

1

Machine Learning for Signal Processing Applications of Linear Gaussian Models

Class 15. 12 Nov 2015

Instructor: Bhiksha Raj

Recap: MAP Estimators

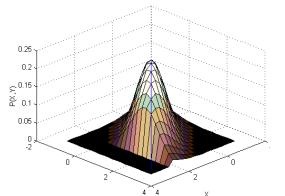
MAP (Maximum A Posteriori): Find a "best guess" for y (statistically), given known x
 y = argmax y P(Y/x)

Conditional Probability of y | x

$$P(y \mid x) = N(\mu_{y} + C_{yx}C_{xx}^{-1}(x - \mu_{x}), C_{yy} - C_{yx}^{T}C_{xx}^{-1}C_{xy})$$

$$E_{y|x}[y] = \mu_{y|x} = \mu_{y} + C_{yx}C_{xx}^{-1}(x - \mu_{x})$$

 $Var(y | x) = C_{yy} - C_{xy}^T C_{xx}^{-1} C_{yy}$



• The conditional probability of y given x is also Gaussian

The slice in the figure is Gaussian

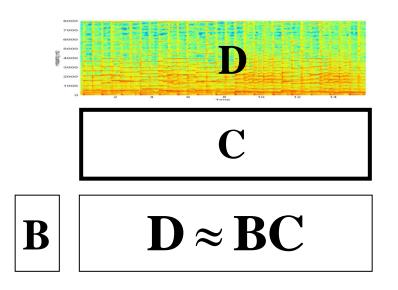
- The mean of this Gaussian is a function of x
- The variance of y reduces if x is known
 - Uncertainty is reduced

Gaussians and more Gaussians..

• Linear Gaussian Models..

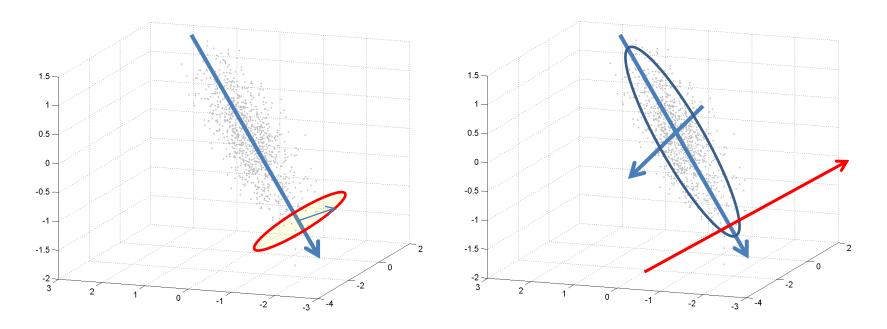
• PCA to develop the idea of LGM

A Brief Recap



- Principal component analysis: Find the *K* bases that best explain the given data
- Find B and C such that the difference between D and BC is minimum
 - While constraining that the columns of **B** are orthonormal

Learning PCA

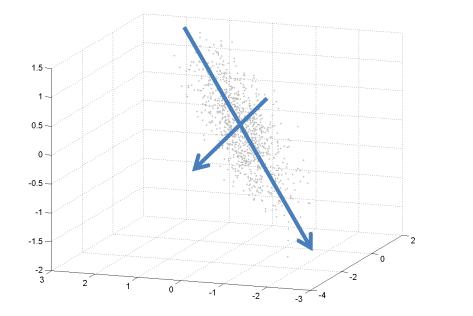


- For the given data: find the K-dimensional subspace such that it captures most of the variance in the data
 - Variance in remaining subspace is minimal

A Statistical Formulation of PCA Error is at 90° $\mathbf{x} = \mathbf{V}\mathbf{w} + \mathbf{e}$ to the eigenface $\mathbf{w} \sim N(0, B)$ $\mathbf{e} \sim N(\mathbf{0}, E)$

- **x** is a random variable generated according to a linear relation
- w is drawn from an K-dimensional Gaussian with diagonal covariance
- e is drawn from a 0-mean (D-K)-rank D-dimensional Gaussian
- Estimate V (and *B*) given examples of x

Linear Gaussian Models!!



 $\mathbf{x} = \mathbf{V}\mathbf{w} + \mathbf{e}$ $\mathbf{w} \sim N(0, B)$ $\mathbf{e} \sim N(0, E)$

- **x** is a random variable generated according to a linear relation
- w is drawn from a Gaussian
- e is drawn from a 0-mean Gaussian
- Estimate V given examples of x
 - In the process also estimate ${\boldsymbol{B}}$ and ${\boldsymbol{E}}$

Estimating the variables of the
model

$$\mathbf{x} = \mathbf{\mu} + \mathbf{V}\mathbf{w} + \mathbf{e}$$

 $\mathbf{w} \sim N(0, I)$
 $\mathbf{e} \sim N(0, E)$
 $\mathbf{x} \sim N(\mathbf{\mu}, \mathbf{V}\mathbf{V}^T + E)$

 Estimating the variables of the LGM is equivalent to estimating P(x)

