

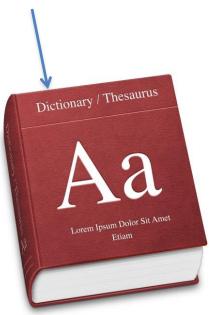
Machine Learning for Signal Processing Sparse and Overcomplete Representations

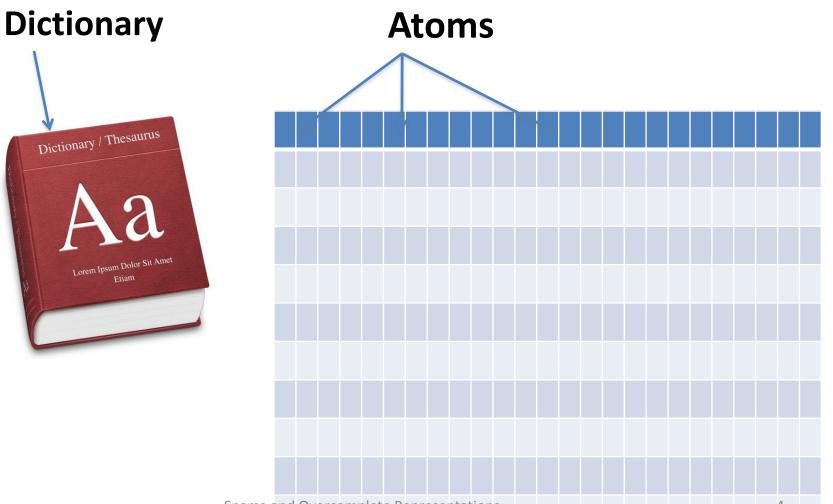
Bhiksha Raj (slides from Sourish Chaudhuri) Oct 14, 2014

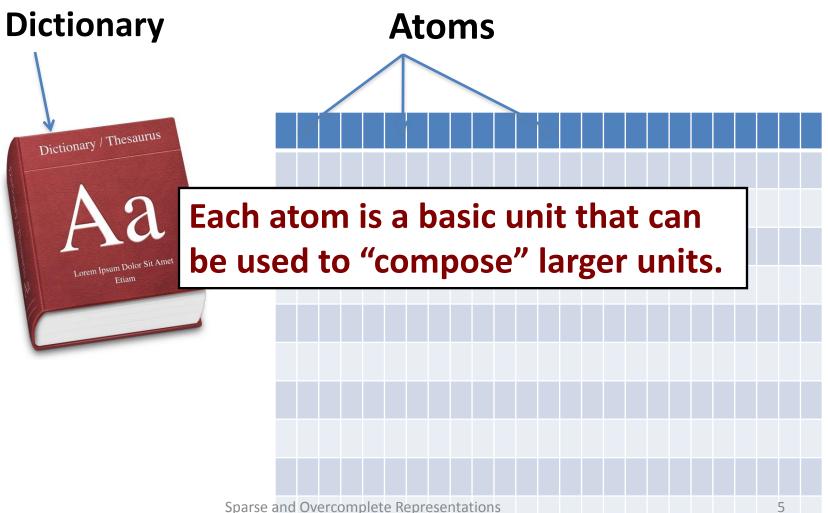
Key Topics in this Lecture

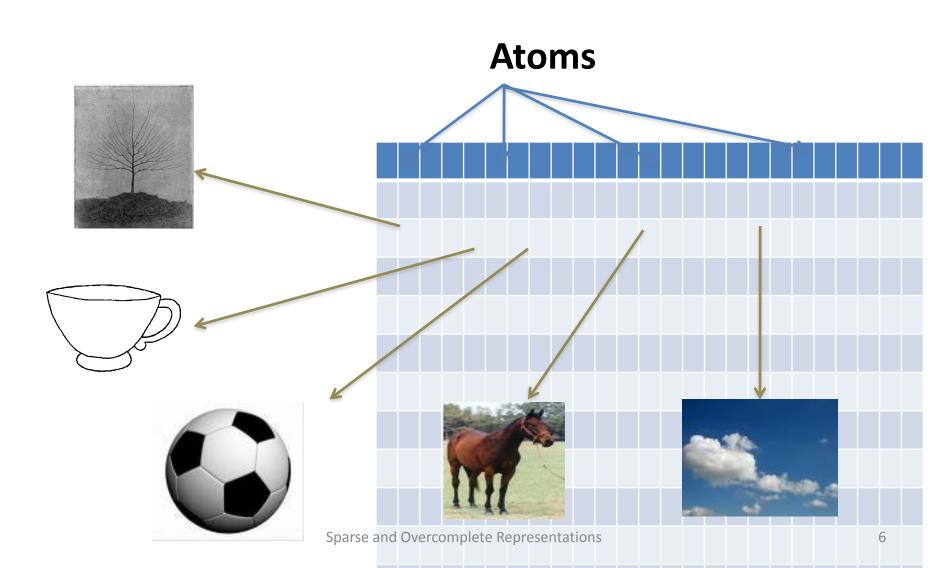
- Basics Component-based representations
 - Overcomplete and Sparse Representations,
 - Dictionaries
- Pursuit Algorithms
- How to learn a dictionary
- Why is an overcomplete representation powerful?

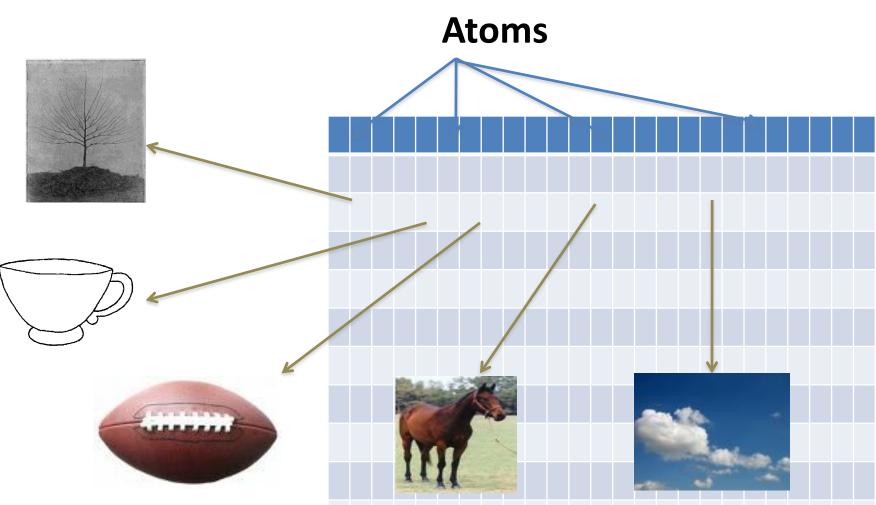
Dictionary (codebook)



