Machine Learning for Signal Processing Independent Component Analysis

Class 9. 30 Sep 2014

Instructor: Bhiksha Raj

Correlation vs. Causation

 The consumption of burgers has gone up steadily in the past decade

In the same period, the penguin population of

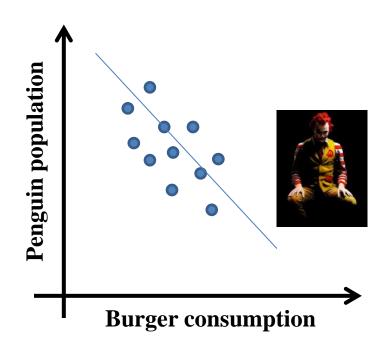
Antarctica has gone down

Correlation, not Causation (unless McDonalds has a top-secret Antarctica division)

The concept of correlation

 Two variables are correlated if knowing the value of one gives you information about the expected value of the other





The statistical concept of correlatedness

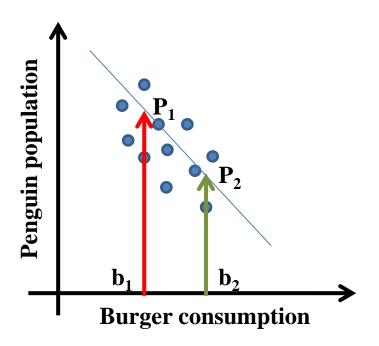
 Two variables X and Y are correlated if If knowing X gives you an expected value of Y

- X and Y are uncorrelated if knowing X tells you nothing about the expected value of Y
 - Although it could give you other information
 - How?

A brief review of basic probability

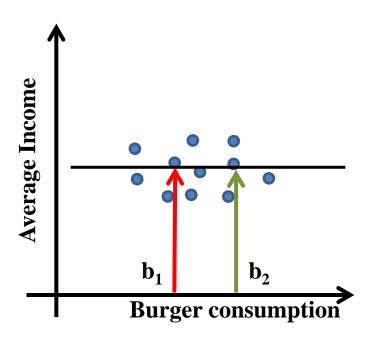
- Uncorrelated: Two random variables X and Y are uncorrelated iff:
 - The average value of the product of the variables equals the product of their individual averages
- Setup: Each draw produces one instance of X and one instance of Y
 - I.e one instance of (X,Y)
- E[XY] = E[X]E[Y]
- The average value of Y is the same regardless of the value of X

Correlated Variables



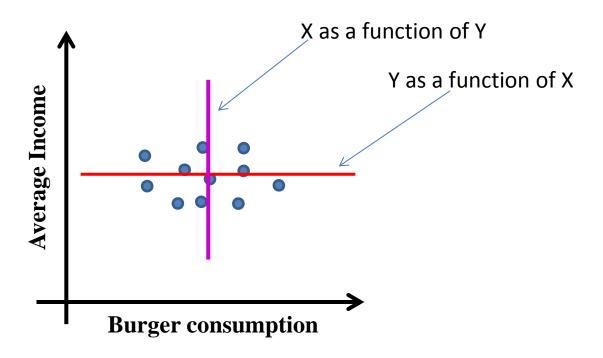
- Expected value of Y given X:
 - Find average of Y values of all samples at (or close)
 to the given X
 - If this is a function of X, X and Y are correlated

Uncorrelatedness



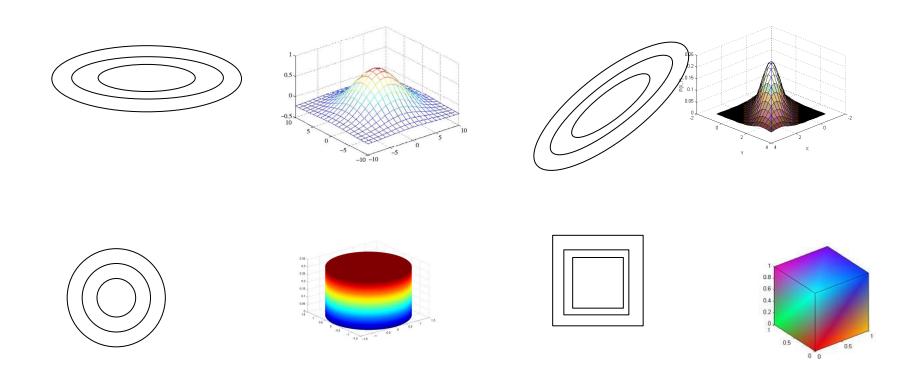
- Knowing X does not tell you what the average value of Y is
 - And vice versa

Uncorrelated Variables



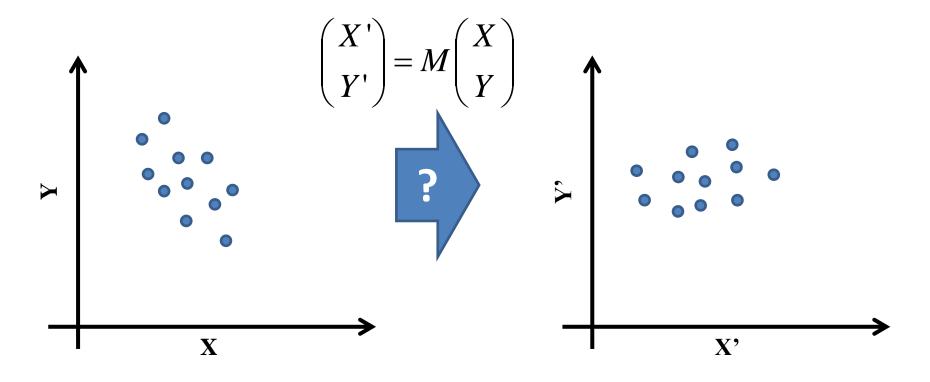
 The average value of Y is the same regardless of the value of X and vice versa

Uncorrelatedness



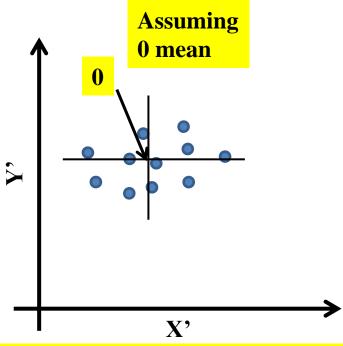
Which of the above represent uncorrelated RVs?

The notion of decorrelation



 So how does one transform the correlated variables (X,Y) to the uncorrelated (X', Y')

What does "decorrelated" mean



- E[X'] = constant (0)
- E[Y'] = constant (0)
- E[X'|Y'] = 0
- $E[X'Y'] = E_{Y'}[E[X'|Y']] = 0$

$$E\begin{bmatrix} \begin{pmatrix} X' \\ Y' \end{pmatrix} (X' Y') \end{bmatrix} = E\begin{pmatrix} X'^2 & X'Y' \\ X'Y' & Y'^2 \end{pmatrix} = \begin{pmatrix} E[X'^2] & 0 \\ 0 & E[Y'^2] \end{pmatrix} = diagonal\ matrix$$

• If Y is a matrix of vectors, YY^T = diagonal

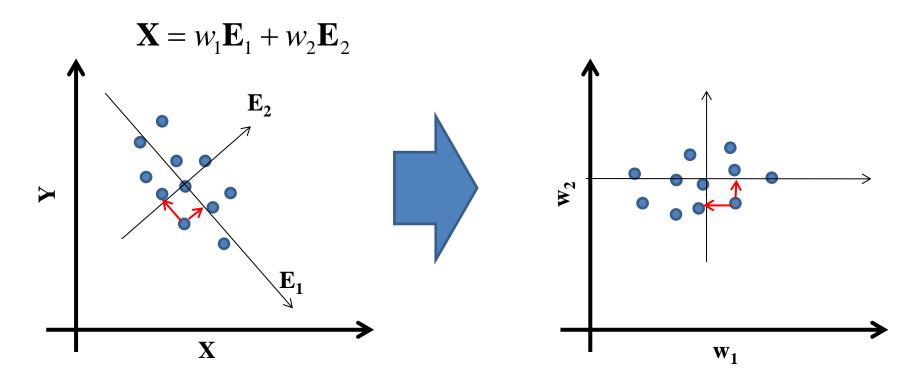
Decorrelation

- Let X be the matrix of correlated data vectors
 - Each component of ${\bf X}$ informs us of the mean trend of other components
- Need a transform M such that if Y = MX
- The covariance of ${f Y}$ is diagonal
 - $-\mathbf{Y}\mathbf{Y}^{\mathrm{T}}$ is the covariance if \mathbf{Y} is zero mean
 - $-\mathbf{Y}\mathbf{Y}^{\mathrm{T}} = \text{diagonal}$
 - \Rightarrow **MXX**^T**M**^T = **D**
 - \Rightarrow **M.**Cov(**X**).**M**^T = **D**

