + \mathbf{C}) \right| \neq \left| \mathbf{B} \right| + \left| \mathbf{C} \right|
```

- Commutative
 - The order in which you scale the volume of an object is irrelevant

$$|\mathbf{A} \cdot \mathbf{B}| = |\mathbf{B} \cdot \mathbf{A}| = |\mathbf{A}| \cdot |\mathbf{B}|$$

Matrix Inversion

- A matrix transforms an N-dimensional object to a different N-dimensional object
- What transforms the new object back to the original?
 - The inverse transformation
- The inverse transformation is called the matrix inverse

Matrix Inversion

 $T^{-1}T^*D = D \rightarrow T^{-1}T = I$

- The product of a matrix and its inverse is the identity matrix
 - Transforming an object, and then inverse transforming it gives us back the original object

 $T^*T^{-1}*D = D \rightarrow TT^{-1} = I$

- Rank deficient matrices "flatten" objects
 - In the process, multiple points in the original object get mapped to the same point in the transformed object
- It is not possible to go "back" from the flattened object to the original object
 - Because of the many-to-one forward mapping
- Rank deficient matrices have no inverse

Rank Deficient Matrices

- The projection matrix is rank deficient
- You cannot recover the original spectrogram from the projected one..

Revisiting Projections and Least Squares

- Projection computes a *least squared error* estimate
- For each vector V in the music spectrogram matrix
 - Approximation: $V_{approx} = a*note1 + b*note2 + c*note3..$

- Error vector $E = V V_{approx}$
- Squared error energy for V $e(V) = norm(E)^2$
- Projection computes V_{approx} for all vectors such that Total error is minimized
- But WHAT ARE "a" "b" and "c"?

The Pseudo Inverse (PINV)

$$V_{approx} = T \begin{bmatrix} a \\ b \\ c \end{bmatrix} \qquad \bigvee \approx T \begin{bmatrix} a \\ b \\ c \end{bmatrix} \qquad \bigoplus \qquad \begin{bmatrix} a \\ b \\ c \end{bmatrix} = PINV(T) * V$$

- We are approximating spectral vectors V as the transformation of the vector [a b c]^T
 - Note we're viewing the collection of bases in T as a transformation
- The solution is obtained using the *pseudo inverse*
 - This give us a LEAST SQUARES solution
 - If T were square and invertible Pinv(T) = T⁻¹, and V=V_{approx}

Explaining music with one note

• Recap: $P = W (W^T W)^{-1} W^{T}$, Projected Spectrogram = P^*M

Approximation: M = W*X

- The amount of W in each vector = X = PINV(W)*M
- W*Pinv(W)*M = Projected Spectrogram
 - W*Pinv(W) = Projection matrix!!

4 Sep 2014

 $\mathsf{PINV}(\mathsf{W}) = (\mathsf{W}^\mathsf{T}\mathsf{W})^{-1}\mathsf{W}^\mathsf{T}$

Explanation with multiple notes

X = Pinv(W) * M; Projected matrix = W*X = W*Pinv(W)*M

How about the other way?

• $WV \approx M$ $W = M \operatorname{Pinv}(V)$ U = WV

Pseudo-inverse (PINV)

- Pinv() applies to non-square matrices
- Pinv (Pinv (A))) = A
- A*Pinv(A)= projection matrix!

Projection onto the columns of A

- If A = K x N matrix and K > N, A projects N-D vectors into a higher-dimensional K-D space
 - Pinv(A) = NxK matrix
 - $Pinv(A)^*A = I$ in this case
- Otherwise A * Pinv(A) = I

Matrix inversion (division)

- The inverse of matrix multiplication
 - Not element-wise division!!
- Provides a way to "undo" a linear transformation
 - Inverse of the unit matrix is itself
 - Inverse of a diagonal is diagonal
 - Inverse of a rotation is a (counter)rotation (its transpose!)
 - Inverse of a rank deficient matrix does not exist!