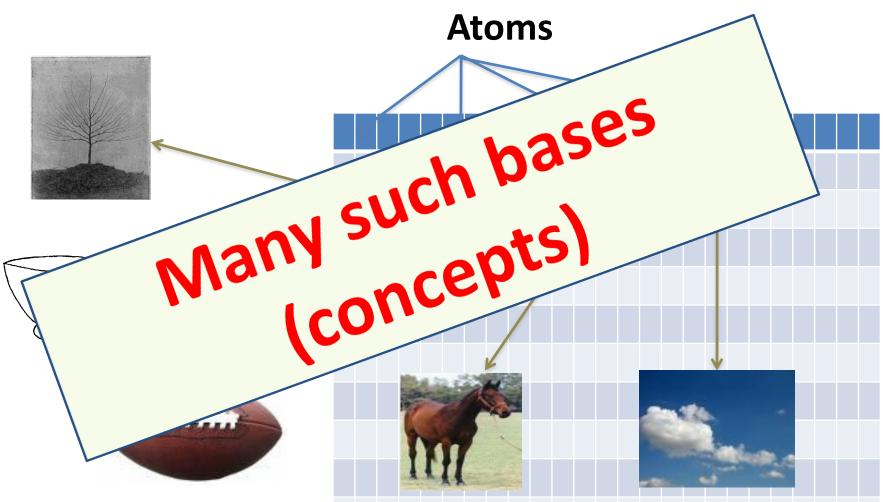




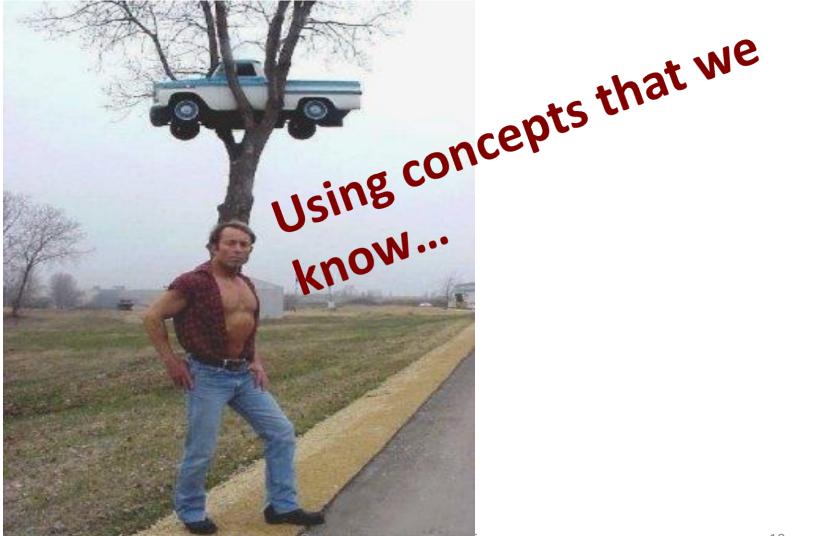




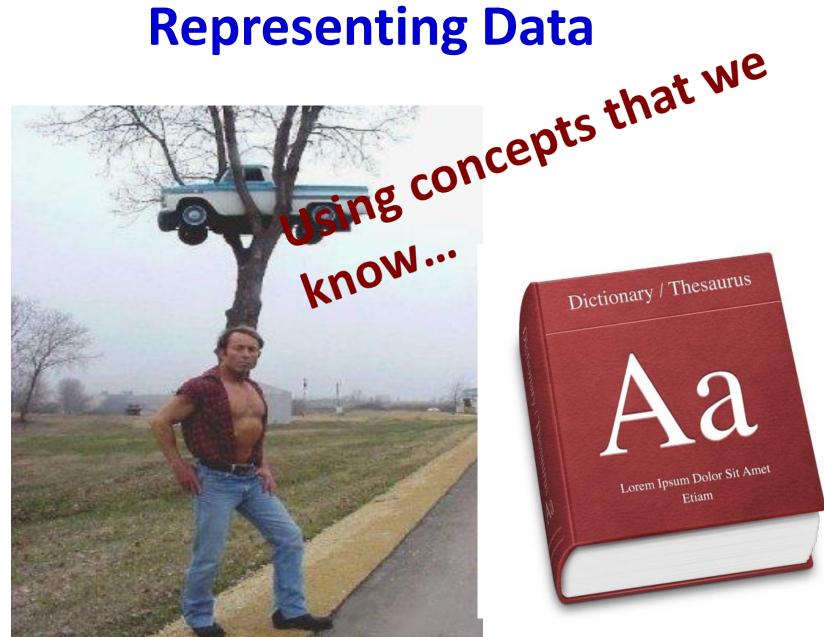
Sparse and Overcomplete Representations



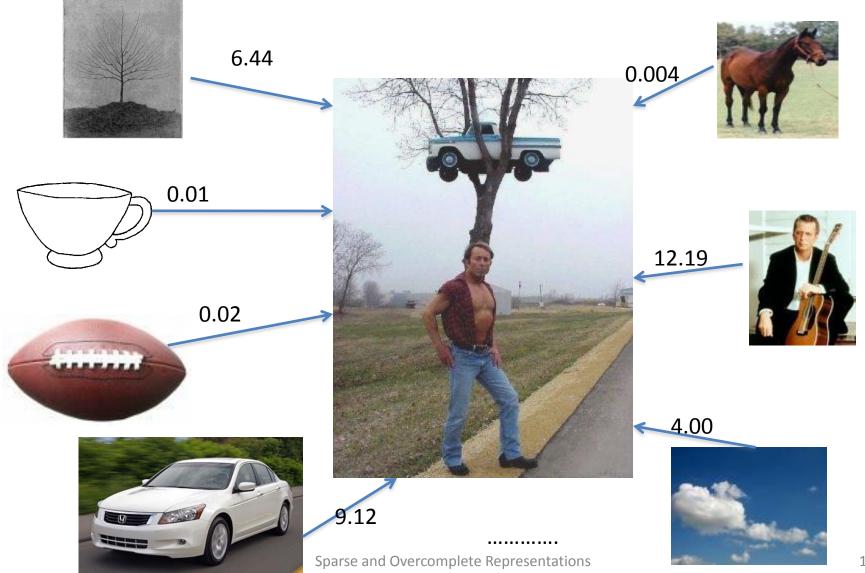
Sparse and Overcomplete Representations

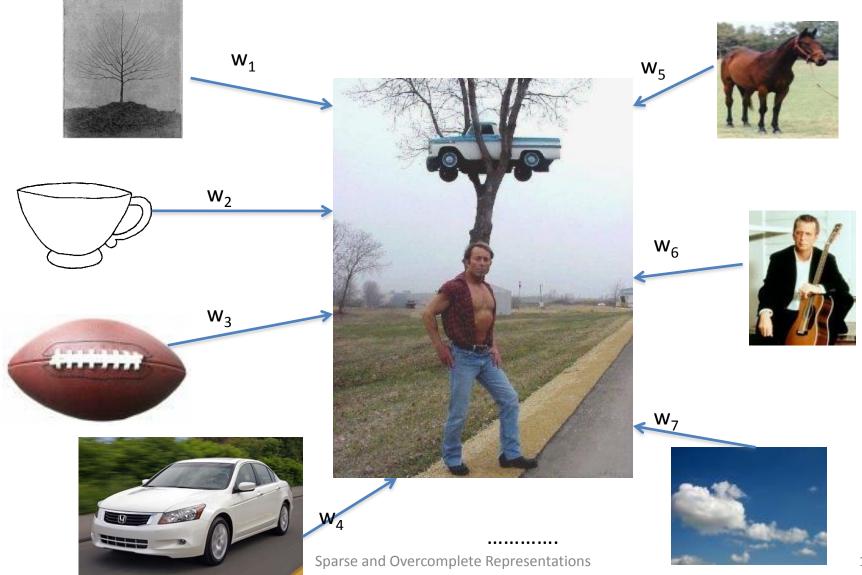


Sparse and Overcomplete Representations



Sparse and Overcomplete Representations





• What is the dimensionality of the input image? (say 64x64 image)

> 4096

What is the dimensionality of the dictionary?
 (each image = 64x64 pixels)

≻ N x 4096

• What is the dimensionality of the input image? (say 64x64 image)

> 4096

 What is the dimensionality of the dictionary? (each image = 64x64 pixels)
 N x 4096 ???

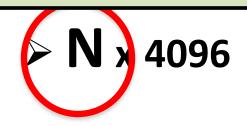
• What is the dimensionality of the input image? (say 64x64 image)

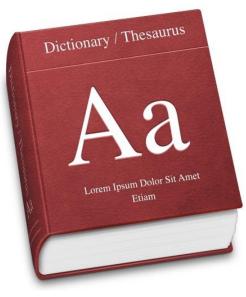
> 4096

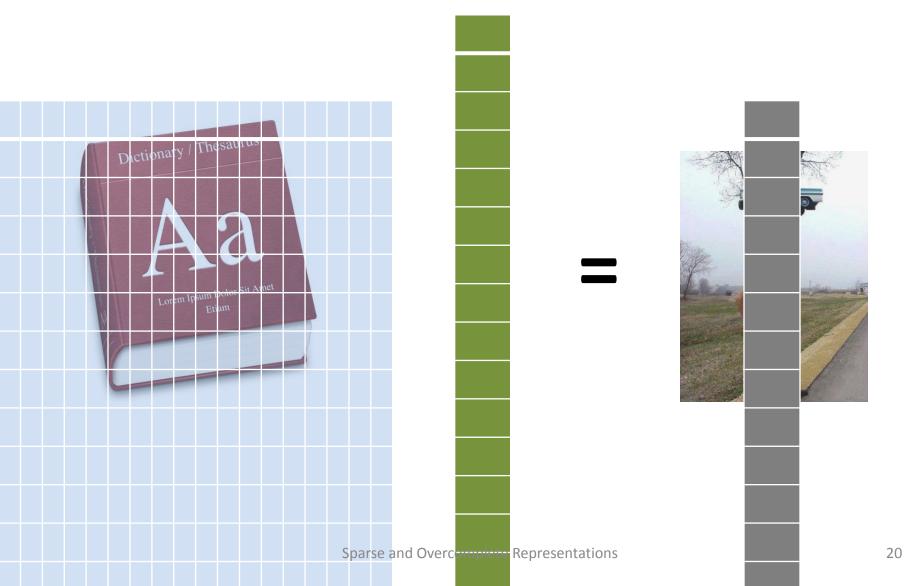
 What is the dimensionality of the dictionary? (each image = 64x64 pixels)
 N x 4096 VERY LARGE!!!