Decorrelation

- Easy solution:
 - Eigen decomposition of Cov(X): $Cov(X) = E\Lambda E^T$
 - $-\mathbf{E}\mathbf{E}^{\mathrm{T}}=\mathbf{I}$
- Let $\mathbf{M} = \mathbf{E}^{\mathrm{T}}$
- $MCov(X)M^T = E^TE\Lambda E^TE = \Lambda = diagonal$
- PCA: Y = MX
- Diagonalizes the covariance matrix
 - "Decorrelates" the data

PCA



- PCA: Y = MX
- *Diagonalizes* the covariance matrix
 - "Decorrelates" the data

The statistical concept of Independence

 Two variables X and Y are dependent if If knowing X gives you any information about Y

 X and Y are independent if knowing X tells you nothing at all of Y

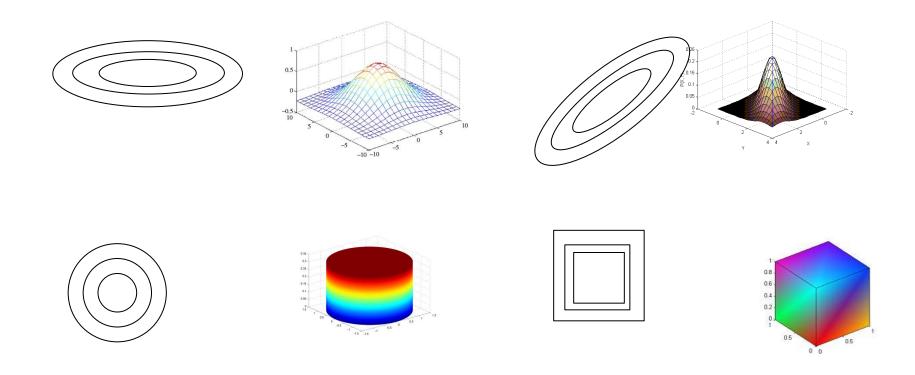
A brief review of basic probability

- *Independence:* Two random variables X and Y are independent iff:
 - Their joint probability equals the product of their individual probabilities
- P(X,Y) = P(X)P(Y)
- Independence implies uncorrelatedness
 - The average value of X is the same regardless of the value of Y
 - E[X|Y] = E[X]
 - But not the other way

A brief review of basic probability

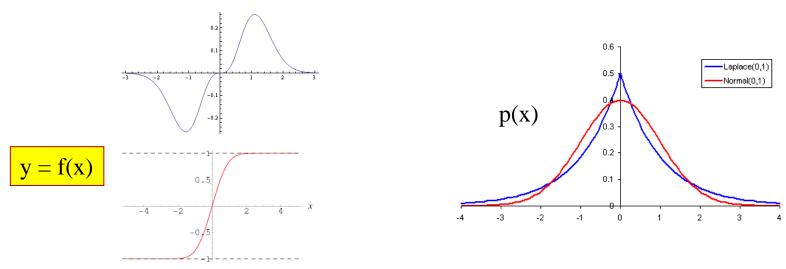
- Independence: Two random variables X and Y are independent iff:
- The average value of any function of X is the same regardless of the value of Y
 - Or any function of Y
- E[f(X)g(Y)] = E[f(X)] E[g(Y)] for all f(), g()

Independence



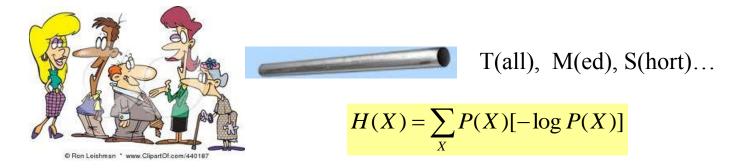
- Which of the above represent independent RVs?
- Which represent uncorrelated RVs?

A brief review of basic probability

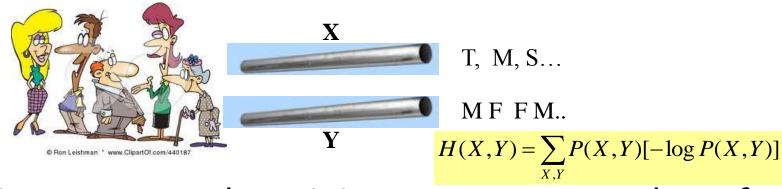


- The expected value of an odd function of an RV is 0 if
 - The RV is 0 mean
 - The PDF is of the RV is symmetric around 0
- E[f(X)] = 0 if f(X) is odd symmetric

A brief review of basic info. theory

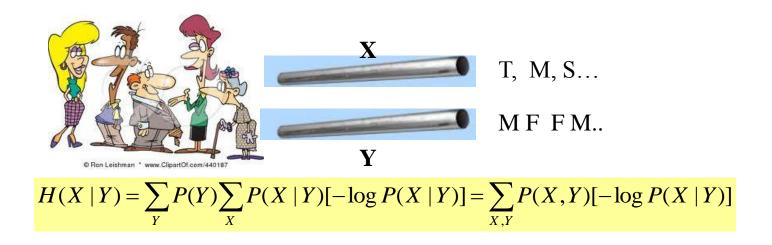


 Entropy: The minimum average number of bits to transmit to convey a symbol



• Joint entropy: The *minimum average* number of bits to convey sets (pairs here) of symbols

A brief review of basic info. theory



- Conditional Entropy: The minimum average number of bits to transmit to convey a symbol
 X, after symbol Y has already been conveyed
 - Averaged over all values of X and Y

A brief review of basic info. theory

$$H(X | Y) = \sum_{Y} P(Y) \sum_{X} P(X | Y) [-\log P(X | Y)] = \sum_{Y} P(Y) \sum_{X} P(X) [-\log P(X)] = H(X)$$

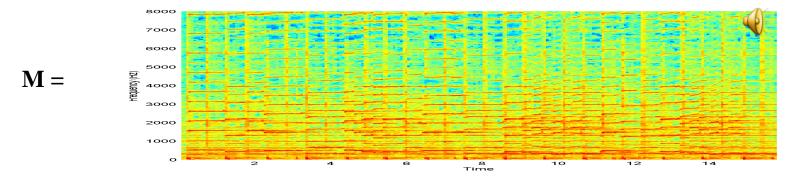
 Conditional entropy of X = H(X) if X is independent of Y

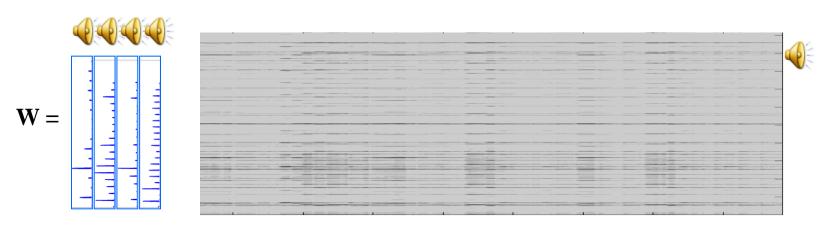
$$H(X,Y) = \sum_{X,Y} P(X,Y)[-\log P(X,Y)] = \sum_{X,Y} P(X,Y)[-\log P(X)P(Y)]$$
$$= -\sum_{X,Y} P(X,Y)\log P(X) - \sum_{X,Y} P(X,Y)\log P(Y) = H(X) + H(Y)$$

 Joint entropy of X and Y is the sum of the entropies of X and Y if they are independent

Onward...

