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Correlation vs. Causation 

• The consumption of burgers has gone up 

steadily in the past decade 

 

 

• In the same period, the penguin population of 

Antarctica has gone down 
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Correlation, not Causation 
(unless McDonalds has a 
 top-secret Antarctica division) 



The concept of correlation 

• Two variables are correlated if knowing the 
value of one gives you information about the 
expected value of the other 
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The statistical concept of 
correlatedness 

• Two variables X and Y are correlated if If 
knowing X gives you an expected value of Y 

 

• X and Y are uncorrelated if knowing X tells you 
nothing about the expected value of Y 

– Although it could give you other information 

– How?  
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A brief review of basic probability 

• Uncorrelated:  Two random variables X and Y are 
uncorrelated iff: 

– The average value of the product of the variables equals the 
product of their individual averages 

 

• Setup:  Each draw produces one instance of X and one 
instance of Y  

– I.e one instance of (X,Y) 

• E[XY] =  E[X]E[Y] 
 

• The average value of Y is the same regardless of the value 
of X 
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Correlated Variables 

• Expected value of  Y given X: 

– Find average of Y values of all samples at (or close) 
to the given X 

– If this is a function of X, X and Y are correlated 

30 Sep 2014 11755/18797 6 

Burger consumption 

P
e
n

g
u

in
 p

o
p

u
la

ti
o
n

 

b1 b2 

P1 

P2 



Uncorrelatedness 

• Knowing X does not tell you what the average 
value of Y is 

– And vice versa 
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Uncorrelated Variables 

• The average value of Y is the same regardless 

of the value of X and vice versa 
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Uncorrelatedness 

• Which of the above represent uncorrelated RVs? 
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The notion of decorrelation 

• So how does one transform the correlated 
variables (X,Y) to the uncorrelated (X’, Y’) 
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What does “decorrelated” mean 

 

 

• If Y is a matrix of vectors, YYT = diagonal 
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Decorrelation 

• Let X be the matrix of correlated data vectors 

– Each component of X informs us of the mean trend of 
other components 

 

• Need a transform M such that if Y = MX 

• The covariance of Y is diagonal 

– YYT is the covariance if Y is zero mean  

– YYT = diagonal 

MXXTMT = D  

M.Cov(X).MT = D 
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Decorrelation 

• Easy solution: 

– Eigen decomposition of Cov(X):  Cov(X) = ELET 

– EET = I 

• Let M = ET 

 

• MCov(X)MT = ETELETE = L = diagonal 
 

• PCA: Y = MX 

• Diagonalizes the covariance matrix 

– “Decorrelates” the data 
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PCA 

• PCA: Y = MX 

• Diagonalizes the covariance matrix 

– “Decorrelates” the data 
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The statistical concept of 
Independence 

• Two variables X and Y are dependent if If 
knowing X gives you any information about Y 

 

• X and Y are independent if knowing X tells you 
nothing at all of Y 
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A brief review of basic probability 

• Independence:  Two random variables X and Y are 

independent iff: 

– Their joint probability equals the product of their 

individual probabilities 

• P(X,Y) =  P(X)P(Y) 

• Independence implies uncorrelatedness 

– The average value of X is the same regardless of the 

value of Y 

• E[X|Y] = E[X] 

– But not the other way 
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A brief review of basic probability 

• Independence:  Two random variables X and Y 

are independent iff: 

• The average value of any function of X is the 

same regardless of the value of Y 

– Or any function of Y 

• E[f(X)g(Y)]  =  E[f(X)] E[g(Y)]   for all f(), g() 
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Independence 

• Which of the above represent independent RVs? 