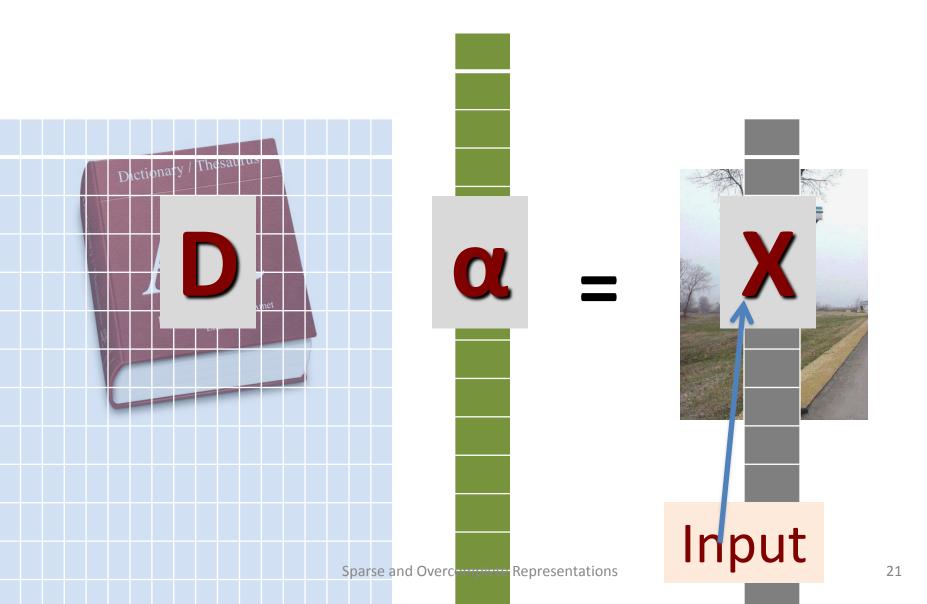
- What is the dimensionality of the input
 image? (say 64x64 image)
 If N > 4096 (as it likely is)
 we have an overcomplete representation
- What is the dimensionality of the dictionary? (each image = 64x64 pixels)

- What is the dimensionality of the input image? (say 64x64 image)
 More generally:
 - If #(basis vectors) > dimensions of input
 - we have an overcomplete representation

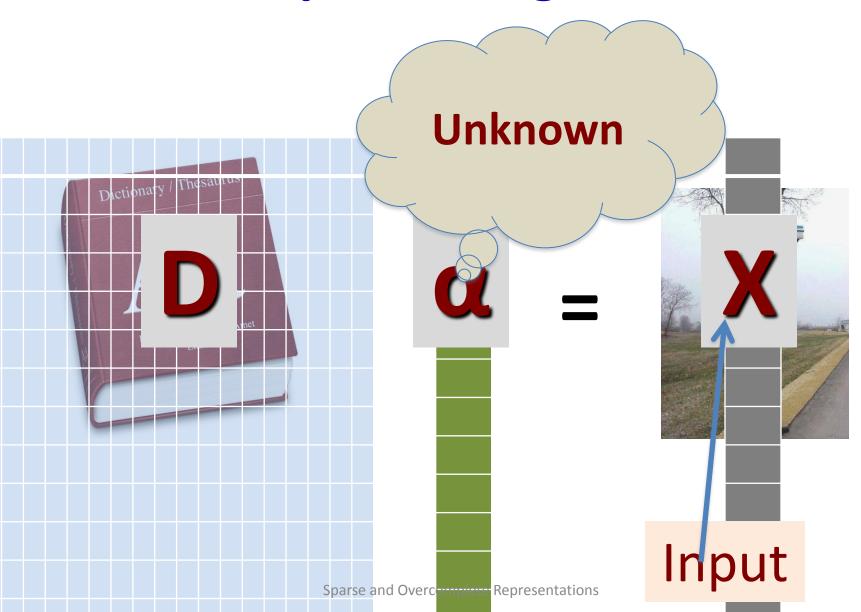




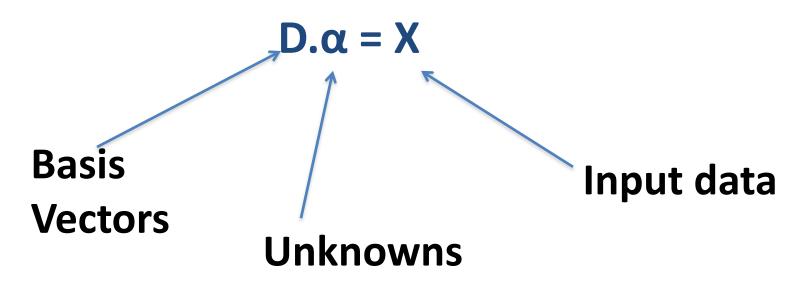




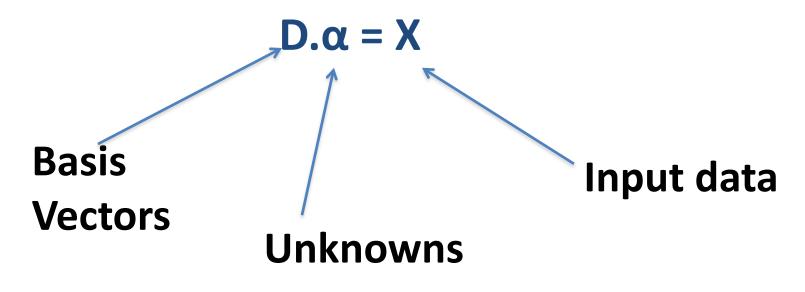
22



• Remember, #(Basis Vectors)= #unknowns



• Remember, #(Basis Vectors)= #unknowns



When can we solve for α ?

 $D.\alpha = X$

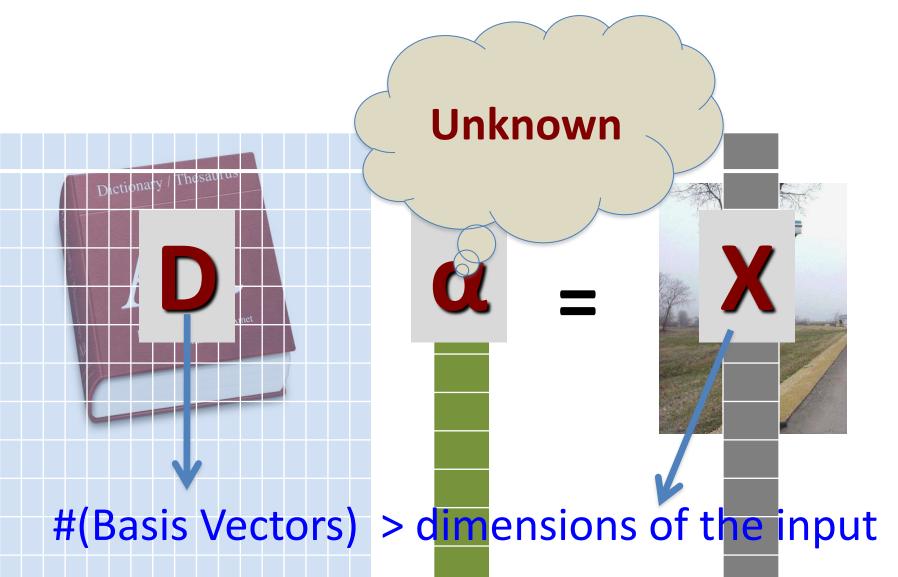
- When #(Basis Vectors) = dim(Input Data), we have a unique solution
- When #(Basis Vectors) < dim(Input Data), we may have no solution
- When #(Basis Vectors) > dim(Input Data), we have infinitely many solutions

 $D.\alpha = X$

- When #(Basis Vectors) = dim(Input Data), we have a unique solution
- When #(Basis Vectors) < dim(Input Data), we may have no solution
- When #(Basis Vectors) > dim(Input Data), we have infinitely many solutions

Our Case

#(Basis Vectors) > dimensions of the input



- Why do we use them?
- How do we learn them?

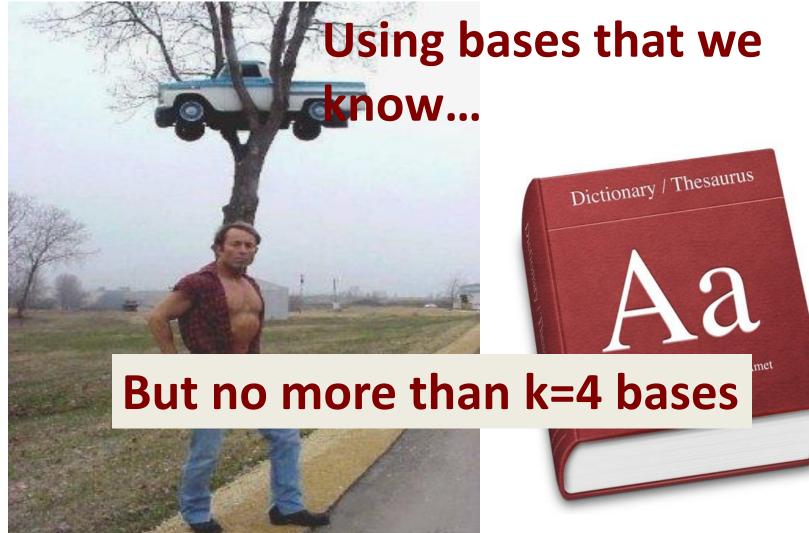
- Why do we use them?
 - A more natural representation of the real world
 - More flexibility in matching data
 - Can yield a better approximation of the statistical distribution of the data.
- How do we learn them?

