

Machine Learning for Signal Processing Fundamentals of Linear Algebra - 2 Class 3. 4 Sep 2014

Instructor: Bhiksha Raj

4 Sep 2014 11-755/18-797 1

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Projections
- More on matrix types
- Matrix determinants
- Matrix inversion
- Eigenanalysis
- Singular value decomposition

Orthogonal/Orthonormal vectors

 $A.B = 0 \Rightarrow xu + yv + zw = 0$

- Two vectors are orthogonal if they are perpendicular to one another
	- $-$ A.B = 0
	- A vector that is perpendicular to a plane is orthogonal to *every* vector on the plane
- Two vectors are ortho*normal* if
	- They are orthogonal
	- The length of each vector is 1.0
	- Orthogonal vectors can be made orthonormal by normalizing their lengths to 1.0 4 Sep 2014 3

Orthogonal matrices

- - The matrix is square
	- All row vectors are orthonormal to one another
		- Every vector is perpendicular to the hyperplane formed by all other vectors
	- All column vectors are also orthonormal to one another
	- **Observation:** In an orthogonal matrix if the length of the row vectors is 1.0, the length of the column vectors is also 1.0
	- **Observation**: **In an orthogonal matrix no more than one row can have all entries with the same polarity (+ve or –ve)**

- Orthogonal matrices will retain the **length** and **relative angles between** transformed vectors
	- Essentially, they are combinations of rotations, reflections and permutations
	- Rotation matrices and permutation matrices are all orthonormal

Orthogonal and Orthonormal Matrices

$$
\begin{bmatrix}\n\sqrt{0.5} & -\sqrt{0.125} & \sqrt{0.375} \\
\sqrt{0.5} & \sqrt{0.125} & -\sqrt{0.375} \\
0 & \sqrt{0.75} & 0.5\n\end{bmatrix}
$$

- If the vectors in the matrix are not unit length, it cannot be orthogonal
	- $-$ AA^T != I, A^TA != I
	- $-$ AA^T = Diagonal or A^TA = Diagonal, but not both
	- If all the entries are the same length, we can get $AA^T = A^TA = Diagonal$, though
- A non-square matrix cannot be orthogonal
	- $-$ AA^T=I or A^TA = I, but not both

Matrix Rank and Rank-Deficient Matrices

- Some matrices will eliminate one or more dimensions during transformation
	- These are *rank deficient* matrices
	- The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Matrix Rank and Rank-Deficient Matrices

- Some matrices will eliminate one or more dimensions during transformation
	- These are *rank deficient* matrices
	- The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Projections are often examples of rank-deficient transforms

- \blacksquare P = W (W^TW)⁻¹ W^T; Projected Spectrogram = P*M
- The original spectrogram can never be recovered \Box P is rank deficient
- \blacksquare P explains all vectors in the new spectrogram as a mixture of only the 4 vectors in W
	- There are only a maximum of 4 *independent* bases
	- **Example 1** Rank of P is 4

Non-square Matrices

- Non-square matrices add or subtract axes
	- More rows than columns \rightarrow add axes
		- \cdot But does not increase the dimensionality of the data

Non-square Matrices

- Non-square matrices add or subtract axes
	- $-$ More rows than columns \rightarrow add axes
		- But does not increase the dimensionality of the data
	- Fewer rows than columns \rightarrow reduce axes
		- May reduce dimensionality of the data

The Rank of a Matrix

- The matrix rank is the dimensionality of the transformation of a fulldimensioned object in the original space $\begin{bmatrix} .5 & 1 & 1 \end{bmatrix}$

• The matrix rank is the dimensionality of the transformation of a full-

dimensioned object in the original space

• The matrix can never *increase* dimensions

– Cannot convert a circle to a sphe
- The matrix can never *increase* dimensions
	- Cannot convert a circle to a sphere or a line to a circle
- The rank of a matrix can never be greater than the lower of its two dimensions

The Rank of Matrix

- Projected Spectrogram = P * M
	- Every vector in it is a combination of only 4 bases
- The rank of the matrix is the *smallest* no. of bases required to describe the output
	- **E.g.** if note no. 4 in P could be expressed as a combination of notes $1,2$ and 3, it provides no additional information
	- **Eliminating note no. 4 would give us the same projection**
- \Box The rank of P would be 3!

