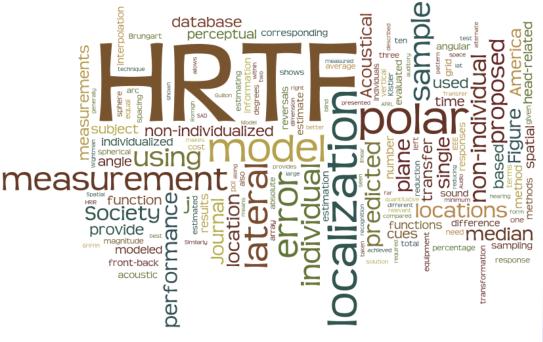
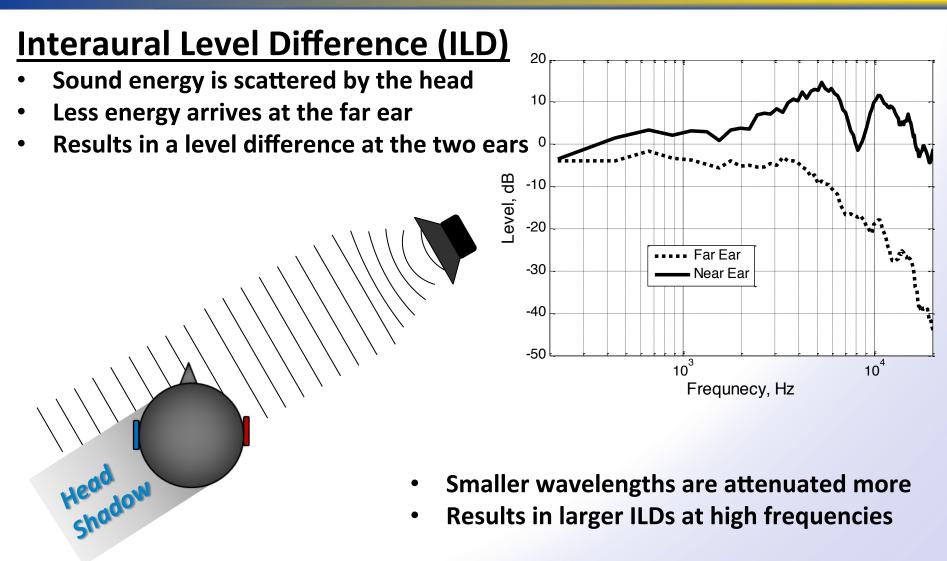
Analysis and Prediction of Protected-Ear Localization

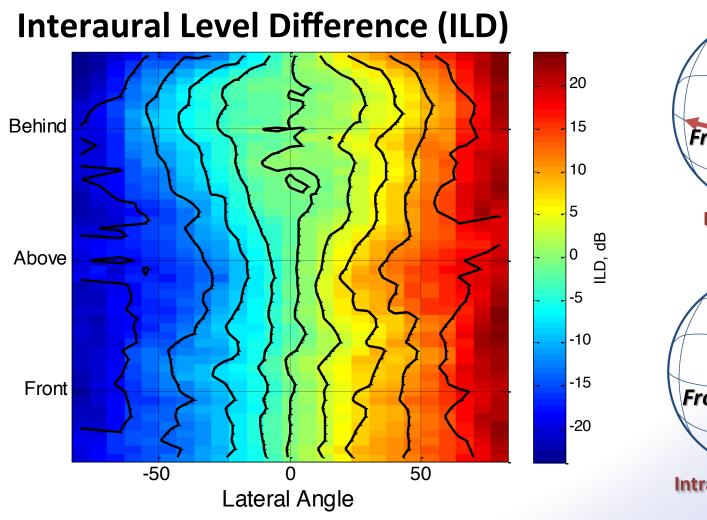


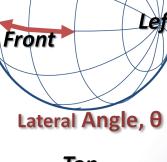
Griffin D. Romigh, Ph.D.

Air Force Research Labs 2610 Seventh St., Area B, Bldg. 441 WPAFB, OH 45433

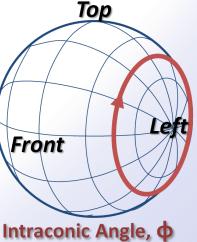
- Spatial Hearing and HRTFs
- A Different Approach
- An Efficient Representation
- Applying Bayesian estimation
- Modeling individual differences
- Summary of Contributions





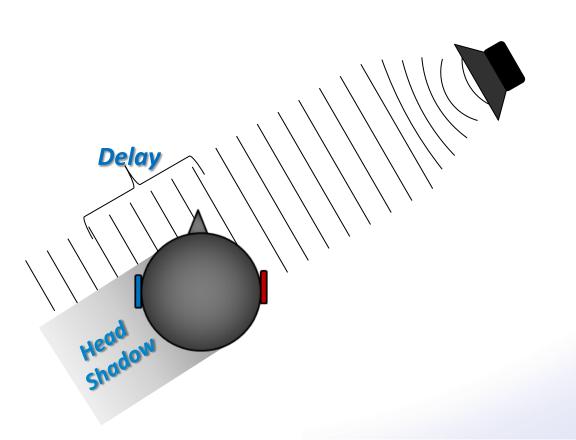


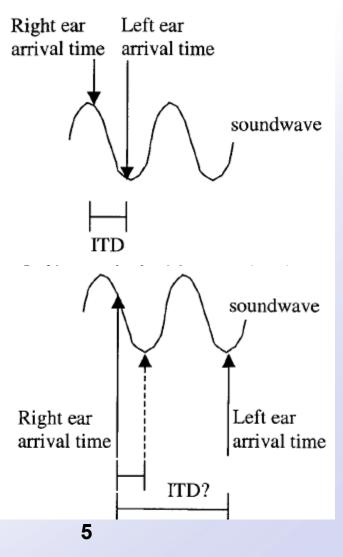
Тор

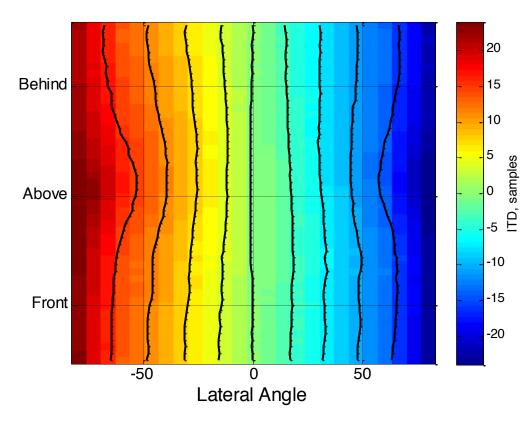


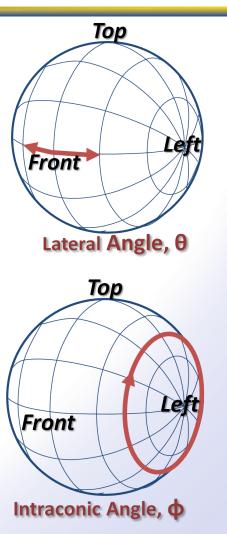
Interaural Time Difference (ITD)