• Which represent uncorrelated RVs? 
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A brief review of basic probability 

• The expected value of an odd function of an 

RV is 0 if 

– The RV is 0 mean 

– The PDF is of the RV is symmetric around 0 

• E[f(X)]  =  0 if f(X) is odd symmetric 
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A brief review of basic info. theory 

• Entropy:  The minimum average number of bits 
to transmit to convey a symbol 

 

 

 

• Joint entropy:  The minimum average number of 
bits to convey sets (pairs here) of symbols 
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A brief review of basic info. theory 

• Conditional Entropy:  The minimum average 

number of bits to transmit to convey a symbol 

X, after symbol Y has already been conveyed 

– Averaged over all values of X and Y 
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A brief review of basic info. theory 

• Conditional entropy of X = H(X) if X is 

independent of Y 

 

 

• Joint entropy of X and Y is the sum of the 

entropies of X and Y if they are independent 
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Onward.. 
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Projection: multiple notes 
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 P = W (WTW)-1 WT 

 Projected Spectrogram = PM 

M =  

W =  



We’re actually computing a score 
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 M ~  WH 

 H = pinv(W)M 

M =  

W =  

H = ?  



So what are we doing here? 

• M ~ WH is an approximation 

• Given W, estimate H to minimize error 

 

 

• Must ideally find transcription of given notes 
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How about the other way? 
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Going the other way.. 

• M ~ WH is an approximation 

• Given H, estimate W to minimize error 
 

 

• Must ideally find the notes corresponding to the 
transcription 
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H 
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When both parameters are unknown 

• Must estimate both H and W to best 
approximate M 

• Ideally, must learn both the notes and their 
transcription! 

W =?  

H = ?  

approx(M) = ?  
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A least squares solution 

• Unconstrained 

– For any W, H that minimizes the error,  W’=WA,  

H’=A-1H also minimizes the error for any 
invertible A 

– Too many solutions 

• Constraint: W is orthogonal 

– WTW = I 

– PCA!! 

2

,
||||minarg, FHWMHW

HW
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PCA: Constrained solution 

• Constraint: W is orthogonal 

– WTW = I 

• This results in PCA!! 

– W are the Eigenvectors of MMT 
 

2
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So how does that work? 

• There are 12 notes in the segment, hence we 
try to estimate 12 notes.. 
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So how does that work? 

• There are 12 notes in the segment, hence we 
try to estimate 12 notes.. 

• Results are not good 
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A constrained least squares solution 

 

 

 

• For our problem, lets consider the “truth”.. 

• When one note occurs, the other does not 

– hi
Thj = 0  for all i != j 

• The rows of H are uncorrelated 

2
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PCA: The Other Way? 

• Constraint: H is orthogonal 

– HHT = I 

• This results in PCA or the row vectors of M!! 

– H are the Eigenvectors of MTM 
 

2
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So how does that work? 

• The scores of the first three “notes” and their contributions 
• Not that great again 
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PCA 

• If the notes matrix W is made orthogonal, the rows of H end up being 
orthogonal to one another 

– H is the orthogonalized version of M 
 

• If the scores matrix H is made orthogonal instead, the rows of W end up 
being orthogonal 

 

• The two decompositions are identical to within a scaling of the vectors  
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Eigendecomposition and SVD 

• Matrix M can be decomposed as M = USVT 

• When we assume the scores are orthogonal, we get  

            H = VT,  W = US 

• When we assume the notes are orthogonal, we get  

              W = U,  H = SVT 

• In either case the results are the same 

– The notes are orthogonal and so are the scores 

– Not good in our problem 
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Orthogonality 

• In any least-squared error decomposition 
M=WH,  if the columns of W are orthogonal, 
the rows of H will also be orthogonal 

 

• Sometimes mere orthogonality is not enough 
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What else can we look for? 

• Assume: The “transcription” of one note does 
not depend on what else is playing 

– Or, in a multi-instrument piece, instruments are 
playing independently of one another 

• Not strictly true, but still.. 

30 Sep 2014 11755/18797 41 



Formulating it with Independence 

• Impose statistical independence constraints 
on decomposition 
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Changing problems for a bit 

• Two people speak simultaneously 
• Recorded by two microphones 
• Each recorded signal is a mixture of both signals 
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A Separation Problem 

• M = WH 

– M = “mixed” signal 

– W = “notes” 

– H = “transcription” 
 

• Separation challenge: Given only M estimate H 

• Identical to the problem of “finding notes” 
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A Separation Problem 

 

• Separation challenge: Given only M estimate H 

• Identical to the problem of “finding notes” 
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Imposing Statistical Constraints 