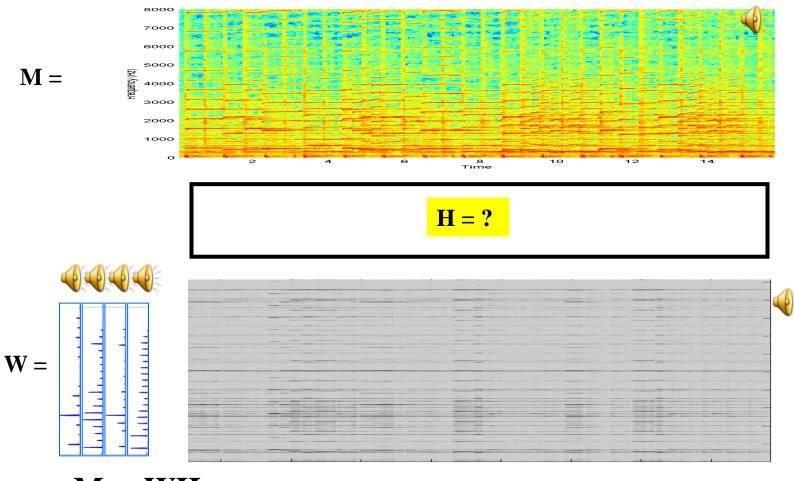
Projection: multiple notes





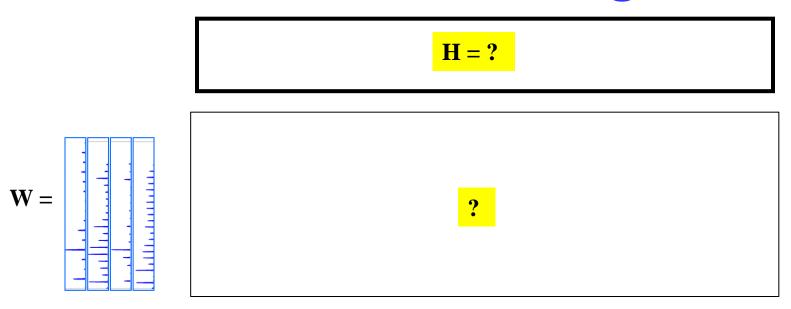
- $P = W (W^T W)^{-1} W^T$
- Projected Spectrogram = PM

We're actually computing a score



- M ~ WH
- H = pinv(W)M

So what are we doing here?



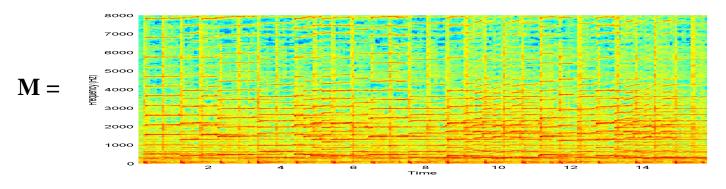
- M ~ WH is an approximation
- Given W, estimate H to minimize error

$$\mathbf{H} = \arg\min_{\overline{\mathbf{H}}} \|\mathbf{M} - \mathbf{W}\overline{\mathbf{H}}\|_F^2 = \arg\min_{\overline{\mathbf{H}}} \sum_{i} \sum_{j} (\mathbf{M}_{ij} - (\mathbf{W}\overline{\mathbf{H}})_{ij})^2$$

• Must ideally find *transcription* of given notes

26

How about the other way?

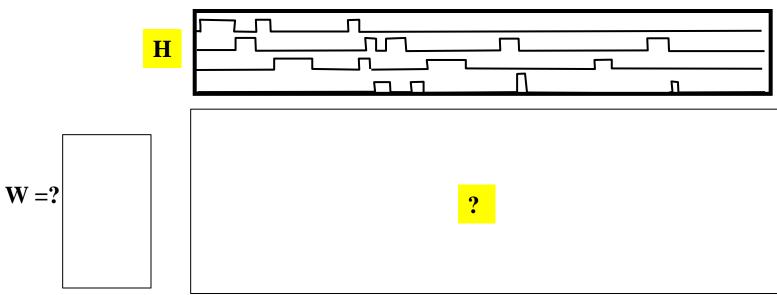


■ M ~ WH

$$W = Mpinv(H)$$
 $U = WH$

$$\mathbf{U} = \mathbf{W}\mathbf{H}$$

Going the other way...



- M ~ WH is an approximation
- Given H, estimate W to minimize error

$$\mathbf{W} = \arg\min_{\overline{\mathbf{W}}} \|\mathbf{M} - \overline{\mathbf{W}}\mathbf{H}\|_F^2 = \arg\min_{\overline{\mathbf{H}}} \sum_{i} \sum_{j} (\mathbf{M}_{ij} - (\overline{\mathbf{W}}\mathbf{H})_{ij})^2$$

• Must ideally find the *notes* corresponding to the _{30 Set} transcription _{11755/18797}

28

When both parameters are unknown

- Must estimate both ${\boldsymbol{H}}$ and ${\boldsymbol{W}}$ to best approximate ${\boldsymbol{M}}$
- Ideally, must learn *both* the *notes* and *their* transcription!

A least squares solution

$$\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} \| \mathbf{M} - \overline{\mathbf{W}} \overline{\mathbf{H}} \|_F^2$$

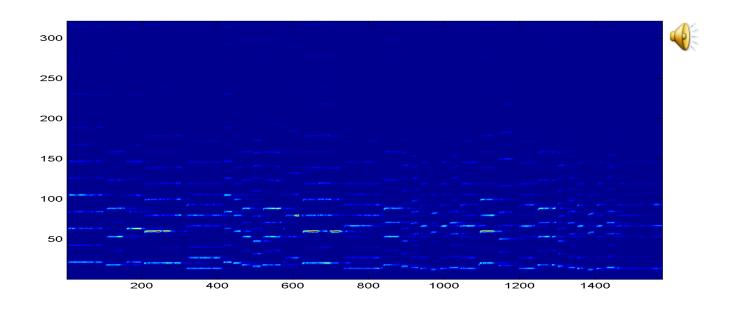
- Unconstrained
 - For any W, H that minimizes the error, W'=WA,
 H'=A⁻¹H also minimizes the error for any invertible A
 - Too many solutions
- Constraint: W is orthogonal
 - $-\mathbf{W}^{\mathrm{T}}\mathbf{W}=\mathbf{I}$
 - PCA!!

PCA: Constrained solution

$$\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} \| \mathbf{M} - \overline{\mathbf{W}} \overline{\mathbf{H}} \|_F^2$$

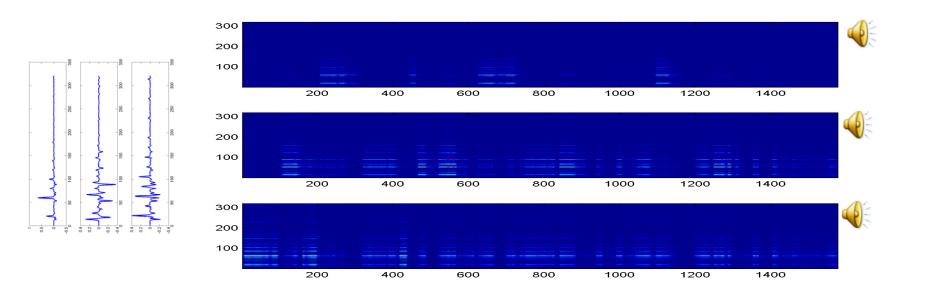
- Constraint: W is orthogonal
 - $-\mathbf{W}^{\mathrm{T}}\mathbf{W}=\mathbf{I}$
- This results in PCA!!
 - $-\mathbf{W}$ are the Eigenvectors of $\mathbf{M}\mathbf{M}^{\mathrm{T}}$

So how does that work?



• There are 12 notes in the segment, hence we try to estimate 12 notes..

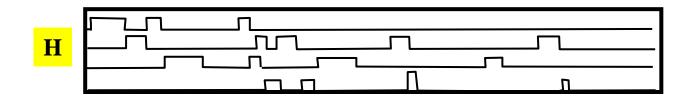
So how does that work?



- There are 12 notes in the segment, hence we try to estimate 12 notes..
- Results are not good

A constrained least squares solution

$$\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} \| \mathbf{M} - \overline{\mathbf{W}} \overline{\mathbf{H}} \|_F^2$$



- For our problem, lets consider the "truth"...
- When one note occurs, the other does not

$$-\mathbf{h}_{i}^{T}\mathbf{h}_{j} = 0$$
 for all $i != j$

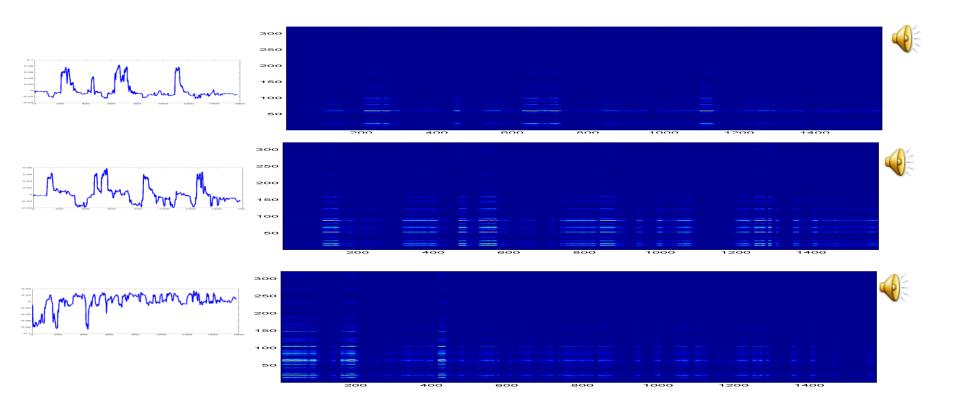
• The rows of **H** are uncorrelated

PCA: The Other Way?

$$\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} \| \mathbf{M} - \overline{\mathbf{W}} \overline{\mathbf{H}} \|_F^2$$

- Constraint: H is orthogonal
 - $-\mathbf{H}\mathbf{H}^{\mathrm{T}}=\mathbf{I}$
- This results in PCA or the row vectors of M!!
 - $-\mathbf{H}$ are the Eigenvectors of $\mathbf{M}^{\mathrm{T}}\mathbf{M}$

So how does that work?