Overcompleteness and Sparsity

• To solve an overcomplete system of the type:

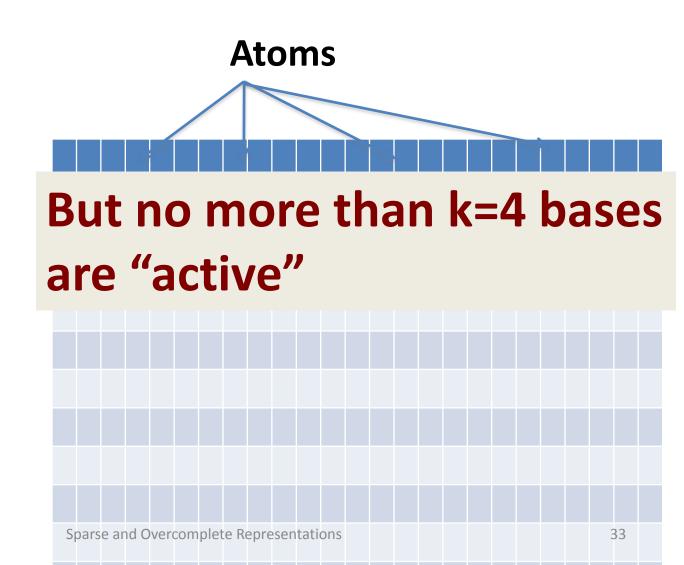
 $D.\alpha = X$

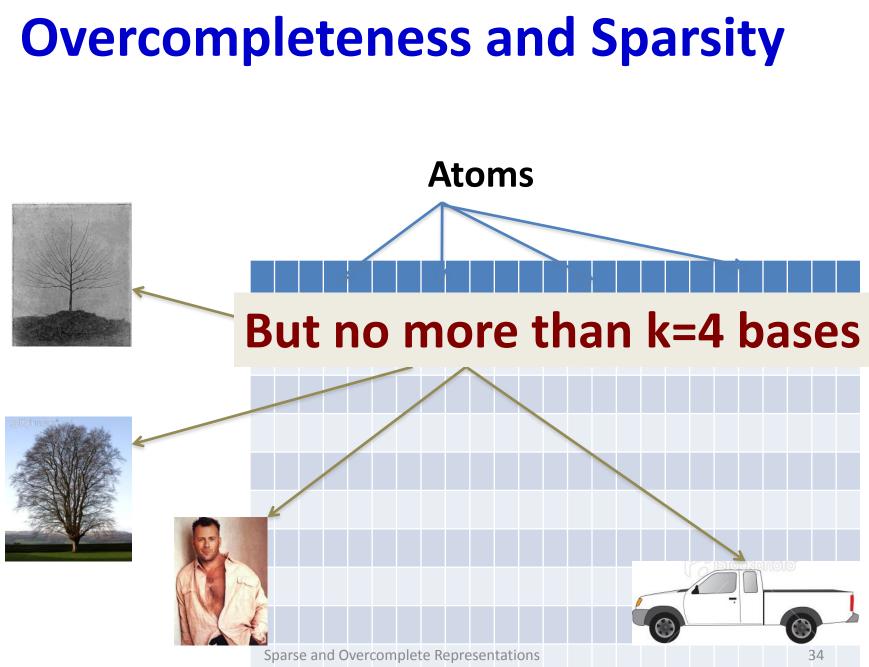
- Make assumptions about the data.
- Suppose, we say that X is composed of no more than a fixed number (k) of "bases" from D (k ≤ dim(X))
 - The term "bases" is an abuse of terminology..
- Now, we can find the set of k bases that best fit the data point, X.



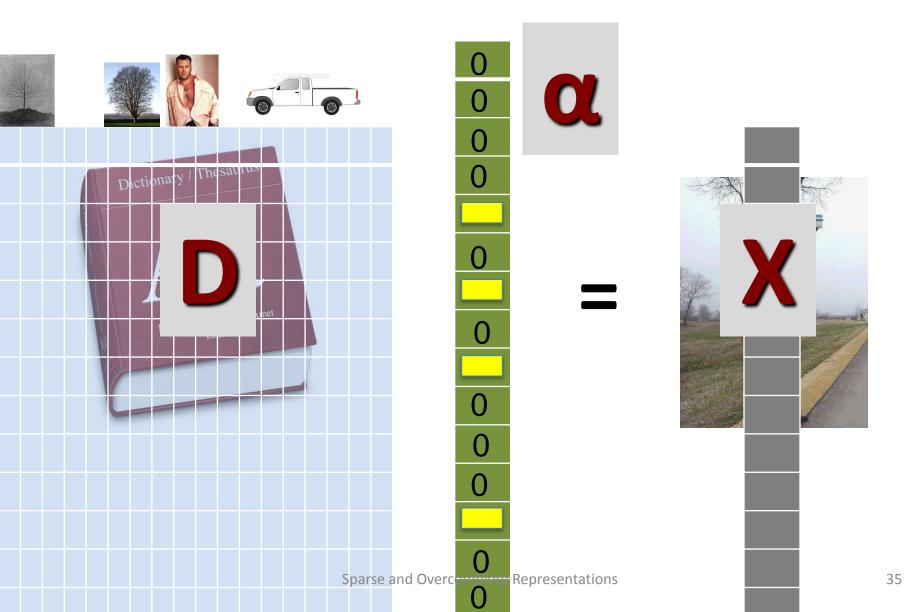
Sparse and Overcomplete Representations

Overcompleteness and Sparsity

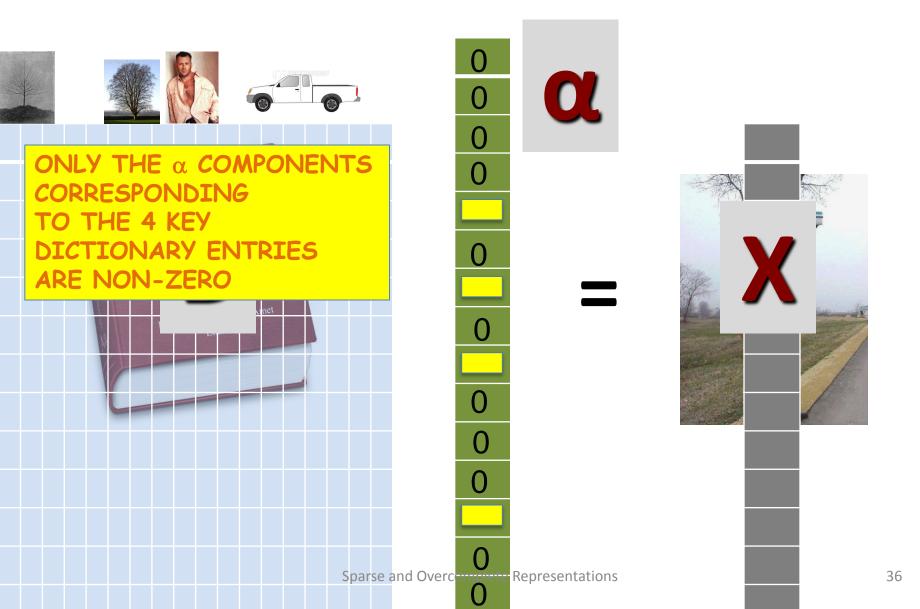




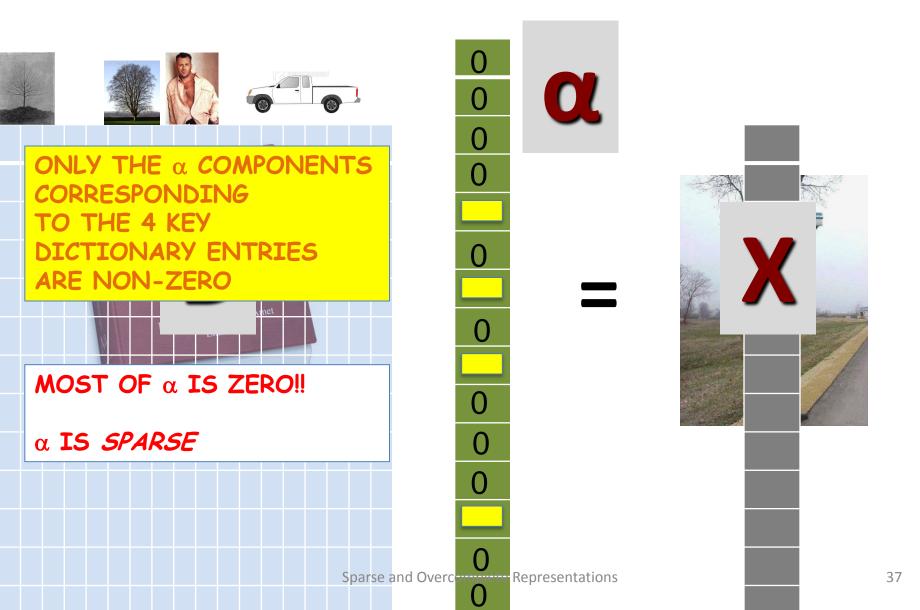
No more than 4 bases



No more than 4 bases



No more than 4 bases



Sparsity- Definition

 Sparse representations are representations that account for most or all information of a signal with a linear combination of a small number of atoms.

