

1

Machine Learning for Signal Processing Hidden Markov Models

Bhiksha Raj 24 Nov 2015

Prediction : a holy grail

- Physical trajectories
 - Automobiles, rockets, heavenly bodies
- Natural phenomena
 - Weather
- Financial data
 - Stock market
- World affairs
 - Who is going to have the next XXXX spring?
- Signals
 - Audio, video..

A Common Trait

- Series data with trends
- Stochastic functions of stochastic functions (of stochastic functions of ...)
- An underlying process that progresses (seemingly) randomly
 - E.g. Current position of a vehicle
 - E.g. current sentiment in stock market
 - Current state of social/economic indicators
- Random expressions of underlying process
 - E.g what you see from the vehicle
 - E.g. current stock prices of various stock
 - E.g. do populace stay quiet / protest on streets / topple dictator..

What a sensible agent must do

- Learn about the process
 - From whatever they know
 - Basic requirement for other procedures

• Track underlying processes

• Predict future values

A Specific Form of Process..

Doubly stochastic processes

- One random process generates an X
 − Random process X → P(X; Θ)
- Second-level process generates observations as a function of X
- Random process $Y \rightarrow P(Y; f(X, \Lambda))$

Doubly Stochastic Processes

- Doubly stochastic processes are *models*
 - May not be a *true* representation of process underlying actual data

- First level variable may be a *quantifiable* variable
 - Position/state of vehicle
 - Second level variable is a stochastic function of position
- First level variable may *not* have meaning
 - "Sentiment" of a stock market
 - "Configuration" of vocal tract

Stochastic Function of a Markov Chain

• First-level variable is *usually* abstract

- The first level variable assumed to be the output of a Markov Chain
- The second level variable is a function of the output of the Markov Chain
- Also called an HMM
- Another variant stochastic function of Markov *process*
 - Kalman Filtering..

Markov Chain

- Process can go through a number of states
 - Random walk, Brownian motion..
- From each state, it can go to any other state with a probability
 - Which only depends on the current state
- Walk goes on forever
 - Or until it hits an "absorbing wall"
- Output of the process a sequence of states the process went through

Stochastic Function of a Markov Chain

• Output:

$$-Y \rightarrow P(Y; f([s_1, s_2, ...], \Lambda))$$

• Specific to HMM:

$$-Y == Y_1 Y_2 \dots$$
$$-Y_i \rightarrow P(Y_i ; f(s_i), \Lambda)$$

Stochastic function of Markov Chains (HMMS)

- Problems:
- Learn the nature of the process from data
- Track the underlying state
 - Semantics
- Predict the future

The little station between the mall and the city

- A little station between the city and a mall
 - Inbound trains bring people back from the mall
 - Mainly shoppers
 - Occasional mall employee
 - Who may have shopped..
 - Outbound trains bring back people from the city
 - Mainly office workers
 - But also the occasional shopper
 - Who may be from an office..

The Turnstile

- One jobless afternoon you amuse yourself by observing the turnstile at the station
 - Groups of people exit periodically
 - Some people are wearing casuals, others are formally dressed
 - Some are carrying shopping bags, other have briefcases
 - Was the last train an incoming train or an outgoing one

The Turnstile

 One jobless afternoon you amuse yourself by observing the turnstile at the station

- What you know:
 - People shop in casual attire
 - Unless they head to the shop from work
 - Shoppers carry shopping bags, people from offices carry briefcases
 - Usually
 - There are more shops than offices at the mall
 - There are more offices than shops in the city
 - Outbound trains follow inbound trains
 - Usually

Modelling the problem

- Inbound trains (from the mall) have
 - more casually dressed people
 - more people carrying shopping bags
- The number of people leaving at any time may be small
 - Insufficient to judge

Modelling the problem

- P(attire, luggage | outbound) = ?
- P (attire, luggage | inbound) = ?
- P(outbound | inbound) = ?
- P(inbound | outbound) = ?
- If you know all this, how do you decide the direction of the train
- How do you estimate these terms?

What is an HMM

- "Probabilistic function of a markov chain"
- Models a dynamical system
- System goes through a number of states
 - Following a Markov chain model
- On arriving at any state it generates observations according to a state-specific probability distribution

A Thought Experiment

63154124 ...

44163212...

- Two "shooters" roll dice
- A caller calls out the number rolled. We only get to hear what he calls out
- The caller behaves randomly
 - If he has just called a number rolled by the blue shooter, his next call is that of the red shooter
 70% of the time
 - But if he has just called the red shooter, he has only a 40% probability of calling the red shooter again in the next call
- How do we characterize this?