- Sound arrives at near ear before far ear
- Results in a arrival and phase difference
- Becomes ambiguous at high frequencies



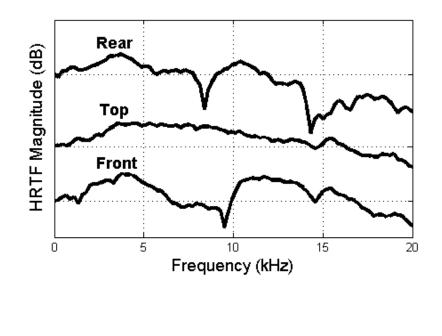


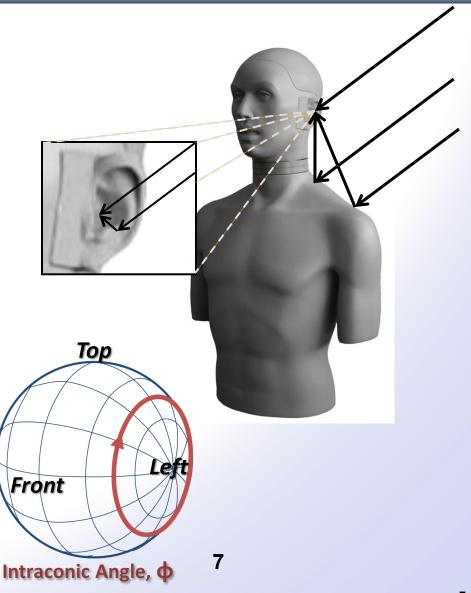




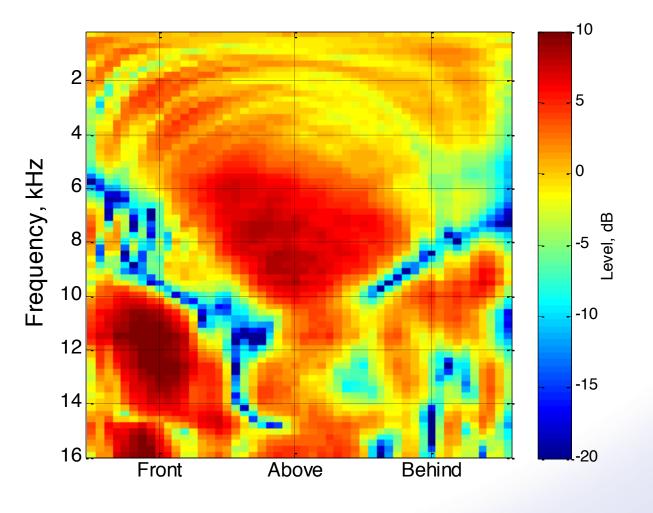
Spectral Cues

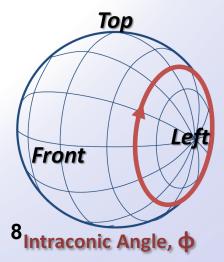
- High frequency cues due to pinna
- Lower frequency cue due to shoulders
- Perceptually weighted to favor closer ear