4 Sep 2014 11-755/18-797 13

Matrix rank is unchanged by transposition

• If an N-dimensional object is compressed to a K-dimensional object by a matrix, it will also be compressed to a K-dimensional object by the transpose of the matrix $[0.42 \t 0.44 \t 0.86]$

• If an N-dimensional object is compressed to a

K-dimensional object by a matrix, it will also

be compressed to a K-dimensional object by

the transpose of the matrix

Matrix Determinant

- The determinant is the "volume" of a matrix
- Actually the volume of a parallelepiped formed from its row vectors
	- Also the volume of the parallelepiped formed from its column vectors
- Standard formula for determinant: in text book

Matrix Determinant: Another Perspective

- The determinant is the ratio of N-volumes
	- $-$ If V_1 is the volume of an N-dimensional sphere "O" in N-dimensional space
		- O is the complete set of points or vertices that specify the object
	- $-$ If V₂ is the volume of the N-dimensional ellipsoid specified by A*O, where A is a matrix that transforms the space
	- $-$ |A| = V₂ / V₁

Matrix Determinants

- Matrix determinants are *only defined for square matrices*
	- They characterize volumes in linearly transformed space of the same dimensionality as the vectors
- Rank deficient matrices have determinant 0
	- Since they compress full-volumed N-dimensional objects into zerovolume N-dimensional objects
		- E.g. a 3-D sphere into a 2-D ellipse: The ellipse has 0 volume (although it does have area)
- Conversely, all matrices of determinant 0 are rank deficient
	- Since they compress full-volumed N-dimensional objects into zero-volume objects

Multiplication properties

- Properties of vector/matrix products
	- Associative

$$
\mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}
$$

– Distributive

$$
\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}
$$

– NOT commutative!!! \overline{a}

$A \cdot B \neq B \cdot A$

• *left multiplications* ≠ *right multiplications*

– Transposition

$$
(\mathbf{A} \cdot \mathbf{B})^T = \mathbf{B}^T \cdot \mathbf{A}^T
$$

Determinant properties

• Associative for square matrices

- Scaling volume sequentially by several matrices is equal to scaling once by the product of the matrices • Associative for square matrices $|\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}| = |\mathbf{A}| \cdot |\mathbf{B}| \cdot |\mathbf{C}|$

– Scaling volume sequentially by several matrices is equal to scaling

• Volume of sum != sum of Volumes $|(\mathbf{B} + \mathbf{C})| \neq |\mathbf{B}| + |\mathbf{C}|$
- Volume of sum $!=$ sum of Volumes

$$
|(\mathbf{B}+\mathbf{C})| \neq |\mathbf{B}| + |\mathbf{C}|
$$

- Commutative
	- The order in which you scale the volume of an object is irrelevant

$$
|\mathbf{A} \cdot \mathbf{B}| = |\mathbf{B} \cdot \mathbf{A}| = |\mathbf{A}| \cdot |\mathbf{B}|
$$

Matrix Inversion

- A matrix transforms an N-dimensional object to a different N-dimensional object
- What transforms the new object back to the original?
	- The *inverse transformation*
- The inverse transformation is called the matrix inverse

Matrix Inversion

 $T^{-1*}T^*D = D \implies T^{-1}T = I$

- The product of a matrix and its inverse is the identity matrix
	- Transforming an object, and then inverse transforming it gives us back the original object

 $T^*T^{-1*}D = D \rightarrow TT^{-1} = I$

- Rank deficient matrices "flatten" objects
	- In the process, multiple points in the original object get mapped to the same point in the transformed object
- It is not possible to go "back" from the flattened object to the original object $\begin{bmatrix} 0 & -0.433 & 0.75 \end{bmatrix}$

• Rank deficient matrices "flatten" objects

— In the process, multiple points in the original object get mapped to the same

point in the transformed object

• It is not possible to go "bac
	- Because of the many-to-one forward mapping
- Rank deficient matrices have no inverse

Rank Deficient Matrices

- **The projection matrix is rank deficient**
- You cannot recover the original spectrogram from the projected one..

Revisiting Projections and Least Squares

- Projection computes a *least squared error* estimate
- For each vector V in the music spectrogram matrix
	- Approximation: $V_{approx} = a^* \text{note1} + b^* \text{note2} + c^* \text{note3}$.

