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Statistical Modelling and Latent
Structure

Much of statistical modelling attempts to identify /atent structure in
the data

— Structure that is not immediately apparent from the observed data

— But which, if known, helps us explain it better, and make predictions
from or about it

Clustering methods attempt to extract such structure from
proximity
— First-level structure (as opposed to deep structure)

We will see other forms of latent structure discovery later in the
course
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 What is clustering

— Clustering is the determination of
naturally occurring grouping of
data/instances (with low within-
group variability and high between-
group variability)
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— Clustering is the determination of
naturally occurring grouping of
data/instances (with low within-
group variability and high between-
group variability)

e Howis it done

— Find groupings of data such that the
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Clustering

 What is clustering

— Clustering is the determination of
naturally occurring grouping of
data/instances (with low within-
group variability and high between-
group variability)

* How is it done
— Find groupings of data such that the
groups optimize a “within-group-
variability” objective function of
some kind

— The objective function used affects
the nature of the discovered clusters

* E.g. Euclidean distance vs.
» Distance from center

MLSP

Vichielzaming for SaraProcessing Gt




MLSP

Why Clustering

e Automatic grouping into “Classes”
— Different clusters may show different behavior

* Quantization

— All data within a cluster are represented by a
single point

* Preprocessing step for other algorithms
— Indexing, categorization, etc.
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Finding natural structure in data
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* Find natural groupings in data for further analysis
 Discover latent structure in data
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Some Applications of Clustering

mage segmentation
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Representation: Quantization

TRAINING QUANTIZATION

Quantize every vector to one of K (vector) values

What are the optimal K vectors? How do we find them? How do
we perform the quantization?

LBG algorithm 13
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Representation: BOW

PSY - GANGNAM STYLE (ZHtAELY). .

 How to retrieve all music videos by this guy?

e Build a classifier
— But how do you represent the video?
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Representation: BOW

PSY - GANGNAM STYLE (Z'AELR)... [‘

o e _ Representation: Each number is the
Training: Each point is a video frame #frames assigned to the codeword

* Bag of words representations of
video/audio/data
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Obtaining “Meaningful” Clusters

* Two key aspects:

— 1. The feature representation used to characterize
your data

— 2. The “clustering criteria” employed
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Clustering Criterion

* The “Clustering criterion” actually has two
aspects

* Cluster compactness criterion

— Measure that shows how “good” clusters are
* The objective function

* Distance of a point from a cluster
— To determine the cluster a data vector belongs to
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“Compactness” criteria for clustering
* Distance based measures
— Total distance between each ]
element in the cluster and . .
every other element in the .

cluster
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“Compactness” criteria for clustering
 Distance based measures
— Total distance between each
element in the cluster and %
every other element in the

cluster
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“Compactness” criteria for clustering

e Distance based measures

— Total distance between each
element in the cluster and
every other element in the
cluster

— Distance between the two
farthest points in the cluster
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“Compactness” criteria for clustering

Distance based measures

— Total distance between each
element in the cluster and
every other element in the
cluster

— Distance between the two
farthest points in the cluster

— Total distance of every
element in the cluster from the
centroid of the cluster
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“Compactness” criteria for clustering

Distance based measures

— Total distance between each
element in the cluster and
every other element in the
cluster

— Distance between the two
farthest points in the cluster

— Total distance of every
element in the cluster from the
centroid of the cluster
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“Compactness” criteria for clustering
Distance based measures @
— Total distance between each
element in the cluster and %
every other element in the
cluster I
— Total distance of every C
element in the cluster from the

centroid of the cluster @
SO

— Distance between the two
farthest points in the cluster




“Compactness” criteria for clustering

e Distance based measures

dist = 3fw,[a, —by|" +W,a, —b,|" +...+ W, |a, —by,

Total distance between each
element in the cluster and every
other element in the cluster

Distance between the two farthest
points in the cluster

Total distance of every element in
the cluster from the centroid of the
cluster

Distance measures are often
weighted Minkowski metrics
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Clustering: Distance from cluster

 How faris a data point from a
cluster?