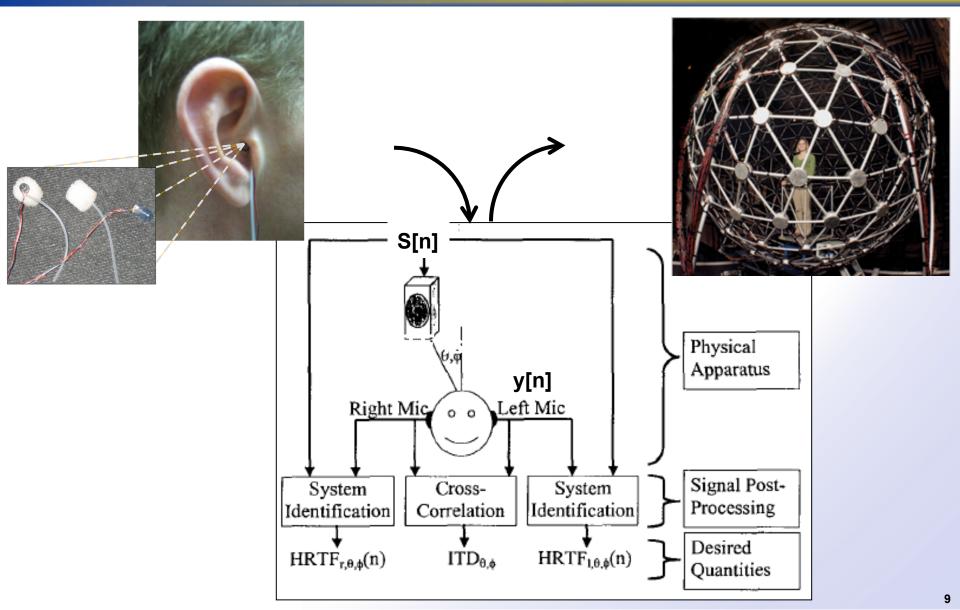


Spectral Cues

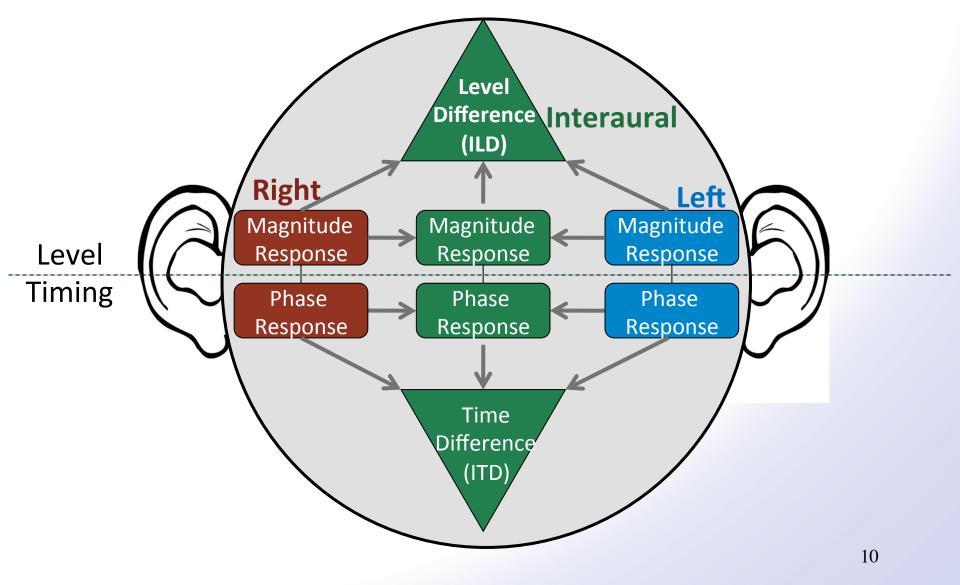




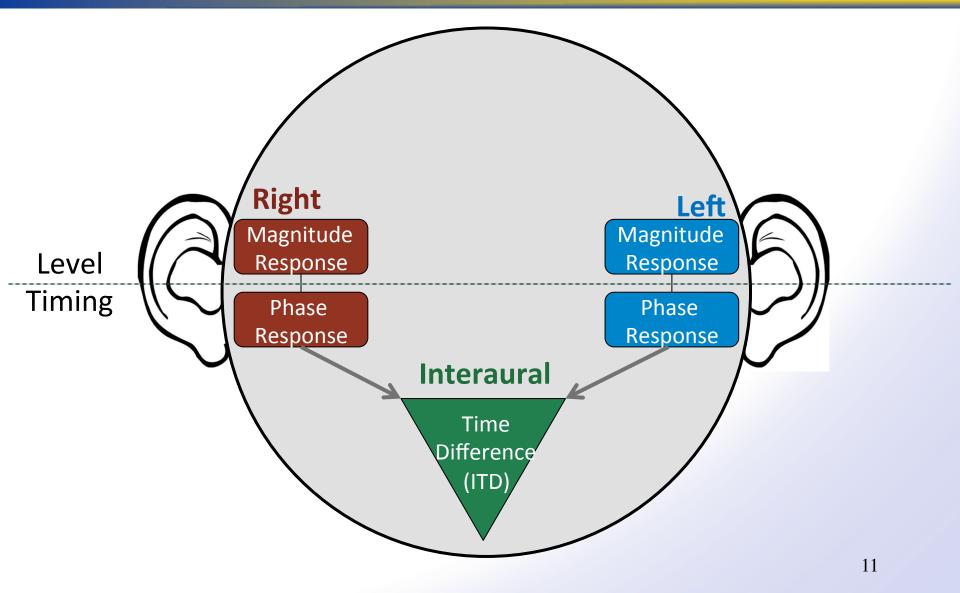
Head-Related Transfer Functions:

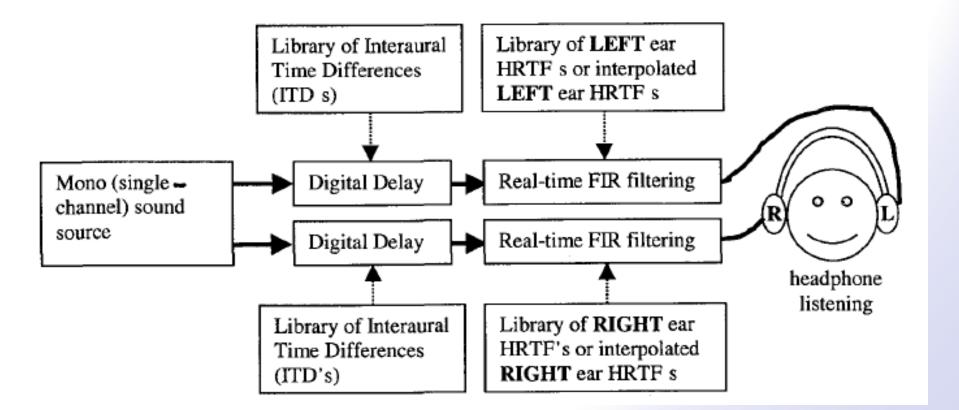


HRTF $\leftarrow \rightarrow$ Spatial Hearing Cues



HRTF $\leftarrow \rightarrow$ Spatial Hearing Cues

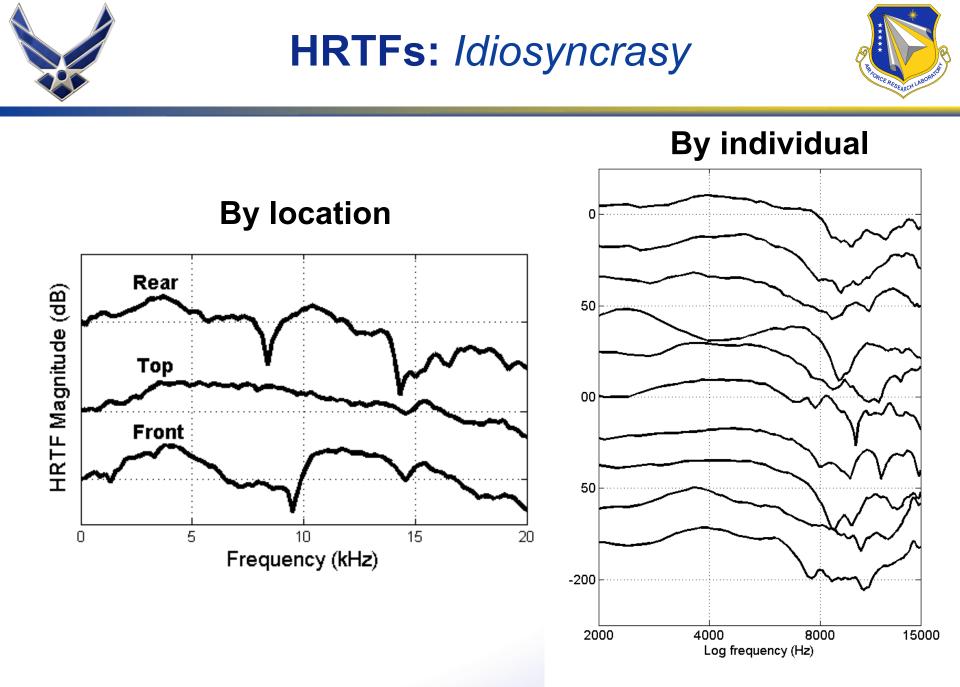




Spatial Auditory Displays:

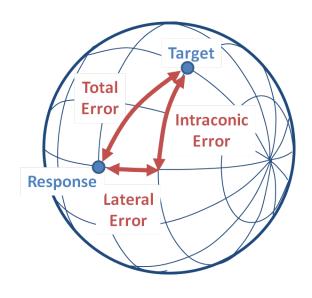
Spatial Auditory Displays

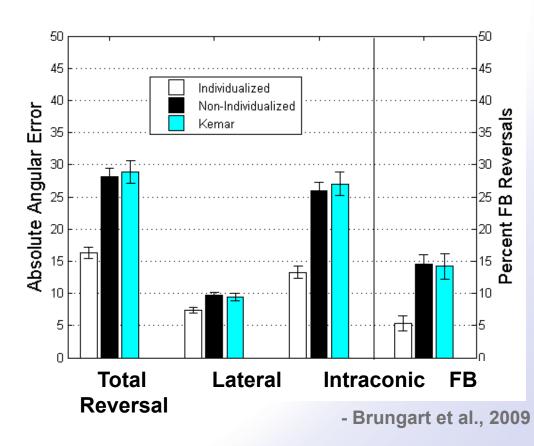
- Guidance systems
- Hearing Restoration
- Virtual Reality
- Augmented Reality



