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Recap: MAP Estimators

* MAP (Maximum A Posteriori): Find a “best

guess” for y (statistically), given known X
y = argmax y P(Y|x)
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Conditional Probability of y| x
P(y|X) =N (g, +C,C,l(x-4),C, —~C;C,IC, )
Ele[y] — luyIX — :uy +CYXCX_X1(X_IUX) -

Var(y|x)=C, —C,C,C

Xy —XX Xy

* The conditional probability of y given X is also Gaussian

— The slice in the figure is Gaussian
e The mean of this Gaussian is a function of x

 The variance of y reduces if x is known

— Uncertainty is reduced
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Gaussians and more Gaussians..

e Linear Gaussian Models..

 PCA to develop the idea of LGM
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A Brief Recap

B D~BC

* Principal component analysis: Find the K bases that
best explain the given data

 Find B and C such that the difference between D and
BC is minimum

— While constraining that the columns of B are orthonormal
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Learning PCA

* For the given data: find the K-dimensional
subspace such that it captures most of the
variance in the data

— Variance in remaining subspace is minimal
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A Statistical Formulation of PCA o
e gt \/ ¥ = VAW 4 e
w ~ N (O, B)
e~ N(O, E)

 Xis arandom variable generated according to a linear relation

Vi

W is drawn from an K-dimensional Gaussian with diagonal
covariance

e eisdrawn from a 0-mean (D-K)-rank D-dimensional Gaussian

e Estimate V (and B) given examples of X
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Linear Gaussian Models!!

X = VW +¢
w ~ N (O, B)
e~ N(O, E)

X is @ random variable generated according to a linear relation

W is drawn from a Gaussian
e is drawn from a 0-mean Gaussian

Estimate V given examples of X

— In the process also estimate B and E
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Estimating the variables of the
model

w ~ N (O, I
X = L+ VW +e e~N(((),Eg

X~ N(u, VW' +E)

* Estimating the variables of the LGM is
equivalent to estimating P(X)

— The variables are u, V, and E
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The Maximum Likelihood Estimate

X~ N(u, VW' +E)

* Given training set X, X,, .. X, find u, V, E

* The ML estimate of u does not depend on the
covariance of the Gaussian

NZ%ZXi
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Simplified Model

w~ N(O,I)
X =WW +e e~N(O,E)

X ~ N, W' +E)

* Estimating the variables of the LGM is
equivalent to estimating P(X)

— The variables are V, and E
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LGM: The complete EM algorithm

Initialize V and E

MLSP

E step: -
Ex W=V (W' +E)7x,
EW|xi [\N\NT = | _VT (WT + E)_lv + EW|xi [W] EW|xi [W]T
M step:

V = (Z X; By, [W' ]jtz LW ]jl

1 1
E = N inxiT - VZ E s [WIX]
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So what have we achieved

* Employed a complicated EM algorithm to learn a
Gaussian PDF for a variable x

* What have we gained???

 Example uses:

— PCA
* Sensible PCA
* EM algorithms for PCA

— Factor Analysis
* FA for feature extraction
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LGMs : Application 1 A
Learnlng prmapal components

X=VW+e
w~ N(O, )
e~ N(O, E)

* Find directions that capture most of the
variation in the data

* Error is orthogonal to principal directions
—V7e=0; e'V=0
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Some Observations: 1
X=WW +e e ~ N(0, E)
E =E[ee']

V'E =E[V'ee']=E[0e']=0

 The covariance E of e is orthogonal to V
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Observation 2

V'E=0

VIIWT +E) = (VTV) VT

 Proof

VT (WT +E) (W™ +E)=(V'V) 'V (W +E)

VT =(VIV)'VWT +(V'V)IVTE
VT = IVT +(VTV) 10
VT =VT




Observation 3

V'E=0

VIIWT +E) = (VTV) VT

= pinv(V)
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SaraProcessing G

LGM: The complete EM algorithm

X =WVW +e

* |nitialize V and E

* E step:

W|X

[W]=V' (W' +E)*'x

X~ VW

W|X

[\N\N ]_ | VT (WT + E) 1V+ EW|x [W]Ew|x [W]

* M step:

V= (Z X B, [W ]j(Z S ]j

-1

:%in

K= VS B WX
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MLSE

SaraProcessing G

LGM: The complete EM algorithm

X =WVW +e

* |nitialize V and E

* E step:

W|X

[Wl=V' (W' +E)*x

X~ VW

W|X

[\N\N ]_ | VT (WT + E) 1V+ EW|x [W]Ew|x [W]