A Thought Experiment

- The dots and arrows represent the "states" of the caller
 - When he's on the blue circle he calls out the blue dice
 - When he's on the red circle he calls out the red dice
 - The histograms represent the probability distribution of the numbers for the blue and red dice

A Thought Experiment

- When the caller is in any state, he calls a number based on the probability distribution of that state
 - We call these state output distributions
- At each step, he moves from his current state to another state following a probability distribution
 - We call these transition probabilities
- The caller is an HMM!!!

What is an HMM

- HMMs are statistical models for (causal) processes
- The model assumes that the process can be in one of a number of states at any time instant
- The state of the process at any time instant depends only on the state at the previous instant (causality, Markovian)
- At each instant the process generates an observation from a probability distribution that is specific to the current state
- The generated observations are all that we get to see
 - the actual state of the process is not directly observable
 - Hence the qualifier hidden

Hidden Markov Models

- A Hidden Markov Model consists of two components
 - A state/transition backbone that specifies how many states there are, and how they can follow one another
 - A set of probability distributions, one for each state, which specifies the distribution of all vectors in that state

- This can be factored into two separate probabilistic entities
 - A probabilistic Markov chain with states and transitions
 - A set of data probability distributions, associated with the states

How an HMM models a process

HMM assumed to be generating data

HMM Parameters

- The *topology* of the HMM
 - Number of states and allowed transitions
 - E.g. here we have 3 states and cannot go from the blue state to the red
- The transition probabilities
 - Often represented as a matrix as here
 - T_{ij} is the probability that when in state i, the process will move to j
- The probability π_i of beginning at any state s_i
 - The complete set is represented as $\boldsymbol{\pi}$
- The state output distributions

HMM state output distributions

- The state output distribution is the distribution of data produced from any state
- Typically modelled as Gaussian

$$P(x \mid s_i) = Gaussian(x; \mu_i, \Theta_i) = \frac{1}{\sqrt{(2\pi)^d |\Theta_i|}} e^{-0.5(x - \mu_i)^T \Theta_i^{-1}(x - \mu_i)}$$

- The paremeters are μ_i and Θ_i
- More typically, modelled as Gaussian mixtures

$$P(x \mid s_i) = \sum_{j=0}^{K-1} w_{i,j} Gaussian(x; \mu_{i,j}, \Theta_{i,j})$$

- Other distributions may also be used
- E.g. histograms in the dice case

The Diagonal Covariance Matrix

 $-\Sigma_i (x_i - \mu_i)^2 / 2\sigma_i^2$

- For GMMs it is frequently assumed that the feature vector dimensions are all *independent* of each other
- *Result*: The covariance matrix is reduced to a diagonal form
 - The determinant of the diagonal Θ matrix is easy to compute

Three Basic HMM Problems

- What is the probability that it will generate a specific observation sequence
- Given a observation sequence, how do we determine which observation was generated from which state
 - The state segmentation problem
- How do we *learn* the parameters of the HMM from observation sequences

Computing the Probability of an Observation Sequence

- Two aspects to producing the observation:
 - Progressing through a sequence of states
 - Producing observations from these states

Progressing through states

- The process begins at some state (red) here
- From that state, it makes an allowed transition
 - To arrive at the same or any other state
- From that state it makes another allowed transition
 - And so on

Probability that the HMM will follow a particular state sequence

$$P(s_1, s_2, s_3, \dots) = P(s_1) P(s_2 | s_1) P(s_3 | s_2) \dots$$

- *P*(*s*₁) is the probability that the process will initially be in state *s*₁
- P(s_i / s_i) is the transition probability of moving to state s_i at the next time instant when the system is currently in s_i
 - Also denoted by T_{ij} earlier

Generating Observations from States

 At each time it generates an observation from the state it is in at that time

Probability that the HMM will generate a particular observation sequence given a state sequence (state sequence known)

$$P(o_1, o_2, o_3, \dots | s_1, s_2, s_3, \dots) = P(o_1 | s_1) P(o_2 | s_2) P(o_3 | s_3) \dots$$

Computed from the Gaussian or Gaussian mixture for state s₁

 P(o_i | s_i) is the probability of generating observation o_i when the system is in state s_i

Proceeding through States and Producing Observations HMM assumed to be generating data state sequence state distributions observation sequence

 At each time it produces an observation and makes a transition

Probability that the HMM will generate a particular state sequence and from it, a particular observation sequence

$$P(o_{1}, o_{2}, o_{3}, ..., s_{1}, s_{2}, s_{3}, ...) =$$

$$P(o_{1}, o_{2}, o_{3}, ..., |s_{1}, s_{2}, s_{3}, ...) P(s_{1}, s_{2}, s_{3}, ...) =$$

$$P(o_{1}|s_{1}) P(o_{2}|s_{2}) P(o_{3}|s_{3}) ... P(s_{1}) P(s_{2}|s_{1}) P(s_{3}|s_{2}) ...$$