– The variables are μ , V, and E

The Maximum Likelihood Estimate

$$\mathbf{x} \sim N(\mathbf{\mu}, \mathbf{V}\mathbf{V}^T + E)$$

- Given training set $x_1, x_2, ... x_N$, find μ , V, E
- The ML estimate of μ does not depend on the covariance of the Gaussian

$$\boldsymbol{\mu} = \frac{1}{N} \sum_{i} \mathbf{x}_{i}$$

Simplified Model

$$\mathbf{x} = \mathbf{V}\mathbf{w} + \mathbf{e} \qquad \qquad \mathbf{w} \sim N(0, I) \\ \mathbf{e} \sim N(0, E) \\ \mathbf{x} \sim N(0, \mathbf{V}\mathbf{V}^T + E)$$

 Estimating the variables of the LGM is equivalent to estimating P(x)

– The variables are \mathbf{V} , and E

LGM: The complete EM algorithm

- Initialize V and E
- E step:

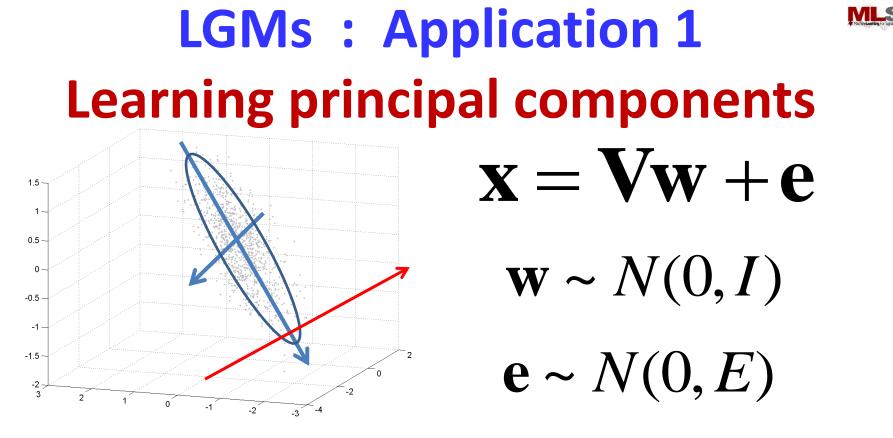
$$E_{\mathbf{w}|\mathbf{x}_i}[\mathbf{w}] = \mathbf{V}^T (\mathbf{V}\mathbf{V}^T + E)^{-1}\mathbf{x}_i$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

So what have we achieved

- Employed a complicated EM algorithm to learn a Gaussian PDF for a variable x
- What have we gained???
- Example uses:
 - PCA
 - Sensible PCA
 - EM algorithms for PCA
 - Factor Analysis
 - FA for feature extraction



- Find directions that capture most of the variation in the data
- Error is orthogonal to principal directions $-V^{T}e = 0; e^{T}V = 0$

Some Observations: 1

$\mathbf{x} = \mathbf{V}\mathbf{w} + \mathbf{e} \qquad \mathbf{e} \sim N(0, E)$ $E = E[\mathbf{e}\mathbf{e}^T]$

$\mathbf{V}^T E = \mathrm{E}[\mathbf{V}^T \mathbf{e} \mathbf{e}^T] = \mathrm{E}[\mathbf{0} \mathbf{e}^T] = \mathbf{0}$

- The covariance ${\bf E}$ of ${\bf e}$ is orthogonal to ${\bf V}$

16

Observation 2

$$\mathbf{V}^T E = \mathbf{0}$$

$$\mathbf{V}^T (\mathbf{V}\mathbf{V}^T + E)^{-1} = (\mathbf{V}^T \mathbf{V})^{-1} \mathbf{V}^T$$

• Proof

$$\mathbf{V}^T (\mathbf{V}\mathbf{V}^T + E)^{-1} (\mathbf{V}\mathbf{V}^T + E) = (\mathbf{V}^T \mathbf{V})^{-1} \mathbf{V}^T (\mathbf{V}\mathbf{V}^T + E)$$

$$\mathbf{V}^{T} = (\mathbf{V}^{T}\mathbf{V})^{-1}\mathbf{V}^{T}\mathbf{V}\mathbf{V}^{T} + (\mathbf{V}^{T}\mathbf{V})^{-1}\mathbf{V}^{T}E$$
$$\mathbf{V}^{T} = \mathbf{I}\mathbf{V}^{T} + (\mathbf{V}^{T}\mathbf{V})^{-1}\mathbf{0}$$

$$\mathbf{V}^T = \mathbf{V}^T$$

Observation 3

$$\mathbf{V}^T E = \mathbf{0}$$

$$\mathbf{V}^T (\mathbf{V}\mathbf{V}^T + E)^{-1} = (\mathbf{V}^T \mathbf{V})^{-1} \mathbf{V}^T$$

$$= pinv(\mathbf{V})$$

- Initialize V and E
- Estep: $E_{\mathbf{w}|\mathbf{x}_i}[\mathbf{w}] = \mathbf{V}^T (\mathbf{V}\mathbf{V}^T + E)^{-1}\mathbf{x}_i$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} | \mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w} | \mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} | \mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

• Initialize V and E

step:
$$E_{\mathbf{w}|\mathbf{x}_i}[\mathbf{w}] = \mathbf{V}^T (\mathbf{V}\mathbf{V}^T + E)^{-1}\mathbf{x}_i$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

• M step:

• E

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} | \mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w} | \mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} | \mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