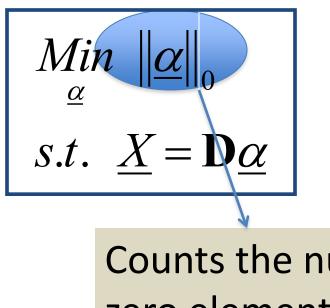
(from: www.see.ed.ac.uk/~tblumens/Sparse/Sparse.html)

- We don't really know **k**
- You are given a signal **X**
- Assuming X was generated using the dictionary, can we find α that generated it?

• We want to use as few basis vectors as possible to do this.

$$\begin{array}{c} \underset{\alpha}{Min} & \left\|\underline{\alpha}\right\|_{0} \\ s.t. & \underline{X} = \mathbf{D}\underline{\alpha} \end{array}$$

• We want to use as few basis vectors as possible to do this.



Counts the number of non-zero elements in $\boldsymbol{\alpha}$

• We want to use as few basis vectors as possible to do this.

$$\begin{array}{l}
\underline{Min} & \underline{\|\alpha\|}_{0} \\
\underline{s.t.} & \underline{X} = \mathbf{D}\underline{\alpha}
\end{array}$$

How can we solve the above?

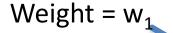
Obtaining Sparse Solutions

- We will look at 2 algorithms:
 - Matching Pursuit (MP)
 - Basis Pursuit (BP)

Matching Pursuit (MP)

- Greedy algorithm
- Finds an atom in the dictionary that best matches the input signal
- Remove the weighted value of this atom from the signal
- Again, find an atom in the dictionary that best matches the remaining signal.
- Continue till a defined stop condition is satisfied.

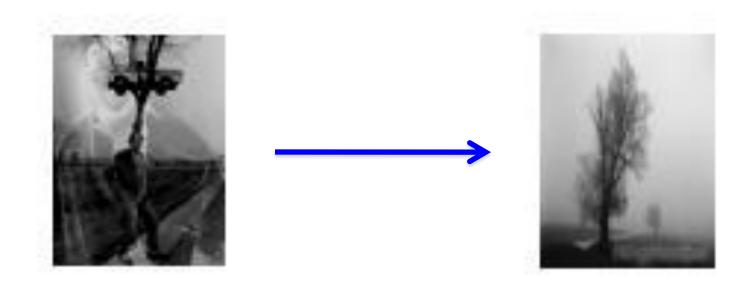
• Find the dictionary atom that best matches the given signal.



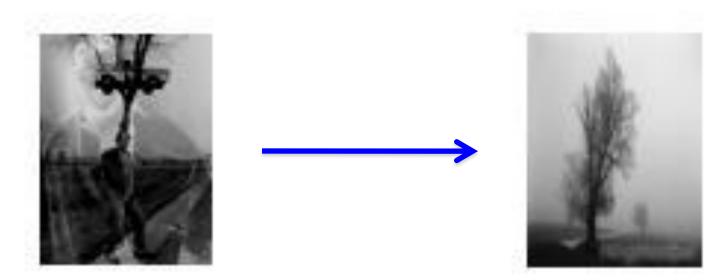
Remove weighted image to obtain updated signal

Find best match for this signal from the dictionary

• Find best match for updated signal



• Find best match for updated signal



Iterate till you reach a stopping condition, norm(ResidualInputSignal) < threshold

Algorithm Matching Pursuit Input: Signal: f(t). (a_n, g_{γ_n}) . Output: List of coefficients: Initialization: $Rf_1 \leftarrow f(t);$ Repeat find $g_{\gamma_m} \in D$ with maximum inner product $< Rf_n, q_{\gamma_m}>$; $a_n \leftarrow \langle Rf_n, g_{\gamma_n} \rangle;$ $Rf_{n+1} \leftarrow Rf_n - a_n g_{\gamma_n};$ $n \leftarrow n+1;$ Until stop condition (for example: || Rf || < threshold)

From http://en.wikipedia.org/wiki/Matching_pursuit

• Problems ???

- Main Problem
 - Computational complexity
 - The entire dictionary has to be searched at every iteration

Comparing MP and BP

Matching Pursuit	Basis Pursuit
Hard thresholding	
(remember tł	ne equations)
Greedy optimization at each step	
Weights obtained using greedy rules	

Basis Pursuit (BP)

• Remember,```

$$\begin{array}{l}
\underline{Min}\\\underline{\alpha}\\
\underline{\alpha}\\
s.t. \underline{X} = \mathbf{D}\underline{\alpha}
\end{array}$$

• Remember,

$$\begin{array}{l}
\underline{Min}\\\underline{\alpha}\\\underline{\alpha}\\
s.t. \quad \underline{X} = \mathbf{D}\underline{\alpha}
\end{array}$$

In the general case, this is intractable

• Remember,

$$\begin{array}{l}
\underline{Min} & \|\underline{\alpha}\|_{0} \\
\underline{s.t.} & \underline{X} = \mathbf{D}\underline{\alpha}
\end{array}$$

In the general case, this is intractable Requires combinatorial optimization

 Replace the intractable expression by an expression that is solvable

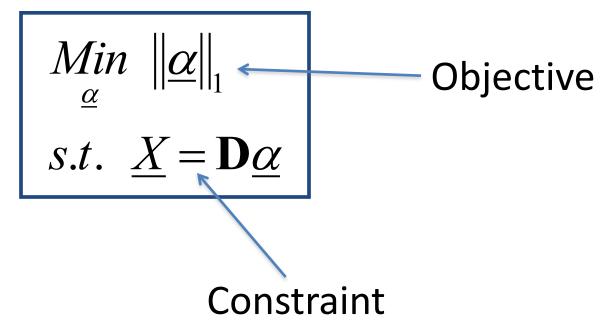
$$\begin{array}{l}
\underline{Min}\\\underline{\alpha}\\
\underline{s.t.}\\ \underline{X} = \mathbf{D}\underline{\alpha}
\end{array}$$

 Replace the intractable expression by an expression that is solvable

$$\begin{array}{l}
\underline{Min}\\\underline{\alpha}\\
\underline{\alpha}\\
\underline{x} = \mathbf{D}\underline{\alpha}
\end{array}$$

This holds when **D** obeys the *Restricted Isometry Property*.