- The scores of the first three "notes" and their contributions
- Not that great again

PCA

$$H = ?$$

approx(M) = ?

- If the notes matrix ${\bf W}$ is made orthogonal, the rows of ${\bf H}$ end up being orthogonal to one another
 - H is the orthogonalized version of M
- If the scores matrix ${f H}$ is made orthogonal instead, the rows of ${f W}$ end up being orthogonal
- The two decompositions are identical to within a scaling of the vectors

Eigendecomposition and SVD

$$\mathbf{M} = \mathbf{U}\mathbf{S}\mathbf{V}^T$$

$$M = WH$$

- Matrix M can be decomposed as $M = USV^T$
- When we assume the scores are orthogonal, we get $\mathbf{H} = \mathbf{V}^{\mathrm{T}}, \ \mathbf{W} = \mathbf{U}\mathbf{S}$
- When we assume the notes are orthogonal, we get $\mathbf{W} = \mathbf{U}, \ \mathbf{H} = \mathbf{S}\mathbf{V}^{\mathrm{T}}$
- In either case the results are the same
 - The notes are orthogonal and so are the scores
 - Not good in our problem

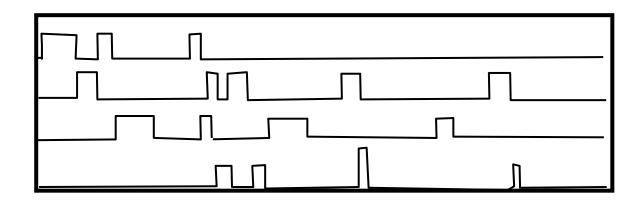
Orthogonality

M = WH

In any least-squared error decomposition
 M=WH, if the columns of W are orthogonal,
 the rows of H will also be orthogonal

Sometimes mere orthogonality is not enough

What else can we look for?



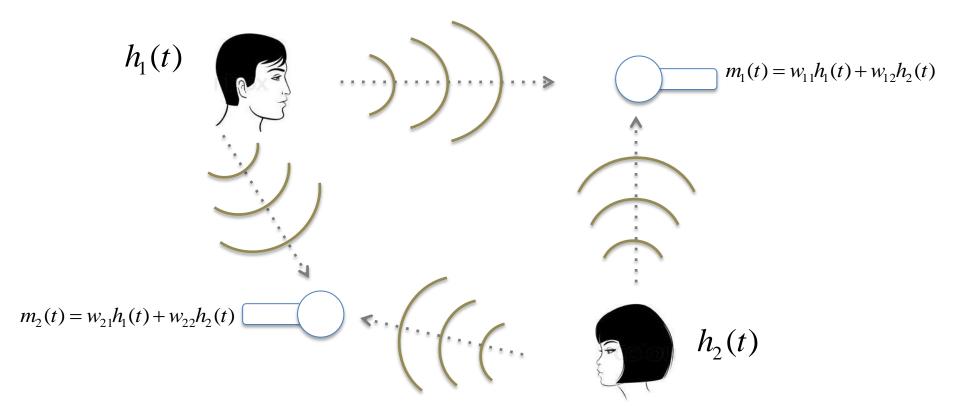
- Assume: The "transcription" of one note does not depend on what else is playing
 - Or, in a multi-instrument piece, instruments are playing independently of one another
- Not strictly true, but still...

Formulating it with Independence

$$\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} \| \mathbf{M} - \overline{\mathbf{W}}\overline{\mathbf{H}} \|_F^2 + \Lambda(rows.of.H.are.independent)$$

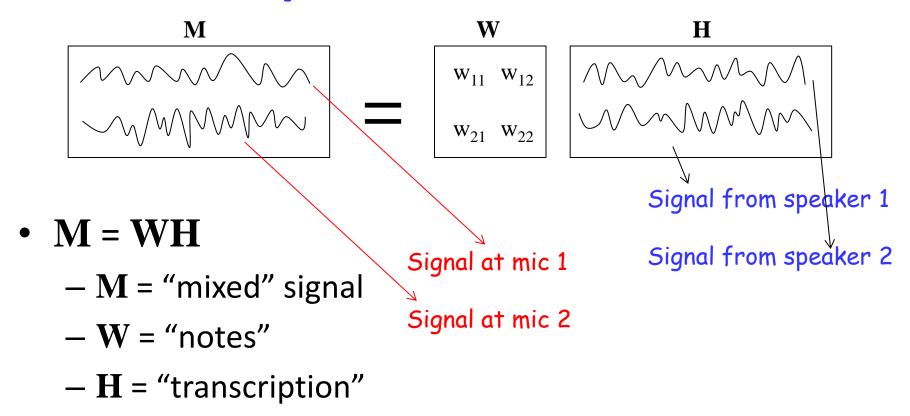
 Impose statistical independence constraints on decomposition

Changing problems for a bit



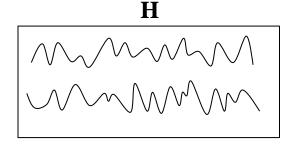
- Two people speak simultaneously
- Recorded by two microphones
- Each recorded signal is a mixture of both signals

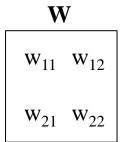
A Separation Problem

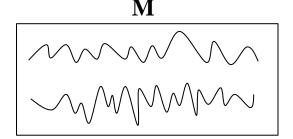


- Separation challenge: Given only M estimate H
- Identical to the problem of "finding notes"

A Separation Problem

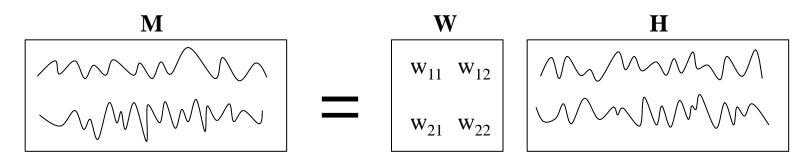






- Separation challenge: Given only M estimate H
- Identical to the problem of "finding notes"

Imposing Statistical Constraints



- M = WH
- Given only M estimate H
- $\mathbf{H} = \mathbf{W}^{-1}\mathbf{M} = \mathbf{A}\mathbf{M}$
- Only known constraint: The rows of H are independent
- Estimate A such that the components of AM are statistically independent
 - $-\mathbf{A}$ is the *unmixing* matrix

Statistical Independence

- Emulating independence
 - Compute W (or A) and H such that H has statistical characteristics that are observed in statistically independent variables
- Enforcing independence
 - Compute W and H such that the components of M are independent

Emulating Independence

- The rows of H are uncorrelated
 - $E[\mathbf{h}_i \mathbf{h}_j] = E[\mathbf{h}_i] E[\mathbf{h}_j]$
 - \boldsymbol{h}_{i} and \boldsymbol{h}_{j} are the i^{th} and j^{th} components of any vector in \boldsymbol{H}
- The fourth order moments are independent
 - $E[\mathbf{h}_i \mathbf{h}_i \mathbf{h}_k \mathbf{h}_l] = E[\mathbf{h}_i] E[\mathbf{h}_i] E[\mathbf{h}_k] E[\mathbf{h}_l]$
 - $E[\mathbf{h}_i^2 \mathbf{h}_i \mathbf{h}_k] = E[\mathbf{h}_i^2] E[\mathbf{h}_i] E[\mathbf{h}_k]$
 - $E[\mathbf{h}_i^2 \mathbf{h}_i^2] = E[\mathbf{h}_i^2] E[\mathbf{h}_i^2]$
 - Etc.