- Initialize V and E
- Estep: $\mathbf{w}_i = \mathbf{V}^T (\mathbf{V}\mathbf{V}^T + E)^{-1} \mathbf{x}_i = pinv(\mathbf{V})\mathbf{x}_i$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} | \mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w} | \mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} | \mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

- Initialize V and E
- E step:

$$\mathbf{w}_i = pinv(\mathbf{V})\mathbf{x}_i$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

LGM: The complete EM algorithm $\mathbf{X} \approx \mathbf{VW}$

- Initialize \mathbf{V} and E
- E step:

$$\mathbf{w}_i = pinv(\mathbf{V})\mathbf{x}_i$$

$$\mathbf{W} = pinv(\mathbf{V})\mathbf{X}$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

LGM: The complete EM algorithm $\mathbf{X} \approx \mathbf{VW}$

- Initialize \mathbf{V} and E
- E step:

$$\mathbf{w}_i = pinv(\mathbf{V})\mathbf{x}_i$$

$$\mathbf{W} = pinv(\mathbf{V})\mathbf{X}$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

 $\mathbf{X} \approx \mathbf{V}\mathbf{W}$

- Initialize V and E
- E step:

$$\mathbf{w}_i = pinv(\mathbf{V})\mathbf{x}_i$$

$$\mathbf{W} = pinv(\mathbf{V})\mathbf{X}$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]\mathbf{x}_{i}^{T}$$

- Initialize V and E
- E step:

$$\mathbf{w}_i = pinv(\mathbf{V})\mathbf{x}_i$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]\mathbf{x}_{i}^{T}$$

- Initialize V and E
- E step:

$$\mathbf{w}_i = pinv(\mathbf{V})\mathbf{x}_i$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1} = \mathbf{X}\mathbf{W}^{T}(\mathbf{W}\mathbf{W}^{T})^{-1}$$
$$E = \frac{1}{N}\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N}\mathbf{V}\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]\mathbf{x}_{i}^{T}$$

- Initialize V and E
- E step:

$$\mathbf{w}_i = pinv(\mathbf{V})\mathbf{x}_i$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1} = \mathbf{X}\mathbf{W}^{T}(\mathbf{W}\mathbf{W}^{T})^{-1} = \mathbf{X}pinv(\mathbf{W})$$
$$E = \frac{1}{N}\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N}\mathbf{V}\sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]\mathbf{x}_{i}^{T}$$

- Initialize V and E
- E step:

$$\mathbf{w}_i = pinv(\mathbf{V})\mathbf{x}_i$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \mathbf{X} pinv(\mathbf{W})$$

$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

- Initialize V and E
- E step:

$$\mathbf{W} = pinv(\mathbf{V})\mathbf{X}$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

$$\mathbf{V} = \mathbf{X} pinv(\mathbf{W})$$

$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} | \mathbf{x}_{i}} [\mathbf{w}] \mathbf{x}_{i}^{T}$$

- Initialize V and E
- E step:

$$\mathbf{W} = pinv(\mathbf{V})\mathbf{X}$$

$$E_{\mathbf{w}|\mathbf{x}_i}[\mathbf{w}^T] = I \quad \mathbf{V}^T (\mathbf{W}^T + E)^{-1} \mathbf{V} + E_{\mathbf{w}|\mathbf{x}_i}[\mathbf{w}] E_{\mathbf{w}|\mathbf{x}_i}[\mathbf{w}]^T$$

• M step:

irrelevant

$$\mathbf{V} = \mathbf{X} pinv(\mathbf{W})$$

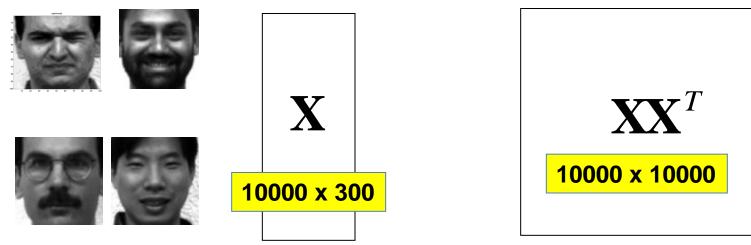
$$\frac{E - \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} | \mathbf{x}_{i}} [\mathbf{w}] \mathbf{x}_{i}^{T}}{N \mathbf{v}_{i}^{T} \mathbf{v}_{i}^{T}}$$

- Initialize \mathbf{V}
- Iterate

$$\mathbf{W} = pinv(\mathbf{V})\mathbf{X}$$
$$\mathbf{V} = \mathbf{X} pinv(\mathbf{W})$$

- Note: V will not be actual eigenvectors, but a set of bases in space spanned by principal eigenvectors
 - Additional decorrelation within PC space may be needed

Why EM PCA?

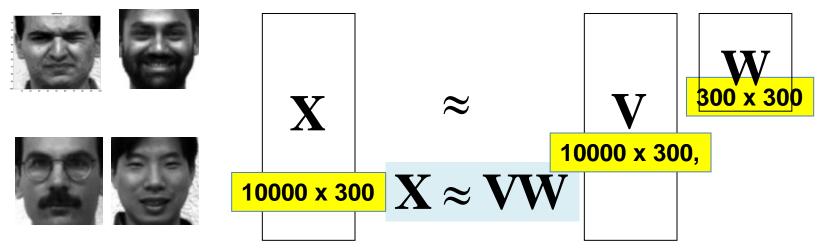


- Example: Computing eigenfaces
- Each face is 100x100 : 10000 dimensional
- But only 300 examples
 - X is 10000 x 300
- What is the size of the covariance matrix?
- What is its rank?

