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Administrivia

* Final class on Thursday the 3.,

* Project Demos: 8" December (Thursday).

— Before exams week
— Reports due 9th

* Problem: How to set up posters for SV
students?

— Bing is in charge..
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An automotive example
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* Determine automatically, by only listening to a running
automobile, if it is:
— Idling; or
— Travelling at constant velocity; or
— Accelerating; or
— Decelerating
e Assume (for illustration) that we only record energy level
(SPL) in the sound

— The SPL is measured once per second
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What we know

An automobile that is at rest can accelerate, or
continue to stay at rest

An accelerating automobile can hit a steady-
state velocity, continue to accelerate, or
decelerate

A decelerating automobile can continue to
decelerate, come to rest, cruise, or accelerate

A automobile at a steady-state velocity can
stay in steady state, accelerate or decelerate
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What else we know

P(x|idle) P(x|decel) P(x|cruise) P(x|accel)

\/

45 7
* The probability distribution of the SPL of the
sound is different in the various conditions
— As shown in figure

* In reality, depends on the car
e The distributions for the different conditions
overlap

— Simply knowing the current sound level is not enough
to know the state of the car
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The MOdEI! (x|accel)
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60

* The state-space model
— Assuming all transitions from a state are equally probable

11-755/18797 6



MLSP

Estimating the state at T = 0-

0.25 0.25 0.25 0.25

ldling Accelerating Cruising Decelerating

* AT=0, before the first observation, we know
nothing of the state

— Assume all states are equally likely
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The first observation

P(x|idle) P(x|decel) P(x|cruise) P(x|accel)

45 7

At T=0 we observe the sound level x, = 68dB SPL

— The observation modifies our belief in the state of the
system

P(x,|idle) =0

P(x,|deceleration) = 0.0001
P(x,|acceleration) = 0.7

P(x, | cruising) = 0.5

— Note, these don’t have to sum to 1

— In fact, since these are densities, any of them can be > 1
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Estimating state after at observing x,

* P(state | x,) = C P(state)P(x,|state)
— P(idle | x,) =0
— P(deceleration | x,) = C 0.000025
— P(cruising | x,) = C0.125
— P(acceleration | x,) = C0.175

* Normalizing
— P(idle | x,) =0
— P(deceleration | x,) = 0.000083
— P(cruising | x,) = 0.42
— P(acceleration | x,) = 0.57
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Estimating the state at T = 0+

0.57

0.42

8.3 x 10>

Idling Accelerating  Cruising Decelerating

0.0

e At T=0, after the first observation, we must
update our belief about the states

— The first observation provided some evidence about
the state of the system

— It modifies our belief in the state of the system
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Predicting the state at T=1

0.57

0.42

8.3x 10°

0.0

* Predicting the probability of idling at T=1
— P(idling|idling) = 0.5;
— P(idling | deceleration) = 0.25

— P(idling at T=1| x,) =
P(l+_o1Xo) P(I]1) + P(D;_q]%o) P(I|D) = 2.1 x 10

* |n general, for any state S
— P(S1.1 | Xxg) = ZsT P(St=o | Xo) P(St211S7-0)
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Predicting the stateatT=1

0.57

0.42

8.3 x 10>

0.0

Idling Accelerating  Cruising Decelerating

-

P(St [ Xg) = ZST=0 P(St— | X¢) P(S1—1[S1=p)
0.33 0.33 0.33

Rounded.
In reality, they
sum to 1.0

2.1x10°
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Updating after the observation at T=1

P(x|idle) P(x|decel) P(x|cruise) P(x|accel)

AADAN

* At T=1 we observe x, =63dB SPL
* P(x;dle)=0

* P(x,|deceleration) = 0.2

* P(x,|acceleration) = 0.001

* P(x,|cruising) = 0.5
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Update after observing x;

* P(state | x,.,) = C P(state| x,))P(x,|state)

_ P(ldle | XO:]) — 0 m P(xldegel) P(xlcruise) P(xfaccel)
— P(deceleration | x, ;) = C 0.066

