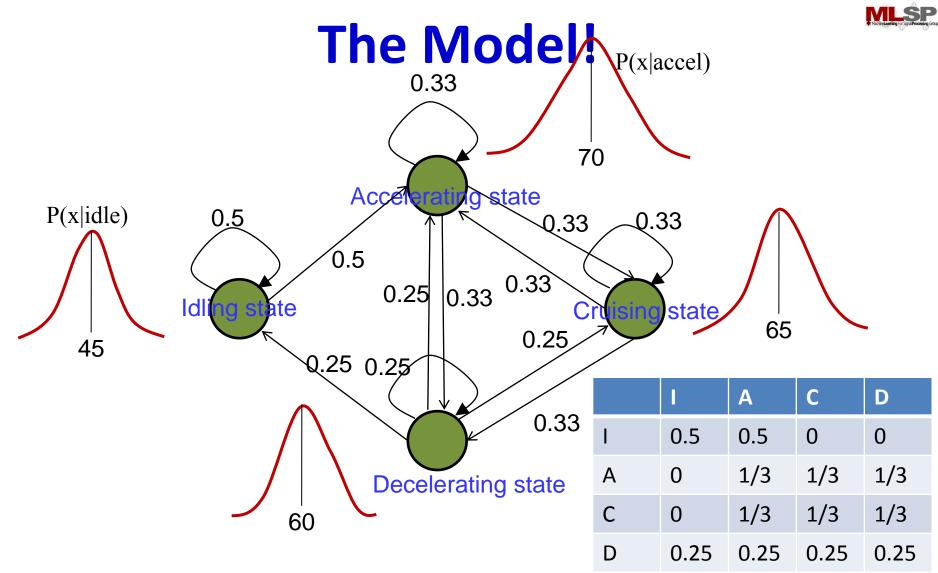


Machine Learning for Signal Processing Prediction and Estimation, Part II

Bhiksha Raj 3 Dec 2015

Recap: An automotive example

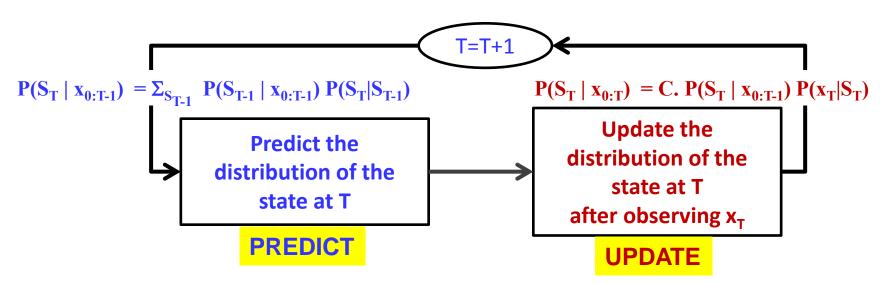
- Determine automatically, by only *listening* to a running automobile, if it is:
 - Idling; or
 - Travelling at constant velocity; or
 - Accelerating; or
 - Decelerating
- Assume (for illustration) that we only record energy level (SPL) in the sound
 - The SPL is measured once per second



• The state-space model

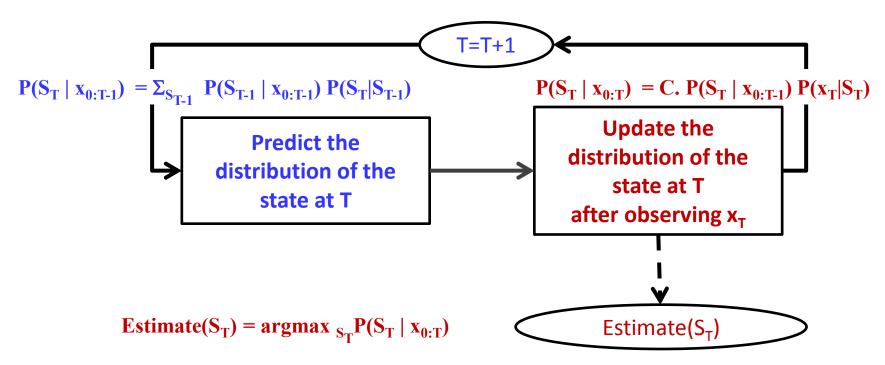
- Assuming all transitions from a state are equally probable