PCA on illconditioned data

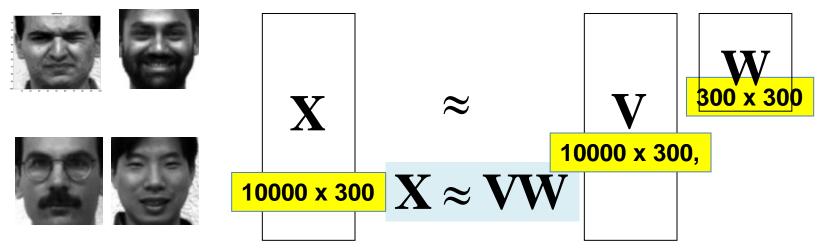
- Few instances of high-dimensional data
 No. instances < dimensionality
- Covariance matrix is very large
 - Eigen decomposition is expensive
 - E.g. 1000000-dimensional data: Covariance has 10¹² elements
- But the rank of the covariance is low
 Only the no. of instances of data

Why EM PCA?



- Consequence of low rank ${\bf X}$
 - The actual number of bases is limited to the rank of ${\bf X}$
- Note actual size of V
 - Max number of columns = min(dimension, no. data points)
 - No. of columns = rank of (XX^T)
- Note size of W
 - Max number of rows = min(dimension, no. of data points)

Why EM PCA?



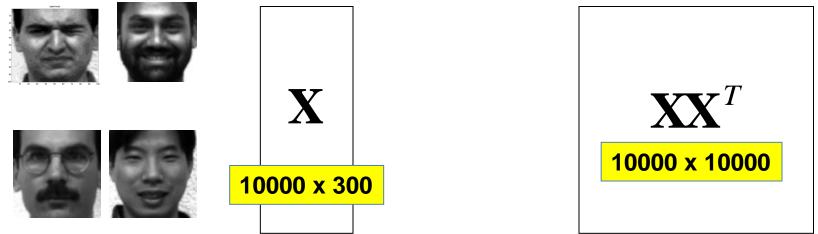
- If **X** is high dimensional
 - Particularly if the number of vectors in X is smaller than the dimensionality
- Pinv(V) and pinv(W) are efficient to compute
 - V will have a max of 300 columns in the example
 - W will have a max of 300 rows

PCA as an instance of LGM

- Viewing PCA as an instance of linear Gaussian models leads to EM solution
- Very effective in dealing with highdimensional and/or data poor situations

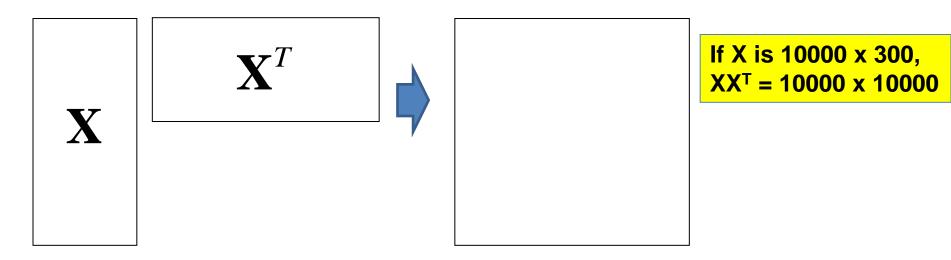
• An aside: Another simpler solution for the same situation..

An Aside: The GRAM trick

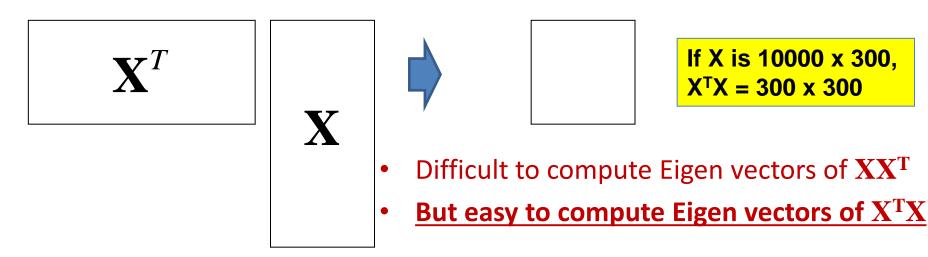


- The number of non-zero Eigen values is no more than the length of the smallest "edge" of X
 - 300 in this case
- This leads to the "gram" trick..
- Assumption X^TX is invertible: the instances are linearly independent

An Aside: The GRAM trick



• **XX^T** is large but **X^TX** is not



The Gram Trick

 To compute principal vectors we Eigendecompose XX^T

$$(\mathbf{X}\mathbf{X}^T)\mathbf{E} = \mathbf{E}\Lambda$$

- Let us find the Eigen vectors of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ instead $(\mathbf{X}^{T}\mathbf{X})\hat{\mathbf{E}} = \hat{\mathbf{E}}\hat{\boldsymbol{\Lambda}}$
- Manipulating it slightly

