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Administrivia 

• Final class on Tuesday the 2nd.. 

 

• Project Demos:  4th December (Thursday). 

– Before exams week 

 

• Problem: How to set up posters for SV 
students? 

– Find a representative here? 
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An automotive example 

• Determine automatically, by only listening to a running 
automobile, if it is: 

– Idling; or 

– Travelling at constant velocity; or 

– Accelerating; or 

– Decelerating 

• Assume (for illustration) that we only record energy level 
(SPL) in the sound 

– The SPL is measured once per second 
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What we know 

• An automobile that is at rest can accelerate, or 

continue to stay at rest 

• An accelerating automobile can hit a steady-

state velocity, continue to accelerate, or 

decelerate 

• A decelerating automobile can continue to 

decelerate, come to rest, cruise, or accelerate 

• A automobile at a steady-state velocity can 

stay in steady state, accelerate or decelerate 
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What else we know 

• The probability distribution of the SPL of the 
sound is different in the various conditions 
– As shown in figure 

• In reality, depends on the car 

•  The distributions for the different conditions 
overlap 
– Simply knowing the current sound level is not enough 

to know the state of the car  

11-755/18797 5 

45 70 65 60 

P(x|idle) P(x|decel) P(x|cruise) P(x|accel) 



The Model! 

• The state-space model 
– Assuming all transitions from a state are equally probable 

11-755/18797 6 

45 

P(x|idle) 

Idling state 

70 

P(x|accel) 

Accelerating state 

65 
       Cruising state 

60 

       Decelerating state 

0.5 

0.5 

0.33 

0.33 0.33 

0.33 
0.33 0.25 

0.25 
0.25 

0.33 

0.25 

I A C D 

I 0.5 0.5 0 0 

A 0 1/3 1/3 1/3 

C 0 1/3 1/3 1/3 

D 0.25 0.25 0.25 0.25 



Estimating the state at T = 0- 

• A T=0, before the first observation, we know 
nothing of the state 

– Assume all states are equally likely  
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The first observation 

• At T=0 we observe the sound level x0 = 68dB SPL 
– The observation modifies our belief in the state of the 

system 
 

• P(x0|idle) = 0 
• P(x0|deceleration) = 0.0001 
• P(x0|acceleration) = 0.7 
• P(x0|cruising) = 0.5 

– Note, these don’t have to sum to 1 
– In fact, since these are densities, any of them can be > 1 
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Estimating state after at observing x0 

• P(state | x0) = C P(state)P(x0|state) 
– P(idle | x0) = 0 

– P(deceleration | x0) = C 0.000025 

– P(cruising | x0) = C 0.125 

– P(acceleration | x0) = C 0.175 
 

• Normalizing 
– P(idle | x0) = 0 

– P(deceleration | x0) = 0.000083 

– P(cruising | x0) = 0.42 

– P(acceleration | x0) = 0.57 
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Estimating the state at T = 0+ 

• At T=0, after the first observation, we must 
update our belief about the states 
– The first observation provided some evidence about 

the state of the system 

– It modifies our belief in the state of the system 
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Predicting the state at T=1 

• Predicting the probability of idling at T=1 

– P(idling|idling) = 0.5;  

– P(idling | deceleration) = 0.25 

– P(idling at T=1| x0) =  
P(IT=0|x0) P(I|I) + P(DT=0|x0) P(I|D) = 2.1 x 10-5 

 

• In general, for any state S 

– P(ST=1 | x0)  = SST=0
  P(ST=0 | x0) P(ST=1|ST=0) 
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Predicting the state at T = 1 
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Updating after the observation at T=1 

• At T=1 we observe  x1 = 63dB SPL 

• P(x1|idle) = 0 

• P(x1|deceleration) = 0.2 

• P(x1|acceleration) = 0.001 

• P(x1|cruising) = 0.5 

11-755/18797 13 

45 70 65 60 

P(x|idle) P(x|decel) P(x|cruise) P(x|accel) 



Update after observing x1 

• P(state | x0:1) = C P(state| x0)P(x1|state) 