— Euclidean or Minkowski distance
from the centroid of the cluster
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from the centroid of the cluster

— Distance from the closest point in
the cluster
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Clustering: Distance from cluster

 How faris a data point from a
cluster?

— Euclidean or Minkowski distance
from the centroid of the cluster

— Distance from the closest point in
the cluster

— Distance from the farthest point in
the cluster

— Probability of data measured on
cluster distribution
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Clustering: Distance from cluster

 How faris a data point from a
cluster?
— Euclidean or Minkowski distance
from the centroid of the cluster

— Distance from the closest point in
the cluster

— Distance from the farthest point in
the cluster

— Probability of data measured on
cluster distribution

— Fit of data to cluster-based
regression

i
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Optimal clustering: Exhaustive enumeration

e All possible combinations of data must be evaluated

— |If there are M data points, and we desire N clusters, the
number of ways of separating M instances into N clusters is

13Ny
D ( | J(N i)

— Exhaustive enumeration based clustering requires that the
objective function (the “Goodness measure”) be evaluated
for every one of these, and the best one chosen

* This is the only correct way of optimal clustering

— Unfortunately, it is also computationally unrealistic
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Not-quite non sequitur: Quantization

Signal Value Bits | Mapped to
S >=3.75v 11 | 3 * const
3.75v>S >=2.5v 10 | 2 * const
2.5v>S >=1.25v 01 | 1*const
1.25v > S >= Qv 0 0

AR RN

Analog value (arrows are quantization levels)

Probability of analog value

e Linear quantization (uniform quantization):
— Each digital value represents an equally wide range of analog values
— Regardless of distribution of data
— Digital-to-analog conversion represented by a “uniform” table
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Not-quite non sequitur: Quantization
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Analog value (arrows are quantization levels)

* Non-Linear quantization:
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— Each digital value represents a different range of analog values

* Finer resolution in high-density areas

* Mu-law / A-law assumes a Gaussian-like distribution of data

— Digital-to-analog conversion represented by a “non-uniform” table
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Non-uniform quantization

/N

Analog value

Probability of analog value

If data distribution is not Gaussian-ish?
— Mu-law / A-law are not optimal

— How to compute the optimal ranges for quantization?
* Or the optimal table
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The Lloyd Quantizer

/N

Tyt T Tl

Analog value (arrows show quantization levels)

Probability of analog value

Lloyd quantizer: An iterative algorithm for computing optimal
guantization tables for non-uniformly distributed data

Learned from “training” data

34
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Lloyd Quantizer

 Randomly initialize
quantization points

T 1+ 1 7 — Right column entries of
guantization table
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Lloyd Quantizer

 Randomly initialize
quantization points

— Right column entries of

O quantization table

the nearest quantization

M7
/\ * Assign all training points to
P

point

— Draw boundaries

Tyt
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Lloyd Quantizer

 Randomly initialize
quantization points

— Right column entries of

O quantization table
* Assign all training points to
/\ the nearest quantization
O I B AR point

— Draw boundaries

* Reestimate quantization
points

(A I B
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Lloyd Quantizer

 Randomly initialize
quantization points
/\ — Right column entries of
T P ()

guantization table

* Assign all training points to
the nearest quantization
point

— Draw boundaries

* Reestimate quantization
/\ points
Mo Nt o e ]

* |terate until convergence
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Generalized Lloyd Algorithm: K-means clustering

K means is an iterative algorithm for clustering vector
data

— McQueen, J. 1967. “Some methods for classification and
analysis of multivariate observations.” Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Probability,
281-297

* General procedure:

— Initially group data into the required number of clusters
somehow (initialization)

— Assign each data point to the closest cluster
— Once all data points are assigned to clusters, redefine clusters

— [terate



K—means

Problem: Given a set of data
vectors, find natural clusters

Clustering criterion is scatter:
distance from the centroid

Every cluster has a centroid

The centroid represents the cluster

Definition: The centroid is the
weighted mean of the cluster
Weight = 1 for basic scheme

MLSP
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K—means

1. Initialize a set of centroids
randomly
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K—means

Initialize a set of centroids
randomly

For each data point x, find the ,.@1:"..,

distance from the centroid for
each cluster ) ., P

d = distance(X, M, ) “

cluster



K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for

each cluster ®

dcluster — diStance(X’ mcluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum
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Initialize a set of centroids
randomly