Overall procedure



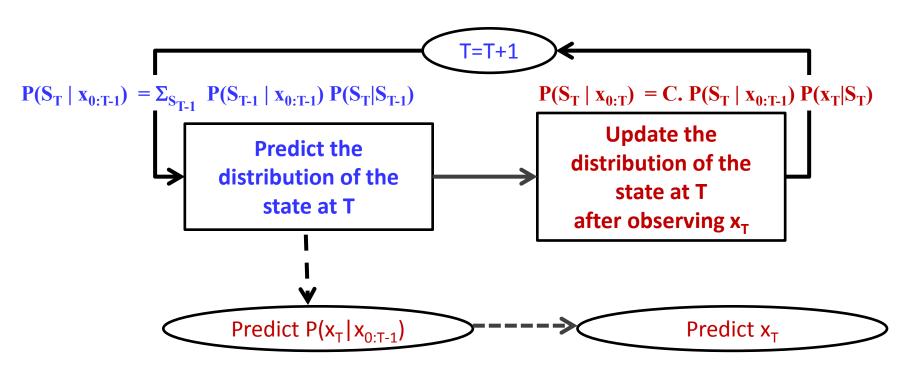
- At T=0 the predicted state distribution is the initial state probability
- At each time T, the current estimate of the distribution over states considers all observations $x_0 \dots x_T$
 - A natural outcome of the Markov nature of the model
- The prediction+update is identical to the forward computation for HMMs to within a normalizing constant

Estimating the *state*



- The state is estimated from the updated distribution
 - The updated distribution is propagated into time, not the state

Predicting the next observation



• The probability distribution for the observations at the next time is a mixture:

$$- P(x_T | x_{0:T-1}) = \sum_{S_T} P(x_T | S_T) P(S_T | x_{0:T-1})$$

• The actual observation can be predicted from $P(x_T|x_{0:T-1})$

Continuous state system

$$s_t = f(s_{t-1}, \varepsilon_t)$$
$$o_t = g(s_t, \gamma_t)$$

- The state is a continuous valued parameter that is not directly seen
 - The state is the position of navlab or the star
- The observations are dependent on the state and are the only way of knowing about the state
 - Sensor readings (for navlab) or recorded image (for the telescope)

Discrete vs. Continuous State Systems

$$S_{t} = f(s_{t-1}, \mathcal{E}_{t})$$

$$O_{t} = g(s_{t}, \gamma_{t})$$

$$Prediction at time t$$

$$P(s_{t} | O_{0:t-1}) = \sum_{s_{t-1}} P(s_{t-1} | O_{0:t-1}) P(s_{t} | s_{t-1})$$

$$Update after O_{t}:$$

$$P(s_{t} | O_{0:t}) = CP(s_{t} | O_{0:t-1}) P(O_{t} | s_{t})$$

$$P(s_{t} | O_{0:t}) = CP(s_{t} | O_{0:t-1}) P(O_{t} | s_{t})$$

Special case: Linear Gaussian model

$$\begin{aligned} \mathbf{A}_{t} \mathbf{S}_{t-1} + \mathbf{\mathcal{E}}_{t} \\ \mathbf{B}_{t} \mathbf{S}_{t} + \mathbf{\gamma}_{t} \end{aligned} \qquad P(\varepsilon) = \frac{1}{\sqrt{(2\pi)^{d} |\Theta_{\varepsilon}|}} \exp\left(-0.5(\varepsilon - \mu_{\varepsilon})^{T} \Theta_{\varepsilon}^{-1}(\varepsilon - \mu_{\varepsilon})\right) \\ P(\gamma) = \frac{1}{\sqrt{(2\pi)^{d} |\Theta_{\gamma}|}} \exp\left(-0.5(\gamma - \mu_{\gamma})^{T} \Theta_{\gamma}^{-1}(\gamma - \mu_{\gamma})\right) \end{aligned}$$

• A *linear* state dynamics equation

 $S_t =$

 $O_t =$

- Probability of state driving term $\boldsymbol{\epsilon}$ is Gaussian
- Sometimes viewed as a driving term μ_ϵ and additive zero-mean noise
- A *linear* observation equation

– Probability of observation noise γ is Gaussian

A_t, B_t and Gaussian parameters assumed known
 May vary with time

The Linear Gaussian model (KF)

$$P_{0}(s) = Gaussian(s; \bar{s}, R)$$

$$P(s_{t} | s_{t-1}) = Gaussian(s_{t}; \mu_{\varepsilon} + A_{t}s_{t-1}, \Theta_{\varepsilon})$$

