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Prediction :  a holy grail 

• Physical trajectories 
– Automobiles, rockets, heavenly bodies 

• Natural phenomena 
– Weather 

• Financial data 
– Stock market 

• World affairs 
– Who is going to have the next XXXX spring? 

• Signals 
– Audio, video.. 
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A Common Trait 

• Series data with trends 

• Stochastic functions of stochastic functions (of stochastic functions of …) 

• An underlying process that progresses (seemingly) randomly 

– E.g. Current position of a vehicle 

– E.g. current sentiment in stock market 

– Current state of social/economic indicators 
 

• Random expressions of underlying process 

– E.g  what you see from the vehicle 

– E.g. current stock prices of various stock 

– E.g. do populace stay quiet / protest on streets / topple dictator.. 
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What a sensible agent must do 

• Learn about the process 

– From whatever they know 

– Basic requirement for other 

procedures 

 

• Track underlying processes 

 

• Predict future values 
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A Specific Form of Process.. 

• Doubly stochastic processes 
 

 

• One random process generates an X 

– Random  process X   P(X; Q) 
 

• Second-level process generates observations 
as a function of  X 

• Random process  Y  P(Y;  f(X, L)) 
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Doubly Stochastic Processes 

• Doubly stochastic processes 
are models 

– May not be a true representation 
of process underlying actual data 

 

• First level variable may be a quantifiable variable 

– Position/state of vehicle 

– Second level variable is a stochastic function of position 

• First level variable may not have meaning 

– “Sentiment” of a stock market 

– “Configuration” of vocal tract 
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Stochastic Function of a Markov Chain 

• First-level variable is usually abstract 

 

 

• The first level variable assumed to be the output of a 
Markov Chain 

• The second level variable is a function of the output of the 
Markov Chain 

• Also called an HMM 

• Another variant – stochastic function of Markov process 

– Kalman Filtering.. 
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Markov Chain 

• Process can go through a number of states 

– Random walk, Brownian motion.. 

• From each state, it can go to any other state with a probability 

– Which only depends on the current state 

• Walk goes on forever 

– Or until it hits an “absorbing wall” 

• Output of the process – a sequence of states the process went 
through 
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Stochastic Function of a Markov Chain 

• Output: 

– Y   P(Y ; f([s1, s2, …], L)) 

• Specific to HMM: 

– Y == Y1 Y2 … 

– Yi  P(Yi ; f(si), L) 
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Stochastic function of Markov Chains 
(HMMS) 

• Problems: 
 

• Learn the nature of the process from data 

• Track the underlying state 

– Semantics 

• Predict the future 
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The little station between the mall and 
the city 

• A little station between the city and a mall 

– Inbound trains bring people back from the mall 

• Mainly shoppers 

• Occasional mall employee 
– Who may have shopped.. 

– Outbound trains bring back people from the city 

• Mainly office workers 

• But also the occasional shopper 
– Who may be from an office.. 

11755/18797 11 



The Turnstile 

• One jobless afternoon you amuse yourself by 
observing the turnstile at the station 

– Groups of people exit periodically 

– Some people are wearing casuals, others are formally 
dressed  

– Some are carrying shopping bags, other have 
briefcases 

– Was the last train an incoming train or an outgoing one 
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The Turnstile 

• One jobless afternoon you amuse yourself by observing 
the turnstile at the station 
– …. 

 

• What you know: 
– People shop in casual attire 

• Unless they head to the shop from work 

– Shoppers carry shopping bags,  people from offices carry 
briefcases 

• Usually 

– There are more shops than offices at the mall 

– There are more offices than shops in the city 

– Outbound trains follow inbound trains 
• Usually 
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Modelling the problem 

• Inbound trains (from the mall) have  
– more casually dressed people 

– more people carrying shopping bags 

•  The number of people leaving at any time may be 
small 
– Insufficient to judge 
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Modelling the problem 

• P(attire, luggage | outbound) = ? 

• P (attire, luggage | inbound ) = ? 

• P(outbound | inbound) = ? 

• P( inbound | outbound) = ? 