For each data point x, find the

distance from the centroid for R .

each cluster o

dcluster — diStance(X’ mcluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum
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K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster ®

*d = distance(x, m

cluster cluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum
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K—means

Initialize a set of centroids
randomly

For each data point x, find the

distance from the centroid for o

.
.
.
@ _e*
.*

each cluster ®

dcluster — diStance(X’ mcluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum

.
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Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster ®

*d = distance(x, m

cluster cluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum
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K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster

o d = distance(x,m

cluster cluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum
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K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster

o d = distance(x,m

cluster cluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum
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K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster

©d = distance(X, M, q.r)

cluster

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum

When all data points are
clustered, recompute centroids

i iecluster
iecluster

mcluster = ZWI |€Z
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K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster

* d = distance(x,m
Put data point in the cluster of the

closest centroid

»  Cluster for which d g IS
minimum

When all data points are
clustered, recompute centroids

cluster cluster)

mcluster = ZWI |ez

i iecluster
iecluster

If not converged, go back to 2

MLSP
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K-Means comments

e The distance metric determines the clusters

— In the original formulation, the distance is L, distance

* Euclidean norm, w; =1

_ 1
distance, .. (X, My o) =l X—M Metuster = Z X

cluster cluster ” 2 N ]
cluster iecluster

— If we replace every x by m (x), we get Vector

Quantization

cluster

 K-means is an instance of generalized EM

* Not guaranteed to converge for all distance
metrics
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Initialization

e Random initialization

* Top-down clustering

— Initially partition the data into two (or a small
number of) clusters using K means

— Partition each of the resulting clusters into two
(or a small number of) clusters, also using K
means

— Terminate when the desired number of clusters
is obtained



1.

K-Means for Top—Down clustering

Start with one cluster
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K-Means for Top—Down clustering

Start with one cluster O
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1.

2.

Start with one cluster

Split each cluster into two:

o Perturb centroid of cluster slightly (by < 5%) to
generate two centroids
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K-Means for Top—Down clustering

Start with one cluster

Split each cluster into two:

o Perturb centroid of cluster slightly (by < 5%) to
generate two centroids
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1.

2.

3.

K-Means for Top—Down clustering

Start with one cluster

Split each cluster into two:

o Perturb centroid of cluster slightly (by < 5%) to
generate two centroids

Initialize K means with new set of
centroids

MLSP
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K-Means for Top—Down clustering

Start with one cluster

Split each cluster into two:

o Perturb centroid of cluster slightly (by < 5%) to
generate two centroids

Initialize K means with new set of
centroids

lterate Kmeans until convergence %
O
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K-Means for Top—Down clustering

Start with one cluster

Split each cluster into two:

— Perturb centroid of cluster slightly (by < 5%) to
generate two centroids

Initialize K means with new set of
centroids

lterate Kmeans until convergence %
O
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K-Means for Top—Down clustering

Start with one cluster

Split each cluster into two:

— Perturb centroid of cluster slightly (by < 5%) to
generate two centroids

Initialize K means with new set of
centroids

lterate Kmeans until convergence %
O

If the desired number of clusters is not
obtained, return to 2
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Non-Euclidean clusters

e Basic K-means results in good clusters in
Euclidean spaces

— Alternately stated, will only find clusters that are
“good” in terms of Euclidean distances

* Will not find other types of clusters

62



MLSP

Non-Euclidean clusters

A

f(byl) -> [x.y,z] =
X = X | N

y = y 05 b‘
Z = a(x?+y?)

* For other forms of clusters we must modify the di1sf;ance measure
— E.g. distance from a circle

 May be viewed as a distance in a higher dimensional space
— |.e Kernel distances
— Kernel K-means

* Other related clustering mechanisms:

— Spectral clustering
* Non-linear weighting of adjacency

— Normalized cuts.. -



The Kernel Trick

f(x.y]) -> [x.y.z] 1
X=x |

y=y R
Z = a(x?+y?)

slas
1

* Transform the data into a synthetic higher-dimensional space where
the desired patterns become natural clusters

— E.g. the quadratic transform above
* Problem: What is the function/space?