$$P(o_{t} | s_{t}) = Gaussian(o_{t}; B_{t}s_{t}, \Theta_{\gamma})$$

$$s_{t} = A_{t}s_{t-1} + \varepsilon_{t}$$
$$o_{t} = B_{t}s_{t} + \gamma_{t}$$

$$P(s_t \mid o_{0:t-1}) = Gaussian(s; \bar{s}_t, R_t)$$

$$\overline{s}_{t} = \mu_{\varepsilon} + A_{t} \hat{s}_{t-1}$$
$$R_{t} = \Theta_{\varepsilon} + A_{t} \hat{R}_{t-1} A_{t}^{T}$$

$$P(s_t \mid o_{0:t}) = Gaussian(s; \hat{s}_t, \hat{R}_t)$$

$$\hat{s}_{t} = \bar{s}_{t} + R_{t}B_{t}^{T}(B_{t}R_{t}B_{t}^{T} + \Theta_{\gamma})^{-1}(o - B_{t}\bar{s}_{t})$$
$$\hat{R}_{t} = \left(I - R_{t}B_{t}^{T}(B_{t}R_{t}B_{t}^{T} + \Theta_{\gamma})^{-1}B_{t}\right)R_{t}$$

Iterative prediction and update

• Prediction

$$\bar{s}_t = A_t \hat{s}_{t-1} + \mu_{\varepsilon}$$

$$R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$$

$$S_t = A_t S_{t-1} + \mathcal{E}_t$$

$$O_t = B_t S_t + \gamma_t$$

• Update

$$K_{t} = R_{t}B_{t}^{T}\left(B_{t}R_{t}B_{t}^{T} + \Theta_{\gamma}\right)^{-1}$$

$$\hat{s}_t = \bar{s}_t + K_t (o_t - B_t \bar{s}_t)$$

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

• Prediction $\bar{s}_{t} = A_{t}\hat{s}_{t-1} + \mu_{\varepsilon}$ $s_{t} = A_{t}s_{t-1} + \varepsilon_{t}$ $o_{t} = B_{t}s_{t} + \gamma_{t}$

The predicted state at time t is obtained simply by propagating the estimated state at t-1 through the state dynamics equation $K_t = K_t B_t (B_t K_t B_t + \Theta_{\gamma})$

$$\hat{s}_t = \bar{s}_t + K_t \left(o_t - B_t \bar{s}_t \right)$$

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

- Prediction $\bar{s}_{t} = A_{t}\hat{s}_{t-1} + \mu_{\varepsilon}$ $o_{t} = B_{t}s_{t} + \gamma_{t}$ $R_{t} = \Theta_{\varepsilon} + A_{t}\hat{R}_{t-1}A_{t}^{T}$
- The prediction is imperfect. The variance of the predictor = variance of $\epsilon_{\rm t}$ + variance of As_{\rm t-1}

The two simply add because ϵ_t is not correlated with st

• Prediction $\begin{aligned}
s_t &= A_t s_{t-1} + \varepsilon_t \\
\bar{s}_t &= A_t \hat{s}_{t-1} + \mu_{\varepsilon} & \downarrow & \downarrow \\
\hline o_t &= B_t s_t + \gamma_t \\
\bar{c}_t &= B_t \bar{s}_t \\
\hat{c}_t &= B_t \bar{s}_t
\end{aligned}$

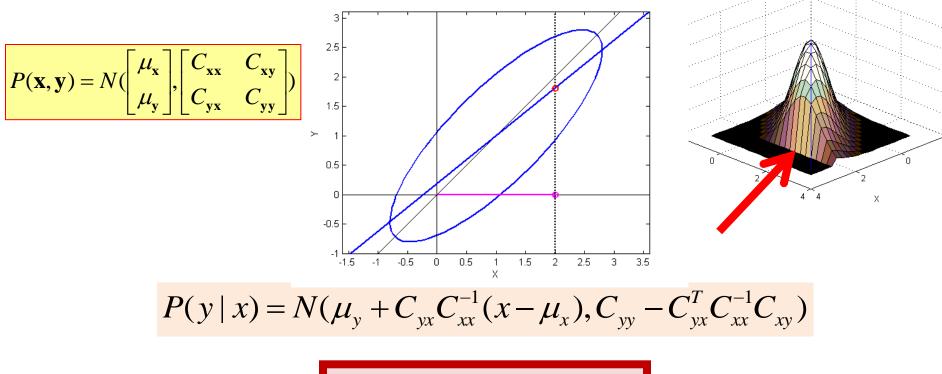
We can also predict the *observation* from the predicted state using the observation equation

$$\mathbf{s}_t - \mathbf{s}_t + \mathbf{n}_t (\mathbf{o}_t - \mathbf{o}_t \mathbf{s}_t)$$

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

MAP Recap (for Gaussians)