- Error vector $E = V V_{approx}$
- Squared error energy for V $e(V) = norm(E)^2$
- Projection computes V_{approx} for all vectors such that Total error is minimized - Error vector E = $V - V_{approx}$

- Squared error energy for V = $e(V)$ = norm $(E)^2$

• Projection computes V_{approx} for all vectors such that Total error is

minimized

• **But WHAT ARE "a" "b" and "c"?**

^{4 Sep 2014}

^{4 Sep 2014}
- **But WHAT ARE "a" "b" and "c"?**

The Pseudo Inverse (PINV)

$$
V_{approx}=T\begin{bmatrix} a \\ b \\ c \end{bmatrix} \qquad V \approx T\begin{bmatrix} a \\ b \\ c \end{bmatrix} \qquad V \approx T\begin{bmatrix} a \\ b \\ c \end{bmatrix} \qquad V \approx T\begin{bmatrix} a \\ b \\ c \end{bmatrix}
$$

- We are approximating spectral vectors V as the transformation of the vector $[a b c]^\top$ • We are approximating spectral vectors V as the
transformation of the vector [a b c]^T
– Note – we're viewing the collection of bases in T as a
transformation
• The solution is obtained using the *pseudo inverse*
– This
	- Note we're viewing the collection of bases in T as a transformation
- The solution is obtained using the *pseudo inverse*
	- This give us a *LEAST SQUARES* solution
		- If T were square and invertible Pinv(T) = T^{-1} , and V=V_{approx}

Explaining music with one note

Recap: $P = W (W^T W)^{-1} W^T$, Projected Spectrogram = P*M

Approximation: M = W*X

- The amount of W in each vector = $X = PINV(W)*M$
- W^* Pinv(W)^{*}M = Projected Spectrogram
	- \Box W*Pinv(W) = Projection matrix!!

 $PINV(W) = (W^TW)⁻¹W^T$

Explanation with multiple notes

 \blacksquare X = Pinv(W) * M; Projected matrix = W*X = W*Pinv(W)*M

How about the other way? 8000 7000 6000 5000 Hopency (HZ) $M =$ 4000 3000 2000 1000 Ω \overline{z} ϵ $Time$ 1_C 12 14 $V =$ $W =$? $\begin{array}{|c|c|c|c|}\n\hline\n\vdots & \Hline\n\end{array}$ $\begin{array}{|c|c|c|}\n\hline\n\vdots & \Hline\n\end{array}$ $U =$

We W = M Pinv(V) $U = WV$

4 Sep 2014 11-755/18-797 28

Pseudo-inverse (PINV)

- Pinv() applies to non-square matrices
- Pinv (Pinv $(A)) = A$
- A*Pinv(A)= projection matrix!

– Projection onto the columns of A

- If $A = K \times N$ matrix and $K > N$, A projects N-D vectors into a higher-dimensional K-D space
	- $-$ Pinv(A) = NxK matrix
	- $-$ Pinv(A)*A = I in this case
- Otherwise $A * Pinv(A) = I$

Matrix inversion (division)

- The inverse of matrix multiplication
	- Not element-wise division!!
- Provides a way to "undo" a linear transformation
	- Inverse of the unit matrix is itself
	- Inverse of a diagonal is diagonal
	- Inverse of a rotation is a (counter)rotation (its transpose!)
	- Inverse of a rank deficient matrix does not exist!
		- But pseudoinverse exists
- For square matrices: Pay attention to multiplication side! $A \cdot B = C$, $A = C \cdot B^{-1}$, $B = A^{-1} \cdot C$
not square use a matrix pseudoinverse:
 $A \cdot B \approx C$, $A = C \cdot B^{+}$, $B = A^{+} \cdot C$
- If matrix is not square use a matrix pseudoinverse:

$$
\mathbf{A} \cdot \mathbf{B} \approx \mathbf{C}, \ \mathbf{A} = \mathbf{C} \cdot \mathbf{B}^{+}, \ \mathbf{B} = \mathbf{A}^{+} \cdot \mathbf{C}
$$

Eigenanalysis

- If something can go through a process mostly unscathed in character it is an *eigen-*something
	- $-$ Sound example: \bigcirc \bigcirc $\sqrt{2}$
- A vector that can undergo a matrix multiplication and keep pointing the same way is an *eigenvector*
	- Its length can change though
- How much its length changes is expressed by its corresponding *eigenvalue*
	- Each eigenvector of a matrix has its eigenvalue
- Finding these "eigenthings" is called eigenanalysis