 Replace the intractable expression by an expression that is solvable



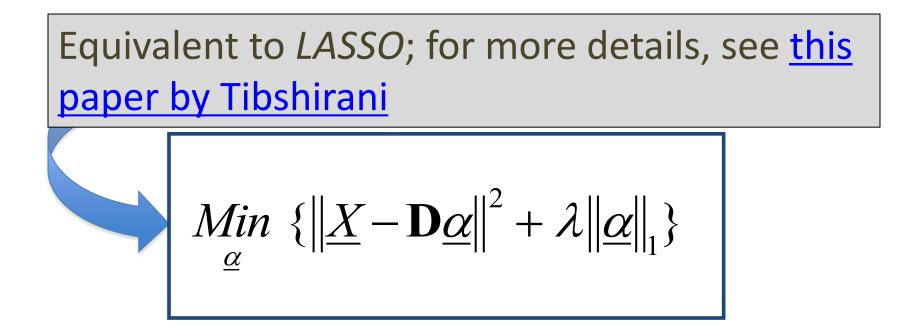
• We can formulate the optimization term as:

 $\underset{\underline{\alpha}}{Min} \{ \| \underline{X} - \mathbf{D}\underline{\alpha} \|^2 + \lambda \| \underline{\alpha} \|_1 \}$ Constraint Objective

• We can formulate the optimization term as:

$$\underset{\underline{\alpha}}{Min} \{ \|\underline{X} - \mathbf{D}\underline{\alpha}\|^2 + \lambda \|\underline{\alpha}\|_1 \}$$

 λ is a penalty term on the non-zero elements and promotes sparsity



 $\boldsymbol{\lambda}$ is a penalty term on the non-zero elements and promotes sparsity

There are efficient ways to solve the LASSO formulation. [Link to <u>Matlab code</u>]

Comparing MP and BP

Matching Pursuit	Basis Pursuit
Hard thresholding	Soft thresholding
(remember th	ne equations)
Greedy optimization at each step	Global optimization
Weights obtained using greedy rules Sparse and Overcomp	Can force N-sparsity with appropriately

General Formalisms

- L_0 minimization L_0 constrained optimization $Min \|\underline{\alpha}\|_0$ $\underline{s.t. \underline{X}} = \mathbf{D}\underline{\alpha}$

$$\underbrace{Min}_{\underline{\alpha}} \left\| \underline{X} - \underline{\mathbf{D}}\underline{\alpha} \right\|_{2}^{2} \\
s.t. \left\| \underline{\alpha} \right\|_{0} < C$$

$$Min \|\underline{\alpha}\|_1$$

- L_1 minimization $\begin{vmatrix} \mathbf{u} & \mathbf{u} \\ \mathbf{u} \\ s.t. \underline{X} = \mathbf{D}\underline{\alpha}$
- L₁ constrained optimization

$$\underbrace{Min}_{\underline{\alpha}} \left\| \underline{X} - \underline{\mathbf{D}}\underline{\alpha} \right\|_{2}^{2} \\
s.t. \left\| \underline{\alpha} \right\|_{1} < C$$

Many Other Methods..

- Iterative Hard Thresholding (IHT)
- CoSAMP
- OMP

. . .

•

Applications of Sparse Representations

- Many many applications
 - Signal representation
 - Statistical modelling
 - **—** ..
- Two extremely popular signal processing applications:
 - Compressive sensing
 - Denoising

- Recall the Nyquist criterion?
- To reconstruct a signal, you need to sample at twice the maximum frequency of the original signal

- Recall the Nyquist criterion?
- To reconstruct a signal, you need to sample at twice the frequency of the original signal
- Is it possible to reconstruct signals when they have not been sampled so as to satisfy the Nyquist criterion?

- Recall the Nyquist criterion?
- To reconstruct a signal, you need to sample at twice the frequency of the original signal
- Is it possible to reconstruct signals when they have not been sampled so as to satisfy the Nyquist criterion?
- Under specific criteria, yes!!!!

• What criteria?

• What criteria?

Sparsity!

• What criteria?

Sparsity!

- Exploit the structure of the data
- Most signals are sparse, in some domain

Applications of Sparse Representations

- Two extremely popular applications:
 - Compressive sensing
 - Denoising

Applications of Sparse Representations

- Two extremely popular applications:
 - Compressive sensing
 - Denoising

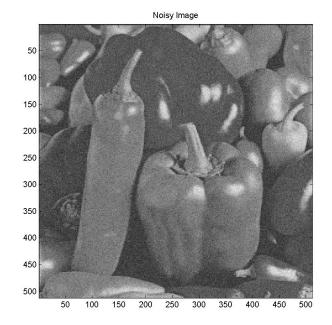
Denoising

• As the name suggests, remove noise!

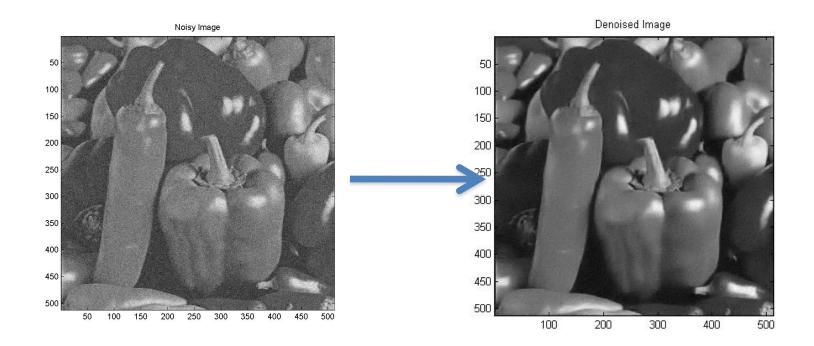
Denoising

- As the name suggests, remove noise!
- We will look at image denoising as an example

Here's what we want



• Here's what we want



Here's what we want

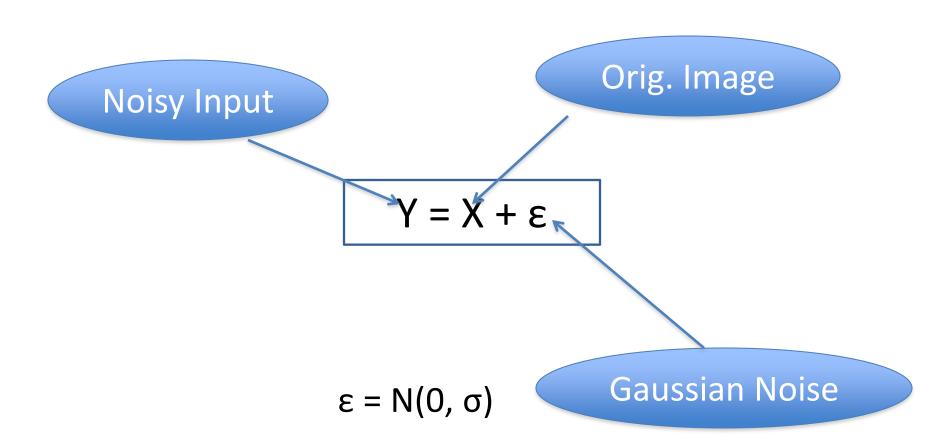
Denoising

- As the name suggests, remove noise!
- We will look at image denoising as an example

A more general take-away: How to learn the dictionaries

The Image Denoising Problem

- Given an image
- Remove Gaussian additive noise from it



• Remove the noise from **Y**, to obtain **X** as best as possible.

- Remove the noise from Y, to obtain X as best as possible
- Using sparse representations over learned dictionaries

- Remove the noise from Y, to obtain X as best as possible
- Using sparse representations over learned dictionaries
- Yes, we will *learn* the dictionaries

- Remove the noise from Y, to obtain X as best as possible
- Using sparse representations over learned dictionaries
- Yes, we will *learn* the dictionaries
- What data will we use? The corrupted image itself!

- We use the data to be denoised to learn the dictionary.
- Training and denoising become an iterated process.
- We use image patches of size vn x vn pixels (i.e. if the image is 64x64, patches are 8x8)

- The data dictionary D
 - Size = n x k (k > n)
 - This is known and fixed, to start with
 - Every image patch can be sparsely represented using D

- Recall our equations from before.
- We want to find α so as to minimize the value of the equation below:

$$\underset{\underline{\alpha}}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_0 \right\}$$

- Recall our equations from before.
- We want to find α so as to minimize the value of the equation below:

$$\underset{\underline{\alpha}}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_0 \right\}$$

Can Matching Pursuit solve this?

- Recall our equations from before.
- We want to find α so as to minimize the value of the equation below:

$$\underset{\underline{\alpha}}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_0 \right\}$$

Can Matching Pursuit solve this? Yes

- Recall our equations from before.
- We want to find α so as to minimize the value of the equation below:

$$\underset{\underline{\alpha}}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_0 \right\}$$

Can Matching Pursuit solve this? Yes What constraints does it need?

- Recall our equations from before.
- We want to find α so as to minimize the value of the equation below:

$$\underset{\underline{\alpha}}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_0 \right\}$$

Can Basis Pursuit solve this?

- Recall our equations from before.
- We want to find α so as to minimize the value of the equation below:

$$\underset{\underline{\alpha}}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_0 \right\}$$

But this is intractable!

- Recall our equations from before.
- We want to find α so as to minimize the value of the equation below:

$$\underset{\underline{\alpha}}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_1 \right\}$$

Can Basis Pursuit solve this?

- Recall our equations from before.
- We want to find α so as to minimize the value of the equation below:

$$\underset{\underline{\alpha}}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_1 \right\}$$

Can Basis Pursuit solve this? Yes

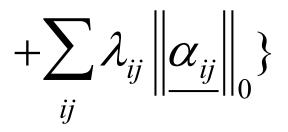
$$\underset{\underline{\alpha}}{Min} \{ \|\underline{X} - \mathbf{D}\underline{\alpha}\|^2 + \lambda \|\underline{\alpha}\|_1 \}$$

• In the above, X is a patch.