— P(cruising | x,.;) = C 0.165
— P(acceleration | x,,.;) = C 0.00033

0.33 0.33 0.33

2.1x10

* Normalizing
— P(idle | x4.,) =0
— P(deceleration | x,,.;) = 0.285
— P(cruising | x,.,) = 0.713
— P(acceleration | x,.,) = 0. 0014
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Estimating the stateat T = 1+

0.713

0.285

0.0 0.0014 -

ldling Accelerating  Cruising Decelerating

 The updated probability at T=1 incorporates
information from both x, and x,
— It is NOT a local decision based on x, alone

— Because of the Markov nature of the process, the state at
T=0 affects the state at T=1

* X, provides evidence for the state at T=1
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Estimating a Unique state

What we have estimated is a distribution over
the states

If we had to guess a state, we would pick the
most likely state from the distributions

0.57

0.42

8.3x 10°

State(T=0) = Accelerating

Idling Accelerating Cruising  Decelerating

0.713

State(T=1) = Cruising

0.0 0.0014

Idling Accelerating  Cruising Decelerating
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Overall procedure

T=T+1
| =11 < !

P(Sy | Xp1p) = ZST—I P(Stq | Xo:11) P(S1lSty) P(Sy [ xo.1) = C. P(St | Xp.1-1) P(X[Sy)
. Update the
L . P-redl-ct the distribution of the J
distribution of the p————=> state at T
stateat T after observing x;
PREDICT UPDATE

* At T=0 the predicted state distribution is the initial state
probability
e Ateachtime T, the current estimate of the distribution over
states considers all observations x; ... X7
— A natural outcome of the Markov nature of the model

 The prediction+update is identical to the forward computation

for HMMs to within a normalizing constant
11-755/18797 17
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Comparison to Forward Algorithm

T=T+1
| =11 < |

P(Sy | Xp1p) = 2:sT_l P(Stq | Xo:11) P(S1lSty) P(Sy [ xp.1) = C. P(St | Xp.1-1) P(X[St)
. Update the
L . P.redl.ct the distribution of the J
distribution of the p————=> state at T
stateat T after observing x;
PREDICT UPDATE

* Forward Algorithm:
— P(Xy.S1) = P(x[Sy) EST_I P(Xg.1.1> S11) P(S1/S19)

PREDICT
UPDATE

* Normalized:

— P(Sylxg.p) = (ES’T P(Xo.18"1)) " P(Xg.15S1) = C P(Xy15S1)
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Decomposing the algorithm

P(Xy.1s51) = P(x/St) ZST_I P(Xo.1-1> S1.1) P(S1/S1y)

Predict:
P(Xg.:1.1591) = ZST_I P(X¢.1.1> S1.1) P(St[S1y)

Update:
P(Xy.1s51) = P(x¢[St) P(Xg.1:1557)

[Normalize]: P(Syx,.1) = P(Xg.1557) / ZST’ P(Xp.10s971)
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Estimating the state

T=T+1
| =11 < |

P(St [ Xor) =25, POy | Xom1) P(S1/Sty) P(Sy | Xg.1) = C. P(Sy | Xg.1.1) P(X[Sy)
. Update the
L . P.redl.ct the distribution of the J
distribution of the p—>

stateat T
after observing x;
|
|

\ 4
Estimate(Sy) = argmax s P(S | Xy1) < Estimate(S,) >

* The state is estimated from the updated
distribution

stateat T

— The updated distribution is propagated into time, not
the state
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Predicting the next observation

T=T+1
| =11 < |

P(Sy | Xp1p) = ZST—I P(Stq | Xo:11) P(S1lSty) P(St [ xXo.1) = C. P(St | Xp.1-1) P(X[Sy)
L Predict the . U.pda.te the J
distribution of the p—> dlstr;::tt;oall ?I_f the
stateat T after observing x;

h 4
C Predict Pl lxgry) _m====>C__ Predictx,

* The probability distribution for the observations at the
next time is a mixture:

— P(X7|Xo11) = 2sT P(x71S7) P(StIXo:7.4)
* The actual observation can be predicted from P(x;|X.1.)
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Predicting the next observation

* MAP estimate:

— argmax, P(X1Xq.1.1)

* MMSE estimate:

— Expectation(XTlXo;T.O

11-755/18797 22
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Difference from Viterbi decoding %

e Estimating only the current state at any time
— Not the state sequence
— Although we are considering all past observations

* The most likely state at T and T+1 may be such
that there is no valid transition between S;
and S,
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A known state model

HMM assumes a very coarsely quantized state
space
— Idling / accelerating / cruising / decelerating

Actual state can be finer
— Idling, accelerating at various rates, decelerating at

various rates, cruising at various speeds

Solution: Many more states (one for each
acceleration /deceleration rate, crusing speed)?

Solution: A continuous valued state

11-755/18797 24



The real-valued state model

A state equation describing the dynamics of the system
Sy = f(st—l’gt)

— s, is the state of the system at time t
— &, is a driving function, which is assumed to be random

The state of the system at any time depends only on the state at
the previous time instant and the driving term at the current time

An observation equation relating state to observation

— 0, is the observation at time t Ot =g (St ’ 7/t)
— v, is the noise affecting the observation (also random)

The observation at any time depends only on the current state of
the system and the noise

11-755/18797
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Continuous state system

St = f(st—l’gt)

Ot:g(st’yt)

The state is a continuous valued parameter that is not directly
seen

— The state is the position of the automobile or the star

The observations are dependent on the state and are the only way
of knowing about the state

— Sensor readings (for the automobile) or recorded image (for the telescope)
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Statistical Prediction and Estimation

* Given an a priori probability distribution for
the state

— Py(s): Our belief in the state of the system before
we observe any data

* Probability of state of navlab
* Probability of state of stars

* Given a sequence of observations o0,..0,

e Estimate state attime t

11-755/18797 27
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Prediction and update att=0

* Prediction
— Initial probability distribution for state

— P(So) = Po(so)

* Update:
— Then we observe o,
— We must update our belief in the state

P(S |0 ) _ P(SO)P(OO | S) _ Po(so)P(Oo | So)
S P(0,) P(0,)

* P(syl0p) = C.Py(sq)P(Og]5S,)

11-755/18797 28
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The observation probability: P(o|s)

* O = g(StJ/t)
— This is a (possibly many-to-one) stochastic function
of state s, and noise v,

— Noise v, is random. Assume it is the same
dimensionality as o,

* Let P.(y,) be the probability distribution of v,
* Let {y:9(s,y)=0,} be all y that result in o,
P,.(7)
P(Ot | St) — Z -

7:9(S¢.7)=0; | ‘Jg(st,y) (Ot) |

11-755/18797 29
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The observation probability
* P(ols)=? Ot:g(st’yt)

P
P(Ot | St) — Z y(y)

7:9(St.7)=0y | Jg(st,y) (Ot) |

e TheJis alJacobian

a0, (1) a0, (1)
oy oy(n)
| 'Jg(st,;/) (Ot) |: M O M
do, (n) A 0 (n)
oy(1) oy(n)

* For scalar functions of scalar variables, it is simply a

derivative:
| ‘] g(s;,y) (Ot) |:

a0,
oy
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Predicting the next state

* Given P(s,|0,), what is the probability of the state
at t=1

P(s,100) = [P(51,55105)ds, = [ P(5;55)P(S, | 05)ds,
{so} {So}
e State progression function:
Sy = f(St—l’gt)

— g, is a driving term with probability distribution P_(¢,)

* P(s,]s,,) can be computed similarly to P(o|s)
— P(s,|s,) is an instance of this
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And moving on

* P(s;]0p) is the predicted state distribution for
t=1

* Then we observe o,
— We must update the probability distribution for s,

— P(s1]0g.1) = CP(s{]04)P(04]5;)

e We can continue on
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Discrete vs. Continuous state systems

p= o Y Of T 0 /\ S, = T (S, &)

o ’ OtIQ(St,j/t)

Prediction at time O:
P(Sp) =T (So) P(so) =P(s)
Update after Oy
P(So | Op) =C 1 (Sp)P(Opl Sp) P(Sol Og) = C P(sg) P(Oy| so)

Prediction at time 1: .