– P(idle | x0:1) = 0 

– P(deceleration | x0,1) = C 0.066 

– P(cruising | x0:1) = C 0.165 

– P(acceleration | x0:1) = C 0.00033 
 

• Normalizing 
– P(idle | x0:1) = 0 

– P(deceleration | x0:1) = 0.285 

– P(cruising | x0:1) = 0.713 

– P(acceleration | x0:1) = 0. 0014 
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Estimating the state at T = 1+ 

• The updated probability at T=1 incorporates 
information from both x0 and x1 

– It is NOT a local decision based on x1 alone 

– Because of the Markov nature of the process, the state at 
T=0 affects the state at T=1 
• x0 provides evidence for the state at T=1 
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Estimating a Unique state 

• What we have estimated is a distribution over 
the states 

• If we had to guess a state, we would pick the 
most likely state from the distributions 

 

• State(T=0) = Accelerating 

 

• State(T=1) = Cruising 
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Overall procedure 

• At T=0 the predicted state distribution is the initial state 
probability 

• At each time T, the current estimate of the distribution over 
states considers all observations x0 ... xT 

– A natural outcome of the Markov nature of the model 

• The prediction+update is identical to the forward computation 
for HMMs to within a normalizing constant 
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Comparison to Forward Algorithm 

• Forward Algorithm: 
– P(x0:T,ST)  = P(xT|ST) SST-1

  P(x0:T-1, ST-1) P(ST|ST-1) 

 

• Normalized: 

– P(ST|x0:T)  = (SS’T
 P(x0:T,S’T))-1 P(x0:T,ST) = C P(x0:T,ST) 
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Decomposing the forward algorithm 

 P(x0:T,ST)  = P(xT|ST) SST-1
  P(x0:T-1, ST-1) P(ST|ST-1) 

 

• Predict: 
 P(x0:T-1,ST)  = SST-1

  P(x0:T-1, ST-1) P(ST|ST-1) 

 

• Update: 
 P(x0:T,ST)  = P(xT|ST) P(x0:T-1,ST) 
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Estimating the state 

• The state is estimated from the updated 
distribution 

– The updated distribution is propagated into time, not 
the state 
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Predicting the next observation 

• The probability distribution for the observations at the 

next time is a mixture: 

– P(xT|x0:T-1) = SST
 P(xT|ST) P(ST|x0:T-1) 

• The actual observation can be predicted from P(xT|x0:T-1) 
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Predicting the next observation 

• MAP estimate: 

– argmaxxT
 P(xT|x0:T-1) 

 

• MMSE estimate: 

– Expectation(xT|x0:T-1) 
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Difference from Viterbi decoding 

• Estimating only the current state at any time 

– Not the state sequence 

– Although we are considering all past observations 
 

• The most likely state at T and T+1 may be such 
that there is no valid transition between ST 
and ST+1 
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A known state model 

• HMM assumes a very coarsely quantized state 
space 
– Idling / accelerating / cruising / decelerating 

 

• Actual state can be finer 
– Idling, accelerating at various rates, decelerating at 

various rates, cruising at various speeds 
 

• Solution:  Many more states (one for each 
acceleration /deceleration rate, crusing speed)? 

 

• Solution: A continuous valued state 
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The real-valued state model 
• A state equation describing the dynamics of the system 

 
 
– st  is the state of the system at time t 
– et  is a driving function, which is assumed to be random 

• The state of the system at any time depends only on the state at 
the previous time instant and the driving term at the current time 
 

• An observation equation relating state to observation 
 
 
– ot is the observation at time t 
– gt  is the noise affecting the observation (also random) 

• The observation at any time depends only on the current state of 
the system and the noise 

11-755/18797 25 

),( 1 ttt sfs e

),( ttt sgo g



Continuous state system 

• The state is a continuous valued parameter that is not directly 

seen 

– The state is the position of the automobile or the star 

 

• The observations are dependent on the state and are the only way 

of knowing about the state 

– Sensor readings (for the automobile) or recorded image (for the telescope) 
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Statistical Prediction and Estimation 