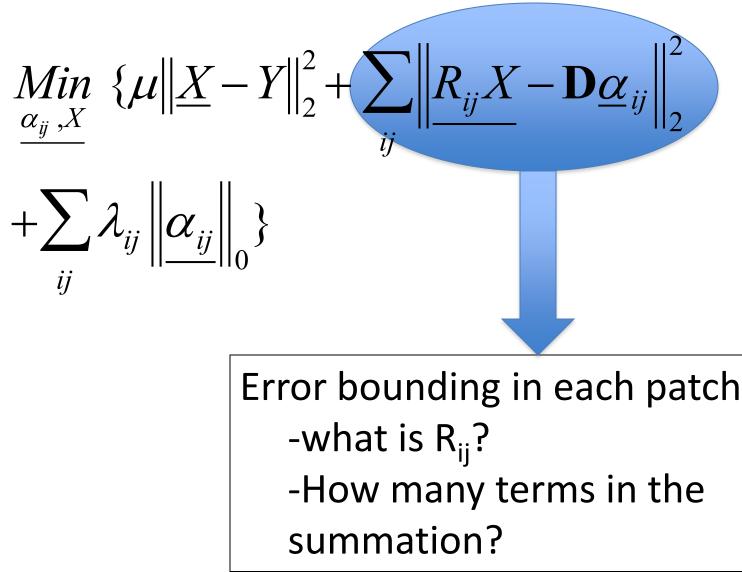
$$\underset{\underline{\alpha}}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_1 \right\}$$

- In the above, X is a patch.
- If the larger image is fully expressed by the every patch in it, how can we go from patches to the image?

$$\underbrace{Min}_{\underline{\alpha_{ij},X}} \left\{ \mu \left\| \underline{X} - Y \right\|_{2}^{2} + \sum_{ij} \left\| \underline{R_{ij}X} - \mathbf{D}\underline{\alpha}_{ij} \right\|_{2}^{2} \right\}$$



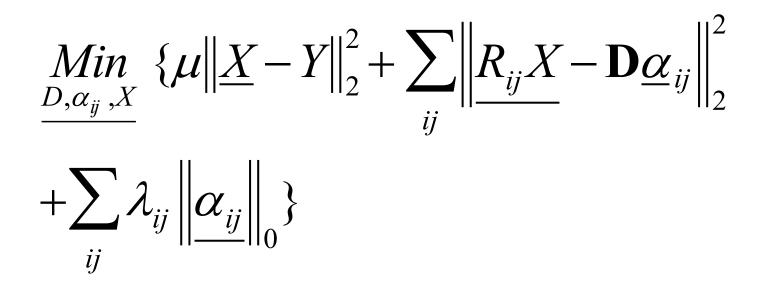
$$\begin{array}{l} \underset{\alpha_{ij},Y}{\underset{\mu}{x}} \left\{ \mu \left\| \underline{X} - Y \right\|_{2}^{2} + \sum_{ij} \left\| \underline{R}_{ij} X - \mathbf{D} \underline{\alpha}_{ij} \right\|_{2}^{2} \\
+ \sum_{ij} \lambda_{ij} \left\| \underline{\alpha}_{ij} \right\|_{0}^{2} \\
\left\{ \begin{array}{l} \left(X - Y \right) \text{ is the error between the} \\
\text{input and denoised image. } \mu \text{ is a} \\
\text{penalty on the error.} \end{array} \right.$$



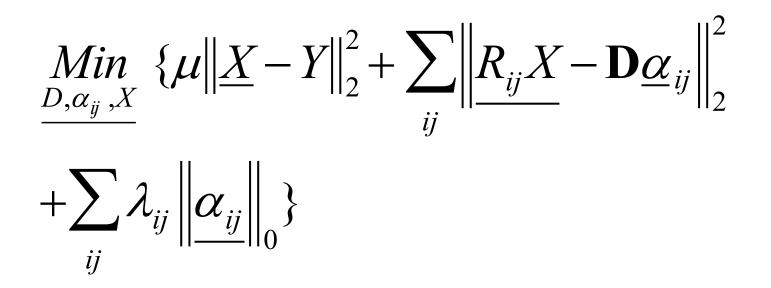
 $\underset{\alpha_{ij},X}{Min} \left\{ \mu \left\| \underline{X} - Y \right\|_{2}^{2} + \sum_{ij} \left\| \underline{R}_{ij} X - \mathbf{D} \underline{\alpha}_{ij} \right\|_{2}^{2} \right\}$ (α_{ij}) λ forces sparsity

- But, we don't "*know*" our dictionary D.
- We want to estimate D as well.

- But, we don't "*know*" our dictionary D.
- We want to estimate D as well.

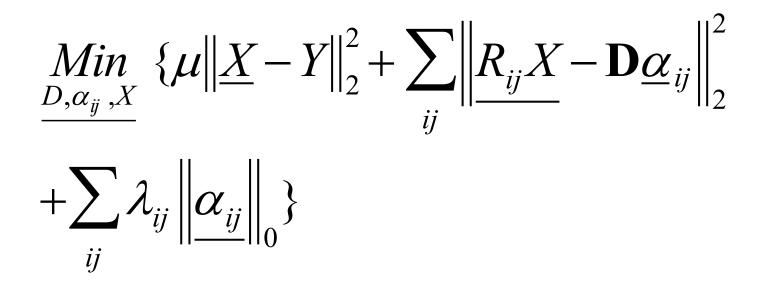


How do we estimate all 3 at once?



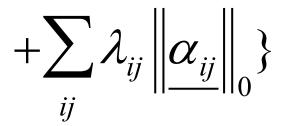
How do we estimate all 3 at once?

We cannot estimate them at the same time!

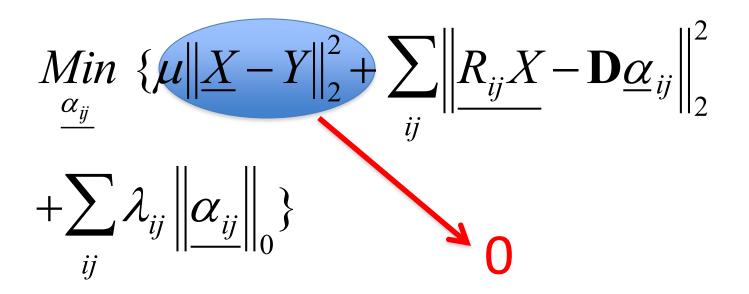


How do we estimate all 3 at once? Fix 2, and find the optimal 3rd.

$$\underbrace{Min}_{D,\alpha_{ij},X} \left\{ \mu \left\| \underline{X} - Y \right\|_{2}^{2} + \sum_{ij} \left\| \underline{R}_{ij} X - \mathbf{D} \underline{\alpha}_{ij} \right\|_{2}^{2} \right\}$$



Initialize X = Y



Initialize X = Y, initialize D

You know how to solve the remaining portion for α – MP, BP!

- Now, update the dictionary D.
- Update D one column at a time, following the <u>K-SVD algorithm</u>
- K-SVD maintains the sparsity structure

- Now, update the dictionary D.
- Update D one column at a time, following the <u>K-SVD algorithm</u>
- K-SVD maintains the sparsity structure
- Iteratively update α and D

K-SVD vs K-Means

- Kmeans: Given data Y
 - Find D and α such that
 - Error = $||\mathbf{Y} \mathbf{D}\alpha||^2$ is minimized, with constraint

$$- |\alpha_i|_0 = 1$$

- K-SVD
 - Find D and α such that
 - Error = $||\mathbf{Y} \mathbf{D} \alpha||^2$ is minimized, with constraint
 - $|\alpha_i|_0 < T$

- Updating **D**
 - For each basis vector, compute its contribution to the image

$$E_k = Y - \sum_{j \neq k} D_j \alpha_j$$

- Updating **D**
 - For each basis vector, compute its contribution to the image
 - Eigen decomposition of E_k

$$E_k = U \Delta V^T$$

K-SVD

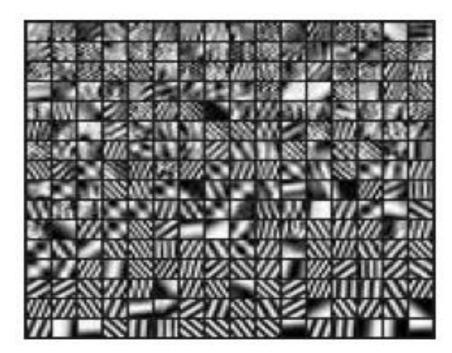
- Updating **D**
 - For each basis vector, compute its contribution to the image
 - Eigen decomposition of E_k
 - Take the principal eigen vector as the updated basis vector.