Note that for a diagonal matrix: $\Lambda\Lambda^{-0.5} = \Lambda^{-0.5}\Lambda$

 $\mathbf{X}^{T}\mathbf{X}\hat{\mathbf{E}}\hat{\boldsymbol{\Lambda}}^{-0.5} = \hat{\mathbf{E}}\hat{\boldsymbol{\Lambda}}^{-0.5}\hat{\boldsymbol{\Lambda}}$

The Gram Trick

Eigendecompose X^TX instead of XX^T

$$(\mathbf{X}^T \mathbf{X}) \hat{\mathbf{E}} = \hat{\mathbf{E}} \hat{\boldsymbol{\Lambda}}$$

$$\mathbf{X}^{T}\mathbf{X}\hat{\mathbf{E}}\hat{\boldsymbol{\Lambda}}^{-0.5} = \hat{\mathbf{E}}\hat{\boldsymbol{\Lambda}}^{-0.5}\hat{\boldsymbol{\Lambda}}$$
$$\left(\mathbf{X}\mathbf{X}^{T}\right)\left(\mathbf{X}\hat{\mathbf{E}}\hat{\boldsymbol{\Lambda}}^{-0.5}\right) = \left(\mathbf{X}\hat{\mathbf{E}}\hat{\boldsymbol{\Lambda}}^{-0.5}\right)\hat{\boldsymbol{\Lambda}}$$

• Letting: $\hat{\mathbf{X}}\hat{\mathbf{E}}\hat{\boldsymbol{\Lambda}}^{-0.5} = \mathbf{E}$

$$(\mathbf{X}\mathbf{X}^T)\mathbf{E} = \mathbf{E}\hat{\Lambda}$$

• E is the matrix of Eigenvectors of **XX^T!!!**

The Gram Trick

- When X is low rank or XX^T is too large:
- Compute X^TX instead
 Will be manageable size
- Perform Eigen Decomposition of X^TX

 $(\mathbf{X}^T \mathbf{X}) \hat{\mathbf{E}} = \hat{\mathbf{E}} \hat{\boldsymbol{\Lambda}}$

• Compute Eigenvectors of XX^T as

$$\mathbf{X}\hat{\mathbf{E}}\hat{\boldsymbol{\Lambda}}^{-0.5} = \mathbf{E}$$

• These are the principal components of X

Why EM PCA

- Dimensionality / Rank has alternate potential solution
 - Gram Trick
- Other uses?
 - Noise
 - Incomplete data

PCA with noisy data $\mathbf{x} = \mathbf{V}\mathbf{w} + \mathbf{e} + \mathbf{n}$ $\mathbf{w} \sim N(0, I)$ $\mathbf{e} \sim N(0, E)$ $\mathbf{n} \sim N(0, B)$

- Error is orthogonal to principal directions
 -V^Te = 0; e^TV = 0
- Noise is isotropic

1.5 -

0.5

-1 --1.5 --2 -3

- B is diagonal
- Noise is not orthogonal to either V or e

LGM: The complete EM algorithm

- Initialize V and E
- E step:

$$E_{\mathbf{w}|\mathbf{x}_i}[\mathbf{w}] = \mathbf{V}^T (\mathbf{V}\mathbf{V}^T + E)^{-1}\mathbf{x}_i$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

• M step:

$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} | \mathbf{x}_{i}}[\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w} | \mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} | \mathbf{x}_{i}}[\mathbf{w}] \mathbf{x}_{i}^{T}$$

PCA with Noisy Data

- Initialize V and B
- E step: $\beta = \mathbf{V}^T (\mathbf{V}\mathbf{V}^T + B)^{-1}$ $\mathbf{W} = \beta \mathbf{X}$

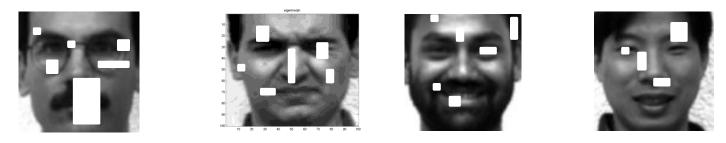
$$\mathbf{C} = N\mathbf{I} - N\boldsymbol{\beta}\mathbf{V} + \mathbf{W}\mathbf{W}^{T}$$

• M step:

$$\mathbf{V} = \mathbf{X}\mathbf{W}^T\mathbf{C}^{-1}$$

$$B = \frac{1}{N} diag \left(\mathbf{X} \mathbf{X}^{T} - \mathbf{V} \mathbf{W} \mathbf{X}^{T} \right)$$

PCA with Incomplete Data



- How to compute principal directions when some components in your training data are missing?
- Eigen decomposition is not possible
 - Cannot compute correlation matrix with missing data