Zero Mean

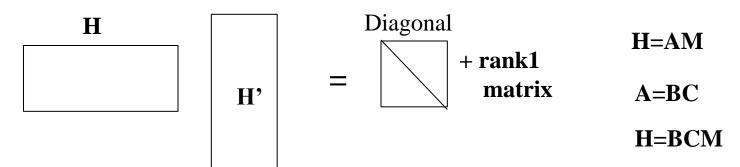
- Usual to assume zero mean processes
 - Otherwise, some of the math doesn't work well
- M = WH H = AM
- If $mean(\mathbf{M}) = 0 \Rightarrow mean(\mathbf{H}) = 0$
 - E[H] = A.E[M] = A0 = 0
 - First step of ICA: Set the mean of ${\bf M}$ to 0

$$\mu_{\mathbf{m}} = \frac{1}{cols(\mathbf{M})} \sum_{i} \mathbf{m}_{i}$$

$$\mathbf{m}_i = \mathbf{m}_i - \mu_{\mathbf{m}} \qquad \forall i$$

 $-\mathbf{m}_{i}$ are the columns of \mathbf{M}

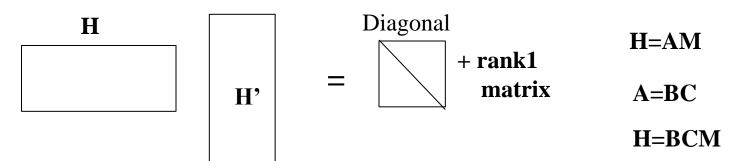
Emulating Independence..



- Independence

 Uncorrelatedness
- Estimate a C such that CM is uncorrelated
- X = CM
 - $-E[\mathbf{x}_i\mathbf{x}_j] = \delta_{ij}$ [since M is now "centered"]
 - $-XX^{T} = I$
 - In reality, we only want this to be a diagonal matrix, but we'll make it identity

Decorrelating

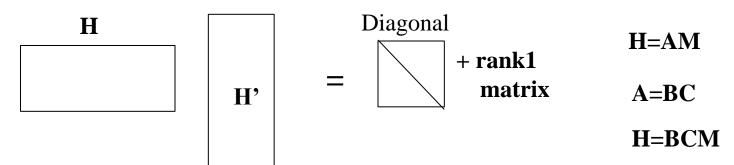


- X = CM
- $XX^T = I$
- Eigen decomposition $MM^T = ESE^T$
- Let $\mathbf{C} = \mathbf{S}^{-1/2}\mathbf{E}^{\mathrm{T}}$

$$-\mathbf{X} = \mathbf{S}^{-1/2}\mathbf{E}^{\mathrm{T}}\mathbf{M}$$

$$-\mathbf{X}\mathbf{X}^{\mathrm{T}} = \mathbf{C}\mathbf{M}\mathbf{M}^{\mathrm{T}}\mathbf{C}^{\mathrm{T}} = \mathbf{S}^{-1/2}\mathbf{E}^{\mathrm{T}}\mathbf{E}\mathbf{S}\mathbf{E}^{\mathrm{T}}\mathbf{E}\mathbf{S}^{-1/2} = \mathbf{I}$$

Decorrelating



- Eigen decomposition **MM**^T= **ESE**^T
- Let $\mathbf{C} = \mathbf{S}^{-1/2}\mathbf{E}^{\mathrm{T}}$
- X = CM
- $\mathbf{X}\mathbf{X}^{\mathrm{T}} = \mathbf{I}$
- X is called the **whitened** version of M
 - The process of decorrelating ${f M}$ is called whitening
 - C is the whitening matrix

Uncorrelated != Independent

 Whitening merely ensures that the resulting signals are uncorrelated, i.e.

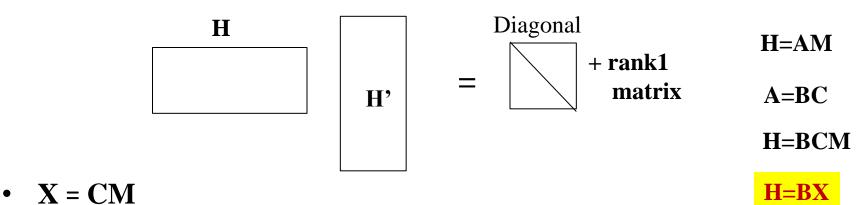
$$E[\mathbf{x}_i \mathbf{x}_j] = 0 \text{ if i } != j$$

 This does not ensure higher order moments are also decoupled, e.g. it does not ensure that

$$E[\mathbf{x}_i^2 \mathbf{x}_j^2] = E[\mathbf{x}_i^2] E[\mathbf{x}_j^2]$$

- This is one of the signatures of independent RVs
- Lets explicitly decouple the fourth order moments

Decorrelating



- Will multiplying \mathbf{X} by \mathbf{B} re-correlate the components?
- Not if \mathbf{B} is unitary

 $\mathbf{X}\mathbf{X}^{\mathrm{T}} = \mathbf{I}$

$$- BB^{T} = B^{T}B = I$$

- $\mathbf{H}\mathbf{H}^{\mathrm{T}} = \mathbf{B}\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{B}^{\mathrm{T}} = \mathbf{B}\mathbf{B}^{\mathrm{T}} = \mathbf{I}$
- So we want to find a unitary matrix
 - Since the rows of H are uncorrelated
 - Because they are independent

ICA: Freeing Fourth Moments

- We have $E[\mathbf{x}_i \ \mathbf{x}_j] = 0$ if i!= j
 - Already been decorrelated
- A=BC, H = BCM, X = CM, $\rightarrow H = BX$
- The fourth moments of \mathbf{H} have the form: $E[\mathbf{h}_i \ \mathbf{h}_i \ \mathbf{h}_k \ \mathbf{h}_l]$
- If the rows of \mathbf{H} were independent $E[\mathbf{h}_i \ \mathbf{h}_j \ \mathbf{h}_k \ \mathbf{h}_l] = E[\mathbf{h}_i] \ E[\mathbf{h}_j] \ E[\mathbf{h}_k] \ E[\mathbf{h}_l]$
- Solution: Compute ${\bf B}$ such that the fourth moments of ${\bf H}={\bf B}{\bf X}$ are decoupled
 - While ensuring that **B** is Unitary

ICA: Freeing Fourth Moments

- Create a matrix of fourth moment terms that would be diagonal were the rows of ${f H}$ independent and diagonalize it
- A good candidate
 - Good because it incorporates the energy in all rows of H

$$D = \begin{bmatrix} d_{11} & d_{12} & d_{13} & \dots \\ d_{21} & d_{22} & d_{23} & \dots \\ \dots & \dots & \dots \end{bmatrix}$$

Where

$$d_{ij} = E[\Sigma_k \mathbf{h}_k^2 \mathbf{h}_i \mathbf{h}_j]$$

i.e.

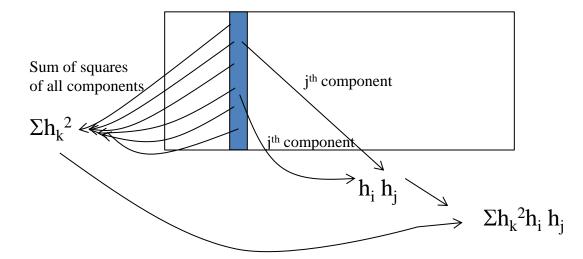
$$D = E[\mathbf{h}^{\mathrm{T}}\mathbf{h} \ \mathbf{h} \ \mathbf{h}^{\mathrm{T}}]$$

- h are the columns of H
- Assuming h is real, else replace transposition with Hermition

ICA: The D matrix

$$D = \begin{bmatrix} d_{11} & d_{12} & d_{13} & \dots \\ d_{21} & d_{22} & d_{23} & \dots \\ \dots & \dots & \dots \end{bmatrix} \qquad \begin{array}{l} d_{ij} = \mathbf{E}[\ \Sigma_{\mathbf{k}} \ \mathbf{h_{k}}^2 \ \mathbf{h_{i}} \ \mathbf{h_{j}}] = \frac{1}{cols(\mathbf{H})} \sum_{m} \sum_{k} h_{mk}^2 h_{mi} h_{mj} \end{array}$$

$$\mathbf{d_{ij}} = \mathbf{E}[\ \mathbf{\Sigma_k}\ \mathbf{h_k}^2\ \mathbf{h_i}\ \mathbf{h_j}] = \frac{1}{cols(\mathbf{H})} \sum_{m} \sum_{k} h_{mk}^2 h_{mi} h_{mj}$$