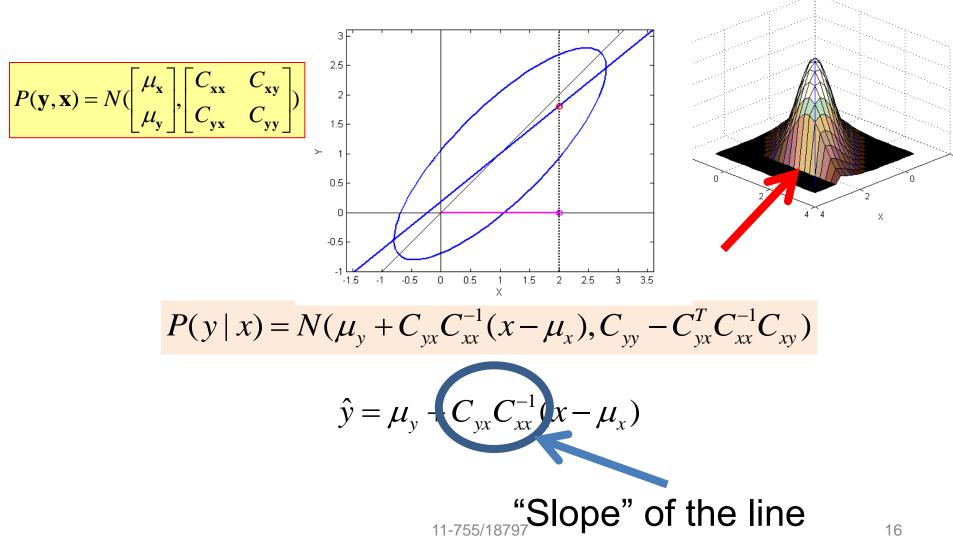
• If P(x,y) is Gaussian:

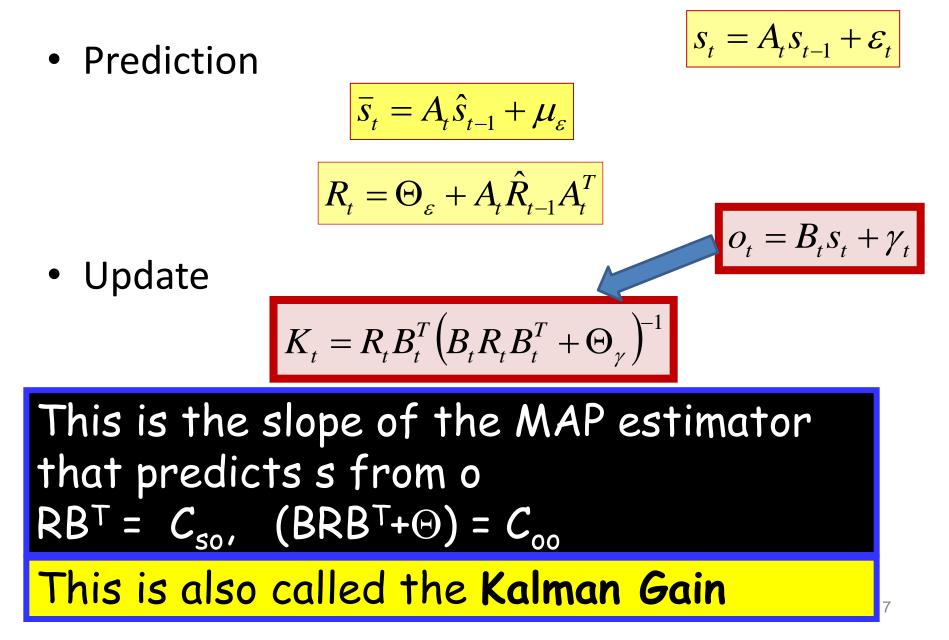


$$\hat{y} = \mu_y + C_{yx} C_{xx}^{-1} (x - \mu_x)$$

MAP Recap: For Gaussians

• If P(x,y) is Gaussian:





 $S_t = A_t S_{t-1} + \mathcal{E}_t$ Prediction $\bar{s}_t = A_t \hat{s}_{t-1} + \mu_{\varepsilon}$ $O_t = B_t S_t + \gamma_t$ $R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$ We must correct the predicted value of the state after making an observation $\hat{s}_t = \overline{s}_t + K_t (o_t - B_t \overline{s}_t)$ $\hat{o}_t = B_t \bar{S}_t$ The correction is the difference between the *actual* observation and the *predicted* observation, scaled by the Kalman Gain