• If you know all this, how do you decide the direction of the train 

• How do you estimate these terms? 
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• “Probabilistic function of a markov chain” 

• Models a dynamical system 

• System goes through a number of states 
– Following a Markov chain model 

• On arriving at any state it generates observations according to 
a state-specific probability distribution 
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A Thought Experiment 

• Two “shooters” roll dice 

• A caller calls out the number rolled. We only get to hear what he calls out 

• The caller behaves randomly 

– If he has just called a number rolled by the blue shooter, his next call is that of the red shooter 
70% of the time 

– But if he has just called the red shooter, he has only a 40% probability of calling the red 
shooter again in the next call 

• How do we characterize this? 
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I just called out the 6 from the blue 

guy.. gotta switch to pattern 2.. 

6 4 1 5 3 2 2 2 … 

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 … 



A Thought Experiment 

• The dots and arrows represent the “states” of the caller 
– When he’s on the blue circle he calls out the blue dice 

– When he’s on the red circle he calls out the red dice 

– The histograms represent the probability distribution of the numbers 
for the blue and red dice 
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A Thought Experiment 

• When the caller is in any state, he calls a number based on the 
probability distribution of that state 

– We call these state output distributions 

• At each step, he moves from his current state to another state following 
a probability distribution 

– We call these transition probabilities 

• The caller is an HMM!!! 
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What is an HMM 

• HMMs are statistical models for (causal) processes 
 

• The model assumes that the process can be in one of a number 
of states at any time instant 

 

• The state of the process at any time instant depends only on the 
state at the previous instant (causality, Markovian) 

 

• At each instant the process generates an observation from a 
probability distribution that is specific to the current state 

 

• The generated observations are all that we get to see 
–  the actual state of the process is not directly observable  

• Hence the qualifier hidden 
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• A Hidden Markov Model consists of two components 
– A state/transition backbone that specifies how many states there are, and how they can 

follow one another 

– A set of probability distributions, one for each state, which specifies the distribution of all 
vectors in that state 
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Hidden Markov Models 

• This can be factored into two separate probabilistic entities 
– A probabilistic Markov chain with states and transitions 
– A set of data probability distributions, associated with the states 

Markov chain 

Data distributions 



HMM assumed to be 

generating data 

How an HMM models a process 

state 

distributions 

state 

sequence 

observation

sequence 
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HMM Parameters 

• The topology of the HMM 

– Number of states and allowed 
transitions 

– E.g. here we have 3 states and cannot 
go from the blue state to the red 

• The transition probabilities 

– Often represented as a matrix as here 

– Tij is the probability that when in 
state i, the process will move to j 

• The probability pi of beginning at 
any state si  

– The complete set is represented as p 

• The state output distributions 
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HMM state output distributions 

• The state output distribution is the distribution of data produced from 

any state 

• Typically modelled as Gaussian 

 

 

 

• The paremeters are mi and Qi 
 

• More typically, modelled as Gaussian mixtures 

 

 
 

• Other distributions may also be used 

• E.g. histograms in the dice case 
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The Diagonal Covariance Matrix 

• For GMMs it is frequently assumed that the feature 

vector dimensions are all independent of each other 
 

• Result: The covariance matrix is reduced to a diagonal 

form 

– The determinant of the diagonal Q matrix is easy to 

compute 
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Full covariance: 
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off-diagonal elements 
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Three Basic HMM Problems 

• What is the probability that it will generate a 
specific observation sequence 

 

• Given a observation sequence, how do we 
determine which observation was generated 
from which state 
– The state segmentation problem 

 

• How do we learn the parameters of the HMM 
from observation sequences  
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Computing the Probability of  an 
Observation Sequence 

• Two aspects to producing the observation: 

– Progressing through a sequence of states 

– Producing observations from these states 
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HMM assumed to be 

generating data 

Progressing through states 

state 

sequence 

• The process begins at some state (red) here 

• From that state, it makes an allowed transition 

– To arrive at the same or any other state 

• From that state it makes another allowed transition 

– And so on 
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Probability that the HMM will follow 
a particular state sequence 

 

• P(s1) is the probability that the process will initially be in 
state s1 

 

• P(si | si) is the transition probability of moving to state si at 
the next time instant when the system is currently in si 

– Also denoted by Tij earlier 
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HMM assumed to be 

generating data 

Generating Observations from States 

state 

distributions 

state 

sequence 

observation

sequence 

• At each time it generates an observation from the 
state it is in at that time 
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• P(oi | si) is the probability of generating 

observation oi when the system is in state si 

Probability that the HMM will generate 
a particular observation sequence given 

a state sequence  
(state sequence known) 

 