EigenVectors and EigenValues

- Vectors that do not change angle upon transformation
	- They may change length

$$
MV = \lambda V
$$

vector
value

$$
11-755/18-797
$$

 $-$ V = eigen vector

$$
\sum_{4 \text{ Sep } 2014} \lambda = \text{eigen value}
$$

Eigen vector example

Matrix multiplication revisited

- Matrix transformation "transforms" the space
	- Warps the paper so that the normals to the two vectors now lie along the axes

A stretching operation

- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2
	- The factors could be negative implies flipping the paper
- The result is a transformation of the space

A stretching operation

- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2
	- \Box The factors could be negative implies flipping the paper
- The result is a transformation of the space

Physical interpretation of eigen vector

- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
	- The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Physical interpretation of eigen vector

- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
	- The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Eigen Analysis

- Not all square matrices have nice eigen values and vectors
	- E.g. consider a rotation matrix

- This rotates every vector in the plane
	- No vector that remains unchanged
- In these cases the Eigen vectors and values are complex

- Matrix transformations convert circles to ellipses
- Eigen vectors are vectors that do not change direction in the process
- There is another key feature of the ellipse to the left that carries information about the transform
	- Can you identify it?

- The major and minor axes of the transformed ellipse define the ellipse
	- They are at right angles
- These are transformations of right-angled vectors on the original circle!

- U and V are orthonormal matrices
	- Columns are orthonormal vectors
- S is a diagonal matrix
- The *right singular vectors* in V are transformed to the *left singular vectors* in U
	- And scaled by the *singular values* that are the diagonal entries of S

- The left and right singular vectors are not the same
	- If A is not a square matrix, the left and right singular vectors will be of different dimensions
- The singular values are always real
- The largest singular value is the largest amount by which a vector is scaled by A
	- Max ($|Ax| / |x|$) = s_{max}
- The smallest singular value is the smallest amount by which a vector is scaled by A
	- Min $(|Ax| / |x|) = s_{min}$
	- This can be 0 (for low-rank or non-square matrices)

The Singular Values

- Square matrices: product of singular values = determinant of the matrix
	- This is also the product of the *eigen* values
	- I.e. there are two different sets of axes whose products give you the area of an ellipse
- For any "broad" rectangular matrix A, the largest singular value of any square submatrix B cannot be larger than the largest singular value of A
	- An analogous rule applies to the smallest singular value

 $\frac{1}{4 \text{ Sep}}$ 2014 is property is utilized in various problems, such as compressive sensing

SVD vs. Eigen Analysis

- Eigen analysis of a matrix **A**:
	- Find two vectors such that their absolute directions are not changed by the transform
- SVD of a matrix **A**:
	- Find two vectors such that the *angle* between them is not changed by the transform
- For one class of matrices, these two operations are the same

A matrix vs. its transpose

- Multiplication by matrix A:
	- Transforms right singular vectors in V to left singular vectors U
- Multiplication by its transpose A^T :

– Transforms *left* singular vectors U to right singular vector V

- A A^T : Converts V to U, then brings it back to V
	- Result: Only scaling

Symmetric Matrices

- Matrices that do not change on transposition
	- Row and column vectors are identical
- The left and right singular vectors are identical $- U = V$
	- $A = U S U^T$
- They are identical to the *Eigen vectors* of the matrix
- Symmetric matrices do not rotate the space
	- Only scaling and, if Eigen values are negative, reflection

Symmetric Matrices

- Matrices that do not change on transposition
	- Row and column vectors are identical
- Symmetric matrix: Eigen vectors and Eigen values are always real
- Eigen vectors are always orthogonal
	- At 90 degrees to one another

• Eigen vectors point in the direction of the major and minor axes of the ellipsoid resulting from the transformation of a spheroid

– The eigen values are the lengths of the axes

Symmetric matrices

• Eigen vectors V_i are orthonormal

$$
- V_i^{\mathrm{T}} V_i = 1
$$

- V_i^{\mathrm{T}} V_j = 0, i != j

- Listing all eigen vectors in matrix form V $-V^{T} = V^{-1}$ $- V^T V = I$ $-$ V V^T= I
- M $V_i = \lambda V_i$
- In matrix form : $M V = V \Lambda$
	- Λ is a diagonal matrix with all eigen values
- $M = V \Lambda V^T$

Square root of a symmetric matrix

$$
C = V\Lambda V^{T}
$$

Sqrt(C).Sqrt(C) = V.Sqrt(\Lambda).V^{T}V.Sqrt(\Lambda).V^{T}
= V.Sqrt(\Lambda).Sqrt(\Lambda)V^{T} = V\Lambda V^{T} = C

- The *square root* of a symmetric matrix is easily derived from the Eigen vectors and Eigen values
	- The Eigen values of the *square root* of the matrix are the square roots of the Eigen values of the matrix
	- For correlation matrices, these are also the "singular values" of the data set

Definiteness..