Average above term across all columns of H

ICA: The D matrix

$$D = \begin{bmatrix} d_{11} & d_{12} & d_{13} & \dots \\ d_{21} & d_{22} & d_{23} & \dots \\ \dots & \dots & \dots \end{bmatrix} \qquad \mathbf{d_{ij}} = \mathbf{E}[\boldsymbol{\Sigma_k h_k^2 h_i h_j}] = \frac{1}{cols(\mathbf{H})} \sum_{m} \sum_{k} h_{mk}^2 h_{mi} h_{mj}$$

$$\mathbf{d_{ij}} = \mathbf{E}[\Sigma_{k} \mathbf{h}_{k}^{2} \mathbf{h}_{i} \mathbf{h}_{j}] = \frac{1}{cols(\mathbf{H})} \sum_{m} \sum_{k} h_{mk}^{2} h_{mi} h_{mj}$$

- If the h_i terms were independent
 - For i!= j

$$E\left[\sum_{k}\mathbf{h}_{k}^{2}\mathbf{h}_{i}\mathbf{h}_{j}\right] = E\left[\mathbf{h}_{i}^{3}\right]E\left[\mathbf{h}_{j}\right] + E\left[\mathbf{h}_{j}^{3}\right]E\left[\mathbf{h}_{i}\right] + \sum_{k\neq i, k\neq j}E\left[\mathbf{h}_{k}^{2}\right]E\left[\mathbf{h}_{i}\right]E\left[\mathbf{h}_{j}\right]$$

- Centered: $E[\mathbf{h}_i] = 0$ \rightarrow $E[\Sigma_k \mathbf{h}_k^2 \mathbf{h}_i \mathbf{h}_i] = 0$ for i!=j
- Fori=i

$$E\left[\sum_{k}\mathbf{h}_{k}^{2}\mathbf{h}_{i}\mathbf{h}_{j}\right] = E\left[\mathbf{h}_{i}^{4}\right] + E\left[\mathbf{h}_{i}^{2}\right]\sum_{k\neq i}E\left[\mathbf{h}_{k}^{2}\right] \neq 0$$

- Thus, if the \mathbf{h}_{i} terms were independent, $d_{ij} = 0$ if i!= j
- i.e., if \mathbf{h}_i were independent, D would be a diagonal matrix
 - Let us diagonalize D

Diagonalizing D

- Compose a fourth order matrix from X
 - Recall: X = CM, H = BX = BCM
 - **B** is what we're trying to learn to make **H** independent
- Note: if H = BX, then each h = Bx
- The fourth moment matrix of H is
- $\mathbf{D} = \mathbf{E}[\mathbf{h}^{T} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h}^{T}] = \mathbf{E}[\mathbf{x}^{T} \mathbf{B} \mathbf{B}^{T} \mathbf{x} \mathbf{B}^{T} \mathbf{x} \mathbf{x}^{T} \mathbf{B}]$ $= \mathbf{E}[\mathbf{x}^{T} \mathbf{x} \mathbf{B}^{T} \mathbf{x} \mathbf{x}^{T} \mathbf{B}]$ $= \mathbf{B}^{T} \mathbf{E}[\mathbf{x}^{T} \mathbf{x} \mathbf{x} \mathbf{x}^{T}] \mathbf{B}$

Diagonalizing D

- Objective: Estimate ${\bf B}$ such that the fourth moment of ${\bf H}={\bf B}{\bf X}$ is diagonal
- Compose $\mathbf{D}_{\mathbf{x}} = \mathbf{E}[\mathbf{x}^{\mathrm{T}} \mathbf{x} \mathbf{x} \mathbf{x}^{\mathrm{T}}]$
- Diagonalize D_x via Eigen decomposition $D_x = U\Lambda U^T$
- $\mathbf{B} = \mathbf{U}^{\mathrm{T}}$
 - That's it!!!!

B frees the fourth moment

$$\mathbf{D_x} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\mathrm{T}}$$
; $\mathbf{B} = \mathbf{U}^{\mathrm{T}}$

- U is a unitary matrix, i.e. $U^TU = UU^T = I$ (identity)
- $\mathbf{H} = \mathbf{B}\mathbf{X} = \mathbf{U}^{\mathrm{T}}\mathbf{X}$
- $\mathbf{h} = \mathbf{U}^{\mathrm{T}}\mathbf{x}$
- The fourth moment matrix of H is

$$E[\mathbf{h}^{T} \mathbf{h} \mathbf{h} \mathbf{h}^{T}] = \mathbf{U}^{T} E[\mathbf{x}^{T} \mathbf{x} \mathbf{x} \mathbf{x}^{T}] \mathbf{U}$$

$$= \mathbf{U}^{T} \mathbf{D}_{\mathbf{x}} \mathbf{U}$$

$$= \mathbf{U}^{T} \mathbf{U} \Lambda \mathbf{U}^{T} \mathbf{U} = \Lambda$$

• The fourth moment matrix of $\mathbf{H} = \mathbf{U}^T \mathbf{X}$ is Diagonal!!

Overall Solution

- H = AM = BCM
 - C is the (transpose of the) matrix of Eigen vectors of $\mathbf{M}\mathbf{M}^{\mathrm{T}}$
- X = CM
- $A = BC = U^TC$
 - B is the (transpose of the) matrix of Eigenvectors of X.diag(X^TX).X^T

Independent Component Analysis

- Goal: to derive a matrix A such that the rows of AM are independent
- Procedure:
 - 1. "Center" M
 - 2. Compute the autocorrelation matrix R_{MM} of M
 - 3. Compute whitening matrix \mathbf{C} via Eigen decomposition $\mathbf{R}_{\mathbf{MM}} = \mathbf{E}\mathbf{S}\mathbf{E}^{\mathrm{T}}, \quad \mathbf{C} = \mathbf{S}^{-1/2}\mathbf{E}^{\mathrm{T}}$
 - 4. Compute X = CM
 - 5. Compute the fourth moment matrix $\mathbf{D}' = E[\mathbf{x}^T \mathbf{x} \mathbf{x} \mathbf{x}^T]$
 - 6. Diagonalize \mathbf{D}' via Eigen decomposition
 - 7. $\mathbf{D}' = \mathbf{U} \Lambda \mathbf{U}^{\mathrm{T}}$
 - 8. Compute $\mathbf{A} = \mathbf{U}^{\mathrm{T}} \mathbf{C}$
- The fourth moment matrix of H=AM is diagonal
 - Note that the autocorrelation matrix of H will also be diagonal

ICA by diagonalizing moment matrices

- The procedure just outlined, while fully functional, has shortcomings
 - Only a subset of fourth order moments are considered
 - There are many other ways of constructing fourth-order moment matrices that would ideally be diagonal
 - Diagonalizing the particular fourth-order moment matrix we have chosen is not guaranteed to diagonalize every other fourth-order moment matrix
- JADE: (Joint Approximate Diagonalization of Eigenmatrices),
 J.F. Cardoso
 - Jointly diagonalizes several fourth-order moment matrices
 - More effective than the procedure shown, but computationally more expensive

Enforcing Independence

• Specifically ensure that the components of ${f H}$ are independent

$$-H = AM$$

- Contrast function: A non-linear function that has a minimum value when the output components are independent
- Define and minimize a contrast function

» F(AM)

Contrast functions are often only approximations too..