Computed from the Gaussian or Gaussian mixture for state s1 
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HMM assumed to 
be generating data 

Proceeding through States and 
Producing Observations 

state 

distributions 

state 

sequence 

observation

sequence 

• At each time it produces an observation and makes 
a transition 
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Probability that the HMM will generate a 
particular state sequence and from it, a 

particular observation sequence 
 

P o s P o s P o s P s P s s P s s( | ) ( | ) ( | )... ( ) ( | ) ( | )...
1 1 2 2 3 3 1 2 1 3 2

P o o o s s s( , , ,..., , , ,...)
1 2 3 1 2 3



P o o o s s s P s s s( , , ,...| , , ,...) ( , , ,...)
1 2 3 1 2 3 1 2 3
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Probability of Generating an 
Observation Sequence 

P o s P o s P o s P s P s s P s s
all possible

state sequences

( | ) ( | ) ( | )... ( ) ( | ) ( | )...
.

.

1 1 2 2 3 3 1 2 1 3 2

P o o o s s s
all possible

state sequences

( , , ,..., , , ,...)
.

.

1 2 3 1 2 3
P o o o( , , ,...)

1 2 3


• The precise state sequence is not known 

• All possible state sequences must be considered 
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Computing it Efficiently 

• Explicit summing over all state sequences is not 
tractable 

– A very large number of possible state sequences 

 

• Instead we use the forward algorithm 
 

• A dynamic programming technique. 
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Illustrative Example 

• Example: a generic HMM with 5 states and a “terminating 
state”.  
– Left to right topology 

• P(si) = 1 for state 1 and 0 for others 

– The arrows represent transition for which the probability is not 0 
 

• Notation: 
– P(si | si) = Tij 

– We represent P(ot | si) = bi(t) for brevity 
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Diversion: The Trellis 

Feature vectors 

(time) 

S
ta

te
 i
n
d
e
x
 

t-1 t 

s 

• The trellis is a graphical representation of all possible paths through the HMM to 
produce a given observation 

• The Y-axis represents HMM states, X axis represents observations 

• Every edge in the graph represents a valid transition in the HMM over a single 
time step  

• Every node represents the event of a particular observation being generated 
from a particular state 
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The Forward Algorithm 

time 

S
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te
 i
n
d
e
x
 

t-1 t 

s 

• a(s,t) is the total probability of ALL state 
sequences that end at state s at time t, and 
all observations until xt 
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The Forward Algorithm 

time 
t-1 t 

Can be recursively 

estimated starting 

from the first time 

instant  

(forward recursion) 
s 

S
ta

te
 i
n
d
e
x
 

• a(s,t) can be recursively computed in terms of 
a(s’,t’), the forward probabilities at time t-1  
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• In the final observation the alpha at each state gives the 
probability of all state sequences ending at that state 

• General model: The total probability of the observation is 
the sum of the alpha values at all states 
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The absorbing state 

• Observation sequences are assumed to end 
only when the process arrives at an absorbing 
state 
– No observations are produced from the absorbing 

state 
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• Absorbing state model: The total probability is the alpha 
computed at the absorbing state after the final observation 
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Problem 2: State segmentation 

• Given only a sequence of observations, how 
do we determine which sequence of states 
was followed in producing it? 
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HMM assumed to be 

generating data 

The HMM as a generator 

state 

distributions 

state 

sequence 

observation

sequence 

• The process goes through a series of states and 
produces observations from them 
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HMM assumed to be 

generating data 

state 

distributions 

state 

sequence 

observation

sequence 

• The observations do not reveal the underlying state 
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HMM assumed to be 

generating data 

state 

distributions 

state 

sequence 

observation

sequence 

• State segmentation: Estimate state sequence given 
observations 
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Estimating the State Sequence 

• Many different state sequences are capable of 
producing the observation 

 
 

• Solution: Identify the most probable  state sequence 

– The state sequence for which the probability of 
progressing through that sequence and generating the 
observation sequence is maximum 

– i.e                                                             is maximum 
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Estimating the state sequence 

• Once again, exhaustive evaluation is impossibly 
expensive 

• But once again a simple dynamic-programming 
solution is available 

 

 

 

• Needed: 

 

 

)|()|()|()|()()|(maxarg 23331222111,...,, 321
ssPsoPssPsoPsPsoPsss
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Estimating the state sequence 

• Once again, exhaustive evaluation is impossibly 
expensive 

• But once again a simple dynamic-programming 
solution is available 

 