Probability of Generating an Observation Sequence

- The precise state sequence is not known
- All possible state sequences must be considered

$$P(o_1, o_2, o_3, \ldots) = \sum_{\substack{all.possible\\state.sequences}} P(o_1, o_2, o_3, \ldots, s_1, s_2, s_3, \ldots) =$$

$$\sum_{\substack{\text{all.possible}\\\text{state.sequences}}} P(o_1|s_1) P(o_2|s_2) P(o_3|s_3) \dots P(s_1) P(s_2|s_1) P(s_3|s_2) \dots$$

Computing it Efficiently

- Explicit summing over all state sequences is not tractable
 - A very large number of possible state sequences
- Instead we use the forward algorithm
- A dynamic programming technique.

Illustrative Example

- Example: a generic HMM with 5 states and a "terminating state".
 - Left to right topology
 - $P(s_i) = 1$ for state 1 and 0 for others
 - The arrows represent transition for which the probability is not 0
- Notation:
 - $P(s_i \mid s_i) = T_{ij}$
 - We represent $P(o_t | s_i) = b_i(t)$ for brevity

- The trellis is a graphical representation of all possible paths through the HMM to produce a given observation
- The Y-axis represents HMM states, X axis represents observations
- Every edge in the graph represents a valid transition in the HMM over a single time step
- Every node represents the event of a particular observation being generated from a particular state

The Forward Algorithm

State index

 α(s,t) is the total probability of ALL state sequences that end at state s at time t, and all observations until x_t

The Forward Algorithm

α(s,t) can be recursively computed in terms of α(s',t'), the forward probabilities at time t-1

The Forward Algorithm $Totalprob = \sum_{s} \alpha(s,T)$

• In the final observation the alpha at each state gives the probability of all state sequences ending at that state

State index

 General model: The total probability of the observation is the sum of the alpha values at all states

The absorbing state

- Observation sequences are assumed to end only when the process arrives at an absorbing state
 - No observations are produced from the absorbing state

The Forward Algorithm

• Absorbing state model: The total probability is the alpha computed at the absorbing state after the final observation

Problem 2: State segmentation

 Given only a sequence of observations, how do we determine which sequence of states was followed in producing it?

The HMM as a generator

 The process goes through a series of states and produces observations from them

States are hidden

HMM assumed to be generating data

• The observations do not reveal the underlying state

The state segmentation problem

HMM assumed to be generating data

 State segmentation: Estimate state sequence given observations

Estimating the State Sequence

 Many different state sequences are capable of producing the observation

- Solution: Identify the most *probable* state sequence
 - The state sequence for which the probability of progressing through that sequence and generating the observation sequence is maximum
 - i.e $P(o_1, o_2, o_3, ..., s_1, s_2, s_3, ...)$ is maximum

Estimating the state sequence

- Once again, exhaustive evaluation is impossibly expensive
- But once again a simple dynamic-programming solution is available

 $P(o_1, o_2, o_3, \dots, s_1, s_2, s_3, \dots) =$

 $P(o_1|s_1)P(o_2|s_2)P(o_3|s_3)...P(s_1)P(s_2|s_1)P(s_3|s_2)...$

• Needed:

 $\arg\max_{s_1,s_2,s_3,\dots} P(o_1 \mid s_1) P(s_1) P(o_2 \mid s_2) P(s_2 \mid s_1) P(o_3 \mid s_3) P(s_3 \mid s_2)$

Estimating the state sequence

- Once again, exhaustive evaluation is impossibly expensive
- But once again a simple dynamic-programming solution is available

 $P(o_1, o_2, o_3, \dots, s_1, s_2, s_3, \dots) =$

 $P(o_1|s_1)P(o_2|s_2)P(o_3|s_3)...P(s_1)P(s_2|s_1)P(s_3|s_2)...$

• Needed:

 $\arg\max_{s_1,s_2,s_3,\dots} P(o_1 \mid s_1) P(s_1) P(o_2 \mid s_2) P(s_2 \mid s_1) P(o_3 \mid s_3) P(s_3 \mid s_2)$

The HMM as a generator

HMM assumed to be generating data

 Each enclosed term represents one forward transition and a subsequent emission

The state sequence

• The probability of a state sequence $?,?,?,s_x,s_y$ ending at time *t*, and producing all observations until o_t

 $- P(o_{1..t-1}, ?, ?, ?, ?, s_x, o_t, s_y) = P(o_{1..t-1}, ?, ?, ?, s_x) P(o_t|s_y)P(s_y|s_x)$