P(s,10,) = Z P(Sy [ Og)P(s; |sp) P(s,10,) = _[P(So |O)P(8,]5,)ds,

Update after Oy:
P(s1] 00,0;) =C P(s; | Op) P(Oyfs,) P(s1| Op,0;) =C P(sy| Op) P(O,] s1)



Discrete vs. Continuous State Systems

Sy = f(St—l’gt)
ot :g(StJ/t)

Prediction at time t

P(S:10004) = 2, P(5410001)P (S 181)  P(s, [0,,) = [ PG4 106:1)P(sc]500)ds, 4

St-1

Update after O,
P(s: [Og) = CP(8; | 04:1)P(O; I8,) P(s;[Og) = CP(8;|04:1)P(O; 5,)



Discrete vs. Continuous State Systems

Sy = f(St—l’gt)
ot :g(st’yt)

Parameters
Initial state prob. 7T P (S)
Transition prob {Tij}: P(s,=]|s_ =1) P(St ‘ St—l)

Observation prob P(O | 5) P (O ‘ S)
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Special case: Linear Gaussian model

1
Jer) e,

s, =AS,_,+&,  P@)- exp(-05( —1,) @} (e - 1)

P ep(-0.5(— 1, J 0 (y - 11, )

0, =B, +7, (7/):\/(2%)d 0, |

* Alinear state dynamics equation
— Probability of state driving term € is Gaussian

— Sometimes viewed as a driving term p. and additive
Zero-mean noise

* Alinear observation equation
— Probability of observation noise y is Gaussian

* A,, B, and Gaussian parameters assumed known
— May vary with time
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The initial state probability

1 N1/ T
P,(s) = T xp(—O.S(s—s)R (s—s))

P, (s) = Gaussian(s;5, R)

e We also assume the initial state distribution to
be Gaussian

— Often assumed zero mean s, =AS,_, +¢&

o, =Bs +

11-755/18797 37
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The observation probability

0, =Bs, +7, P(y) = Gaussian(y; ,uy,@y)
P(0, | s;) =Gaussian(o; 1, + Bs;,©,)

* The probability of the observation, given the state, is
simply the probability of the noise, with the mean
shifted

— Since the only uncertainty is from the noise

e The new mean is the mean of the distribution of the

noise + the value of the observation in the absence of
noise
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The updated state probability at T=0
0, =Bs +7,

P()=N(y;1,,0,)

* 0 and s are jointly Gaussian

11-755/18797 39
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Estimating P(s| o)
Dropping subscript t and o, for brevity

P(s|o,,_,) = Gaussian(s; S, R) -
' Assuming y is 0 mean

P exp(-0.5570 %)

0=Bs + (N=-—
4 Jen?e |

e Consider the joint distribution of 0 and S

0 :[0} = Oisa linear function of S

S . .
= Hence O is also Gaussian

P(O) = Gaussian(O; «,,0,)
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The joint PDF of o and s

0=Bs+y P(s|o,,_,) = Gaussian(s;s, R)

u =Bs P(y) = Gaussian(0,0,)

C,, =BRB" +0©,
P(0]0,,_,) =Gaussian(Bs,BRB" +© )

e 0is Gaussian. Its cross covariance with s:

C,, =BR
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The probability distribution of O :

0=Bs+y O:[o}

P(s) = Gaussian(s; S, R) P(y) = Gaussian(y;0,0,)
P(O) = Gaussian(O; 1,,0,)

o- e 5[ - [¥

e
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The probability distribution of O

: BS
P(O) = Gaussian(O; 1, 0,) Uo :{ SS} 0=DBs+y
P(y) = Gaussian(y;0,0 ) P(s) = Gaussian(s;S, R)
[Coo Con C..,=BRB'+6
Oo = {C C} y