• Prediction

$$\bar{s}_t = A_t \hat{s}_{t-1} + \mu_{\varepsilon}$$

$$R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$$

$$o_{\star} = B_{\star}s_{\star} + \gamma_{\star}$$

 $\hat{o}_{t} = B_{t}\bar{s}_{t}$

 $s_t = A_t s_{t-1} + \varepsilon_t$

Update:

The uncertainty in state decreases if we observe the data and make a correction

The reduction is a multiplicative "shrinkage" based on Kalman gain and B

$$\hat{R}_t = (I - K_t B_t) R_t$$

• Prediction

$$\overline{s}_t = A_t \hat{s}_{t-1} + \mu_{\varepsilon}$$

$$\boldsymbol{R}_{t} = \boldsymbol{\Theta}_{\varepsilon} + \boldsymbol{A}_{t} \hat{\boldsymbol{R}}_{t-1} \boldsymbol{A}_{t}^{T}$$

• Update:

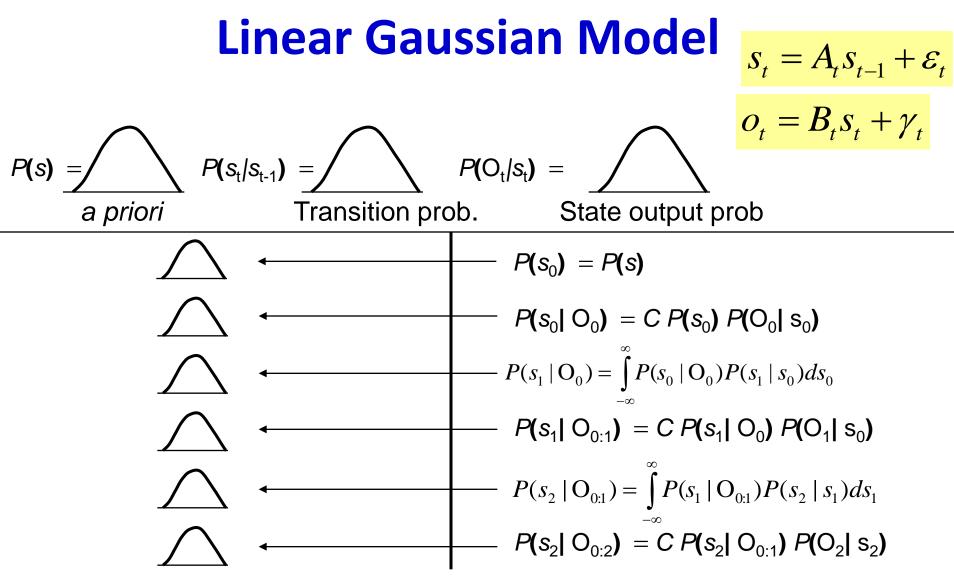
$$\boldsymbol{K}_{t} = \boldsymbol{R}_{t}\boldsymbol{B}_{t}^{T} \left(\boldsymbol{B}_{t}\boldsymbol{R}_{t}\boldsymbol{B}_{t}^{T} + \boldsymbol{\Theta}_{\gamma}\right)^{-1}$$

$$\hat{s}_t = \bar{s}_t + K_t (o_t - B_t \bar{s}_t)$$

• Update

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

$$s_{t} = A_{t}s_{t-1} + \varepsilon_{t}$$
$$o_{t} = B_{t}s_{t} + \gamma_{t}$$



All distributions remain Gaussian

Problems

$$s_t = f(s_{t-1}, \varepsilon_t)$$
$$o_t = g(s_t, \gamma_t)$$

- f() and/or g() may not be nice linear functions
 Conventional Kalman update rules are no longer valid
- ϵ and/or γ may not be Gaussian

- Gaussian based update rules no longer valid

Problems

$$s_t = f(s_{t-1}, \mathcal{E}_t)$$
$$o_t = g(s_t, \gamma_t)$$

- f() and/or g() may not be nice linear functions
 Conventional Kalman update rules are no longer valid
- ϵ and/or γ may not be Gaussian

- Gaussian based update rules no longer valid

The problem with non-linear functions

$$S_{t} = f(S_{t-1}, \mathcal{E}_{t}) \qquad P(s_{t} | o_{0:t-1}) = \int_{-\infty}^{\infty} P(s_{t-1} | o_{0:t-1}) P(s_{t} | s_{t-1}) ds_{t-1}$$
$$O_{t} = g(S_{t}, \gamma_{t}) \qquad P(s_{t} | o_{0:t}) = CP(s_{t} | o_{0:t-1}) P(o_{t} | s_{t})$$