HRTFs: Idiosyncrasy

- SADs need Individual HRTFs
- Otherwise:
 - 1. No sense of elevation
 - 2. Frequent FB Reversals
 - 3. Localized "In the Head"

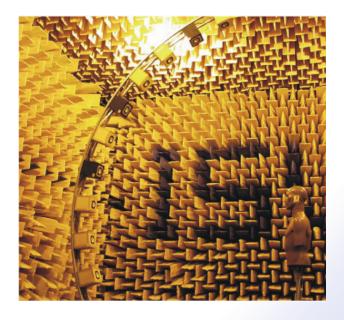




HRTFs: Spatial Measurement

Fixed Spherical Array

Rotating Arc Array



Pros:	Fast (5 – 10 min)		
Cons:	Expensive, Permanent		

Cheaper, Temporary

Slow (1 – 2 hours)

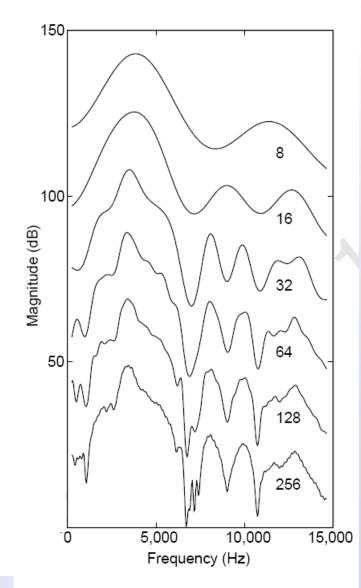
How can we get an HRTF for every spatial angle with as few physical measurements as possible?

Previous Methods:

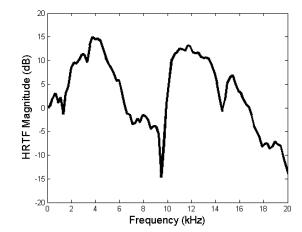
Parallel	Measurement -Reciprocity -Spectral asynchrony	•Same Equipmer •Less Time •Perceptually Ec Performance	Baseline HRTF • 277 locations • 256 taps	
Interpolation	Naive -Linear kNN -Spherical Basis	Statistical - Pattern Matching - Neural Net	•Less Equipment •Less Time •Perceptually Ec Performance	uivalent
Non-Acoustic I	Subjective Selection -Most Externalized -Vertical Lift	Structural Models -"Snowman" - Anthropometric	Generalization -Averaging -Super Subject	•Least Equipment •Less Time •Poor Performance

- Auditory system has limited spectral resolution
- This results in fine spectral details being averaged out
- Most impactful at high frequencies

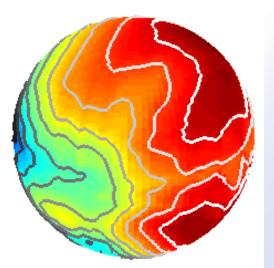
Maybe we can get away with smoothing the spatial detail

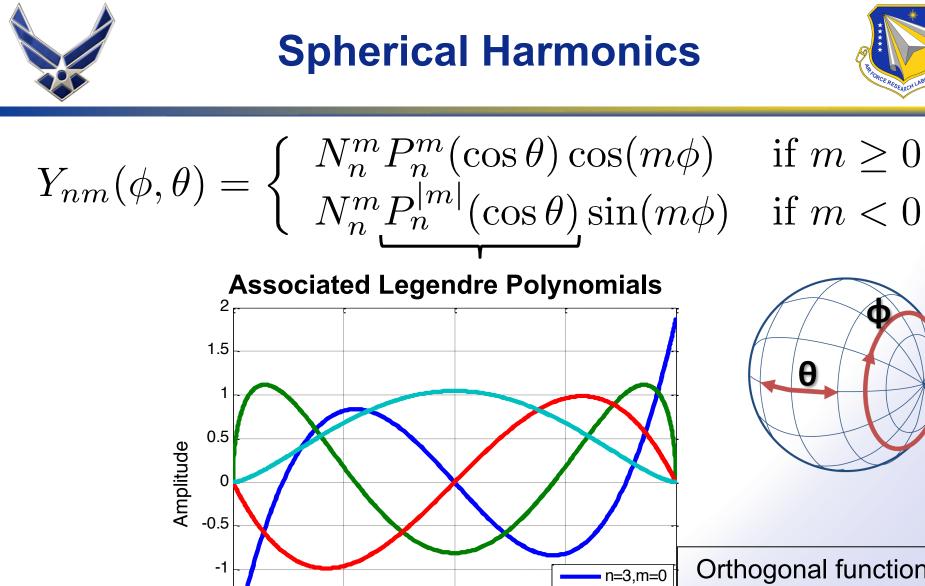


Spatial Representation:



 $|H_{\theta,\phi}(\omega)| \Leftrightarrow |H_{\omega}(\theta,\phi)|$

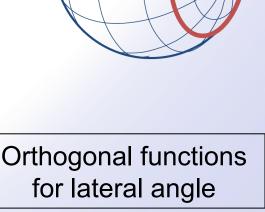




-1.5

-2<u>,</u> -1

-0.5



θ

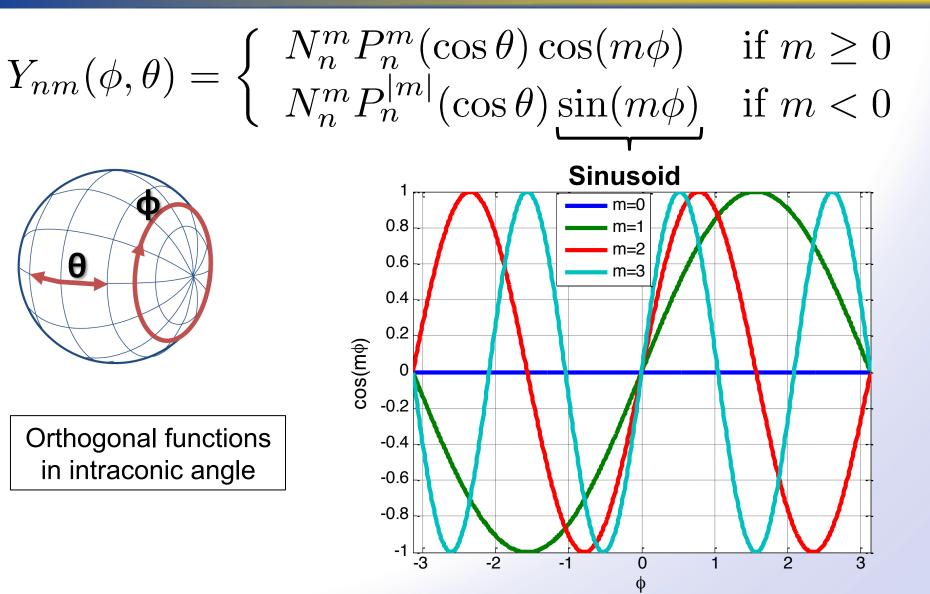
n=3,m=1

n=3,m=2 n=3,m=3

0.5

0 $\cos \theta$

Spherical Harmonics



Orthonormal basis over the continuous sphere

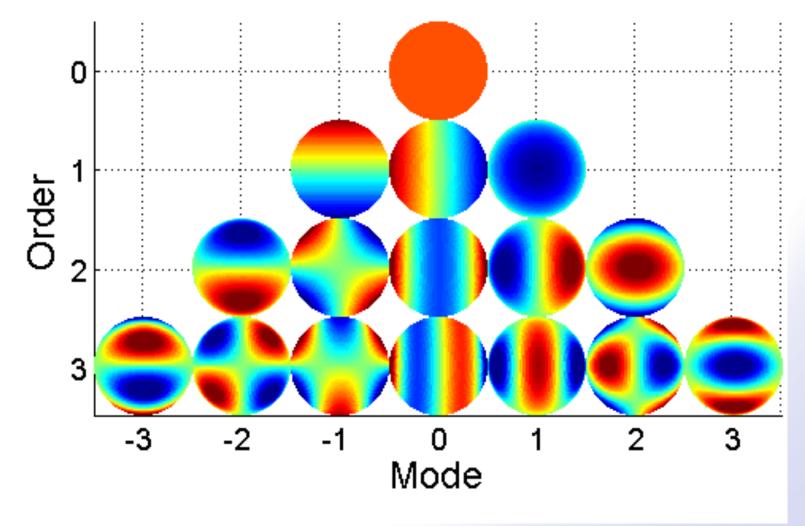
 $\int \theta = -\pi/2 \, \hbar \pi/2 \, \text{ms} \int \varphi = -\pi \hbar \, \text{ms} \, Y \, \ln m \, (\varphi, \theta) \, \hbar \, Y \, \ln' m' \, (\varphi, \theta) = \delta \, \ln n' \, \delta \, \mu m n'$

Allow us to represent any square integrable spherical function with a set of SH coefficients

$$f(\phi, \theta) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} Y_{nm}(\phi, \theta) C_{nm}$$

**** We can do Fourier analysis on a sphere ***

Spherical Harmonics



Re-cast problem into system of linear equations

$$\mathbf{f} = \mathbf{Yc}$$
where $\mathbf{f} = [f(\phi_0, \theta_0), f(\phi_1, \theta_1), \cdots, f(\phi_S, \theta_S)]^T$

$$\mathbf{c} = [C_{00}, C_{1-1}, C_{10}, C_{11}, \cdots, C_{PP}]^T$$

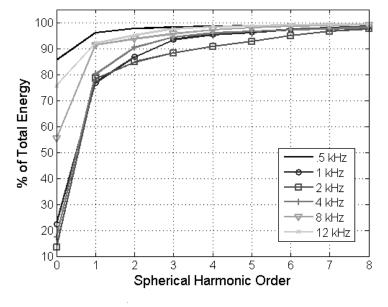
$$\mathbf{Y} = \begin{bmatrix} Y_{00}(\phi_1, \theta_1) & Y_{-11}(\phi_1, \theta_1) & \cdots & Y_{PP}(\phi_1, \theta_1) \\ Y_{00}(\phi_2, \theta_2) & Y_{-11}(\phi_2, \theta_2) & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ Y_{00}(\phi_S, \theta_S) & Y_{-11}(\phi_S, \theta_S) & \cdots & Y_{PP}(\phi_S, \theta_S) \end{bmatrix}$$
Simple least-squares solution

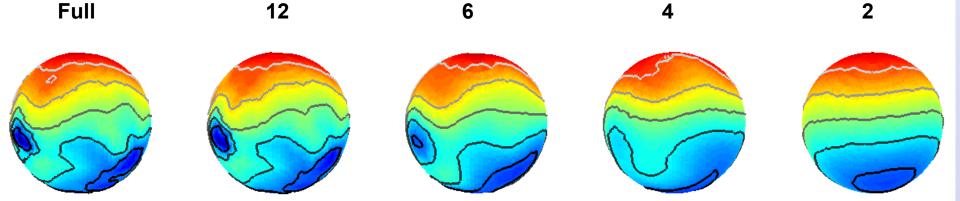
$$\mathbf{\hat{c}} = (\mathbf{Y^T}\mathbf{Y})^{-1}\mathbf{Y^T}\mathbf{f}$$

Truncation Order

Spatial Smoothing:

$$f(\phi,\theta) = \sum_{n=0}^{P} \sum_{m=-n}^{n} Y_{nm}(\phi,\theta)C_{nm}$$

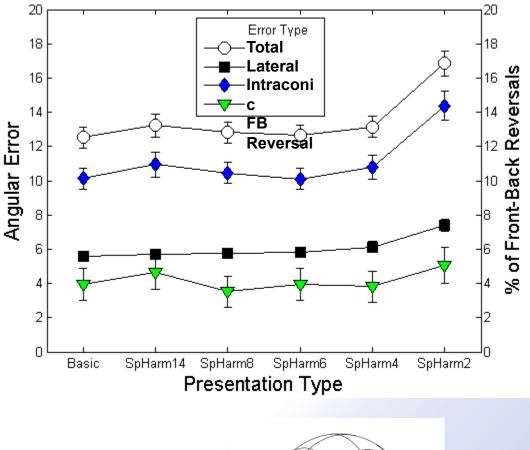


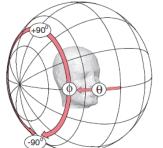


Perceptual Evaluation

Localization task

- 8 Subjects
- 250-ms noise bursts
- 245 locations





- New SH-based HRTF representation
 - Spatially continuous
 - Reduces irrelevant spatial variation
 - Localization equivalent to full HRTF
 - Reduces # of parameters by 95% w.r.t. baseline HRTF

Can non-individualized HRTFs provide information about a new HRTF measurement?