C,.,=BR" C,, =RBT

BS BRB'+®, BR'
S O = i
RB R
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The probability distribution of O

0=Bs+y
P(y) = Gaussian(y;0,0,) P(s) = Gaussian(s;s, R)
0=|2 i
=| ¢ P(O) = Gaussian(O; z,, 0,

BRB' +©, BR
RB R

I
1

o
Y
L

Ho =
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Recall: For any jointly Gaussian RV

P(Y | X) =Gaussian(Y; z +Cyy Cit (X — 1y ),(Cpy —~CL,CECy )

* Applying it to our problem (replace Y by s, X by 0):

T b=
CO’OZBRB +@y U, = BS C =BR

0,S

P(s|0,,) = Gaussian(s; 1, ®)

T T -1p\a T T -1
# =(1-RB'(BRB" +©,)"B)s +RB" (BRB" +@,) 0

®=R-RB'(BRB' +®y)_1 BR
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Stable Estimation
P(s|0,,) = Gaussian(s; Ko,  Ospo, )

1y, =(1-RB"(BRB' +®,)™"B)s +RB"(BRB" +©,) 0,

®,, =R-RB'(BRB' +©,)"'BR

S|oy

= Note that we are not computing @Y'l in this
formulation
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The Kalman filter

e The actual state estimate is the mean of the
updated distribution

e Predicted state at time t St = ASia t &

S; = Stpred =mean[P(s, | 04,4 )] = AS_, + 1,
 Updated estimate of state at time t
0, =BsS, +7,

X _ T T 1 T T -1
S, = ’u5|011_1 — (I -R.B, (B,R B, +®y) B.)S, + R B, (BRB, +®y) 0,
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The Kalman filter

 Prediction

S, =™ =mean[P(s, | 0,,_,)]= AS,_, + 1
R =0, +ARLA
 Update
§ = (l ~RB/(BRB +®7)‘1Bt)§t +RB(BRB! +0,) 0,

R =R -RB/(BRB +0,)"BR
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 Prediction

 Update
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The Kalman filter

S, = AS T 4, 5 = AS + &

R =0, +AR_ A

., 0 =Bs +7
K,=RB/(BRB+®,)" ~

§t =S, + Kt(ot — Btgt)

A

R =(1-KB)R
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The Kalman Filter

* Very popular for tracking the state of
processes

— Control systems

— Robotic tracking
* Simultaneous localization and mapping

— Radars
— Even the stock market..

 What are the parameters of the process?
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Kalman filter contd.

St = A\St—l T &

o, =Bs +7,

* Model parameters A and B must be known

— Often the state equation includes an additional
driving term: s, =AsS,; + G, + g,

— The parameters of the driving term must be
known

* The initial state distribution must be known
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Defining the parameters

» State state must be carefully defined

— E.g. for a robotic vehicle, the state is an extended
vector that includes the current velocity and
acceleration

« S=[X, dX, d2X]

* State equation: Must incorporate appropriate
constraints

— |f state includes acceleration and velocity, velocity at
next time = current velocity + acc. * time step

—St=AS,; +e
* A=[1t0.5t% 01t,001]
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Parameters

* Observation equation:
— Critical to have accurate observation equation

— Must provide a valid relationship between state
and observations

* Observations typically high-dimensional

— May have higher or lower dimensionality than
state
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Problems
S = f (St—l’ 5t)

Ot:g(st’yt)

 f() and/or g() may not be nice linear functions

— Conventional Kalman update rules are no longer
valid

* ¢ and/or y may not be Gaussian

— Gaussian based update rules no longer valid
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Solutions
S = f(St—l’gt)

Ot:g(st’yt)

* f() and/or g() may not be nice linear functions
— Conventional Kalman update rules are no longer valid
— Extended Kalman Filter

* ¢ and/ory may not be Gaussian
— Gaussian based update rules no longer valid
— Particle Filters