* M step:

V= (Z X B, [W ]j(Z S ]j

-1

:%in

K= VS B WX
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LGM: The complete EM algorithm
X=WW +e X =VW

* |nitialize V and E
e Estep: |wi=V (W' +E)"X = pinv(V)x,

EW|xi [\N\NT] =1 - VT (WT + E)_lv + EW|xi [W] EW|xi [W]T

* M step:
V = (Z X, E . [W' ]IZ E ]j

1 1
E = N inxiT - VZ E s [WIX]
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LGM: The complete EM algorithmm
X=WW +e X =VW

* |nitialize V and E

EW|xi [\N\NT] =1 - VT (WT + E)_lv + EW|xi [W] EW|xi [W]T

* M step:
V = (Z X, E . [W' ]IZ E ]j

1 1
E = N inxiT - VZ E s [WIX]
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LGM: The complete EM algorithmm

X ~WVW
* |nitialize V and E

EW|xi [\N\NT] =1 - VT (WT + E)_lv + EW|xi [W] EW|xi [W]T

* M step:
V = (Z X, E . [W' ]IZ E ]j

1 1
E = N inxiT - VZ E s [WIX]
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LGM: The complete EM algorithmm

X ~WVW
* |nitialize V and E

Ew|xi [\N\NT] =1 - VT (WT + E)_lv + EW|xi [W] Ew|xi [W]T

* M step:
V = (Z X, E . [W' ]IZ E ]j

1 1
E = N inxiT - VZ E s [WIX]
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EM for PCA
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X = VW

* |nitialize V and E

EW|xi [\N\NT] =1- VT (WT + E)_lv T EW|xi [W] Ew|xi [W]T

* M step:
V = (Z X, E . [W' ]IZ E ])

1 1
E = N inxiT - VZ E s [WIX]
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EM for PCA

* |nitialize V and E

* E step:

MLSP
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W|x

[V\NV ]_ | VT (WT + E) 1V+ EW|x [W]Ew|x [W]

* M step:

i i )

-1

:Win

X-ir B N VZ EW|xi [W]X-lr
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EM for PCA

* |nitialize V and E
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EW|xi [\N\NT] =1- VT (WT + E)_lv T EW|xi [W] Ew|xi [W]T

* M step:
V= (Z X Eyyy [W' ]j(z = ]] =XW' (Ww')™

1 1
E = N inxiT - VZ E s [WIX]
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EM for PCA

* |nitialize V and E

EW|xi [\N\NT] =1- VT (WT + E)_lv T EW|xi [W] Ew|xi [W]T

* M step:

V= (in E\y, W' ]][Z E,, [ ]j = XWT (WWT) ™ = Xpinv(W)

1 1
E = N Zi:xixiT - VZ E s [WIX]
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EM for PCA

* |nitialize V and E
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EW|xi [\N\NT] =1- VT (WT + E)_lv T EW|xi [W] Ew|xi [W]T

* M step:

V = X pinv(W)

1 1
E = N inxiT - VZ E s [WIX]
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EM for PCA

* |nitialize V and E

EW|xi [\N\NT] =1- VT (WT + E)_lv T EW|xi [W] Ew|xi [W]T

* M step:

1 1
E= ~ Zi:xixiT - VZ E\u [WIX]
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EM for PCA

* |nitialize V and E

T T T =] T
[ . .
M step: irrelevant
V = X pinv(W)
1

r 1 T
N & ™

Z
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EM for PCA

* |nitialize V

* [terate

* Note: V will not be actual eigenvectors, but a set of
bases in space spanned by principal eigenvectors

— Additional decorrelation within PC space may be needed

MLSP
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Why EM PCA?

X XX!

10000 x 10000

10000 x 300

 Example: Computing eigenfaces
e Each face is 100x100 : 10000 dimensional

But only 300 examples
— X is 10000 x 300

What is the size of the covariance matrix?
What is its rank?

32
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PCA on illconditioned data

* Few instances of high-dimensional data

— No. instances < dimensionality
e Covariance matrix is very large
— Eigen decomposition is expensive

— E.g. 1000000-dimensional data: Covariance has
1012 elements

e But the rank of the covariance is low

— Only the no. of instances of data

33



Why EM PCA?

X

10000 x 300

"N/
N/

V

W

300 x 30

D

10000 x 300,

X = VW

 Consequence of low rank X

— The actual number of bases is limited to the rank of X

 Note actual size of V

— Max number of columns = min(dimension, no. data points)
— No. of columns = rank of (XXT)

* Note size of W

— Max number of rows = min(dimension, no. of data points)

MLSP
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Why EM PCA?