* Problem: Distances in higher dimensional-space are more expensive
to compute

— Yet only carry the same information in the lower-dimensional space
64
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Distance in higher-dimensional space

* Transform data X through a possibly unknown
function ®(X) into a higher (potentially infinite)
dimensional space

— Z = O(X)

 The distance between two points is computed in
the higher-dimensional space

— d(Xy, Xo) = |1Z5- 25| |2 = [ [D(X;) = D(X,) ] |2

* d(Xy, X5) can be computed without computing z

— Since it is a direct function of X; and X,
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Distance in higher-dimensional space

* Distance in lower-dimensional space: A combination of
dot products

— 12,- 2,11 = (24- 2,)"(24- 2,) = 2,.2, + 2,.2,-2 2,.Z,

* Distance in higher-dimensional space

— d(Xy, X;) =[ [D(Xy) = D(X,) | |
= D(Xy). D(Xq) + D(X,). D(X5)-2 D(Xy). D(X,)

* d(Xy, X,) can be computed without knowing ®(X) if:

— O(X,). D(X,) can be computed for any X; and X, without
knowing ®(.)

66
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The Kernel function

* Akernel function K(X;,X,) is a function such that:
— K(X4,X;) = O(X,). D(X,)

* Once such a kernel function is found, the distance
in higher-dimensional space can be found in
terms of the kernels
— d(Xy, %) =] |®(X;) = D(X,) | |2

= O(X;). D(X;) + D(X,). D(X,)-2 D(Xy). D(X,)
= K(X(,X4) + K(X,,X,) - 2K(X4,X5)

* But what is K(Xy,X,)?
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A property of the dot product

* ForanyvectorVv,Vv'v=||Vv]||? >=0

— This is just the length of v and is therefore non-
negative

* Foranyvectoru=2.a. Vv, ||u||?>=0
=> (Z,a V)T(Za V) >= 0
=> 2. ZJ aav.v, >=0

* This holds for ANY real {a,, a,, ...}
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The Mercer Condition

e If z=d(X) is a high-dimensional vector derived
from X then for all real {a,, a,, ...} and any set {z,,
Z,y, oo } = {DO(X,), D(X,),...}

- xnaaz.2 >=0

— 2, 2,8 8, D(X;).D(x;) >=0

I

o If K(X,X,) = O(X;). D(X,)
=> 2, 2, 8, 8; K(x;,%5) >=0

A

* Any function K() that satisfies the above condition
is a valid kernel function
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The Mercer Condition

o K(X,X5) = D(X,). D(X,)
=>2%; 2,8 & K(X;,%;) >=0

i <YM |

* A corollary: If any kernel K(.) satisfies the Mercer
condition

d(Xy, X,) = K(X,X;) + K(X,,X,) - 2K(X{,X,)
satisfies the following requirements for a
“distance”

—d(x,x)=0
—d(x,y)>=0
— d(x,w) + d(w,y) >=d(x,y)




Typical Kernel Functions
Linear: K(X,y) =X'y +C
Polynomial K(X,y) = (ax'y + c)"
Gaussian: K(X,y) = exp(-| |X-y| |*/c?)
Exponential: K(X,y) = exp(-| |x-y]| |/\)
Several others

— Choosing the right Kernel with the right
parameters for your problem is an artform

MLSP



MLSP
Kernel K-means

K(xy)=(xTy+c)? =

* Perform the K-mean in the Kernel space

— The space of Z = ®(X)

* The algorithm..