• The *best* state sequence that ends with s_x, s_y at t will have a probability equal to the probability of the best state sequence ending at t-1 at s_x times $P(o_t|s_y)P(s_y|s_x)$

Extending the state sequence

 The probability of a state sequence ?,?,?,s_x,s_y ending at time t and producing observations until o_t

 $- P(o_{1..t-1}, o_t, ?, ?, ?, ?, s_x, s_y) = P(o_{1..t-1}, ?, ?, ?, s_x) P(o_t|s_y) P(s_y|s_x)$

Trellis

• The graph below shows the set of all possible state sequences through this HMM in five time instants

The cost of extending a state sequence

 The cost of *extending* a state sequence ending at s_x is only dependent on the transition from s_x to s_y, and the observation probability at s_y

The cost of extending a state sequence

The best path to s_y through s_x is simply an extension of the best path to s_x

The Recursion

 The overall best path to s_y is an extension of the best path to one of the states at the previous time

The Recursion

Prob. of best path to $s_y = Max_{s_x} BestP(o_{1..t-1},?,?,?,s_x) P(o_t|s_y)P(s_y|s_x)$

Finding the best state sequence

- The simple algorithm just presented is called the VITERBI algorithm in the literature
 - After A.J.Viterbi, who invented this dynamic programming algorithm for a completely different purpose: decoding error correction codes!

Initial state initialized with path-score = $P(s_1)b_1(1)$ \rightarrow time All other states have score 0 since $P(s_i) = 0$ for them

State with best path-score

- State with path-score < best
- State without a valid path-score

$$P_{j}(t) = \max_{i} [P_{i}(t-1) t_{ij} b_{j}(t)]$$

State transition probability, i to j

Score for state *j*, given the input at time *t*

Total path-score ending up at state *j* at time *t*

time

State transition probability, i to j

Score for state j, given the input at time t

Total path-score ending up at state j at time t

time

THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION

Problem3: Training HMM parameters

- We can compute the probability of an observation, and the best state sequence given an observation, using the HMM's parameters
- But where do the HMM parameters come from?
- They must be learned from a collection of observation sequences

Learning HMM parameters: Simple procedure – counting

- Given a set of training instances
- Iteratively:
- 1. Initialize HMM parameters
- 2. Segment all training instances
- 3. Estimate transition probabilities and state output probability parameters by counting

Learning by counting example

- Explanation by example in next few slides
- 2-state HMM, Gaussian PDF at states, 3 observation sequences
- Example shows ONE iteration
 - How to count after state sequences are obtained

- We have an HMM with two states s1 and s2.
- Observations are vectors x_{ii}

Time

state

Obs

- i-th sequence, j-th vector
- We are given the following three observation sequences

4

S2

X

3

S2

Xa3

And have already estimated state sequences

2

S1

Xa

							_
	Time	1	2	3	4	5	(
ervation 2	state	S2	S2	S1	S1	S2	
	Obs	X _{b1}	X _{b2}	X _{h3}	X _{b4}	X _{b5}	

1 <mark>S1</mark>

X

Observation	3
-------------	---

Observation 1

Obs

ſime	1	2	3	4	5	6	7	8
tate	S1	S2	S1	S1	S1	S2	S2	S2
Obs	X _{c1}	X _{c2}	X _{c3}	X _{c4}	X _{c5}	X _{c6}	X _{c7}	X _{c8}

5

S2

Xas

7

S1

X

7

S2

X_{h7}

6

S1

X

8

S2

X

8

S2

Xh8

9

S1

X

9

S1

X_{b9}

10

S1

 \mathbf{X}_{a10}

• Initial state probabilities (usually denoted as π):

We have 3 observations

 $- \pi(S1) = 2/3, \pi(S2) = 1/3$

Time		2	3	4	5	6	7	8	9	10
stat	S1	1	S2	S2	S2	S1	S1	S2	S1	S1
Obs	A _{a1}	X _{a2}	X _{a3}	X _{a4}	X _{a5}	X _{a6}	X _{a7}	X _{a8}	X _{a9}	X _{a10}

Observation 1

Observation 2

Time		2	3	4	5	6	7	8	9
stat	S2	<mark>\$</mark> 2	S1	S1	S2	S2	S2	S2	S1
Obs	Ahl	X _{h2}	X _{h3}	X _{b4}	X _{b5}	X _{b6}	X _{b7}	X _{b8}	X _{b9}

Time		2	3	4	5	6	7	8
stat	S1	\$2	S1	S1	S1	S2	S2	S2
Obs	Acl	X _{c2}	X _{c3}	X _{c4}	X _{c5}	X _{c6}	X _{c7}	X _{c8}