A note on pre-whitening

- The mixed signal is usually "prewhitened"
 - Normalize variance along all directions
 - Eliminate second-order dependence
- Eigen decomposition $\mathbf{M}\mathbf{M}^{\mathrm{T}} = \mathbf{E}\mathbf{S}\mathbf{E}^{\mathrm{T}}$
- $C = S^{-1/2}E^{T}$
- Can use first K columns of $\mathbf E$ only if only K independent sources are expected
 - In microphone array setup only K < M sources
- X = CM
 - $E[\mathbf{x}_i \mathbf{x}_i] = \delta_{ij}$ for centered signal

The contrast function

 Contrast function: A non-linear function that has a minimum value when the output components are independent

An explicit contrast function

$$I(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - H(\overline{\mathbf{h}})$$

- With constraint : H = BX
 - -X is "whitened" M

Linear Functions

- $\mathbf{h} = \mathbf{B}\mathbf{x}$, $\mathbf{x} = \mathbf{B}^{-1}\mathbf{h}$
 - Individual columns of the H and X matrices
 - $-\mathbf{x}$ is mixed signal, \mathbf{B} is the *unmixing* matrix

$$P_{\mathbf{h}}(\mathbf{h}) = P_{\mathbf{x}}(\mathbf{B}^{-1}\mathbf{h}) |\mathbf{B}|^{-1}$$

$$H(\mathbf{x}) = -\int P(\mathbf{x}) \log P(\mathbf{x}) d\mathbf{x}$$

$$\log P(\mathbf{x}) = \log P_{\mathbf{x}}(\mathbf{B}^{-1}\mathbf{h}) - \log(|\mathbf{B}|)$$

$$H(\mathbf{h}) = H(\mathbf{x}) + \log |\mathbf{B}|$$

The contrast function

$$I(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - H(\overline{\mathbf{H}})$$

$$I(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - H(\mathbf{x}) - \log |\mathbf{B}|$$

• Ignoring $H(\mathbf{x})$ (Const)

$$J(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - \log |\mathbf{B}|$$

Minimize the above to obtain B

- Definition of Independence if x and y are independent:
 - $-\operatorname{E}[f(x)g(y)] = \operatorname{E}[f(x)]\operatorname{E}[g(y)]$
 - Must hold for every f() and g()!!

• Define g(H) = g(BX) (component-wise function)

```
g(h_{11}) g(h_{21}) ... g(h_{12}) g(h_{22}) ... ...
```

• Define f(H) = f(BX)

• $P = g(H) f(H)^T = g(BX) f(BX)^T$

$$\mathbf{P} = \begin{bmatrix} P_{11} & P_{21} & \dots \\ P_{12} & P_{22} \\ \vdots & \vdots \\ \vdots & \ddots & \vdots \end{bmatrix}$$

$$\mathbf{P}_{ij} = \mathbf{E}[g(h_i)f(h_j)]$$

This is a square matrix

Must ideally be

$$\mathbf{Q} = \begin{bmatrix} Q_{11} & Q_{21} & \cdots \\ Q_{12} & Q_{22} \\ \vdots & \vdots \\ \vdots & \ddots & \vdots \end{bmatrix}$$

$$Q_{ij} = E[g(h_i)]E[f(h_j)] \quad i \neq j$$

$$Q_{ii} = E[g(h_i)f(h_i)]$$

• Error = $\|\mathbf{P} - \mathbf{Q}\|_{F}^{2}$

Ideal value for Q

$$\mathbf{Q} = egin{bmatrix} Q_{11} & Q_{21} & \cdots \ Q_{12} & Q_{22} \ \vdots & \vdots & \vdots \ \vdots & \ddots & \vdots \ \end{bmatrix}$$

$$Q_{ij} = E[g(h_i)]E[f(h_j)] \quad i \neq j$$

$$Q_{ii} = E[g(h_i)f(h_i)]$$

- If g() and h() are odd symmetric functions $E[g(h_i)] = 0$ for all i
 - Since = $E[h_i] = 0$ (**H** is centered)
 - Q is a Diagonal Matrix!!!

An alternate approach

Minimize Error

$$\mathbf{P} = \mathbf{g}(\mathbf{B}\mathbf{X})\mathbf{f}(\mathbf{B}\mathbf{X})^{\mathrm{T}}$$
$$\mathbf{Q} = Diagonal$$

$$error = \parallel \mathbf{P} - \mathbf{Q} \parallel_F^2$$

 Leads to trivial Widrow Hopf type iterative rule:

$$\mathbf{E} = Diag - \mathbf{g}(\mathbf{B}\mathbf{X})\mathbf{f}(\mathbf{B}\mathbf{X})^{\mathrm{T}}$$

$$\mathbf{B} = \mathbf{B} + \eta \mathbf{E} \mathbf{B}^{\mathrm{T}}$$

Update Rules

- Multiple solutions under different assumptions for g() and f()
- H = BX
- $\mathbf{B} = \mathbf{B} + \eta \Delta \mathbf{B}$
- Jutten Herraut : Online update
 - $-\Delta B_{ij} = f(\mathbf{h}_i)g(\mathbf{h}_j);$ -- actually assumed a recursive neural network
- Bell Sejnowski

$$-\Delta \mathbf{B} = ([\mathbf{B}^{\mathrm{T}}]^{-1} - \mathbf{g}(\mathbf{H})\mathbf{X}^{\mathrm{T}})$$

Update Rules

- Multiple solutions under different assumptions for g() and f()
- H = BX
- $\mathbf{B} = \mathbf{B} + \eta \Delta \mathbf{B}$
- Natural gradient -- f() = identity function

$$-\Delta \mathbf{B} = (\mathbf{I} - \mathbf{g}(\mathbf{H})\mathbf{H}^{\mathrm{T}})\mathbf{W}$$

Cichoki-Unbehaeven

$$-\Delta \mathbf{B} = (\mathbf{I} - \mathbf{g}(\mathbf{H})\mathbf{f}(\mathbf{H})^{\mathrm{T}})\mathbf{W}$$

What are G() and H()

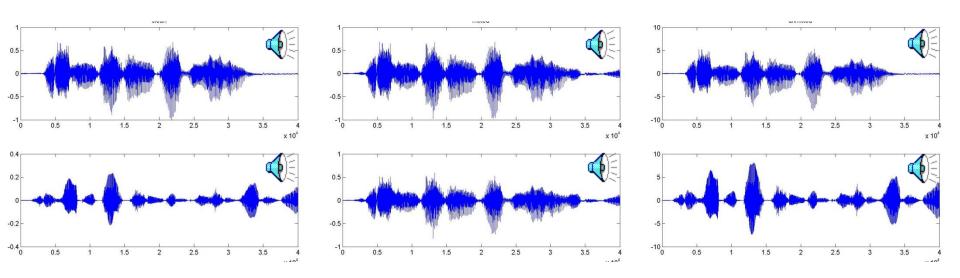
- Must be odd symmetric functions
- Multiple functions proposed

$$g(x) = \begin{cases} x + \tanh(x) & \text{x is super Gaussian} \\ x - \tanh(x) & \text{x is sub Gaussian} \end{cases}$$

78

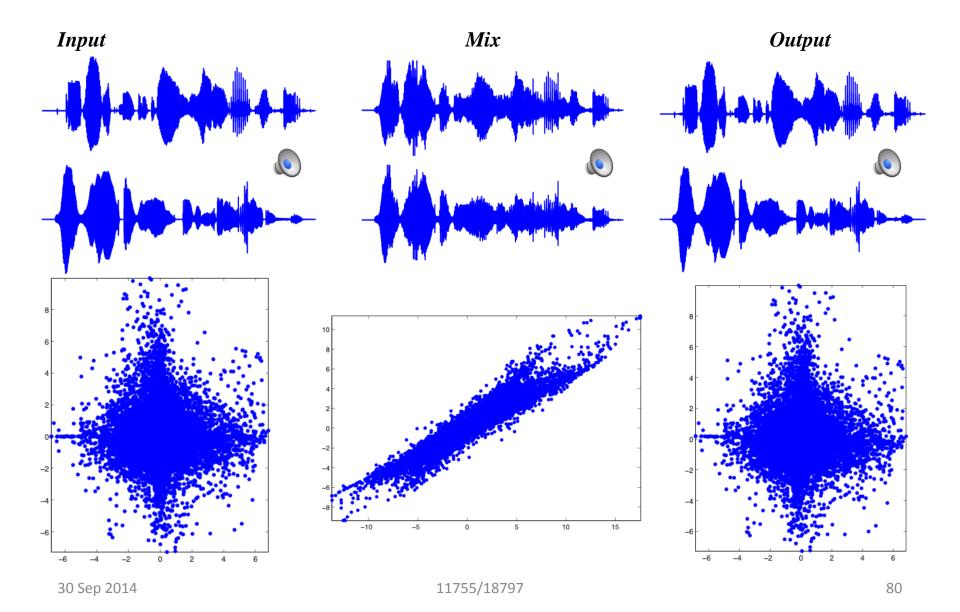
- Audio signals in general
 - $-\Delta \mathbf{B} = (\mathbf{I} \mathbf{H}\mathbf{H}^{\mathrm{T}} \mathbf{K} \mathbf{t} \mathbf{a} \mathbf{n} \mathbf{h} (\mathbf{H}) \mathbf{H}^{\mathrm{T}}) \mathbf{W}$
- Or simply
 - $-\Delta \mathbf{B} = (\mathbf{I} \mathbf{K} \mathbf{tanh}(\mathbf{H}) \mathbf{H}^{\mathrm{T}}) \mathbf{W}$

So how does it work?