- Estimation requires knowledge of P(o|s)
 - Difficult to estimate for nonlinear g()
 - Even if it can be estimated, may not be tractable with update loop
- Estimation also requires knowledge of $P(s_t|s_{t-1})$
 - Difficult for nonlinear f()
 - May not be amenable to closed form integration

$$o_t = g(s_t, \gamma_t)$$

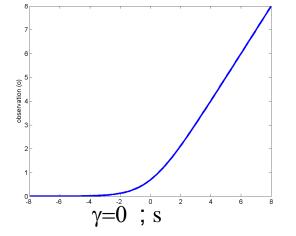
• The PDF may not have a closed form

$$P(o_t \mid s_t) = \sum_{\gamma:g(s_t,\gamma)=o_t} \frac{P_{\gamma}(\gamma)}{\mid J_{g(s_t,\gamma)}(o_t) \mid}$$
$$\mid J_{g(s_t,\gamma)}(o_t) \mid = \begin{vmatrix} \frac{\partial o_t(1)}{\partial \gamma(1)} & \dots & \frac{\partial o_t(1)}{\partial \gamma(1)} \\ M & O & M \\ \frac{\partial o_t(n)}{\partial \gamma(1)} & \Lambda & \frac{\partial o_t(n)}{\partial \gamma(n)} \end{vmatrix}$$

• Even if a closed form exists initially, it will typically become intractable very quickly

Example: a simple nonlinearity

$$o = \gamma + \log(1 + \exp(s))$$



- P(o|s) = ?
 - Assume γ is Gaussian
 - $-P(\gamma) = Gaussian(\gamma; \mu_{\gamma}, \Theta_{\gamma})$

Example: a simple nonlinearity

observation (o)

-6

 $\gamma = 0$; s

2

6

$$o = \gamma + \log(1 + \exp(s))$$

• P(o | s) = ?

$$P(\gamma) = Gaussian(\gamma; \mu_{\gamma}, \Theta_{\gamma})$$

$$P(o \mid s) = Gaussian(o; \mu_{\gamma} + \log(1 + \exp(s)), \Theta_{\gamma})$$

Example: At T=0.

$$o = \gamma + \log(1 + \exp(s))$$

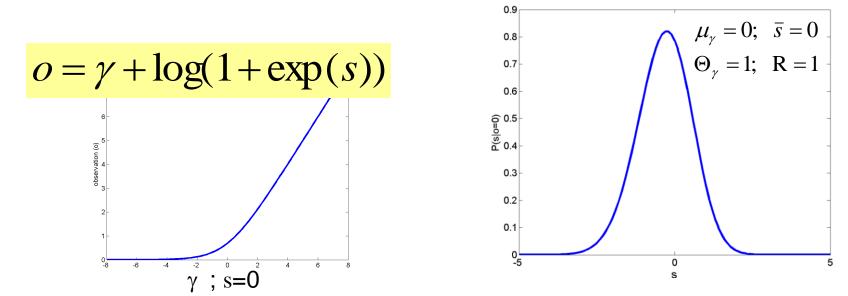
Assume initial probability P(s) is Gaussian

 $P(s_0) = P_0(s) = Gaussian(s; \bar{s}, R)$

• Update
$$P(s_0 | o_0) = CP(o_0 | s_0)P(s_0)$$

 $P(s_0 | o_0) = CGaussian(o; \mu_{\gamma} + \log(1 + \exp(s_0)), \Theta_{\gamma})Gaussian(s_0; \bar{s}, R)$

UPDATE: At T=0.



 $P(s_0 | o_0) = CGaussian(o; \mu_{\gamma} + \log(1 + \exp(s_0)), \Theta_{\gamma})Gaussian(s_0; \bar{s}, R)$

$$P(s_0 \mid o_0) = C \exp \left(-0.5(\mu_{\gamma} + \log(1 + \exp(s_0)) - o)^T \Theta_{\gamma}^{-1}(\mu_{\gamma} + \log(1 + \exp(s_0)) - o) - 0.5(s_0 - \bar{s})^T R^{-1}(s_0 - \bar{s}) \right)$$

• = Not Gaussian

Prediction for T = 1

$$S_t = S_{t-1} + \mathcal{E} \qquad P(\varepsilon) = Gaussian(\varepsilon; 0, \Theta_{\varepsilon})$$

$$P(s_1 | o_0) = \int_{-\infty}^{\infty} C \exp\left(\frac{-0.5(\mu_{\gamma} + \log(1 + \exp(s_0)) - o)^T \Theta_{\gamma}^{-1}(\mu_{\gamma} + \log(1 + \exp(s_0)) - o)}{-0.5(s_0 - \bar{s})^T R^{-1}(s_0 - \bar{s})}\right) \exp\left((s_1 - s_0)^T \Theta_{\varepsilon}^{-1}(s_1 - s_0)\right) ds_0$$