Transition probabilities:

State S1 occurs 11 times in non-terminal locations

Observation 1

Observation 2

Time 2 7 8 1 Λ 6 **S2 S2 S1 S1 S2 S2 S2 S1** state $\mathbf{X}_{\mathbf{b}1}$ $\mathbf{X}_{\mathbf{h}2}$ X_{b5} X_{b6} $\mathbf{X}_{\mathbf{h7}}$ Obs Xh8 Xh2

• Transition probabilities:

— Of these, it is followed immediately by S1 6 times

Observation 1

Observation 2

• Transition probabilities:

- State S1 occurs 11 times in non-terminal locations
- Of these, it is followed immediately by S1 6 times
- It is followed immediately by S2 5 times

Observation 1

Observation 2

Observation 3

11755/18797

• Transition probabilities:

- State S1 occurs 11 times in non-terminal locations
- Of these, it is followed immediately by S1 6 times
- It is followed immediately by S2 5 times
- P(S1 | S1) = 6/11; P(S2 | S1) = 5/11

Time	1	2	3	4	5	6	7	8	9	10
state	S1	S1	S2	S2	S2	S1	S1	S2	S1	S1
Obs	X _{a1}	X _{a2}	X _{a3}	X _{a4}	X _{a5}	Xa6	X _{a7}	X _{a8}	X _{a9}	X _{a10}

UDSELVATION Z	Observation	2
---------------	-------------	---

Time	1	2	3	4	5	6	7	8	9
state	S2	S2	S1	S1	S2	S2	S2	S2	S1
Obs	X _{b1}	X _{b2}	X _{b3}	X _{b4}	X _{b5}	X _{b6}	X _{b7}	X _{b8}	X _{b9}

Observation	3
-------------	---

Time	1	2	3	4	5	6	7	8
state	S1	S2	S1	S1	S1	S2	S2	S2
Obs	X _{c1}	X _{c2}	X _{c3}	X _{c4}	X _{c5}	X _{c6}	X _{c7}	X _{c8}

• Transition probabilities:

– State S2 occurs 13 times in non-terminal locations

• Transition probabilities:

– State S2 occurs 13 times in non-terminal locations

Of these, it is followed immediately by S1 5 times

• Transition probabilities:

- State S2 occurs 13 times in non-terminal locations
- Of these, it is followed immediately by S1 5 times
- It is followed immediately by S2 8 times

Observation 1

Observation 2

• Transition probabilities:

- State S2 occurs 13 times in non-terminal locations
- Of these, it is followed immediately by S1 5 times
- It is followed immediately by S2 8 times
- P(S1 | S2) = 5 / 13; P(S2 | S2) = 8 / 13

Ti	ime	1	2	3	4	5	6	7	8	9	10
st	ate	S1	S1	S2	S2	S2	S1	S1	S2	S1	S1
0	bs	X _{a1}	X _{a2}	X _{a3}	X _{a4}	X _{a5}	X _{a6}	X _{a7}	X _{a8}	X _{a9}	X _{a10}

Time	1	2	3	4	5	6	7	8	9
state	S2	S2	S1	S1	S2	S2	S2	S2	S1
Obs	X _{b1}	X _{b2}	X _{b3}	X _{b4}	X _{b5}	X _{b6}	X _{b7}	X _{b8}	X _{b9}

Observation	3
-------------	---

Time	1	2	3	4	5	6	7	8
state	S1	S2	S1	S1	S1	S2	S2	S2
Obs	X _{c1}	X _{c2}	X _{c3}	X _{c4}	X _{c5}	X _{c6}	X _{c7}	X _{c8}

Parameters learnt so far

- State initial probabilities, often denoted as π
 - $-\pi(S1) = 2/3 = 0.66$
 - $-\pi(S2) = 1/3 = 0.33$
- State transition probabilities
 - P(S1 | S1) = 6/11 = 0.545; P(S2 | S1) = 5/11 = 0.455
 - P(S1 | S2) = 5/13 = 0.385; P(S2 | S2) = 8/13 = 0.615
 - Represented as a transition matrix

$$A = \begin{pmatrix} P(S1 \mid S1) & P(S2 \mid S1) \\ P(S1 \mid S2) & P(S2 \mid S2) \end{pmatrix} = \begin{pmatrix} 0.545 & 0.455 \\ 0.385 & 0.615 \end{pmatrix}$$