• M = WH 

• Given only M estimate H 

• H = W-1M  =   AM 

• Only known constraint:  The rows of H are 
independent 

• Estimate A such that the components of AM are 
statistically independent 

– A is the unmixing matrix 
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Statistical Independence 

• M = WH      H = AM 
 

• Emulating independence 

– Compute W (or A) and H such that H has 
statistical characteristics that are observed in 
statistically independent variables 

 

• Enforcing independence 

– Compute W and H such that the components of 
M are independent 
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Emulating Independence 

• The rows of H are uncorrelated 
– E[hihj] = E[hi]E[hj] 

– hi and hj are the ith and jth components of any vector in H 
 

• The fourth order moments are independent 
– E[hihjhkhl] = E[hi]E[hj]E[hk]E[hl] 

– E[hi
2hjhk] = E[hi

2]E[hj]E[hk] 

– E[hi
2hj

2] = E[hi
2]E[hj

2] 

– Etc. 
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Zero Mean 
• Usual to assume zero mean processes 

– Otherwise, some of the math doesn’t work well 
 

• M = WH      H = AM 
 

• If mean(M) = 0  =>  mean(H) = 0 
– E[H] = A.E[M] = A0 = 0 

– First step of ICA:  Set  the mean of M to 0 
 

 

 

 

 

 

– mi are the columns of M 
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Emulating Independence.. 

• Independence   Uncorrelatedness 

• Estimate a C such that CM is uncorrelated 

• X = CM 
– E[xixj] = dij  [since M is now “centered”] 

– XXT = I 

• In reality, we only want this to be a diagonal matrix, but 
we’ll make it identity 
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Decorrelating 

• X = CM 

• XXT = I 
 

• Eigen decomposition MMT= ESET 

• Let C = S-1/2ET 

– X = S-1/2ETM 

– XXT = CMMTCT = S-1/2ET ESETES-1/2 = I 
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Decorrelating 

• Eigen decomposition MMT= ESET 

• Let C = S-1/2ET 

• X = CM 

 

• XXT = I 
 

• X is called the whitened version of M 

– The process of decorrelating M is called whitening 

– C is the whitening matrix 
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Uncorrelated != Independent 

• Whitening merely ensures that the resulting signals are 
uncorrelated, i.e. 

 

                 E[xixj] = 0 if i != j             
 

• This does not ensure higher order moments are also 
decoupled, e.g. it does not ensure that 

 

                   E[xi
2xj

2] = E[xi
2]E [xj

2] 
 

• This is one of the signatures of independent RVs 

• Lets explicitly decouple the fourth order moments 
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Decorrelating 

• X = CM 

• XXT = I 
 

• Will multiplying X by B re-correlate the components? 

• Not if B is unitary 

– BBT = BTB = I 

• HHT = BXXTBT = BBT = I 

• So we want to find a unitary matrix 

– Since the rows of H are uncorrelated 

• Because they are independent 
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ICA: Freeing Fourth Moments 
• We have E[xi xj] = 0 if i != j 

– Already been decorrelated 
 

• A=BC,     H = BCM,    X = CM,      H = BX 
 

• The fourth moments of H have the form: 
 E[hi hj hk hl]  

 

• If the  rows of H were independent 
 E[hi hj hk hl]  = E[hi] E[hj] E[hk] E[hl] 

 

• Solution:  Compute B such that the fourth moments of H = BX 
are decoupled 
– While ensuring that B is Unitary 
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ICA: Freeing Fourth Moments 
• Create a matrix of fourth moment terms that would be 

diagonal were the rows of H independent and diagonalize it 

• A good candidate 

– Good because it incorporates the energy in all rows of H  
 
 

 

 

 

– Where 
dij = E[ Sk hk

2 hi hj] 

– i.e. 
D = E[hTh h hT] 

• h are the columns of H 

• Assuming h is real,  else replace transposition with Hermition 
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ICA: The D matrix 

• Average above term across all columns of H 
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ICA: The D matrix 

• If the hi terms were independent 
– For i != j 

 

 

 

– Centered:  E[hj] = 0    E[ Sk hk
2 hi hj]=0 for i != j 

– For i = j 

 