$$D_k = U_1$$

• Update every entry in **D**

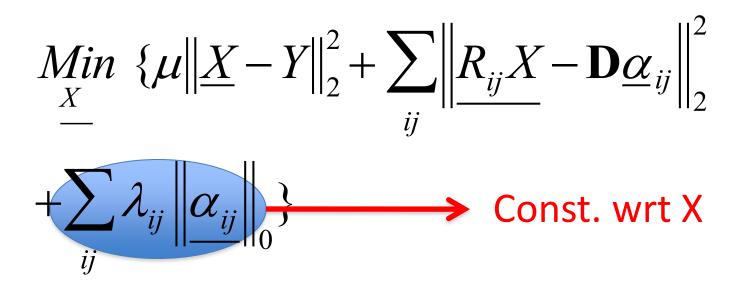
K-SVD

- Initialize **D**
- Estimate α
- Update every entry in D
- Iterate



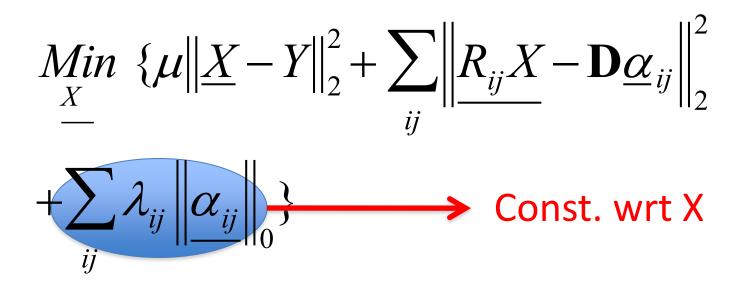
Learned Dictionary for Face Image denoising

From: M. Elad and M. Aharon, *Image denoising via learned dictionaries and sparse representation*, CVPR, 2006.



We know D and $\boldsymbol{\alpha}$

The quadratic term above has a closedform solution



We know D and α

$$X = (\mu I + \sum_{ij} R_{ij}^{T} R)^{-1} (\mu Y + \sum_{ij} R_{ij}^{T} D\alpha_{ij})$$

• Summarizing... We wanted to obtain 3 things

- Summarizing... We wanted to obtain 3 things
- \succ Weights α
- Dictionary D
- Denoised Image X

- Summarizing... We wanted to obtain 3 things
- \succ Weights α Your favorite pursuit algorithm
- Dictionary D Using K-SVD
- Denoised Image X

Iterating

- Summarizing... We wanted to obtain 3 things
- \succ Weights α Your fave ite pur vit algorithm
- Dictionary D Using K-SVD
- Denoised Image X

- Summarizing... We wanted to obtain 3 things
- \succ Weights α
- Dictionary D
- Denoised Image X- Closed form solution

K-SVD algorithm (skip)

Initialization : Set the random normalized dictionary matrix $\mathbf{D}^{(0)} \in \mathbb{R}^{n \times K}$. Set J = 1. Repeat until convergence, Sparse Coding Stage: Use any pursuit algorithm to compute \mathbf{x}_i for i = 1, 2, ..., N $\min_{\mathbf{x}} \{ \|\mathbf{y}_i - \mathbf{D}\mathbf{x}\|_2^2 \}$ subject to $\|\mathbf{x}\|_0 \leq T_0$.

Codebook Update Stage: For $k = 1, 2, \ldots, K$

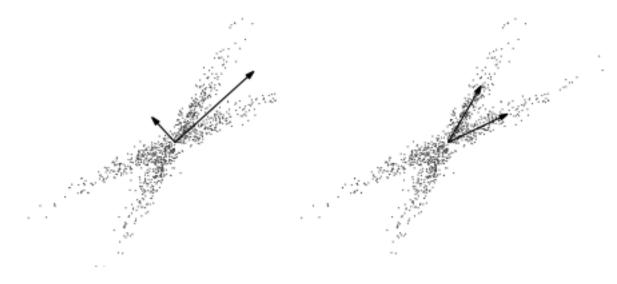
- Define the group of examples that use d_k,
 ω_k = {i | 1 ≤ i ≤ N, x_i(k) ≠ 0}.
- Compute

$$\mathbf{E}_k = \mathbf{Y} - \sum_{j
eq k} \mathbf{d}_j \mathbf{x}^j,$$

- Restrict E_k by choosing only the columns corresponding to those elements that initially used d_k in their representation, and obtain E^R_k.
- Apply SVD decomposition $\mathbf{E}_k^R = \mathbf{U} \boldsymbol{\Delta} \mathbf{V}^T$. Update: $\mathbf{d}_k = \mathbf{u}_1, \mathbf{x}_R^k = \boldsymbol{\Delta}(1, 1) \cdot \mathbf{v}_1$

Set J = J + 1. Sparse and Overcomplete Representations

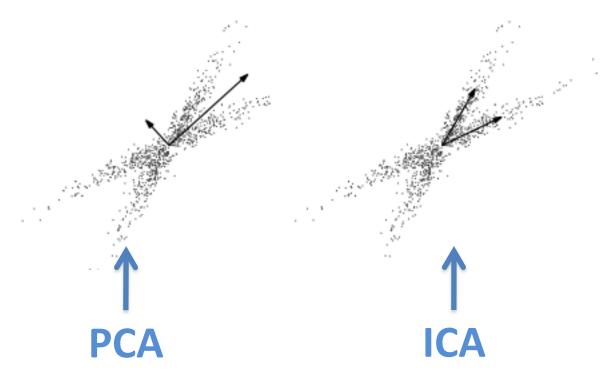
Non-Gaussian data



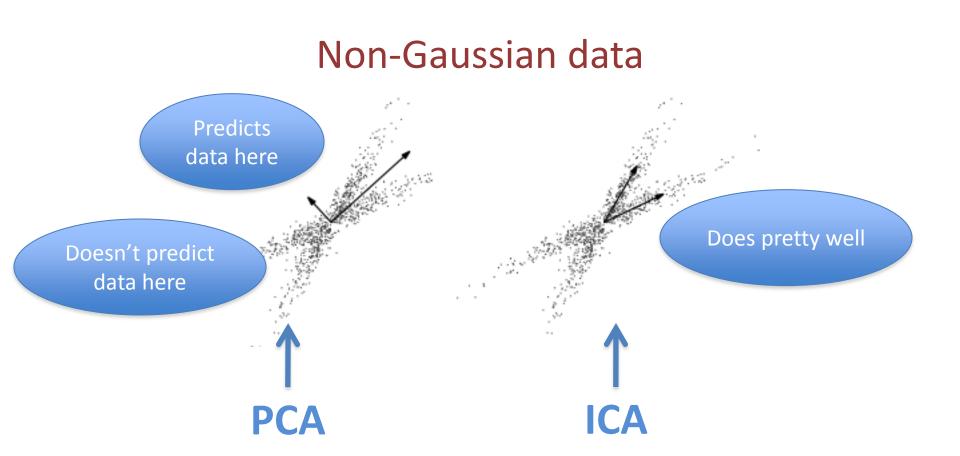
PCA of ICA Which is which?

Images from Lewicki and Sejnowski, Learning Overcomplete Representations, 2000.

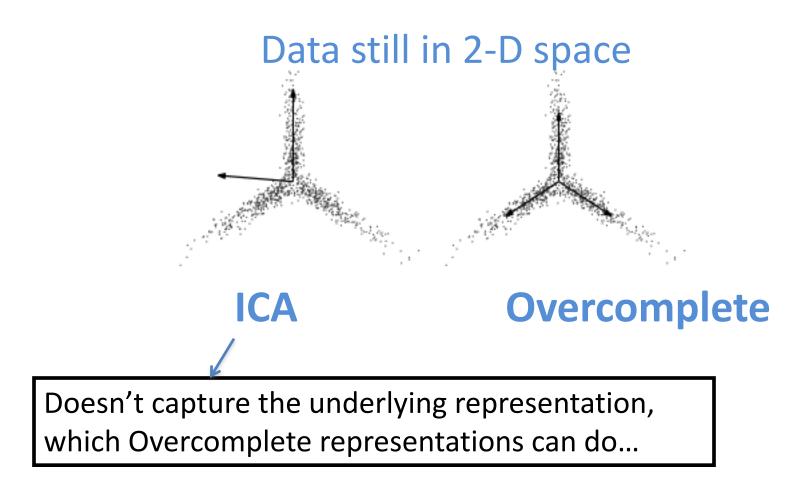
Non-Gaussian data



Images from Lewicki and Sejnowski, Learning Overcomplete Representations, 2000.



Images from Lewicki and Sejnowski, Learning Overcomplete Representations, 2000.



Summary

- Overcomplete representations can be more powerful than component analysis techniques.
- Dictionary can be learned from data.
- Relative advantages and disadvantages of the pursuit algorithms.