Each row of this matrix must sum to 1.0

- State output probability for S1
 - There are 13 observations in S1

		1	2	3	4	5	6	7	8	9	Γ
Chaomination 1	state	S1	S1	S2	S2	S2	S1	S1	S2	S1	
Joservation 1	Obs	X _{a1}	X _{a2}	X _{a3}	X _{a4}	X _{a5}	X _{a6}	X _{a7}	X _{a8}	X _{a9}	
	Time	1	2	3	4	5	6	7	8	9	1
Observation 2	state	S2	S2	S1	S1	S2	S2	S2	S2	S1	
	Obs	X _{b1}	X _{b2}	X _{b3}	X _{b4}	X _{b5}	X _{b6}	X _{b7}	X _{b8}	X _b	

- State output probability for S1
 - There are 13 observations in S1
 - Segregate them out and count

• Compute parameters (mean and variance) of Gaussian output density for state S1

Time	1	2	6	7	9	10
state	S1	S1	S1	S1	S1	S1
Obs	X _{a1}	X _{a2}	X _{a6}	X _{a7}	X _{a9}	X _{a10}

$$P(X \mid S_1) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_1 \mid}} \exp\left(-0.5(X - \mu_1)^T \Theta_1^{-1} (X - \mu_1)\right)$$

Time	3	4	9
state	S1	S1	S1
Obs	X _{b3}	X _{b4}	X _{b9}

$$\mu_{1} = \frac{1}{13} \begin{pmatrix} X_{a1} + X_{a2} + X_{a6} + X_{a7} + X_{a9} + X_{a10} + X_{b3} + X_{b4} + X_{b9} + X_{c1} + X_{c2} + X_{c4} + X_{c5} \end{pmatrix}$$

Time	1	3	4	5
state	S1	S1	S1	S1
Obs	X _{c1}	X _{c2}	X _{c4}	X _{c5}

$$\Theta_{1} = \frac{1}{13} \begin{pmatrix} (X_{a1} - \mu_{1})(X_{a1} - \mu_{1})^{T} + (X_{a2} - \mu_{1})(X_{a2} - \mu_{1})^{T} + \dots \\ (X_{b3} - \mu_{1})(X_{b3} - \mu_{1})^{T} + (X_{b4} - \mu_{1})(X_{b4} - \mu_{1})^{T} + \dots \\ (X_{c1} - \mu_{1})(X_{c1} - \mu_{1})^{T} + (X_{c2} - \mu_{1})(X_{c2} - \mu_{1})^{T} + \dots \end{pmatrix}$$

- State output probability for S2
 - There are 14 observations in S2

							_		-		
	Time	1	2	3	4	5	6	7	8	9	1
Observation 1	state	S1	S1	S2	S2	S2	S1	S1	S2	S1	S1
Observation 1	Obs	X _{a1}	X _{a2}	X _{a3}	X _{a4}	X _{a5}	X _{a6}	X _{a7}	X _{a8}	X _{a9}	X
	_	-									
											-
	Time	1	2	3	4	5	6	7	8	9	
Observation 2	state	S2	S2	S1	S1	S2	S2	S2	S2	S1	
	Obs	X _{b1}	X _{b2}	X _{b3}	X _{b4}	X _{b5}	X _{b6}	X _{b7}	X _{b8}	X _{b9}	
		-					-				-
	Time	1	2	3	4	5	6	7	8	1	
Observation 3	state	S1	S2	S1	S1	S1	S2	S2	S2		
	Obs	X _{c1}	X _{c2}	X _{c3}	X _{c4}	X _{c5}	X _{c6}	X _{c7}	X _{c8}	1	

- State output probability for S2
 - There are 14 observations in S2
 - Segregate them out and count

• Compute parameters (mean and variance) of Gaussian output density for state S2

11

Time	3	4	5	8
state	S2	S2	S2	S2
Obs	X _{a3}	X _{a4}	X _{a5}	X _{a8}

$$P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1}(X - \mu_2)\right)$$

Time	1	2	5	6	7	8
state	S2	S2	S2	S2	S2	S2
Obs	X _{b1}	X _{b2}	X _{b5}	X _{b6}	X _{b7}	X _{b8}

Time	2	6	7	8
state	S2	S2	S2	S2
Obs	X _{c2}	X _{c6}	X _{c7}	X _{c8}

$$\mu_{2} = \frac{1}{14} \begin{pmatrix} X_{a3} + X_{a4} + X_{a5} + X_{a8} + X_{b1} + X_{b2} + X_{b5} + \\ X_{b6} + X_{b7} + X_{b8} + X_{c2} + X_{c6} + X_{c7} + X_{c8} \end{pmatrix}$$

$$\Theta_1 = \frac{1}{14} \left((X_{a3} - \mu_2) (X_{a3} - \mu_2)^T + \dots \right)$$