30W300
X | & v

10000 x 300,

10000 x 300 | X ~ \/\\\/

* If Xis high dimensional

— Particularly if the number of vectors in X is smaller
than the dimensionality

* Pinv(V) and pinv(W) are efficient to compute
— V will have a max of 300 columns in the example
— W will have a max of 300 rows
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PCA as an instance of LGM

* Viewing PCA as an instance of linear Gaussian
models leads to EM solution

* Very effective in dealing with high-
dimensional and/or data poor situations

* An aside: Another simpler solution for the
same situation..

36
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An Aside: The GRAM trick

X XX!

10000 x 10000

10000 x 300

* The number of non-zero Eigen values is no more than the
length of the smallest “edge” of X

— 300 in this case
* This leads to the “gram” trick..

* Assumption X™X is invertible: the instances are linearly
independent

37
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An Aside: The GRAM trick

X

XT

« XXTislarge but XX is not

)

XT

X

If Xis 10000 x 300,
XXT = 10000 x 10000

)

If X is 10000 x 300,
XTX =300 x 300

Difficult to compute Eigen vectors of XXT

But easy to compute Eigen vectors of XX

38
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The Gram Trick

* To compute principal vectors we
Eigendecompose XXT

(XXT E=EA

* Let us find the Eigen vectors of X"™X instead
(XTXE =EA

* Manipulating it slightly

Note that for a diagonal matrix:

AA05 = AO5A XT XEIA\_O'S = EZA\_O'SZA\

39



The Gram Trick

* Eigendecompose X™X instead of XXT
(XTX)E =EA
X'XEA®® =EA*°A
(XXT Y XEA® )= (XEA A
o Letting: XEA®° =E
(XXT E=EA

* Eisthe matrix of Eigenvectors of XXT!!!

MLSP
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The Gram Trick

When X is low rank or XX is too large:

Compute X™X instead
— Will be manageable size

Perform Eigen Decomposition of X™X
(XTXE =EA
Compute Eigenvectors of XX as
XEA =E
These are the principal components of X

MLSP
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Why EM PCA

* Dimensionality / Rank has alternate potential
solution

— Gram Trick

e Other uses?
— Noise
— Incomplete data

MLSP
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PCA with noisy data
X=VW+e+n

* Erroris orthogonal to principal directions
—Vie=0; efV=0

* Noise is isotropic
— Bis diagonal
— Noise is not orthogonal to either Vor e

43



LGM: The complete EM algorithm

* |nitialize V and E

MLSP

* E step: -
Ex W=V (W' +E)7x,
EW|xi [\N\NT = | _VT (WT + E)_lv + EW|xi [W] EW|xi [W]T
* M step:

V = (Z X; By, [W' ]jtz LW ]jl

1 1
E = N inxiT - VZ E s [WIX]
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PCA with Noisy Data

e |nitialize V and B

* E step:

* M step:

B=V" (W' +B)™

W = X

C=NI-NAV+WW’'

V=XW'C"

B:%diag(XXT ~VWXT)

MLSP
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PCA with Incomplete Data

“ K ﬁ E

* How to compute principal directions when
some components in your training data are
missing?

* Eigen decomposition is not possible

— Cannot compute correlation matrix with missing
data
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PCA with missing data

How it goes
Given : X = {X_ X}

— X, are missing components

1. Initialize: Initialize X,
2. Build “complete” data X = {X_, X}
3. PCA (X =VW): Estimate V

N o o

— V must have fewer bases than dimensions of X

. W=VTX

N

X=VW
Select X, from X
Return to 2

MLSP
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LGM for PCA

* Obviously many uses:
— lll-conditioned data
— Noise
— Missing data

— Any combination of the above..

