Compressive Sensing and Beyond

Sohail Bahmani

Gerorgia Tech.

Signal Processing

Compressed Sensing

Statistics

Obtimization

Signal Models

Classics: bandlimited

The Sampling Theorem

Any signal with bandwidth *B* can be recovered from its samples collected *uniformly* at a rate no less that $f_s = 2B$.

Claude Shannon

Harry Nyquist

$$x(t) = \sum_{n \in \mathbb{Z}} x_n \operatorname{sinc}(f_s t - n)$$

$$x_n = \langle x(t), \operatorname{sinc}(f_{\mathrm{s}}t - n) \rangle$$

Classics: time-frequency

D Gabor

A. Haar

I. Daubechies

R. Coifman

2

Sparsity

Т. Тао

E. Candès

J. Romberg

D. Donoho

3

Structured sparsity

Tree Structured Models

Discrete Wavelet Transform

Graph Structured Models

Protein-Protein Interactions Gene Regulatory Network

Couch Lab, George Mason University, http://osf1.gmu.edu/~rcouch/protprot.jpg 4

Low rank

Model for Images

Figure 1: The MIT logo image. The associated matrix has dimensions 46×81 and has rank 5.

B. Recht

Figure 3: Example recovered images using the Gaussian ensemble. (a) 700 measurements. (b) 1100 measurements (c) 1250 measurements. The total number of pixels is $46 \times 81 = 3726$. Note that the error is plotted on a logarithmic scale.

Other applications

- minimum order linear system realization
- Iow-rank matrix completion
- Iow-dimensional Euclidean embedding

P. Parrilo

5

Compressive Sensing

Linear inverse problems

Sparse solutions

 $\underset{x}{\operatorname{argmin}} \|x\|_{0}$ subject to Ax = y

$$\|\boldsymbol{x}\|_{0} = |\operatorname{supp}(\boldsymbol{x})|$$

supp $(\boldsymbol{x}) = \{i \mid x_{i} \neq 0\}$

⊗ Generally NP-hard!

[©] Tractable for many interesting *A*

Specialize A

Many sufficient conditions proposed

Nullspace property, Incoherence, Restricted Eigenvalue, ...

Restricted Isometry Property $(1 - \delta_k) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta_k) \|x\|_2^2, \quad \forall x: \|x\|_0 \le k$

Randomness comes to rescue

Random matrices can exhibit RIP:

Random matrices with iid entries

Gaussian, Rademacher (symmetric Bernoulli), Uniform

Structured random matrices

- Random partial Fourier matrices
- Random circulant matrices

RIP holds with high probability if $m \gtrsim k \log^{\gamma} n$

Basis Pursuit (ℓ_1 -minimization)

argmin $\|x\|_1$ subject to Ax = y

$$\|\boldsymbol{x}\|_1 = \sum_i |x_i|$$

Theorem [Candès] If *A* satisfies δ_{2k} -RIP with $\delta_{2k} < \sqrt{2} - 1$, then BP recovers any *k*-sparse target exactly.

Basis Pursuit (ℓ_1 -minimization)

Greedy algorithms

OMP, StOMP, IHT, CoSAMP, SP, ...

- Iteratively estimate the support and the values on the support
- Many of them have RIP-based convergence guarantees

Rice single-pixel camera

oroginal object

dim. reduction @ 20%

dim. reduction @ 40%

Compressive MRI

Lustig et al

Image super-resolution

Sparse representation α

Yang et al

CS-based reconstruction Original

 $D_1\alpha$

Hi-res. dictionary

Low-res. dictionary

Fig. 4. Results of the girl image magnified by a factor of 3 and the corresponding RMSEs. Left to right: input, bicubic interpolation (RMSE: 6.843), NE [11] (RMSE: 7.740), our method (RMSE: 6.525), and the original.

Low-Rank Matrix Recovery

Linear systems w/ low-rank solutions

Simple least squares requires n_1n_2 measurements Degrees of freedom is $r(n_1 + n_2 - 1)$

Can we close the gap?