• Given an a priori probability distribution for 
the state 

– P0(s):  Our belief in the state of the system before 
we observe any data 

• Probability of state of navlab 

• Probability of state of stars 

• Given a sequence of observations o0..ot 

• Estimate state at time t 
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Prediction and update at t = 0 

• Prediction 
– Initial probability distribution for state 

– P(s0) = P0(s0) 
 

• Update: 
– Then we observe o0 

– We must update our belief in the state 

 
 

 

 

• P(s0|o0) = C.P0(s0)P(o0|s0) 
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The observation probability: P(o|s) 

•   

– This is a (possibly many-to-one) stochastic function 
of state st and noise gt 

– Noise gt is random. Assume it is the same 
dimensionality as ot 

 

• Let Pg(gt) be the probability distribution of gt 

• Let  {g:g(st,g)=ot} be all g that result in ot 
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The observation probability 

• P(o|s) = ? 

 

 
 

 

• The J is a Jacobian 

 

 

 

 

• For scalar functions of scalar variables, it is simply a 
derivative:   
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Predicting the next state 

• Given P(s0|o0), what is the probability of the state 
at t=1 

 

    

• State progression function: 

 

– et is a driving term with probability distribution Pe(et) 
 

• P(st|st-1) can be computed similarly to P(o|s) 

– P(s1|s0) is an instance of this 
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And moving on 

• P(s1|o0) is the predicted state distribution for 
t=1 

• Then we observe o1 

– We must update the probability distribution for s1 

– P(s1|o0:1) = CP(s1|o0)P(o1|s1) 

 

• We can continue on 
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Update after Ot:  

Discrete vs. Continuous State Systems 

Prediction at time t:  
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Initial state prob. 

Discrete vs. Continuous State Systems 

Parameters 
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Special case: Linear Gaussian model 

• A linear state dynamics equation 
– Probability of state driving term e is Gaussian 

– Sometimes viewed as a driving term me and additive 
zero-mean noise 

• A linear observation equation 
– Probability of observation noise g is Gaussian 

• At, Bt and Gaussian parameters assumed known 
– May vary with time 
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The initial state probability 

• We also assume the initial state distribution to 
be Gaussian 
– Often assumed zero mean 
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The observation probability 

• The probability of the observation, given the state, is 
simply the probability of the noise, with the mean 
shifted 

– Since the only uncertainty is from the noise 
 

• The new mean is the mean of the distribution of the 
noise + the value of the observation in the absence of 
noise 
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The updated state probability at T=0 

• P(s0| o0)  = C P(s0) P(o0| s0)  
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Note 1: product of two Gaussians 

• The product of two Gaussians is a Gaussian 
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The updated state probability at T=0 

• P(s0| o0)  = C P(s0) P(o0| s0)  
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The state transition probability 

• The probability of the state at time t, given the 

state at time t-1 is simply the probability of 

the driving term, with the mean shifted 
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Note 2:  integral of product of two 
Gaussians 

• The integral of the product of two Gaussians is a Gaussian 
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Note 2:  integral of product of two 
Gaussians 

• P(y) is the integral of the product of two Gaussians is a 
Gaussian 
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The predicted state probability at t=1 

• Remains Gaussian 
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The updated state probability at T=1 

• P(s1| o0:1)  = C P(s1 |o0) P(o1| s1)  
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The Kalman Filter! 
• Prediction at T 

 

 

 

• Update at T 
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Linear Gaussian Model 
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The Kalman filter 

• The actual state estimate is the mean of the 
updated distribution 

 

• Predicted state at time t 
 

 

• Updated estimate of state at time t 
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Stable Estimation 

• The above equation fails if there is no 
observation noise 
– g = 0 

– Paradoxical? 

– Happens because we do not use the relationship 
between o and s effectively 

 

• Alternate derivation required 
– Conventional Kalman filter formulation 
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Conditional Probability of y|x 

• The conditional probability of y given x is also Gaussian 

– The slice in the figure is Gaussian 

 

 

• The mean of this Gaussian is a function of x 

• The variance of y reduces if x is known 

– Uncertainty is reduced 
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A matrix inverse identity 

– Work it out.. 