87

We have learnt all the HMM parmeters

- State initial probabilities, often denoted as π - $\pi(S1) = 0.66$ $\pi(S2) = 1/3 = 0.33$
- State transition probabilities

$$A = \begin{pmatrix} 0.545 & 0.455 \\ 0.385 & 0.615 \end{pmatrix}$$

• State output probabilities

State output probability for S1

State output probability for S2

$$P(X \mid S_1) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_1 \mid}} \exp\left(-0.5(X - \mu_1)^T \Theta_1^{-1} (X - \mu_1)\right) \quad P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right)$$

Update rules at each iteration

- Assumes state output PDF = Gaussian
 - For GMMs, estimate GMM parameters from collection of observations at any state

Training by segmentation: Viterbi training

Initialize all HMM parameters

- Segment all training observation sequences into states using the Viterbi algorithm with the current models
- Using estimated state sequences and training observation sequences, reestimate the HMM parameters
- This method is also called a "segmental k-means" learning procedure

Alternative to counting: SOFT counting

- Expectation maximization
- *Every* observation contributes to every state

Update rules at each iteration

$$\pi(s_i) = \frac{\sum_{Obs} P(state(t=1) = s_i \mid Obs)}{\text{Total no. of observation sequences}}$$

$$P(s_{j} | s_{i}) = \frac{\sum_{Obs \ t} P(state(t) = s_{i}, state(t+1) = s_{j} | Obs)}{\sum_{Obs \ t} P(state(t) = s_{i} | Obs)}$$

$$\mu_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs) X_{Obs,t}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

$$\Theta_{i} = \frac{\sum_{Obs \ t} P(state(t) = s_{i} \mid Obs)(X_{Obs,t} - \mu_{i})(X_{Obs,t} - \mu_{i})^{T}}{\sum_{Obs \ t} P(state(t) = s_{i} \mid Obs)}$$

• Every observation contributes to every state

11755/18797

Update rules at each iteration

$$\pi(s_i) = \frac{\sum_{Obs} P(state(t=1) = s_i | Obs)}{\text{Total no. of observation sequences}}$$

$$P(s_j | s_i) = \frac{\sum_{Obs = t} P(state(t) = s_i, state(t+1) = s_j | Obs)}{\sum_{Obs = t} P(state(t) = s_i | Obs)}$$

$$\mu_i = \frac{\sum_{Obs = t} P(state(t) = s_i | Obs) X_{Obs,t}}{\sum_{Obs = t} P(state(t) = s_i | Obs)}$$

$$\Theta_i = \frac{\sum_{Obs = t} P(state(t) = s_i | Obs)}{\sum_{Obs = t} P(state(t) = s_i | Obs)}$$

Where did these terms come from?

 $P(state(t) = s \mid Obs)$

- The probability that the process was at *s* when it generated *X_t* given the entire observation
 - Dropping the "Obs" subscript for brevity

 $P(state(t) = s | X_1, X_2, ..., X_T) \propto P(state(t) = s, X_1, X_2, ..., X_T)$

- We will compute $P(state(t) = s_i, x_1, x_2, ..., x_T)$ first
 - This is the probability that the process visited s at time t while producing the entire observation

$$P(state(t) = s, x_1, x_2, ..., x_T)$$

 The probability that the HMM was in a particular state s when generating the observation sequence is the probability that it followed a state sequence that passed through s at time t

$P(state(t) = s, x_1, x_2, ..., x_T)$

- This can be decomposed into two multiplicative sections
 - The section of the lattice leading into state s at time t and the section leading out of it

The Forward Paths

- The probability of the red section is the total probability of all state sequences ending at state *s* at time *t*
 - This is simply $\alpha(s,t)$
 - Can be computed using the forward algorithm

The Backward Paths

- The blue portion represents the probability of all state sequences that began at state *s* at time *t*
 - Like the red portion it can be computed using a *backward recursion*

The Backward Recursion

$$\beta(s,t) = P(x_{t+1}, x_{t+2}, ..., x_T \mid state(t) = s)$$

$$\beta(s,t) = \sum_{s'} \beta(s',t+1) P(s'|s) P(x_{t+1}|s')$$

- β(s,t) is the total probability of ALL state sequences that depart from s at time t, and all observations after x_t
 - $-\beta(s,T) = 1$ at the final time instant for all valid final states

The complete probability

Posterior probability of a state

 The probability that the process was in state s at time t, given that we have observed the data is obtained by simple normalization

$$P(state(t) = s \mid Obs) = \frac{P(state(t) = s, x_1, x_2, ..., x_T)}{\sum_{s'} P(state(t) = s, x_1, x_2, ..., x_T)} = \frac{\alpha(s, t) \beta(s, t)}{\sum_{s'} \alpha(s', t) \beta(s', t)}$$