Rank minimization

$\operatorname{argmin}_{X} \operatorname{rank}(X)$
subject to $\mathcal{A}(X) = y$

If identifiable, it recovers the low-rank solution exactly Just like ℓ_0 -minimization, it is generally NP-hard Special measurement operators \mathcal{A} admit efficient solvers

Random measurements

- A_i with iid entries exhibit low-rank RIP
 - Gaussian
 - Rademacher
 - Uniform

- Some structured matrices
 - Rank-one $A_i = a_i b_i^*$
 - A_i with dependent entries

- Instance optimal
- Standard RIP usually doesn't hold, but other approaches exist

Nuclear-norm minimization

 $\underset{X}{\operatorname{argmin}} \|X\|_{*}$
subject to $\mathcal{A}(X) = y$

$$\|\boldsymbol{X}\|_* = \sum_i \sigma_i$$

Theorem [Recht, Fazel, Parrilo] If \mathcal{A} obeys δ_{5r} -RIP with $\delta_{5r} < 0.1$ then nuclear-norm minimization recovers any rank-*r* target exactly.

Matrix completion

<	P		HE INCREDIBLES		LORD: RENOS		WINNER	
Alice	4	5	?	3	?		?	1
Bob	?	2	?	4	5	•••	?	?
Yvon	5	?	4	3	2	•••	2	?
Zelda	3	2	?	?	5		2	2

Theorem [Candès and Recht] If M is a rank-r matrix from the "random orthogonal model", then w.h.p. the nuclear-norm minimization recovers M exactly from $O(rn^{5/4} \log n)$ uniformly observed entries, where $n = n_1 \vee n_2$.

Robust PCA

Candès et al

Compressive multiplexing

Ahmed and Romberg

Nonlinear CS

Sparsity-constrained minimization

Squared error isn't always appropriate

example : non-Gaussian noise models

 $\operatorname{argmin}_{\boldsymbol{x}} f(\boldsymbol{x})$
subject to $\|\boldsymbol{x}\|_0 \le k$

It's challenging in its general form

Objectives with certain properties allow approximations

• convex relaxation: ℓ_1 -regularization

greedy methods

Gene classification

DNA Microarray

 a_i : microarray sample

 y_i : binary sample label (healthy/diseased)

model: p(y | a; x)

x : sparse weights for genes

Sparse Logistic Regression

 $\underset{x}{\operatorname{argmin}} \sum_{i=1}^{m} \log \left(1 + e^{a_i^{\mathrm{T}} x} \right) - y_i a_i^{\mathrm{T}} x$ subject to $\| \boldsymbol{x} \|_0 \le k, \| \boldsymbol{x} \|_2 \le 1$

Imaging under photon noise

 $\|x\|_{1}$

 $\|W^{\mathrm{T}}x\|_{1}$

Photon noise follows a Poisson distribution

$$p(\mathbf{y} \mid \mathbf{A}; \mathbf{x}) = \prod_{i} \frac{(\mathbf{A}\mathbf{x})_{i}^{y_{i}}}{y_{i}!} e^{-(\mathbf{A}\mathbf{x})_{i}}$$

Physical constraints $A \ge 0, Ax \ge 0, x \ge 0$

SPIRAL-TAP argmin $-\log p(\mathbf{y} | \mathbf{A}; \mathbf{x}) + \tau R(\mathbf{x}) \|\mathbf{x}\|_{\mathrm{TV}}$ $x \ge 0$

Fig. 3. Single-trial reconstructed images for all methods considered. Note RMSE $(\%) = 100 \cdot \|\hat{f} - f^*\|_2 / \|f^*\|_2$. (a) Ground truth. (b) SPIRAL-TV loose monotonic (RMSE = 24.404%). (c) SPIRAL-TV loose nonmonotonic (RMSE = 24.962%). (d) SPIRAL-TV tight monotonic (RMSE = 24.526%). (e) SPIRAL-TV tight nonmonotonic (RMSE = 24.467%). (f) SPIRAL-RDP (translation variant) (RMSE = 33.959%). (g) SPIRAL-RDP-TI (Cycle-Spun) (RMSE = 27.557%). (h) SPIRAL- ℓ_1 Loose (DB-6) (RMSE = 28.626%). (i) SPIRAL- ℓ_1 Tight (DB-6) (RMSE = 28.665%). (j) SpaRSA ℓ_2 - ℓ_1 (DB-6) (RMSE = 31.172%). (k) SPS-OS (Huber potential) (RMSE = 27.555%). (l) SPS-OS (quadratic potential) (RMSE = 29.420%). (m) EPL-INC-3 (Huber potential) (RMSE = 26.474%).