MLSP
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LGMs : Application 2
Learning with insufficient data

oo
oo LT
001 i

 The full covariance matrix of a Gaussian has D% terms

* Fully captures the relationships between variables

* Problem: Needs a lot of data to estimate robustly

49
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An Approximation

Assume the covariance is diagonal
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— Gaussian is aligned to axes : no correlation between dimensions

— Covariance has only D terms

Needs less data

Problem : Model loses all information about correlation
between dimensions

50
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Is There an Intermediate

e Capture the most important correlations
* But require less data

e Solution: Find the key subspaces in the data

— Capture the complete correlations in these
subspaces

— Assume data is otherwise uncorrelated
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Factor Analysis

w~ N(O,I)
X =WW +¢e e~N(O,E)

X ~ N, W' +E)

e Fis a full rank diagonal matrix

* V has K columns: K-dimensional subspace

— We will capture all the correlations in the
subspace represented by V

e Estimated covariance: Diagonal covariance E
plus the covariance between dimensions in V



Factor Analysis

* |nitialize V and E

MLSP

* E step: : ]
E o W=V (W' +E) "X
Ewlxi [VV\NT =1 -V' (WT + E)_lv + EWlxi [w] EWIXi [W]T
* M step:

V = (Z X; By, [W' ]j(Z LW ]jl

E= % diag (ZXiXiT - % VDB [WIX{ j
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FA Gaussian

PR S PO
D02 T
001 i =

* Will get a full covariance matrix

* But only estimate DK terms

e Data insufficiency less of a problem
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The Factor Analysis Model

w~ N(O,I)
X&Qe e ~ N (O, E)

LOADINGS FACTORS

e Often used to learn distribution of data when
we have insufficient data

e Often used in psychometrics

— Underlying model: The actual systematic
variations in the data are totally explained by a
small number of “factors”

— FA uncovers these factors
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FA: Example

* Hypothesis: there are two kinds
of intelligence, "verbal" and "mathematical",

— neither is directly observed.

— Evidence sought from examination scores from
each of 10 different academic fields of 1000
students.

e Solution: Find out if distribution is well
explained by two factors

— Hack: Attempt to relate factors to verbal and math

1Q



http://en.wikipedia.org/wiki/Intelligence_(trait)
http://en.wikipedia.org/wiki/Evidence
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FA, PCA etc.

w~ N(O,I)
X =WW +¢e e ~ N(0, E)

* Note: distinction between PCA and FA is only
in the assumptions about e

 FA looks a lot like PCA with noise

* FA can also be performed with incomplete
data
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FA, PCA etc.

) =T

PCA: Error is always at 90 degrees to the bases in V

FA: Error may be at any angle

PCA used mainly to find principal directions that
capture most of the variance

— Bases in V will be orthogonal to one another
FA tries to capture most of the covariance
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FA: A very successful use

* Voice biometrics: Speaker identification

* Given: Only a small amount of training data
from a speaker, learn model for speaker

— Use to verify speaker later

* Problem: Immense variation in ways people
can speak

— 15 minutes of training data totally insufficient!
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Speaker Verification

» Il

A model represents distribution of cepstral vectors for the
speaker

* A second model represents everyone else (potential
imposters)

* The cepstra computed from a test recording are “scored”
against both models

— Accept the speaker if the speaker model scores higher
60
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Speaker Verification

» Il

* Problem: One typically has only a few seconds or
minutes of training data from the speaker

* Hard to estimate speaker model

e Test data may be spoken differently, or come over a
different channel, or in noise

— Wont really match

61



Hypothesis

Variations between different instances of the utterance
spoken by the same speaker related to only a few factors

Factors are common to all speakers

Solution: Learn factors by analyzing many speakers

— Use learned factors to predict variations for a given speaker

— Can provide robust models for a speaker from very little data

62
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Representing the Data: “super "
vectors”

x10” /
8-
00 z
e
o
0
0 005 01 444

* Convert recordings to a sequence of feature
vectors

— Cepstra
 Compute the probability distribution for the data
— Modeled as a Gaussian mixture

 The data are represented by the parameters of
the distribution
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Representing the Data: “super "™
vectors”

x10°
8+
00 £
e
o
0-
0
005 g4
‘ 015 02 g5 o

P(X)=> WN(X;4,0,)

This “supervector” is ‘

the feature that - -

represents the H
recording 1,
M
| M
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* Supervectors are obtained for each training
speaker by adapting a “Universal background
model” trained from large amounts of data
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Training the Factor Analyzer

X=VW+€e  w~N(0,I)e~N(0,E)

* The supervectors are assumed to be the
output of a linear Gaussian process

e Use FA to estimate V

— V are the factors that cause variations
— The real information is in the factor w
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Training models for a speaker

X=VWWs+€ \w~N(0,I)e~N(0,E)

 From training data: estimate the means for the speaker to conform
to the factor analysis

— Constrained estimation: requires much less data

* Use the estimated means as the distribution for the speaker
— Solves data insufficiency problem
— Also solves the problem of variations
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Many other applications..

* Exploratory FA
e Confirmatory FA..
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