 

 

• Needed: 

 

 

)|()|()|()|()()|(maxarg 23331222111,...,, 321
ssPsoPssPsoPsPsoPsss
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HMM assumed to be 

generating data 

The HMM as a generator 

state 

distributions 

state 

sequence 

observation

sequence 

• Each enclosed term represents one forward 
transition and a subsequent emission 
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The state sequence 

• The probability of a state sequence ?,?,?,?,sx,sy ending at 

time t , and producing all observations until ot  

– P(o1..t-1, ?,?,?,?, sx , ot,sy) = P(o1..t-1,?,?,?,?, sx ) P(ot|sy)P(sy|sx) 

 

 

• The best state sequence that ends with sx,sy at t  will have 

a probability equal to the probability of the best state 

sequence ending at t-1 at sx  times P(ot|sy)P(sy|sx) 
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Extending the state sequence 

state 

distributions 

state 

sequence 

observation

sequence 

• The probability of a state sequence ?,?,?,?,sx,sy 
ending at time t and producing observations until ot 

– P(o1..t-1,ot, ?,?,?,?, sx ,sy) = P(o1..t-1,?,?,?,?, sx )P(ot|sy)P(sy|sx) 
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Trellis 
• The graph below shows the set of all possible state 

sequences through this HMM in five time instants 
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The cost of extending a state 
sequence 

• The cost of extending a state sequence ending at sx is 
only dependent on the transition from sx to sy, and 
the observation probability at sy 
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The cost of extending a state 
sequence 

• The best path to sy through sx  is simply an 
extension of the best path to sx 
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time 
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sx 

BestP(o1..t-1,?,?,?,?, sx ) 

P(ot|sy)P(sy|sx) 
 



The Recursion 

• The overall best path to sy is an extension of 
the best path to one of the states at the 
previous time 
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The Recursion 

 Prob. of best path to sy =  
Maxsx 

 BestP(o1..t-1,?,?,?,?, sx ) P(ot|sy)P(sy|sx) 

 

11755/18797 57 

time 
t 

sy 



Finding the best state sequence 

• The simple algorithm just presented is called the VITERBI 
algorithm in the literature 
– After A.J.Viterbi, who invented this dynamic programming algorithm for a 

completely different purpose: decoding error correction codes! 
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Viterbi Search (contd.) 
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time 
Initial state initialized with path-score = P(s1)b1(1) 

All other states have score 0 since P(si) = 0 for them 



Viterbi Search (contd.) 

11755/18797 60 

time 

State with best path-score 

State with path-score < best 

State without a valid path-score 

P (t) 
j 

= max [P (t-1)  t   b  (t)] 
i ij j i 

Total path-score ending up at state j at time t 

State transition probability, i to j 

Score for state j, given the input at time t 



Viterbi Search (contd.) 
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time 

P (t) 
j 

= max [P (t-1)  t   b  (t)] 
i ij j i 

Total path-score ending up at state j at time t 

State transition probability, i to j 

Score for state j, given the input at time t 



Viterbi Search (contd.) 
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Viterbi Search (contd.) 
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Viterbi Search (contd.) 
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Viterbi Search (contd.) 

11755/18797 65 

time 



Viterbi Search (contd.) 
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Viterbi Search (contd.) 
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Viterbi Search (contd.) 
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Viterbi Search (contd.) 
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THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE 

SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION 



Problem3: Training HMM parameters 

• We can compute the probability of an observation, 
and the best state sequence given an observation, 
using the HMM’s parameters 

 

• But where do the HMM parameters come from? 
 

• They must be learned from a collection of 
observation sequences 
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Learning HMM parameters: Simple 
procedure – counting 

• Given a set of training instances 

• Iteratively: 

1. Initialize HMM parameters 

2. Segment all training instances 

3. Estimate transition probabilities and state 
output probability parameters by counting 
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Learning by counting example 

• Explanation by example in next few slides 
• 2-state HMM, Gaussian PDF at states, 3 observation 

sequences 
• Example shows ONE iteration 

– How to count after state sequences are obtained 
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Example: Learning HMM Parameters 

• We have an HMM with two states s1 and s2. 