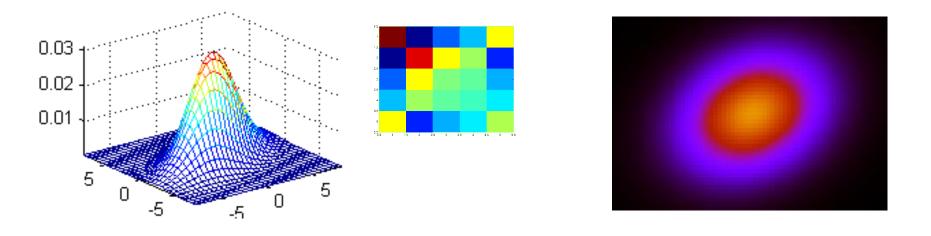
PCA with missing data

- How it goes
- Given : $\mathbf{X} = \{\mathbf{X}_{c}, \mathbf{X}_{m}\}$
 - ${\bf X}_{{\bf m}}$ are missing components
- 1. Initialize: Initialize \mathbf{X}_{m}
- 2. Build "complete" data $\mathbf{X} = {\{\mathbf{X}_{c}, \mathbf{X}_{m}\}}$
- 3. PCA (X = VW): Estimate V
 - V must have fewer bases than dimensions of ${\bf X}$
- 4. $\mathbf{W} = \mathbf{V}^{\mathrm{T}}\mathbf{X}$
- 5. $\hat{\mathbf{X}} = \mathbf{V}\mathbf{W}$
- 6. Select X_m from \hat{X}
- 7. Return to 2

LGM for PCA

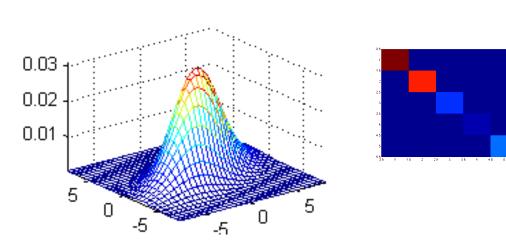
- Obviously many uses:
 - Ill-conditioned data
 - Noise
 - Missing data
 - Any combination of the above..

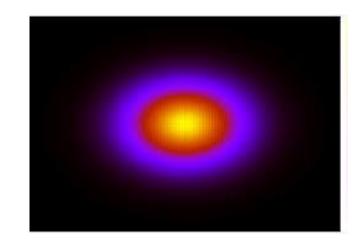
LGMs : Application 2 Learning with insufficient data



- The full covariance matrix of a Gaussian has D^2 terms
- Fully captures the relationships between variables
- Problem: Needs a lot of data to estimate robustly

An Approximation





- Assume the covariance is diagonal
 - Gaussian is aligned to axes : no correlation between dimensions
 - Covariance has only D terms
- Needs less data
- Problem : Model loses all information about correlation between dimensions

Is There an Intermediate

- Capture the most important correlations
- But require less data

- Solution: Find the key subspaces in the data
 - Capture the complete correlations in these subspaces
 - Assume data is otherwise uncorrelated

Factor Analysis

$$\mathbf{x} = \mathbf{V}\mathbf{w} + \mathbf{e} \qquad \qquad \mathbf{w} \sim N(0, I) \\ \mathbf{e} \sim N(0, E) \\ \mathbf{x} \sim N(0, \mathbf{V}\mathbf{V}^T + E)$$

- *E* is a full rank diagonal matrix
- V has K columns: K-dimensional subspace
 - We will capture all the correlations in the subspace represented by V
- Estimated covariance: Diagonal covariance *E* plus the covariance between dimensions in **V**

Factor Analysis

- Initialize V and E
- E step:

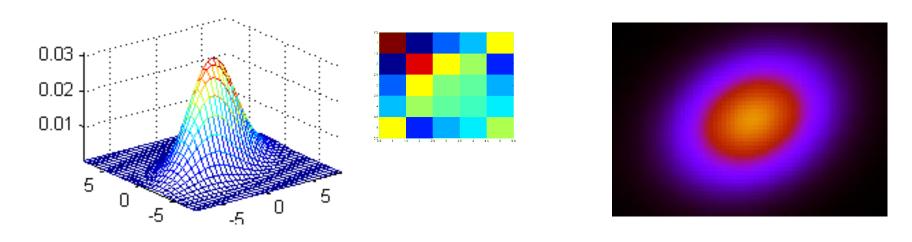
$$E_{\mathbf{w}|\mathbf{x}_i}[\mathbf{w}] = \mathbf{V}^T (\mathbf{V}\mathbf{V}^T + E)^{-1}\mathbf{x}_i$$

$$E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}\mathbf{w}^{T}] = I - \mathbf{V}^{T}(\mathbf{V}\mathbf{V}^{T} + E)^{-1}\mathbf{V} + E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]E_{\mathbf{w}|\mathbf{x}_{i}}[\mathbf{w}]^{T}$$

• M step:

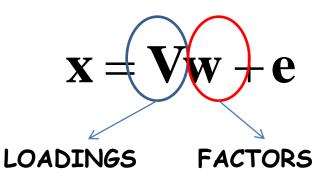
$$\mathbf{V} = \left(\sum_{i} \mathbf{x}_{i} E_{\mathbf{w} | \mathbf{x}_{i}} [\mathbf{w}^{T}]\right) \left(\sum_{i} E_{\mathbf{w} | \mathbf{x}_{i}} [\mathbf{w}\mathbf{w}^{T}]\right)^{-1}$$
$$E = \frac{1}{N} diag \left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - \frac{1}{N} \mathbf{V} \sum_{i} E_{\mathbf{w} | \mathbf{x}_{i}} [\mathbf{w}] \mathbf{x}_{i}^{T}\right)$$