Non-individual information is incorporated through hyperparameters

endent

$$\mathbf{R_{cc}} = \begin{bmatrix} \sigma_{00}^2 & 0 & \cdots & 0 \\ 0 & \sigma_{-11}^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{PP}^2 \end{bmatrix}$$

$$\mathbf{m_c} = \begin{bmatrix} E[C_{00}] \\ E[C_{-11}] \\ \vdots \\ E[C_{PP}] \end{bmatrix}$$

Bayesian Estimation

Estimation via MMSE Estimator

$$\hat{\mathbf{c}} = \mathbf{E}[\mathbf{c}|\mathbf{f}] = \mathbf{m}_{\mathbf{c}} + \mathbf{R}_{\mathbf{cc}}\mathbf{Y}^{\mathbf{T}}(\mathbf{Y}\mathbf{R}_{\mathbf{cc}}\mathbf{Y}^{\mathbf{T}} + \sigma^{2}\mathbf{I})^{-1}(\mathbf{f} - \mathbf{Y}\mathbf{m}_{\mathbf{c}})$$
Estimated SH
coefficients
for individual
$$\begin{array}{c} \mathbf{E}\mathbf{S}\mathbf{I} \\ \mathbf{F}\mathbf{I} \\ \mathbf{F}\mathbf$$

Estimator is based on how the HRTF is different from average...

locations

Bayesian Estimation

Estimation via MMSE Estimator

Assuming hyper-parameters are already known...

We have fixed unknown model parameters....

 $\mathbf{c}:\mathcal{N}(\mathbf{m_c},\mathbf{R_{cc}})$

Classical Estimation (MVUB)

$$\hat{\mathbf{m}}_{c} = \frac{1}{M} \sum_{i=1}^{M} \mathbf{c}_{i}$$

$$\hat{\sigma}_{j}^{2} = \frac{1}{M-1} \sum_{i=1}^{M} (\mathbf{c}_{i}[j] - \hat{\mathbf{m}}_{c}[j])^{2} \qquad \mathbf{R}_{cc} = \begin{bmatrix} \sigma_{00}^{2} & 0 & \cdots & 0\\ 0 & \sigma_{-11}^{2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \sigma_{PP}^{2} \end{bmatrix}$$

Assuming we have *M* individuals SH coefficients...

We have fixed unknown model parameters....

$$\mathbf{c}:\mathcal{N}(\mathbf{m_c},\mathbf{R_{cc}})$$

Classical Estimation (MVUB)

But we can't measure SH coefficients. We need a way to estimate both simultaneously.

$$\hat{\mathbf{m}}_c = \frac{1}{M} \sum_{i=1}^M \mathbf{c_i}$$

$$\hat{\sigma}_{j}^{2} = \frac{1}{M-1} \sum_{i=1}^{M} (\mathbf{c}_{i}[j] - \hat{\mathbf{m}}_{c}[j])^{2} \qquad \mathbf{R_{cc}} = \begin{bmatrix} \sigma_{00}^{2} & 0 & \cdots & 0 \\ 0 & \sigma_{-11}^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{PP}^{2} \end{bmatrix}$$

Assuming we have *M* individuals' SH coefficients...

Compute parameters and hyper-parameters iteratively

- 1. Initialize R_{cc} and m_c to arbitrary values
- 2. Calculate Bayesian estimates of SH coefficients

$$\mathbf{\hat{c}} = \mathbf{m_c} + \mathbf{R_{cc}} \mathbf{Y^T} (\mathbf{Y} \mathbf{R_{cc}} \mathbf{Y^T} + \sigma^2 \mathbf{I})^{-1} (\mathbf{f} - \mathbf{Y} \mathbf{m_c})$$

3. Update estimates of R_{cc} and m_c using new coefficient values

$$\hat{\mathbf{m}}_{c} = \frac{1}{M} \sum_{i=1}^{M} \mathbf{c}_{i}$$
 $\hat{\sigma}_{j}^{2} = \frac{1}{M-1} \sum_{i=1}^{M} (\mathbf{c}_{i}[j] - \hat{\mathbf{m}}_{c}[j])^{2}$

4. Repeat 2 and 3 until estimates converge

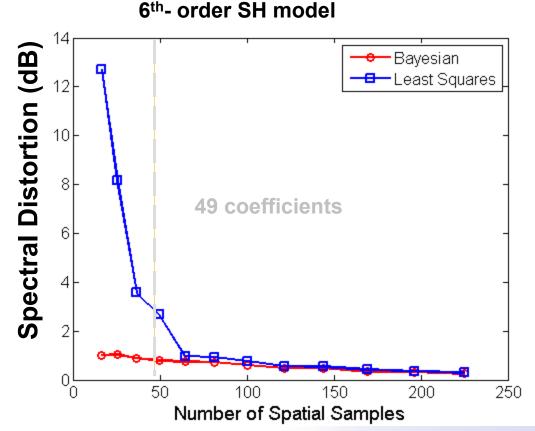
Computational Performance

Training the model

- EM based
- 44 subjects
- 274 spatial samples

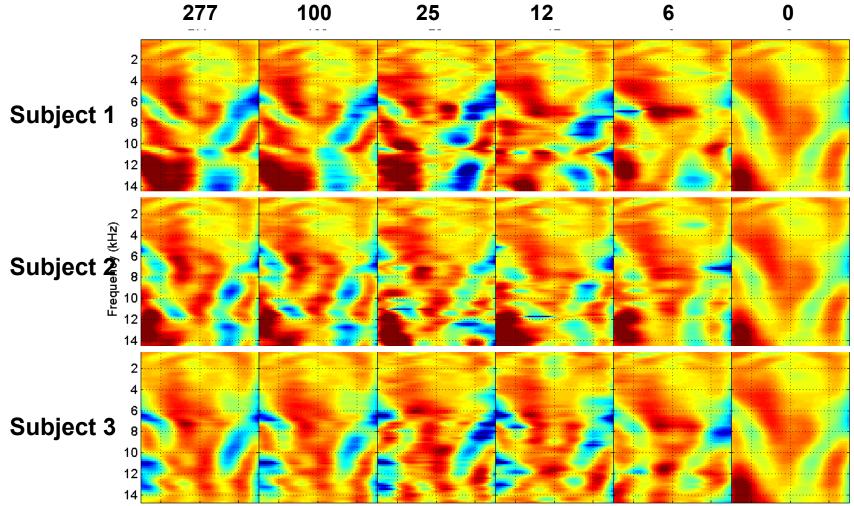
Testing the model

- Bayesian estimation
- 10 subjects
- varied # of samples



Better reconstruction performance with fewer spatial samples ³⁵

Computational Performance

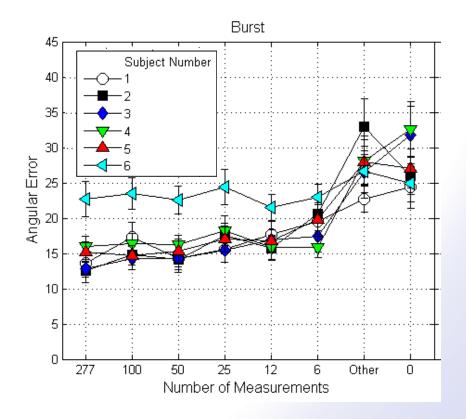


Front AboveBehind Front AboveBehind Front AboveBehind Front AboveBehind Front AboveBehind Front AboveBehind