 - But pseudoinverse exists
- For square matrices: Pay attention to multiplication side! $\mathbf{A} \cdot \mathbf{B} = \mathbf{C}, \ \mathbf{A} = \mathbf{C} \cdot \mathbf{B}^{-1}, \ \mathbf{B} = \mathbf{A}^{-1} \cdot \mathbf{C}$
- If matrix is not square use a matrix pseudoinverse:

$$\mathbf{A} \cdot \mathbf{B} \approx \mathbf{C}, \ \mathbf{A} = \mathbf{C} \cdot \mathbf{B}^+, \ \mathbf{B} = \mathbf{A}^+ \cdot \mathbf{C}$$

Eigenanalysis

- If something can go through a process mostly unscathed in character it is an *eigen*-something
 - Sound example: 💿 💿 💿
- A vector that can undergo a matrix multiplication and keep pointing the same way is an *eigenvector*
 - Its length can change though
- How much its length changes is expressed by its corresponding *eigenvalue*
 - Each eigenvector of a matrix has its eigenvalue
- Finding these "eigenthings" is called eigenanalysis

EigenVectors and EigenValues

- Vectors that do not change angle upon transformation
 - They may change length

$$MV = \lambda V$$

– V = eigen vector

$$-\lambda = eigen value$$

Eigen vector example

Matrix multiplication revisited

- Matrix transformation "transforms" the space
 - Warps the paper so that the normals to the two vectors now lie along the axes

A stretching operation

- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2
 - The factors could be negative implies flipping the paper
- The result is a transformation of the space

A stretching operation

- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2
 - The factors could be negative implies flipping the paper
- The result is a transformation of the space

Physical interpretation of eigen vector

- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
 - The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Physical interpretation of eigen vector

- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
 - The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Eigen Analysis

- Not all square matrices have nice eigen values and vectors
 - E.g. consider a rotation matrix

- This rotates every vector in the plane
 - No vector that remains unchanged
- In these cases the Eigen vectors and values are complex

- Matrix transformations convert circles to ellipses
- Eigen vectors are vectors that do not change direction in the process
- There is another key feature of the ellipse to the left that carries information about the transform
 - Can you identify it?

- The major and minor axes of the transformed ellipse define the ellipse
 - They are at right angles
- These are transformations of right-angled vectors on the original circle!

 V_2

1.5

0.5

- U and V are orthonormal matrices
 - Columns are orthonormal vectors
- S is a diagonal matrix
- The *right singular vectors* in V are transformed to the *left singular vectors* in U
 - And scaled by the singular values that are the diagonal entries of S

- The left and right singular vectors are not the same
 - If A is not a square matrix, the left and right singular vectors will be of different dimensions
- The singular values are always real
- The largest singular value is the largest amount by which a vector is scaled by A
 - Max (|Ax| / |x|) = s_{max}
- The smallest singular value is the smallest amount by which a vector is scaled by A
 - Min (|Ax| / |x|) = s_{min}
 - This can be 0 (for low-rank or non-square matrices)

The Singular Values

- Square matrices: product of singular values = determinant of the matrix
 - This is also the product of the eigen values
 - I.e. there are two different sets of axes whose products give you the area of an ellipse
- For any "broad" rectangular matrix A, the largest singular value of any square submatrix B cannot be larger than the largest singular value of A
 - An analogous rule applies to the smallest singular value

4 Sep 2014 This property is utilized in various problems, such as compressive sensing

SVD vs. Eigen Analysis

- Eigen analysis of a matrix **A**:
 - Find two vectors such that their absolute directions are not changed by the transform
- SVD of a matrix **A**:
 - Find two vectors such that the *angle* between them is not changed by the transform
- For one class of matrices, these two operations are the same

A matrix vs. its transpose

- Multiplication by matrix A:
 - Transforms right singular vectors in V to left singular vectors U
- Multiplication by its transpose A^T:

Transforms *left* singular vectors U to right singular vector V

- A A^T : Converts V to U, then brings it back to V
 - Result: Only scaling

Symmetric Matrices

- Matrices that do not change on transposition
 - Row and column vectors are identical
- The left and right singular vectors are identical
 U = V
 - A = U S U^T
- They are identical to the *Eigen vectors* of the matrix
- Symmetric matrices do not rotate the space
 - Only scaling and, if Eigen values are negative, reflection

Symmetric Matrices

- Matrices that do not change on transposition
 - Row and column vectors are identical
- Symmetric matrix: Eigen vectors and Eigen values are always real
- Eigen vectors are always orthogonal
 - At 90 degrees to one another

 Eigen vectors point in the direction of the major and minor axes of the ellipsoid resulting from the transformation of a spheroid

– The eigen values are the lengths of the axes

Symmetric matrices

• Eigen vectors V_i are orthonormal

-
$$V_i^T V_i = 1$$

- $V_i^T V_j = 0, i != j$

- Listing all eigen vectors in matrix form V
 V^T = V⁻¹
 V^T V = I
 V V^T = I
- M $V_i = \lambda V_i$
- In matrix form : $M V = V \Lambda$
 - Λ is a diagonal matrix with all eigen values
- $M = V \Lambda V^T$

Square root of a symmetric matrix

$$C = V\Lambda V^{T}$$

$$Sqrt(C) = V.Sqrt(\Lambda).V^{T}$$

$$Sqrt(C).Sqrt(C) = V.Sqrt(\Lambda).V^{T}V.Sqrt(\Lambda).V^{T}$$

$$= V.Sqrt(\Lambda).Sqrt(\Lambda)V^{T} = V\Lambda V^{T} = C$$

- The *square root* of a symmetric matrix is easily derived from the Eigen vectors and Eigen values
 - The Eigen values of the square root of the matrix are the square roots of the Eigen values of the matrix
 - For correlation matrices, these are also the "singular values" of the data set

Definiteness..

- SVD: Singular values are always positive!
- Eigen Analysis: Eigen values can be real or imaginary
 - Real, positive Eigen values represent stretching of the space along the Eigen vector
 - Real, negative Eigen values represent stretching and reflection (across origin) of Eigen vector
 - Complex Eigen values occur in conjugate pairs
- A square (symmetric) matrix is positive definite if all Eigen values are real and positive, and are greater than 0
 - Transformation can be explained as stretching and rotation
 - If any Eigen value is **zero**, the matrix is positive *semi-definite*

Positive Definiteness..

- Property of a positive definite matrix: Defines inner product norms
 - $x^{T}Ax$ is always positive for any vector x if A is positive definite
- Positive definiteness is a test for validity of Gram matrices
 - Such as correlation and covariance matrices
 - We will encounter other gram matrices later

SVD vs. Eigen decomposition

- SVD cannot in general be derived directly from the Eigen analysis and vice versa
- But for matrices of the form M = DD^T, the Eigen decomposition of M is related to the SVD of D
 - SVD: $D = U S V^T$
 - $DD^{\mathsf{T}} = U S V^{\mathsf{T}} V S U^{\mathsf{T}} = U S^2 U^{\mathsf{T}}$
- The "left" singular vectors are the Eigen vectors of M
 - Show the directions of greatest importance
- The corresponding singular values of D are the square roots of the Eigen values of M
 - Show the importance of the Eigen vector

Thin SVD, compact SVD, reduced SVD

- SVD can be computed much more efficiently than Eigen decomposition
- Thin SVD: Only compute the first N columns of U
 - All that is required if N < M
- Compact SVD: Only the left and right singular vectors corresponding to non-zero singular values are computed

Why bother with Eigens/SVD

- Can provide a unique insight into data
 - Strong statistical grounding
 - Can display complex interactions between the data
 - Can uncover irrelevant parts of the data we can throw out
- Can provide *basis functions*
 - A set of elements to compactly describe our data
 - Indispensable for performing compression and classification
- Used over and over and still perform amazingly well

Eigenfaces Using a linear transform of the above "eigenvectors" we can compose various faces

Trace

- The trace of a matrix is the sum of the diagonal entries
- It is equal to the sum of the Eigen values!