- SVD: Singular values are always positive!
- Eigen Analysis: Eigen values can be real or imaginary
	- Real, positive Eigen values represent stretching of the space along the Eigen vector
	- Real, *negative* Eigen values represent stretching and *reflection* (across origin) of Eigen vector
	- Complex Eigen values occur in conjugate pairs
- A square (symmetric) matrix is **positive definite** if all Eigen values are real and positive, and are greater than 0
	- Transformation can be explained as **stretching** and **rotation**
	- If any Eigen value is **zero**, the matrix is positive *semi-definite*

Positive Definiteness..

- Property of a positive definite matrix: Defines inner product norms
	- $-\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x}$ is always positive for any vector x if \mathbf{A} is positive definite
- Positive definiteness is a test for validity of *Gram* matrices
	- Such as correlation and covariance matrices
	- We will encounter other gram matrices later

SVD vs. Eigen decomposition

- SVD cannot in general be derived directly from the Eigen analysis and vice versa
- But for matrices of the form $M = DD^T$, the Eigen decomposition of M is related to the SVD of D
	- $-$ SVD: $D = U S V^{T}$
	- $-$ DD^T = U S V^T V S U^T = U S² U^T
- The "left" singular vectors are the Eigen vectors of M
	- Show the directions of greatest importance
- The corresponding singular values of D are the square roots of the Eigen values of M
	- Show the importance of the Eigen vector

Thin SVD, compact SVD, reduced SVD

- **SVD can be computed much more efficiently than Eigen decomposition**
- Thin SVD: Only compute the first N columns of U
	- All that is required if N < M
- Compact SVD: Only the left and right singular vectors corresponding to non-zero singular values are computed

Why bother with Eigens/SVD

- Can provide a unique insight into data
	- Strong statistical grounding
	- Can display complex interactions between the data
	- Can uncover irrelevant parts of the data we can throw out
- Can provide *basis functions*
	- A set of elements to compactly describe our data
	- Indispensable for performing compression and classification
- Used over and over and still perform amazingly well

Eigenfaces Using a linear transform of the above "eigenvectors" we can compose various faces

Trace

- The trace of a matrix is the sum of the diagonal entries • The trace of a matrix is the sum of the
diagonal entries
• It is equal to the sum of the Eigen values!
 $\frac{Tr(A) = \sum_i a_{i,i} = \sum_i \lambda_i}{i}$
- It is equal to the sum of the Eigen values!

$$
Tr(A) = \sum_{i} a_{i,i} = \sum_{i} \lambda_{i}
$$

Trace

• Often appears in Error formulae

 $\overline{}$ $\overline{}$ $\overline{}$ \rfloor $\overline{}$ $\overline{}$ \mathcal{L} \mathcal{L} $\overline{}$ \mathcal{L} $=$ d_{41} d_{42} d_{43} d_{44} a_{31} a_{32} a_{33} a_{34} a_{21} d_{22} d_{23} d_{24} $\begin{array}{cccc} d_{11} & d_{12} & d_{13} & d_{14} \end{array}$ d_{41} d_{42} d_{43} *d* d_{31} a_{32} a_{33} *a* d_{21} d_{22} d_{23} *d* d_{11} d_{12} d_{13} *d D* $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ \rfloor $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ \lfloor \mathbf{r} $=$ c_{42} c_{43} c_{44} 31 c_{32} c_{33} c_{34} c_{21} c_{22} c_{23} c_{24} C_{12} C_{13} C_{14} c_{41} c_{42} c_{43} c_{45} c_{31} c_{32} c_{33} *c* c_{21} c_{22} c_{23} *c* c_{11} c_{12} c_{13} c_{12} *C*

 $\begin{bmatrix} 3^{1} & 3^{2} & 3^{3} & 3^{4} \\ d_{41} & d_{42} & d_{43} & d_{44} \end{bmatrix}$ $\begin{bmatrix} c_{41} & c_{42} & c_{43} & c_{44} \end{bmatrix}$
 $E = D - C$ $error = \sum_{i,j} E_{i,j}^{2}$ $error = Tr(EE^{T})$

• Useful to know some properties.. $E = D - C$ *error* = \sum *i j* $error = \sum E_{i,j}^2$, 2 , $error = Tr(EE^T)$

• Useful to know some properties..