 

 

• Thus, if the hi terms were independent, dij = 0  if i != j 

• i.e., if hi  were independent, D would be a diagonal matrix 
– Let us diagonalize D 
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Diagonalizing D 

• Compose a fourth order matrix from X   

– Recall:  X = CM,   H = BX = BCM  

• B is what we’re trying to learn to make H independent 

 

• Note:    if H = BX ,  then each h = Bx  

• The fourth moment matrix of H is 

• D =  E[hT h h hT] =  E[xTBBTx BT x xTB] 

                             =  E[xTx BT x xTB] 

                             =  BT E[xTx xxT]B 
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Diagonalizing D 

• Objective: Estimate B such that the fourth 
moment of H = BX is diagonal 

 

• Compose  Dx = E[xT x x xT]  
 

• Diagonalize Dx  via Eigen decomposition 
 Dx  = ULUT  

 

• B = UT 

– That’s it!!!! 
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B frees the fourth moment 

Dx  = ULUT  ;   B = UT 

• U is a unitary matrix, i.e. UTU = UUT = I (identity) 

• H = BX = UTX 
 

• h = UTx 

 

• The fourth moment matrix of H is 
E[hT h h hT]  =  UT E[xTx xxT]U 

                      = UT Dx U
  

                      = UT U L U T U = L 

• The fourth moment matrix of H = UTX is Diagonal!! 
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Overall Solution 

• H = AM = BCM 
– C is the (transpose of the) matrix of Eigen vectors of MMT 

• X = CM 

• A =  BC = UTC 

– B is the (transpose of the) matrix of Eigenvectors of  
X.diag(XTX).XT 
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Independent Component Analysis 
• Goal: to derive a matrix A such that the rows of AM are 

independent 

• Procedure: 

1. “Center” M 

2. Compute the autocorrelation matrix RMM of M 

3. Compute whitening matrix C  via Eigen decomposition 
    RMM = ESET,    C = S-1/2ET 

4. Compute X = CM 

5. Compute the fourth moment matrix D’ = E[xTxxxT]  

6. Diagonalize D’ via Eigen decomposition 

7. D’ = ULUT 

8. Compute A = UTC 

• The fourth moment matrix of H=AM is diagonal 
– Note that the autocorrelation matrix of H will also be diagonal 
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ICA by diagonalizing moment 
matrices 

• The procedure just outlined, while fully functional, has 

shortcomings 

– Only a subset of fourth order moments are considered 

– There are many other ways of constructing fourth-order moment 

matrices that would ideally be diagonal 

• Diagonalizing the particular fourth-order moment matrix we have chosen 

is not guaranteed to diagonalize every other fourth-order moment matrix 
 

• JADE: (Joint Approximate Diagonalization of Eigenmatrices), 

J.F. Cardoso 

– Jointly diagonalizes several fourth-order moment matrices 

– More effective than the procedure shown, but computationally  more 

expensive 
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Enforcing Independence 

• Specifically ensure that the components of H are 
independent 

– H = AM 
 

• Contrast function: A non-linear function that has a 
minimum value when the output components are 
independent 

 

• Define and minimize a contrast function 
» F(AM) 

• Contrast functions are often only approximations too.. 
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A note on pre-whitening 
• The mixed signal is usually “prewhitened” 

– Normalize variance along all directions 

– Eliminate second-order dependence 
 

• Eigen decomposition MMT = ESET 

• C = S-1/2ET 

 

• Can use first K columns of E only if only K independent 
sources are expected 

– In microphone array setup – only K < M sources 
 

• X =  CM 

– E[xixj] = dij for centered signal 
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The contrast function 

• Contrast function: A non-linear function that 
has a minimum value when the output 
components are independent 

 

• An explicit contrast function 

 

 

• With constraint :  H = BX 

– X is “whitened” M 
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Linear Functions 

• h = Bx,    x = B-1h  

– Individual columns of the H and X matrices 

– x is mixed signal, B is the unmixing matrix 
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The contrast function 

 

 

 

 

• Ignoring H(x) (Const) 

 

 

• Minimize  the above to obtain B 
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An alternate approach 