11-755/18797 52 

   
    





























11111

11111111
1

BABCABBABC

BABCBAABBABCBAA

CB

BA

TTT

TTT

T



For any jointly Gaussian RV 

• Using the Matrix Inversion Identity 
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For any jointly Gaussian RV 

• Using the Matrix Inversion Identity 
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For any jointly Gaussian RV 

• The conditional of Y is a Gaussian 

11-755/18797 55 

 )(5.0exp( XQuadraticconst

     ))()(5.0 1111

XXXYXYXYXX

T

XYYY

T

XXXYXY XCCYCCCCXCCY mmmm  

     

ZZ

T

Z ZCZConstYXP mm 15.0exp),(

      )()(5.0exp 1111

XXXYXYXYXX

T

XYYY

T

XXXYXY XCCYCCCCXCCYK mmmm  

)|( XYP

  XYXX

T

XYYYXXXYXY CCCCXCCYGaussian 11 ),(;   mm



Conditional Probability of y|x 

• The conditional probability of y given x is also Gaussian 

– The slice in the figure is Gaussian 

 

 

• The mean of this Gaussian is a function of x 

• The variance of y reduces if x is known 

– Uncertainty is reduced 
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Estimating P(s|o) 

• Consider the joint distribution of o and s 
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Assuming g is 0 mean 

Dropping subscript t and o0:t-1 for brevity 






s
oO  O is a linear function of s 

 Hence O is also Gaussian 
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The joint PDF of o and s 

• o is Gaussian.  Its cross covariance with s: 
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The probability distribution of O 
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The probability distribution of O 
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The probability distribution of O 
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The probability distribution of O 

• Writing it out in extended form 
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Recall: For any jointly Gaussian RV 

• Applying it to our problem (replace Y by s, X by o): 
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Stable Estimation 

11-755/18797 64 

 Note that we are not computing g
-1 in this 

formulation 
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The Kalman filter 

• The actual state estimate is the mean of the 
updated distribution 

 

• Predicted state at time t 
 

 

• Updated estimate of state at time t 
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The Kalman filter 

• Prediction 
 

 

 

 

 

• Update 
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The Kalman filter 

• Prediction 
 

 

 

 

• Update 
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The Kalman Filter 

• Very popular for tracking the state of 
processes 
– Control systems 

– Robotic tracking 
• Simultaneous localization and mapping 

– Radars 

– Even the stock market.. 

 

• What are the parameters of the process? 
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Kalman filter contd. 

• Model parameters A and B must be known 

– Often the state equation includes an additional 
driving term:   st = Atst-1 + Gtut + et 

– The parameters of the driving term must be 
known 

• The initial state distribution must be known 
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Defining the parameters 

• State state must be carefully defined 
– E.g. for a robotic vehicle, the state is an extended 

vector that includes the current velocity and 
acceleration 
• S = [X, dX, d2X] 

 

• State equation: Must incorporate appropriate 
constraints 
– If state includes acceleration and velocity, velocity at 

next time = current velocity + acc. * time step 

– St = ASt-1 + e 
• A = [1 t 0.5t2;  0 1 t; 0 0 1] 
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Parameters 

• Observation equation: 

– Critical to have accurate observation equation 

– Must provide a valid relationship between state 
and observations 

 

• Observations typically high-dimensional 

– May have higher or lower dimensionality than 
state 
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Problems 

• f() and/or g() may not be nice linear functions 

– Conventional Kalman update rules are no longer 
valid 

 

• e and/or g may not be Gaussian 

– Gaussian based update rules no longer valid 
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Solutions 

• f() and/or g() may not be nice linear functions 

– Conventional Kalman update rules are no longer valid 

– Extended Kalman Filter 
 

• e and/or g may not be Gaussian 

– Gaussian based update rules no longer valid 

– Particle Filters 
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