= intractable

Update at T=1 and later

• Update at T=1

$$P(s_t \mid \mathbf{o}_{0:t}) = CP(s_t \mid \mathbf{o}_{0:t-1})P(\mathbf{o}_t \mid s_t)$$

– Intractable

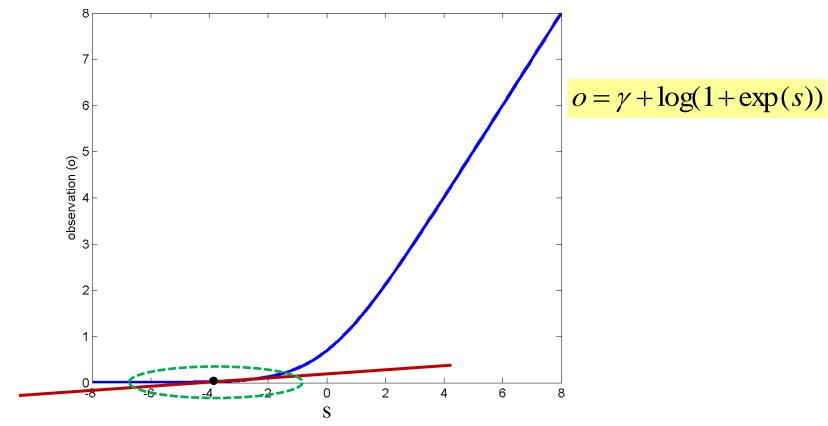
• Prediction for T=2 $P(s_t \mid o_{0:t-1}) = \int_{-\infty}^{\infty} P(s_{t-1} \mid o_{0:t-1}) P(s_t \mid s_{t-1}) ds_{t-1}$