• Observations are vectors xij 
– i-th sequence,  j-th vector 

• We are given the following three observation sequences 
– And have already estimated state sequences 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• Initial state probabilities (usually denoted as p): 

– We have 3 observations 

– 2 of these begin with S1, and one with S2 

– p(S1) = 2/3, p(S2) = 1/3 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• Transition probabilities: 
– State S1 occurs 11 times in non-terminal locations 

– Of these, it is followed by S1 X times 

– It is followed by S2 Y times 

– P(S1 | S1) = x/ 11;   P(S2 | S1) = y / 11 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• Transition probabilities: 
– State S1 occurs 11 times in non-terminal locations 

– Of these, it is followed immediately by S1 6 times 

– It is followed by S2 Y times 

– P(S1 | S1) = x/ 11;   P(S2 | S1) = y / 11 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• Transition probabilities: 
– State S1 occurs 11 times in non-terminal locations 

– Of these, it is followed immediately by S1 6 times 

– It is followed immediately by S2 5 times 

– P(S1 | S1) = x/ 11;   P(S2 | S1) = y / 11 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• Transition probabilities: 
– State S1 occurs 11 times in non-terminal locations 

– Of these, it is followed immediately by S1 6 times 

– It is followed immediately by S2 5 times 

– P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• Transition probabilities: 
– State S2 occurs 13 times in non-terminal locations 

– Of these, it is followed immediately by S1 6 times 

– It is followed immediately by S2 5 times 

– P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs. Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• Transition probabilities: 
– State S2 occurs 13 times in non-terminal locations 

– Of these, it is followed immediately by S1 5 times 

– It is followed immediately by S2 5 times 

– P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• Transition probabilities: 
– State S2 occurs 13 times in non-terminal locations 

– Of these, it is followed immediately by S1 5 times 

– It is followed immediately by S2 8 times 

– P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• Transition probabilities: 
– State S2 occurs 13 times in non-terminal locations 

– Of these, it is followed immediately by S1 5 times 

– It is followed immediately by S2 8 times 

– P(S1 | S2) = 5 / 13;   P(S2 | S2) = 8 / 13 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Parameters learnt so far 

• State initial probabilities, often denoted as p 

–  p(S1) = 2/3 = 0.66 

–  p(S2) = 1/3 = 0.33 
 

• State transition probabilities 

– P(S1 | S1) = 6/11 = 0.545;  P(S2 | S1) = 5/11 = 0.455 

– P(S1 | S2) = 5/13 = 0.385; P(S2 | S2) = 8/13 = 0.615 

– Represented as a transition matrix 

11755/18797 83 




















615.0385.0

455.0545.0

)2|2()2|1(

)1|2()1|1(

SSPSSP

SSPSSP
A

Each row of this matrix must sum to 1.0 



Example: Learning HMM Parameters 

• State output probability for S1 

– There are 13 observations in S1 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• State output probability for S1 
– There are 13 observations in S1 

– Segregate them out and count 
• Compute parameters (mean and variance) of Gaussian 

output density for state S1 
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Time 1 2 6 7 9 10 

state S1 S1 S1 S1 S1 S1 

Obs Xa1 Xa2 Xa6 Xa7 Xa9 Xa10 

Time 3 4 9 

state S1 S1 S1 

Obs Xb3 Xb4 Xb9 

Time 1 3 4 5 

state S1 S1 S1 S1 

Obs Xc1 Xc2 Xc4 Xc5 
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Example: Learning HMM Parameters 

• State output probability for S2 

– There are 14 observations in S2 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• State output probability for S2 
– There are 14 observations in S2 

– Segregate them out and count 
• Compute parameters (mean and variance) of Gaussian 

output density for state S2 
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Time 3 4 5 8 

state S2 S2 S2 S2 

Obs Xa3 Xa4 Xa5 Xa8 

Time 1 2 5 6 7 8 

state S2 S2 S2 S2 S2 S2 

Obs Xb1 Xb2 Xb5 Xb6 Xb7 Xb8 

Time 2 6 7 8 

state S2 S2 S2 S2 

Obs Xc2 Xc6 Xc7 Xc8 
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We have learnt all the HMM parmeters 

• State initial probabilities, often denoted as p 

–  p(S1) = 0.66             p(S2) = 1/3 = 0.33 
 

• State transition probabilities 
 

 

 

• State output probabilities 
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615.0385.0

455.0545.0
A

State output probability for S1 State output probability for S2 
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Update rules at each iteration 