- This term is often referred to as the gamma term and denoted by $\gamma_{\text{s,t}}$

Update rules at each iteration

$$\pi(s_i) = \frac{\sum_{Obs} P(state(t=1) = s_i | Obs)}{\text{Total no. of observation sequences}}$$

$$P(s_i | s_i) = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_i, state(t+1) = s_j | Obs)}{\sum_{Obs} \sum_{t} P(state(t) = s_i | Obs)}$$

$$\mu_i = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_i | Obs) X_{Obs,t}}{\sum_{Obs} \sum_{t} P(state(t) = s_i | Obs)}$$

$$\Theta_i = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_i | Obs)}{\sum_{Obs} \sum_{t} P(state(t) = s_i | Obs)}$$
• These have been found

Update rules at each iteration

$$\pi(s_i) = \frac{\sum_{Obs} P(state(t=1) = s_i \mid Obs)}{\text{Total no. of observation sequences}}$$

$$P(s_j \mid s_i) = \frac{\sum_{Obs=t} P(state(t) = s_i, state(t+1) = s_j \mid Obs)}{\sum_{Obs=t} P(state(t) = s_i \mid Obs)}$$

$$u_i = \frac{\sum_{Obs=t} P(state(t) = s_i \mid Obs) X_{Obs,t}}{\sum_{Obs=t} P(state(t) = s_i \mid Obs)}$$

$$\Theta_i = \frac{\sum_{Obs=t} P(state(t) = s_i \mid Obs)}{\sum_{Obs=t} P(state(t) = s_i \mid Obs)}$$

Where did these terms come from?

11755/18797

 $P(state(t) = s, state(t+1) = s', x_1, x_2, ..., x_T)$

t

 $P(state(t) = s, state(t+1) = s', x_1, x_2, ..., x_T)$

$\alpha(s,t)$

 $P(state(t) = s, state(t+1) = s', x_1, x_2, ..., x_T)$

$$\alpha(s,t) P(s'|s) P(x_{t+1}|s')$$

 $P(state(t) = s, state(t+1) = s', x_1, x_2, ..., x_T)$

 $\alpha(s,t) P(s'|s) P(x_{t+1}|s') \beta(s',t+1)$

11755/18797

The a posteriori probability of transition

$$P(state(t) = s, state(t+1) = s' | Obs) = \frac{\alpha(s,t)P(s' | s)P(x_{t+1} | s')\beta(s',t+1)}{\sum_{s_1}\sum_{s_2}\alpha(s_1,t)P(s_2 | s_1)P(x_{t+1} | s_2)\beta(s_2,t+1)}$$

• The a posteriori probability of a transition given an observation

Update rules at each iteration

$$\pi(s_i) = \frac{\sum_{Obs} P(state(t = 1) = s_i | Obs)}{\text{Total no. of observation sequences}}$$

$$P(s_i | s_i) = \frac{\sum_{Obs} P(state(t) = s_i, state(t + 1) = s_j | Obs)}{\sum_{Obs} P(state(t) = s_i | Obs)}$$

$$\mu_i = \frac{\sum_{Obs} P(state(t) = s_i | Obs) X_{Obs,t}}{\sum_{Obs} P(state(t) = s_i | Obs)}$$

$$\Theta_i = \frac{\sum_{Obs} P(state(t) = s_i | Obs)}{\sum_{Obs} P(state(t) = s_i | Obs)}$$
• These have been found

Training without explicit segmentatio

Every feature vector associated with every state of every HMM with a probability

- Probabilities computed using the forward-backward algorithm
- Soft decisions taken at the level of HMM state
- In practice, the segmentation based Viterbi training is much easier to implement and is much faster
- The difference in performance between the two is small, especially if we have lots of training data

HMM Issues

- How to find the best state sequence: Covered
- How to learn HMM parameters: Covered
- How to compute the probability of an observation sequence: Covered

Magic numbers

- How many states:
 - No nice automatic technique to learn this
 - You choose
 - For speech, HMM topology is usually left to right (no backward transitions)
 - For other cyclic processes, topology must reflect nature of process
 - No. of states 3 per phoneme in speech
 - For other processes, depends on estimated no. of distinct states in process

Applications of HMMs

- Classification:
 - Learn HMMs for the various classes of time series from training data
 - Compute probability of test time series using the HMMs for each class
 - Use in a Bayesian classifier
 - Speech recognition, vision, gene sequencing, character recognition, text mining...
- Prediction
- Tracking

Applications of HMMs

- Segmentation:
 - Given HMMs for various events, find event boundaries
 - Simply find the best state sequence and the locations where state identities change
- Automatic speech segmentation, text segmentation by topic, geneome segmentation, ...