Perceptual Evaluation

Localization Task

- 6 Subjects
- 250-ms noise bursts
- 245 locations



Equivalent performance with as few as 12 measurements

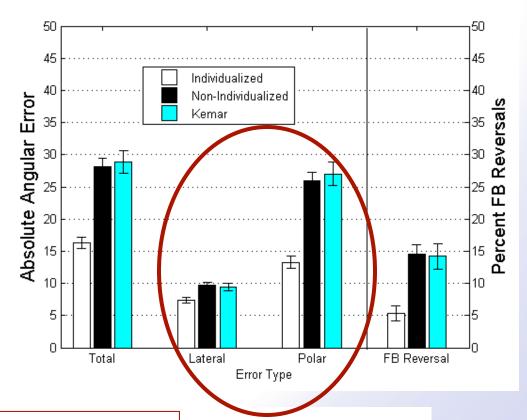
- Bayesian HRTF model
 - Models general HRTF distribution as MVN
 - Individualized HRTF represents a single sample
- Bayesian HRTF Estimation
 - Non-individualized HRTFs provide "template"
 - Individualized measurements personalize the template
 - Much fewer measurements are needed (~ 12 distributed)

How do HRTFs differ amongst individuals?

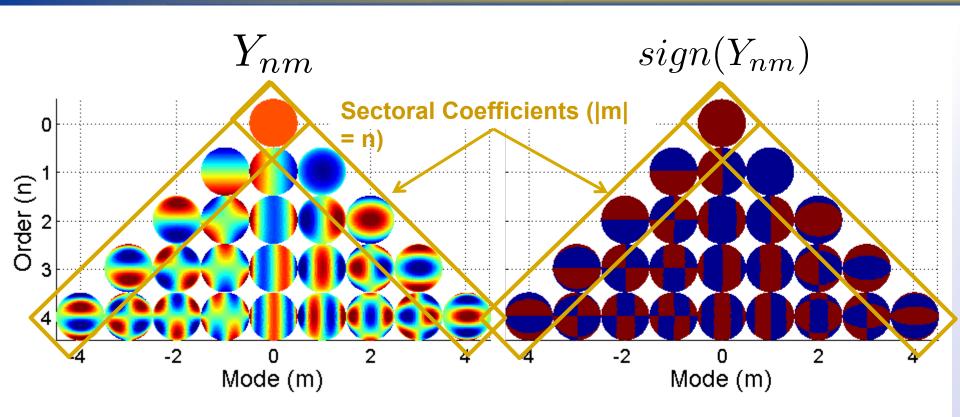
Further Model Reduction

- Non-individual localization is bad mostly in polar dimension
- Implies inter-subject differences in HRTFs account for polar cue difference

If we can separate out polar cues we might only need to estimate those!

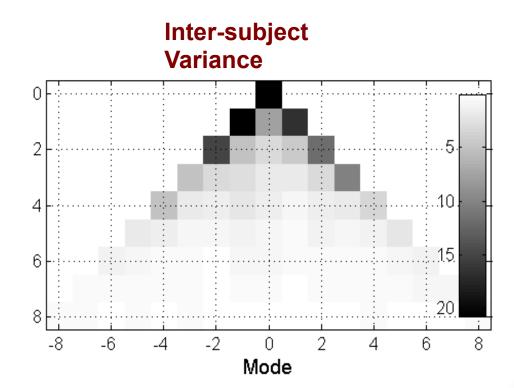


Further Model Reduction



Sectoral coefficients capture mostly intraconic variation

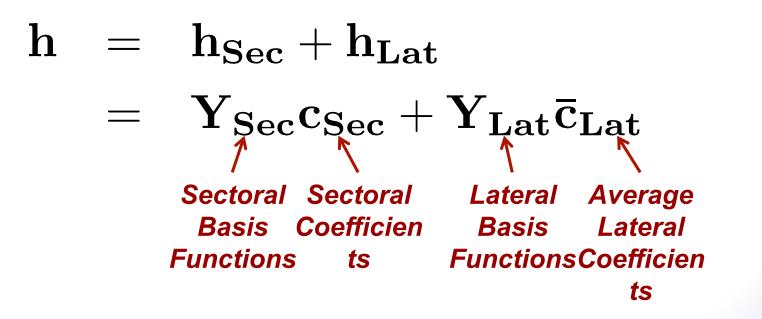
Further Model Reduction



Sectoral coefficients contain most of the inter-subject variance

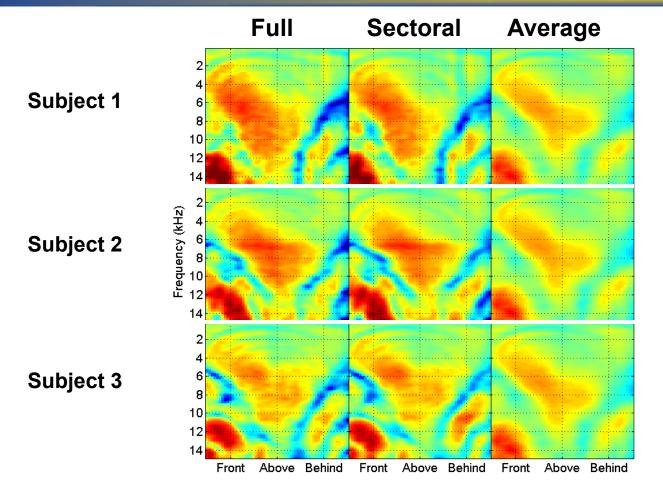
These coefficients may be all
that need to be individualized41

Separate individual (Sectoral) and non-individual (Lateral) features.



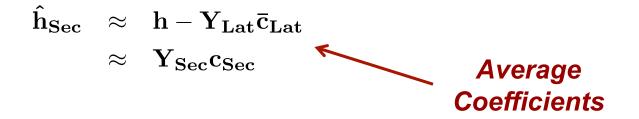
Only sectoral coefficients need to be estimated. The rest can be average values.

Sectoral HRTF Model:



Sectoral model does capture the intraconic HRTF features

Estimate Sectoral HRTF with average lateral coefficients.