72
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The mean of a cluster

The average value of the points in the cluster computed in the
high-dimensional space

1
Mojuster = 7 Z(D(XI)

N cluster iecluster

Alternately the weighted average

m

> WO(x)=C > wd(x)

cluster —
W| iecluster Iecluster

iecluster
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The mean of a cluster

The average value of the points in the cluster computed in the
high-dimensional space

1
mcluster = N Z(D(XI)

cluster iecluster

RECALL: We may never actually be able to compute this mean because

D(x) is not known

Alternately the weighted average

m

> WO(x)=C > wd(x)

cluster —
W| iecluster Iecluster

iecluster
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K-means
* Initialize the cluster.s with a M, = ZW D(X;)
random set of K points ZW, iccluster
—  Cluster has 1 point ecluster

 For each data point X, find the closest cluster

I ©(x)—m

2
cluster ”

cluster(x) = min d(X, cluster) = min

cluster cluster

d(x, cluster) =[| @(X) — My ||2=(<1>(X)—C ZWiqD(Xi)j (CD(X)—C ZWi(D(Xi)j

iecluster iecluster

Zch(x)Tcp(x)_zc > wo(x) D(x,)+C* Zwiwjd)(xi)TCD(X,-)J

iecluster iecluster jecluster

=K(x,X)-2C > wWK(Xx)+C* > > ww,K(x;,X;)

iecluster iecluster jecluster

Computed entirely using only the kernel function!
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K—means

1. Initialize a set of clusters
randomly

76
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K—means

1. Initialize a set of clusters
randomly

The centroids are virtual:
we don't actually compute
them explicitly!

1
mcluster = Z Wi Xi

§ Wi iecluster

iecluster

77



K—means

1. Initialize a set of clusters
randomly

2. For each data point x, find the
distance from the centroid for

each cluster ¢

©d = distance(X, M, q.r)

cluster

dcluster:K(X’X)_ZC Z WiK(Xi)(i)'|_C2 Z

»
Q'.

]
-
o ., v,

1]
“%,
Y
L4 * a,
oy
Y
v
oy

> wwK(x;,X;)

iecluster iecluster jecluster

‘@
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for

each cluster ®

dcluster — diStance(X’ mcluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum

MLSP

inekzaming - 2 Procesing (74



K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for K
each cluster @
*d = distance(x, m

cluster cluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum

.
.
.

o* e,
o N
. 0
. .
. N
N
.
N
N
N
e
N
0
.
"
0
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster ®

*d = distance(x, m

cluster cluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum
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K—means

Initialize a set of clusters
randomly

For each data point x, find the

distance from the centroid for o

.
.
.
@ _e*
.*

each cluster ®

dcluster — diStance(X’ mcluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum

.
.
Ry L]

.

** a
.
.*
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster ®

*d = distance(x, m

cluster cluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

o d = distance(x,m

cluster cluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum

MLSP

Vichielzaming for SaraProcessing Gt
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

o d = distance(x,m

cluster cluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum

MLSP
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

©d = distance(X, M, q.r)

cluster

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum

When all data points are
clustered, recompute centroids

mcluster = ZWI |€Z

i iecluster
iecluster

We do not explicitly compute the
means

May be impossible — we do not
know the high-dimensional
space

We only know how to compute
Inner products in it
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Kernel K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

* d

= distance(x,m

cluster cluster)

Put data point in the cluster of the
closest centroid

e  Cluster for which d
minimum

IS

cluster

When all data points are
clustered, recompute centroids

Meyster = ZW. |EZ

i iecluster
iecluster

If not converged, go back to 2

We do not explicitly compute the
means

May be impossible — we do not
know the high-dimensional
space

We only know how to compute
Inner products in it
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How many clusters?

* Assumptions:

— Dimensionality of kernel space > no. of clusters

— Clusters represent separate directions in Kernel spaces

* Kernel correlation matrix K
— Kijj = K(X;,X;)

* Find Eigen values A and Eigen vectors e of kernel
matrix

— No. of clusters = no. of dominant A; (17e;) terms
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Spectral Methods

I” |”

“Spectral” methods attempt to find “principa
subspaces of the high-dimensional kernel space
Clustering is performed in the principal subspaces
— Normalized cuts

— Spectral clustering

nvolves finding Eigenvectors and Eigen values of
Kernel matrix

~ortunately, provably analogous to Kernel K-
means



MLSP

Other clustering methods

* Regression based clustering
* Find a regression representing each cluster

* Associate each point to the cluster with the
best regression

— Related to kernel methods
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Clustering..

 Many many other variants
 Many applications..

* Important: Appropriate choice of feature

— Appropriate choice of feature may eliminate need
for kernel trick..

— Google is your friend.