$$Tr(A) = \sum_{i} a_{i,i} = \sum_{i} \lambda_i$$

Trace

• Often appears in Error formulae

 $D = \begin{bmatrix} d_{11} & d_{12} & d_{13} & d_{14} \\ d_{21} & d_{22} & d_{23} & d_{24} \\ d_{31} & a_{32} & a_{33} & a_{34} \\ d_{41} & d_{42} & d_{43} & d_{44} \end{bmatrix} \qquad C = \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34} \\ c_{41} & c_{42} & c_{43} & c_{44} \end{bmatrix}$

$$E = D - C$$
 $error = \sum_{i,j} E_{i,j}^2$ $error = Tr(EE^T)$

• Useful to know some properties..

Properties of a Trace

- Linearity: Tr(A+B) = Tr(A) + Tr(B)Tr(c.A) = c.Tr(A)
- Cycling invariance:
 - Tr (ABCD) = Tr(DABC) = Tr(CDAB) = Tr(BCDA)
 - Tr(AB) = Tr(BA)
- Frobenius norm $F(A) = \sum_{i,j} a_{ij}^2 = Tr(AA^T)$

Decompositions of matrices

- Square A: LU decomposition
 - Decompose A = L U
 - L is a *lower triangular* matrix
 - All elements above diagonal are 0
 - R is an *upper triangular* matrix
 - All elements below diagonal are zero
 - Cholesky decomposition: A is symmetric, $L = U^T$
- QR decompositions: A = QR
 - Q is orthgonal: $QQ^T = I$
 - R is upper triangular
- Generally used as tools to compute Eigen decomposition or least square solutions

- Derivative of scalar w.r.t. vector
- For any scalar *z* that is a function of a vector **x**
- The dimensions of dz / dx are the same as the dimensions of x

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \qquad \frac{dz}{d\mathbf{x}} = \begin{bmatrix} \frac{dz}{dx_1} \\ \vdots \\ \frac{dz}{dx_1} \\ \vdots \\ \frac{dz}{dx_N} \end{bmatrix}$$

N x 1 vector

- Derivative of scalar w.r.t. matrix
- For any scalar z that is a function of a matrix ${f X}$
- The dimensions of dz / dX are the same as the dimensions of X

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix} \qquad \frac{dz}{d\mathbf{X}} = \begin{bmatrix} \frac{dz}{dx_{11}} & \frac{dz}{dx_{12}} & \frac{dz}{dx_{13}} \\ \frac{dz}{dx_{21}} & \frac{dz}{dx_{22}} & \frac{dz}{dx_{23}} \end{bmatrix}$$

N x M matrix

1

1

N x M matrix

- Derivative of vector w.r.t. vector
- For any Mx1 vector y that is a function of an Nx1 vector x

M x N matrix

11-755/18-797

- Derivative of vector w.r.t. matrix
- For any Mx1 vector \boldsymbol{y} that is a function of an NxL matrx \boldsymbol{X}

 $M \sim 2 \sim 2$ tonsor

• dy / dX is an MxNxL tensor

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_M \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix} \quad \frac{d\mathbf{y}}{d\mathbf{X}} = \begin{bmatrix} \mathbf{y} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{y} \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{x$$

- Derivative of matrix w.r.t. matrix
- For any MxK vector ${\bf Y}$ that is a function of an NxL matrx ${\bf X}$
- $d\mathbf{Y} / d\mathbf{X}$ is an MxKxNxL tensor

In general

The derivative of an N₁ x N₂ x N₃ x ... tensor
 w.r.t to an M₁ x M₂ x M₃ x ... tensor

 Is an N₁ x N₂ x N₃ x ... x M₁ x M₂ x M₃ x tensor

Compound Formulae

• Let $\mathbf{Y} = f(g(h(\mathbf{X})))$

• Chain rule (note order of multiplication)

$$\frac{d\mathbf{Y}}{d\mathbf{X}} = \frac{dh(\mathbf{X})^{\#}}{d\mathbf{X}} \frac{dg(h(\mathbf{X}))^{\#}}{dh(\mathbf{X})} \frac{df(g(h(\mathbf{X})))}{dg(h(\mathbf{X}))}$$

The # represents a transposition operation
 That is appropriate for the tensor

Example

$$z = ||\mathbf{y} - A\mathbf{x}||^2$$