Coherent diffractive imaging

* Lima et al., ESRF (www.esrf.eu)

Gradient Support Pursuit

Generalizes CoSaMP

- Proxy vector $\mathbf{z} = \nabla f(\mathbf{x})$
- $\mathcal{Z} = \operatorname{supp}(\mathbf{z}_{2k})$

•
$$\boldsymbol{b} = \operatorname{argmin}_{\boldsymbol{x}} f(\boldsymbol{x}) \text{ s.t. } \boldsymbol{x} \mid_{\mathcal{T}^{c}} = \boldsymbol{0}$$

Converges under SRH

- the Hessian $\nabla^2 f(\mathbf{x})$ is well-conditioned when restricted to sparse subspaces
- a generalization of the RIP

w/ Raj and Boufounos

Update

There's much more ...

🗲 🛞 scholar.google.co	m/scholar?as_sdt=1,11&q=compressive+sensing&hl=en	8				
Google	compressive sensing Q 					
Scholar	About 148,000 results (0.05 sec)					
Articles Case law My library	[PDF] Compressive sensing <u>RG Baraniuk</u> - IEEE signal processing magazine, 2007 - omni.isr.ist.utl.pt The Shannon/Nyquist sampling theorem tells us that in order to not lose information when uniformly sampling a signal we must sample at least two times faster than its bandwidth. In many applications, including digital image and video cameras, the Nyquist rate can be so Cited by 2123 Related articles All 54 versions Web of Science: 721 Cite Save More					
Any time Since 2014 Since 2013 Since 2010 Custom range	Bregman iterative algorithms for \ell_1-minimization with applications to compressed sensi <u>W Yin</u> , <u>S Osher</u> , <u>D Goldfarb</u> , <u>J Darbon</u> - SIAM Journal on Imaging Sciences, 2008 - SIAM We propose simple and extremely efficient methods for solving the basis pursuit problem \min{llul_1:Au=f,u < R^n\}, which is used in compressed sensing . Our methods are based on Bregman iterative regularization, and they give a very accurate solution after solving Cited by 716 Related articles All 9 versions Web of Science: 338 Cite Save	ng				
Sort by relevance Sort by date	Bayesian compressive sensing <u>S Ji</u> , Y Xue, <u>L Carin</u> - Signal Processing, IEEE Transactions on, 2008 - ieeexplore.ieee.org Abstract—The data of interest are assumed to be represented as-dimensional real vectors, and these vectors are compressible in some linear basis B implying that the signal can be					
☐ include patents ✓ include citations	reconstructed accurately using only a small number of basis-function coefficients Cited by 816 Related articles All 17 versions Web of Science: 310 Cite Save					
Sum Create alert Sum Create alert	Subspace pursuit for compressive sensing signal reconstruction <u>W Dai</u> , <u>O Milenkovic</u> - Information Theory, IEEE Transactions on, 2009 - ieeexplore.ieee.org Abstract—We propose a new method for reconstruction of sparse signals with and without noisy perturbations, termed the subspace pursuit algorithm. The algorithm has two important characteristics: low computational complexity, comparable to that of orthogonal matching Cited by 799 Related articles All 10 versions Web of Science: 341 Cite Save					

Iteratively reweighted algorithms for compressive sensing

Resources

a collection of CS papers, tutorials, and softwares

<u>http://dsp.rice.edu/cs</u>

sparse and low-rank algorithms wiki

http://ugcs.caltech.edu/~srbecker/wiki/Main_Page

a weblog focusing on CS and broader computational areas

<u>http://nuit-blanche.blogspot.com/</u>