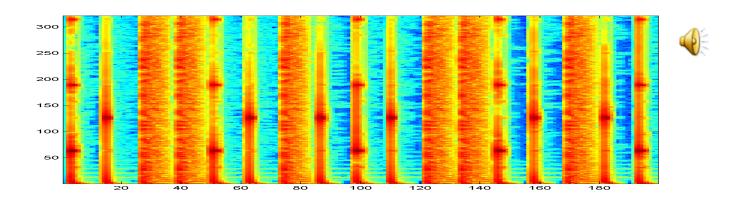


- Example with instantaneous mixture of two speakers
- Natural gradient update
- Works very well!

Another example!

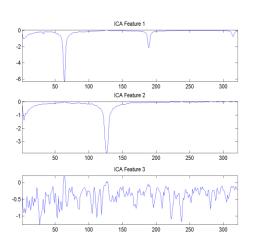


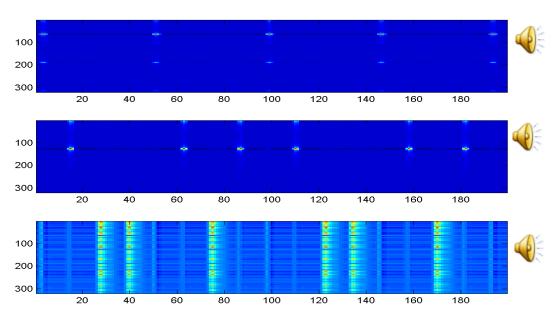
Another Example



• Three instruments...

The Notes

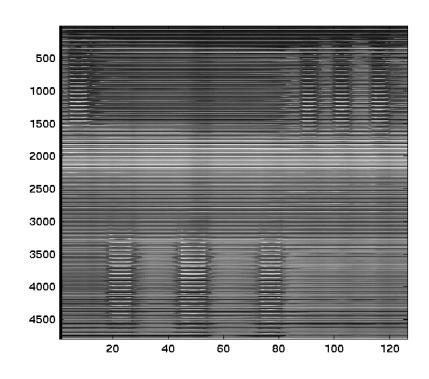




• Three instruments...

ICA for data exploration

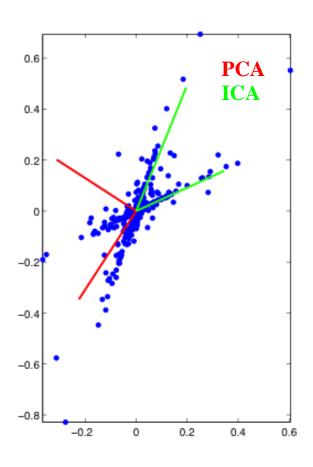
- The "bases" in PCA represent the "building blocks"
 - Ideally notes
- Very successfully used
- So can ICA be used to do the same?



ICA vs PCA bases

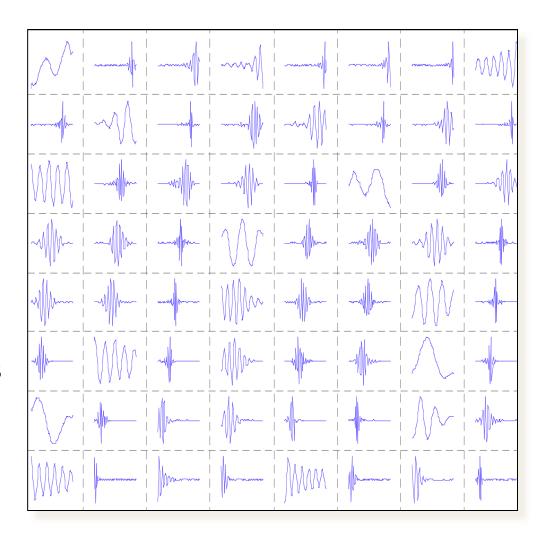
- Motivation for using ICA vs PCA
- PCA will indicate orthogonal directions of maximal variance
 - May not align with the data!
- ICA finds directions that are independent
 - More likely to "align" with the data

Non-Gaussian data



Finding useful transforms with ICA

- Audio preprocessing example
- Take a lot of audio snippets and concatenate them in a big matrix, do component analysis
- PCA results in the DCT bases
- ICA returns time/freq localized sinusoids which is a better way to analyze sounds
- Ditto for images
 - ICA returns localizes edge filters

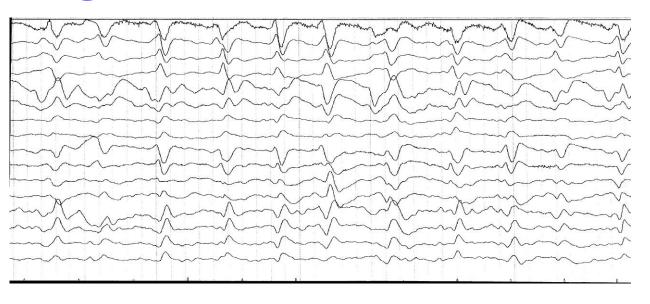


Example case: ICA-faces vs. Eigenfaces

ICA-faces

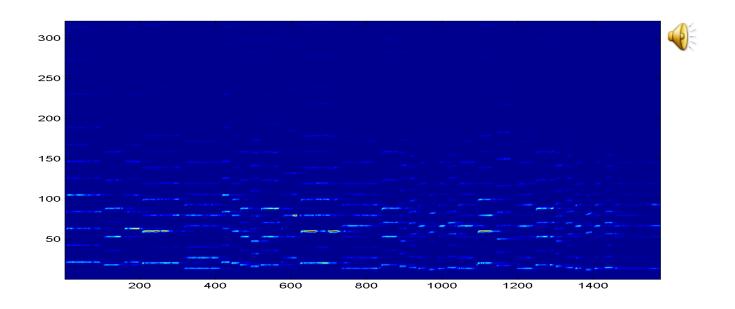
Eigenfaces

ICA for Signal Enhncement



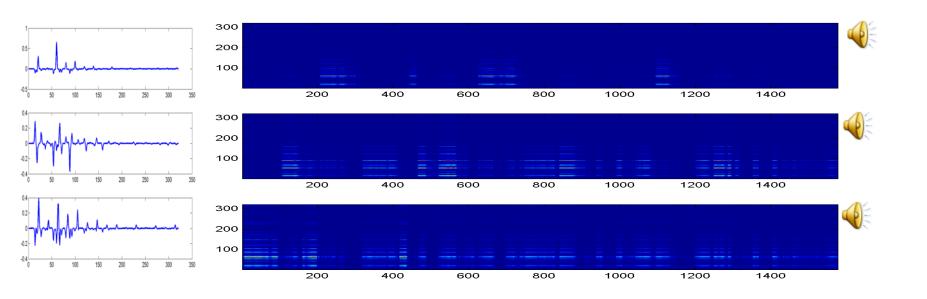
- Very commonly used to enhance EEG signals
- EEG signals are frequently corrupted by heartbeats and biorhythm signals
- ICA can be used to separate them out

So how does that work?



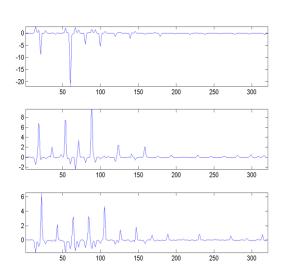
• There are 12 notes in the segment, hence we try to estimate 12 notes..

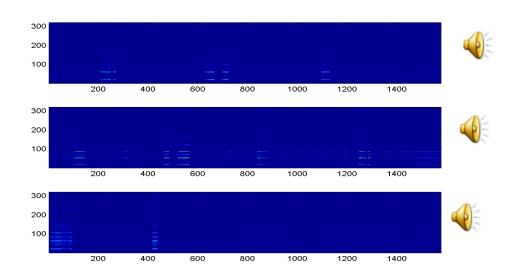
PCA solution



 There are 12 notes in the segment, hence we try to estimate 12 notes..

So how does this work: ICA solution





- Better...
 - But not much
- But the issues here?

ICA Issues

- No sense of order
 - Unlike PCA
- Get K independent directions, but does not have a notion of the "best" direction
 - So the sources can come in any order
 - Permutation invariance
- Does not have sense of scaling
 - Scaling the signal does not affect independence
- Outputs are scaled versions of desired signals in permuted order
 - In the best case
 - In worse case, output are not desired signals at all..

What else went wrong?

- Notes are not independent
 - Only one note plays at a time
 - If one note plays, other notes are not playing

Will deal with these later in the course..