FA Gaussian



- Will get a full covariance matrix
- But only estimate DK terms
- Data insufficiency less of a problem

The Factor Analysis Model



 $\mathbf{w} \sim N(0, I)$ $\mathbf{e} \sim N(0, E)$

- Often used to learn distribution of data when we have insufficient data
- Often used in psychometrics
 - Underlying model: The actual systematic variations in the data are totally explained by a small number of "factors"
 - FA uncovers these factors

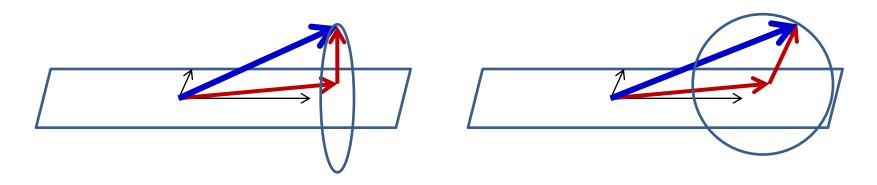
FA: Example

- Hypothesis: there are two kinds of <u>intelligence</u>, "verbal" and "mathematical",
 - neither is directly observed.
 - <u>Evidence</u> sought from examination scores from each of 10 different academic fields of 1000 students.
- Solution: Find out if distribution is well explained by two factors
 - Hack: Attempt to relate factors to verbal and math IQ

FA, PCA etc. $\mathbf{w} \sim N(0, I)$ $\mathbf{w} \sim N(0, E)$

- Note: distinction between PCA and FA is only in the assumptions about e
- FA looks a lot like PCA with noise
- FA can also be performed with incomplete data

FA, PCA etc.



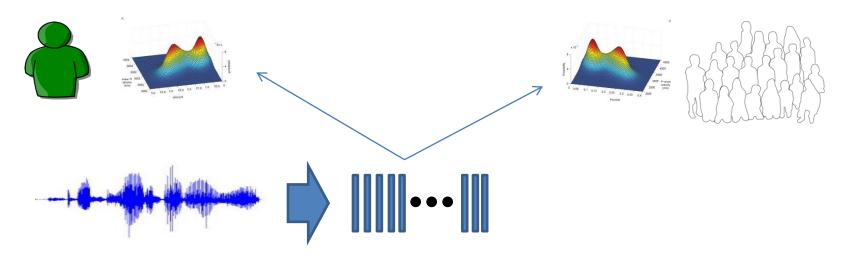
- PCA: Error is always at 90 degrees to the bases in ${\bf V}$
- FA: Error may be at any angle
- PCA used mainly to find *principal* directions that capture most of the variance
 - Bases in V will be orthogonal to one another
- FA tries to capture most of the covariance

FA: A very successful use

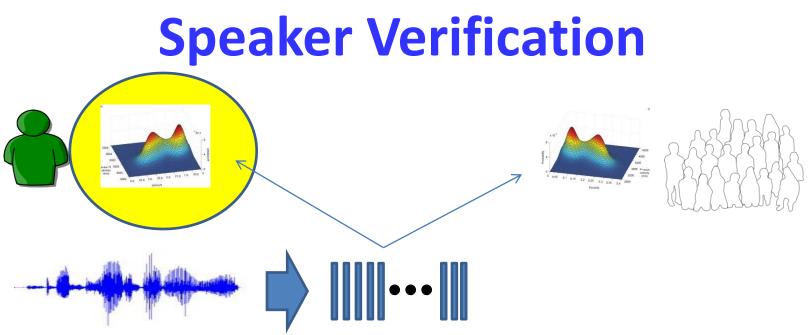
• Voice biometrics: Speaker identification

- Given: Only a small amount of training data from a speaker, learn model for speaker
 Use to verify speaker later
- Problem: Immense variation in ways people can speak
 - 15 minutes of training data totally insufficient!

Speaker Verification

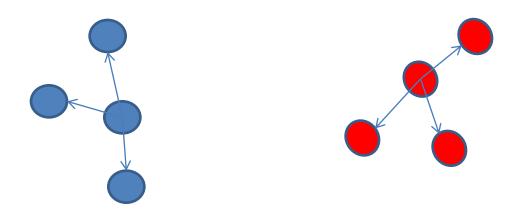


- A model represents distribution of cepstral vectors for the speaker
- A second model represents everyone else (potential imposters)
- The cepstra computed from a test recording are "scored" against both models
 - Accept the speaker if the speaker model scores higher

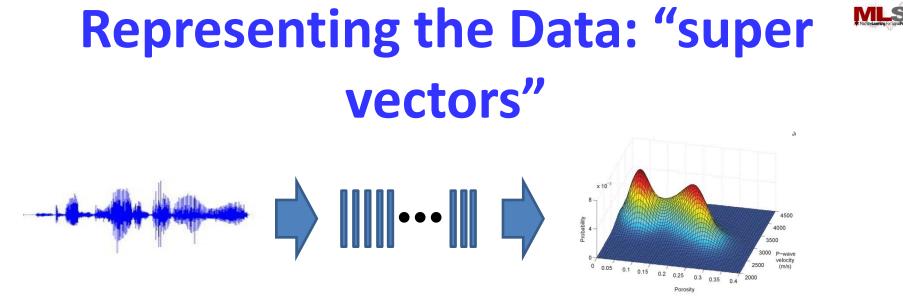


- Problem: One typically has only a few seconds or minutes of training data from the speaker
- Hard to estimate speaker model
- Test data may be spoken differently, or come over a different channel, or in noise
 - Wont really match