• Assumes state output PDF = Gaussian 
– For GMMs, estimate GMM parameters from collection of observations 

at any state 
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 Initialize all HMM parameters 

 

 Segment all training observation sequences into states using the Viterbi 

algorithm with the current models 

 

 Using estimated state sequences and training observation sequences, 

reestimate the HMM parameters 

 

 This method is also called a “segmental k-means” learning procedure 

Training by segmentation: Viterbi 
training 

11755/18797 

Initial  
models Segmentations Models Converged? 

yes 

no 



Alternative to counting: SOFT 
counting 

• Expectation maximization 

• Every observation contributes to every state 
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Update rules at each iteration 

• Every observation contributes to every state 
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Update rules at each iteration 

• Where did these terms come from? 
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),...,,,)(( 21 Ti xxxststateP 

• The probability that the process was at s when 
it generated Xt  given the entire observation 

• Dropping the “Obs” subscript for brevity 

 

 

• We will compute                                                     
first 

– This is the probability that the process visited s at 
time t while producing the entire observation 
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• The probability that the HMM was in a particular state s when 
generating the observation sequence  is the probability that it 
followed a state sequence that passed through s at time t 
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s 

time 
t 

),...,,,)(( 21 TxxxststateP 



• This can be decomposed into two multiplicative sections 
– The section of the lattice leading into state s at time t and the section 

leading out of it 
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time 
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The Forward Paths 
• The probability of the red section is the total probability of all 

state sequences ending at state s at time t 

– This is simply a(s,t) 

– Can be computed using the forward algorithm 
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time 
t 

s 



The Backward Paths 
• The blue portion represents the probability of all state 

sequences that began at state s at time t 
– Like the red portion it can be computed using a backward recursion 
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time 
t 



The Backward Recursion 

t+1 

s 

t 

Can be recursively 

estimated starting 

from the final time 

time instant 

(backward recursion) 

time 

• b(s,t) is the total probability of ALL state sequences that 
depart from s at time t, and all observations after xt 

– b(s,T) = 1 at the final time instant for all valid final states 
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The complete probability 

t+1 t t-1 

s 

time 

a(s,t-1) b(s,t) 

b(N,t) 

a(s1,t-1) 

))(,,...,,(),(),( 21 ststatexxxPtsts Ttt  ba
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Posterior probability of a state 

• The probability that the process was in state s 
at time t, given that we have observed the 
data is obtained by simple normalization 

 

 

 

• This term is often referred to as the gamma 
term and denoted by gs,t 
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Update rules at each iteration 

• These have been found 
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Update rules at each iteration 

• Where did these terms come from? 
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s’ 

time 

t 

),...,,,')1(,)(( 21 TxxxststateststateP 

s 

t+1 
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s’ 
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The a posteriori probability of 
transition 

• The a posteriori probability of a transition 
given an observation 
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Update rules at each iteration 

• These have been found 
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State 
association 
probabilities 

Initial  
models 

 Every feature vector associated with every state of every HMM with a 

probability 

 

 

 

 

 

 Probabilities computed using the forward-backward algorithm 

 Soft decisions taken at the level of HMM state 

 In practice, the segmentation based Viterbi training is much easier to 

implement and is much faster 

 The difference in performance between the two is small, especially if we have 

lots of training data 

Training without explicit segmentation: 
Baum-Welch training 
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Models Converged? 
yes 

no 



HMM Issues 

• How to find the best state sequence: Covered 

• How to learn HMM parameters: Covered 

• How to compute the probability of an 
observation sequence: Covered 
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Magic numbers 

• How many states: 

– No nice automatic technique to learn this 

– You choose 

• For speech, HMM topology is usually left to right (no 
backward transitions) 

• For other cyclic processes, topology must reflect nature 
of process 

• No. of states – 3 per phoneme in speech 

• For other processes, depends on estimated no. of 
distinct states in process 
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Applications of HMMs 

• Classification: 
– Learn HMMs for the various classes of time series 

from training data 

– Compute probability of test time series using the 
HMMs for each class 

– Use in a Bayesian classifier 

– Speech recognition, vision, gene sequencing, 
character recognition, text mining… 

• Prediction 

• Tracking 
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Applications of HMMs 

• Segmentation: 

– Given HMMs for various events, find event 
boundaries 

• Simply find the best state sequence and the locations 
where state identities change 

 

• Automatic speech segmentation, text 
segmentation by topic, geneome 
segmentation, … 
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