• Definition of Independence – if x and y are 
independent:    

– E[f(x)g(y)] = E[f(x)]E[g(y)]  

– Must hold for every f() and g()!! 
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An alternate approach 

• Define g(H) = g(BX)  (component-wise 
function) 

 

 

 

• Define f(H) = f(BX) 
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An alternate approach 

• P = g(H) f(H)T = g(BX) f(BX)T 
 
 

     
                                    This is a square matrix 
• Must ideally be 

 
 
 
 

• Error = ||P-Q||F
2 
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An alternate approach 

• Ideal value for Q 

 

 

 

 

• If g() and h() are odd symmetric functions  
E[g(hi)] = 0 for all i 

– Since = Ehi] = 0   (H is centered) 

– Q is a Diagonal Matrix!!! 
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An alternate approach 

• Minimize Error 

 

 

 

 

• Leads to trivial Widrow Hopf type iterative 
rule: 
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Update Rules 

• Multiple solutions under different 
assumptions for g() and f() 

• H = BX 

• B = B +  DB 

• Jutten Herraut : Online update 

– DBij  = f(hi)g(hj);  -- actually assumed a recursive 
neural network 

• Bell Sejnowski 

– DB = ([BT]-1 – g(H)XT) 

30 Sep 2014 11755/18797 76 



Update Rules 

• Multiple solutions under different 
assumptions for g() and f() 

• H = BX 

• B = B +  DB 
 

• Natural gradient  -- f() = identity function 

– DB = (I – g(H)HT)W 

• Cichoki-Unbehaeven 

– DB = (I – g(H)f(H)T)W 
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What are G() and H() 

• Must be odd symmetric functions 

• Multiple functions proposed 

 

 

 

• Audio signals in general 
– DB = (I – HHT-Ktanh(H)HT)W 

• Or simply 
– DB = (I –Ktanh(H)HT)W 
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So how does it work? 

• Example with instantaneous mixture of two 
speakers 

• Natural gradient update 

• Works very well! 
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Another example! 
Input Mix Output 
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Another Example 

• Three instruments.. 
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The Notes 

• Three instruments.. 
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ICA for data exploration 

• The “bases” in PCA 
represent the “building 
blocks” 

– Ideally notes 

• Very successfully used 

• So can ICA be used to 
do the same? 
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ICA vs PCA bases 
Non-Gaussian data 

ICA 

PCA 

 Motivation for using ICA vs PCA 

 PCA will indicate orthogonal directions 

of maximal variance 

 May not align with the data! 

 ICA finds directions that are 

independent 

 More likely to “align” with the data  
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Finding useful transforms with ICA 
• Audio preprocessing 

example 

• Take a lot of audio snippets 
and concatenate them in a 
big matrix, do component 
analysis 

• PCA results in the DCT bases 

• ICA returns time/freq 
localized sinusoids which is a 
better way to analyze sounds 

• Ditto for images 

– ICA returns localizes edge 
filters 
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Example case: ICA-faces vs. Eigenfaces 

ICA-faces Eigenfaces 
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ICA for Signal Enhncement 

• Very commonly used to enhance EEG signals 

• EEG signals are frequently corrupted by 
heartbeats and biorhythm signals 

• ICA can be used to separate them out 
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So how does that work? 

• There are 12 notes in the segment, hence we 
try to estimate 12 notes.. 
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PCA solution 

• There are 12 notes in the segment, hence we 
try to estimate 12 notes.. 
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So how does this work: ICA solution 

• Better.. 

– But not much 

• But the issues here? 

30 Sep 2014 11755/18797 90 



ICA Issues 

• No sense of order 

– Unlike PCA 

• Get K independent directions, but does not have a notion 
of the “best” direction 

– So the sources can come in any order 

– Permutation invariance 

• Does not have sense of scaling 

– Scaling the signal does not affect independence 

• Outputs are scaled versions of desired signals in permuted 
order 

– In the best case 

– In worse case, output are not desired signals at all.. 
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What else went wrong? 

• Notes are not independent 

– Only one note plays at a time 

– If one note plays, other notes are not playing 

 

• Will deal with these later in the course.. 
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