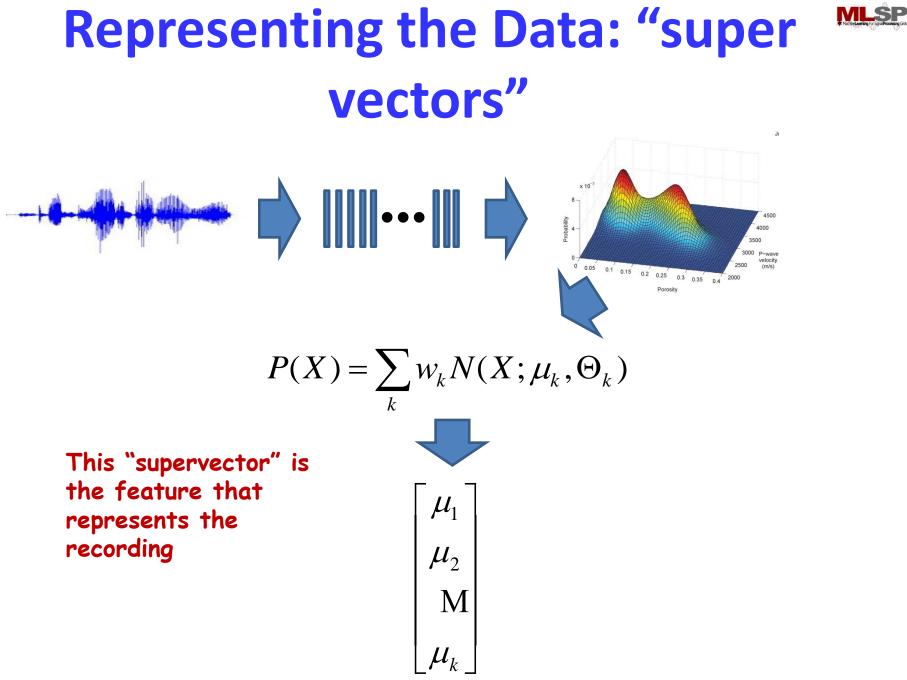
Hypothesis

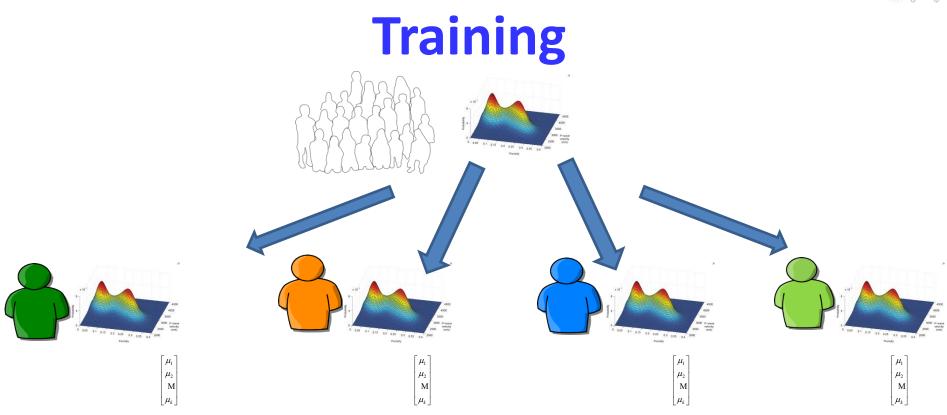


- Variations between different instances of the utterance spoken by the same speaker related to only a few factors
- Factors are common to all speakers
- Solution: Learn factors by analyzing many speakers
 - Use learned factors to predict variations for a given speaker
 - Can provide robust models for a speaker from very little data



- Convert recordings to a sequence of feature vectors
 - Cepstra
- Compute the probability distribution for the data
 Modeled as a Gaussian mixture
- The data are represented by the parameters of the distribution





 Supervectors are obtained for each training speaker by adapting a "Universal background model" trained from large amounts of data

Training the Factor Analyzer

 $\mathbf{x} = \mathbf{V}\mathbf{w} + \mathbf{e}$ $\mathbf{w} \sim N(0, I) \mathbf{e} \sim N(0, E)$

- The supervectors are assumed to be the output of a linear Gaussian process
- Use FA to estimate ${\bf V}$
 - $-\mathbf{V}$ are the factors that cause variations
 - The *real* information is in the factor \mathbf{w}

Training models for a speaker

$\mathbf{x} = \mathbf{V}\mathbf{w}_{S} + \mathbf{e}$ $\mathbf{w} \sim N(0, I) \mathbf{e} \sim N(0, E)$

- From training data: estimate the means for the speaker to conform to the factor analysis
 - Constrained estimation: requires much less data
- Use the estimated means as the distribution for the speaker
 - Solves data insufficiency problem
 - Also solves the problem of variations

Many other applications..

- Exploratory FA
- Confirmatory FA..