Properties of a Trace

- Linearity: $Tr(A+B) = Tr(A) + Tr(B)$ $Tr(c.A) = c.Tr(A)$
- Cycling invariance:
	- $-$ Tr (ABCD) = Tr(DABC) = Tr(CDAB) = Tr(BCDA)
	- $-Tr(AB) = Tr(BA)$
- Frobenius norm $F(A) = \sum_{i,j} a_{ij}^2 = Tr(AA^T)$

Decompositions of matrices

- Square A: LU decomposition
	- $-$ Decompose A = L U
	- L is a *lower triangular* matrix
		- All elements above diagonal are 0
	- R is an *upper triangular* matrix
		- All elements below diagonal are zero
	- Cholesky decomposition: A is symmetric, $L = U^{T}$
- QR decompositions: A = QR
	- $-$ Q is orthgonal: $QQ^T = I$
	- R is upper triangular
- Generally used as tools to compute Eigen decomposition or least square solutions

- Derivative of scalar w.r.t. vector
- For any scalar *z* that is a function of a vector **x**
- The dimensions of d*z* / d**x** are the same as the dimensions of **x**

$$
\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \qquad \qquad \frac{dz}{d\mathbf{x}} = \begin{bmatrix} \frac{dz}{dx} \\ \vdots \\ \frac{dz}{dx} \end{bmatrix}
$$

N x 1 vector
⁴ Sep 2014
⁴ Sep 2014
<sup>11-755/18-797
N x 1 vector</sup>

- Derivative of scalar w.r.t. matrix
- For any scalar *z* that is a function of a matrix **X**
- The dimensions of d*z* / d**X** are the same as the dimensions of **X**

$$
\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix} \qquad \frac{dz}{d\mathbf{X}} = \begin{bmatrix} \frac{dz}{dx_1} & \frac{dz}{dx_2} & \frac{dz}{dx_3} \\ \frac{dz}{dx_2} & \frac{dz}{dx_2} & \frac{dz}{dx_3} \end{bmatrix}
$$

\nN x M matrix
\n⁴ Sep 2014
\nN x M matrix

N x M matrix

- Derivative of vector w.r.t. vector
- For any Mx1 vector **y** that is a function of an Nx1 vector **x**

M x N matrix

- Derivative of vector w.r.t. matrix
- For any Mx1 vector **y** that is a function of an NxL matrx **X**

 $M \vee 2$ v 3 tansor

• d**y** / d**X** is an MxNxL tensor

$$
\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_M \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix} \begin{matrix} \frac{d\mathbf{y}}{d\mathbf{X}} = \begin{bmatrix} 0 \\ y \\ \frac{dy}{d\mathbf{y}} \end{bmatrix}
$$

\n
$$
\begin{matrix} (i,j,k) \text{th element} = \\ \frac{dy}{dx_{j,k}} = \\ \frac{dx_{j,k}}{dx_{j,k}} \end{matrix}
$$

- Derivative of matrix w.r.t. matrix
- For any MxK vector **Y** that is a function of an NxL matrx **X**
- d**Y** / d**X** is an MxKxNxL tensor

In general

- The derivative of an $N_1 \times N_2 \times N_3 \times ...$ tensor w.r.t to an M_1 x M_2 x M_3 x $...$ tensor
- Is an $N_1 \times N_2 \times N_3 \times ... \times M_1 \times M_2 \times M_3 \times ...$ tensor

Compound Formulae

• Let $Y = f(g(h(X)))$

• Chain rule (note order of multiplication)

$$
\frac{d\mathbf{Y}}{d\mathbf{X}} = \frac{dh(\mathbf{X})^{\#} d g(h(\mathbf{X}))^{\#} df(g(h(\mathbf{X}))}{dh(\mathbf{X})} \frac{df(g(h(\mathbf{X})))}{dg(h(\mathbf{X}))}
$$

• The # represents a transposition operation – That is appropriate for the tensor **dX** d**X** dh(**X**) dg(h (**X**))

• The # represents a transposition operation

— That is appropriate for the tensor
 $\frac{4 \text{ Sep } 2014}$

Example

$$
z = ||\mathbf{y} - A\mathbf{x}||^2
$$