Now use Bayesian technique with Sectoral basis functions.

$$\hat{\mathbf{c}}_{\mathbf{Sec}} = E[\mathbf{c}|\mathbf{h}_{\mathbf{Sec}}]$$

$$= \bar{\mathbf{c}}_{\mathbf{Sec}} + \mathbf{R}_{\mathbf{Sec}} \mathbf{Y}_{\mathbf{Sec}}^{\mathbf{T}} (\mathbf{Y}_{\mathbf{Sec}} \mathbf{R}_{\mathbf{Sec}} \mathbf{Y}_{\mathbf{Sec}}^{\mathbf{T}} + \sigma^{2} \mathbf{I})^{-1} (\hat{\mathbf{h}}_{\mathbf{Sec}} - \mathbf{Y}_{\mathbf{Sec}} \bar{\mathbf{c}}_{\mathbf{Sec}})$$

$$= \mathbf{Estimated Sectoral HRTF}$$

Why the median plane?

Bad DC estimate off midline

20

10

30

40

Angle from Median Plane (degrees)

50

60

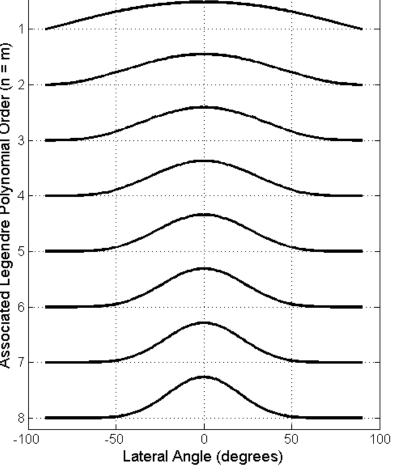
70

80

Average Spectral Distortion (dB)

Ū

 Sectoral harmonics contain no energy off the midline at high orders



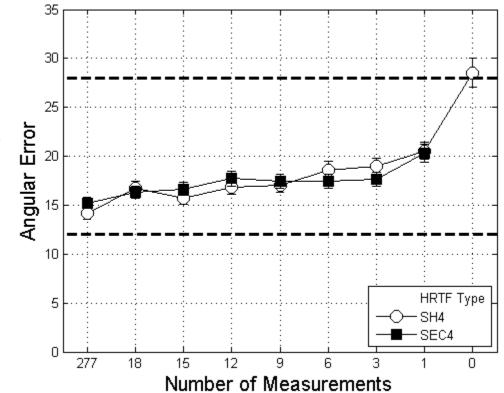
45

Perceptual Evaluation

- **Localization Task**
- 6 Subjects
- 250-ms noise bursts
- 245 locations
- HRTFs Full 4th-Order
- (SH4)

- 4th-Order

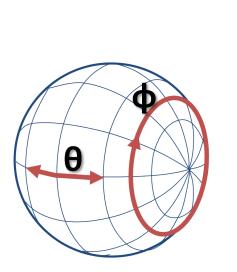
Sectoral (SEC4)

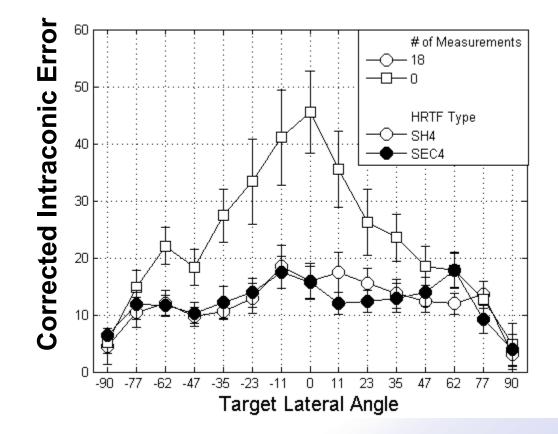


 Statistically similar performance with as few as 12 measurements

•No performance difference from Full SH model 46

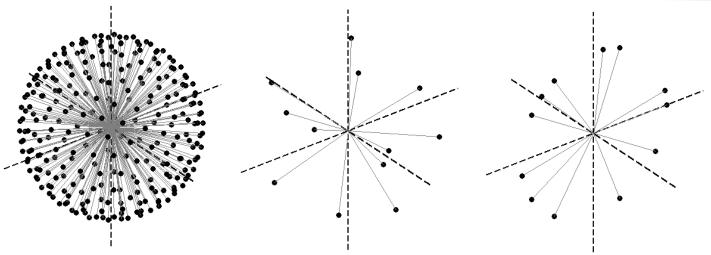
Perceptual Evaluation





Maintains good performance off the midline

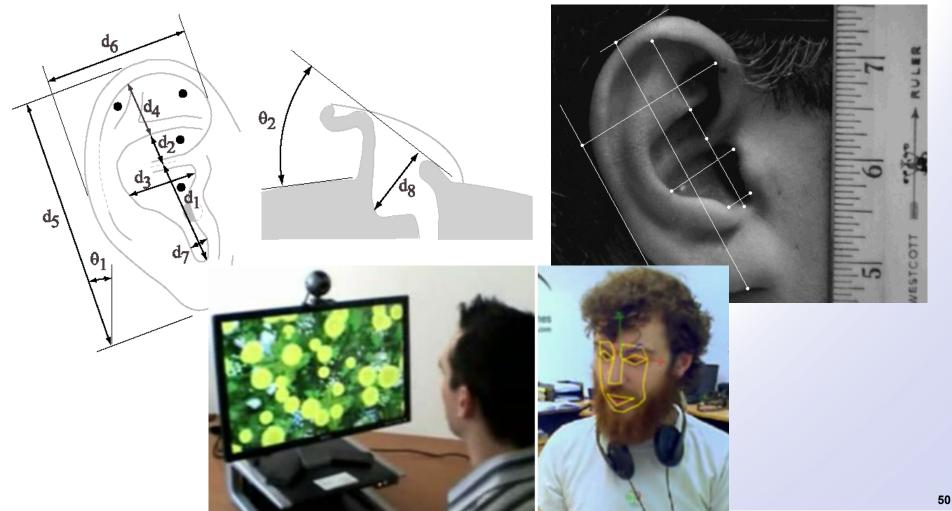
- Sectoral HRTF Model
 - Sectoral coefficients contain large inter-subject variance
 - Only sectoral coefficients need to be individualized
 - The rest of the coefficients can be replaced with average
 - 98% fewer parameters w.r.t. baseline HRTF
- Median-Plane Estimation
 - Sectoral harmonics vary mainly in intraconic dimension
 - Values can be estimated from median plane measurements



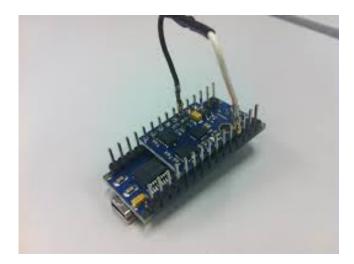
Thank You

Project Ideas

Head-tracking and/or prediction of anthropometric parameters via webcam



HRTF measurement using a single speaker and a head tracker



HRTF-based sound source localization/segregation from a binaural recording (many recordings available)