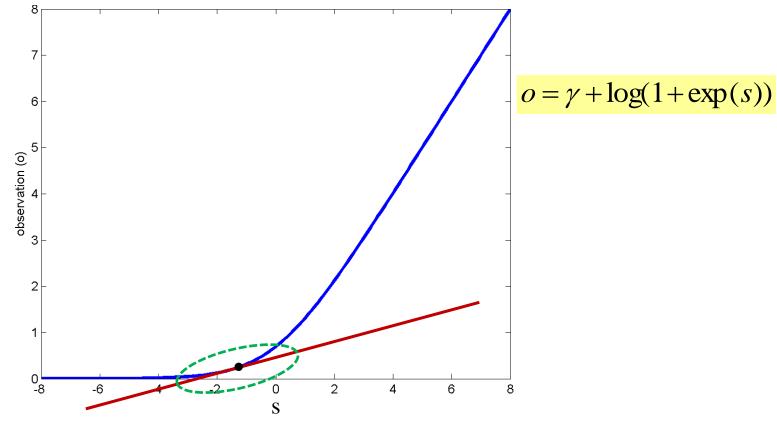
Intractable

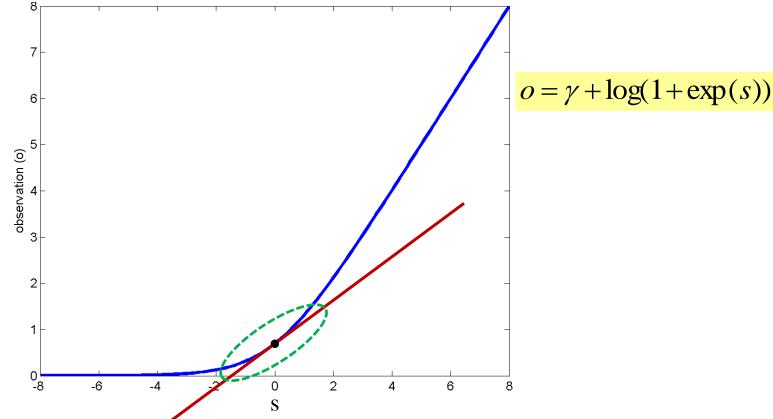
The State prediction Equation

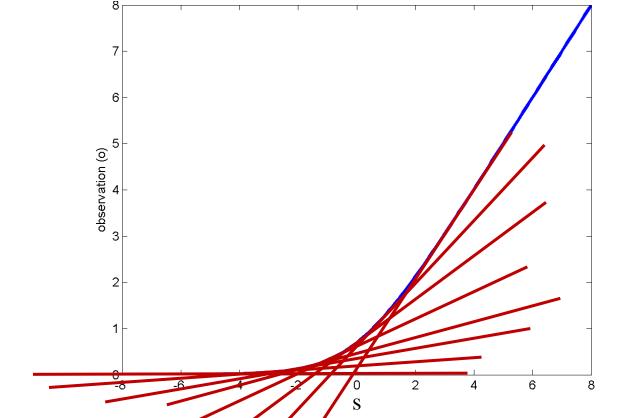
 $S_t = f(S_{t-1}, \mathcal{E}_t)$

- Similar problems arise for the state prediction equation
- $P(s_t|s_{t-1})$ may not have a closed form
- Even if it does, it may become intractable within the prediction and update equations
 - Particularly the prediction equation, which includes an integration operation







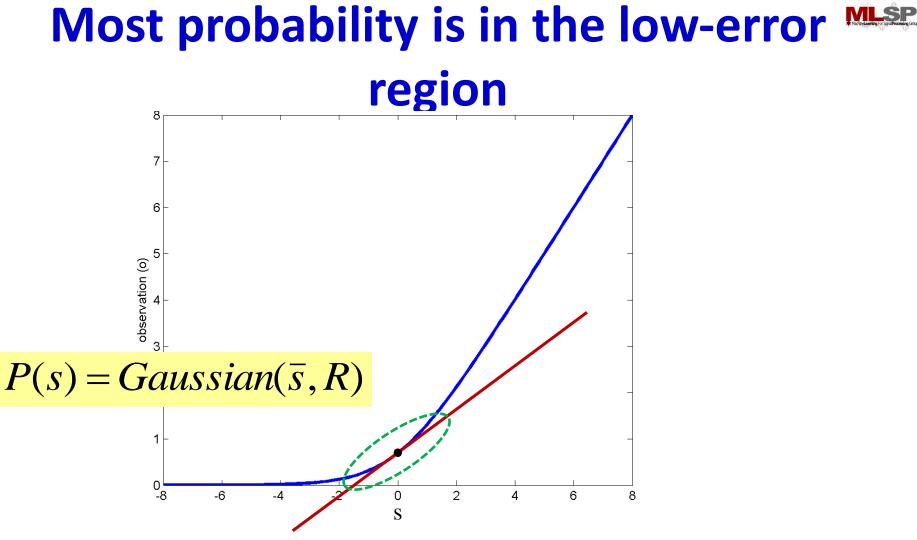


Linearizing the observation function

$$P(s) = Gaussian(\bar{s}, R)$$

$$o = \gamma + g(s)$$
 $rightarrow \gamma + g(\bar{s}) + J_g(\bar{s})(s - \bar{s})$

- Simple first-order Taylor series expansion
 - J() is the Jacobian matrix
 - Simply a determinant for scalar state
- Expansion around *a priori* (or predicted) mean of the state



- P(s) is small approximation error is large
 - Most of the probability mass of s is in low-error regions

Linearizing the observation function

$$P(s) = Gaussian(\bar{s}, R)$$

$$o = \gamma + g(s)$$
 $rightarrow \gamma + g(\bar{s}) + J_g(\bar{s})(s - \bar{s})$

• Observation PDF is Gaussian

$$P(\gamma) = Gaussian(\gamma; 0, \Theta_{\gamma})$$

$$P(o \mid s) = Gaussian(o; g(\bar{s}) + J_g(\bar{s})(s - \bar{s}), \Theta_{\gamma})$$

UPDATE.

$$o \approx \gamma + g(\bar{s}) + J_g(\bar{s})(s - \bar{s})$$

 $P(o \mid s) = Gaussian(o; g(\bar{s}) + J_g(\bar{s})(s - \bar{s}), \Theta_{\gamma})$

 $P(s) = Gaussian(s; \overline{s}, R)$ P(s | o) = CP(o | s)P(s)

 $P(s \mid o) = CGaussian(o; g(\bar{s}) + J_g(\bar{s})(s - \bar{s}), \Theta_{\gamma})Gaussian(s; \bar{s}, R)$

 $P(s|o) = Gaussian\left(s; \bar{s} + RJ_g(\bar{s})^T (J_g(\bar{s})RJ_g(\bar{s})^T + \Theta_\gamma)^{-1} (o - g(\bar{s})), (I - RJ_g(\bar{s})^T (J_g(\bar{s})RJ_g(\bar{s})^T + \Theta_\gamma)^{-1} J_g(\bar{s})) R\right)$

• Gaussian!!

- Note: This is actually only an approximation

Prediction?

$$s_t = f(s_{t-1}) + \varepsilon$$
 $P(\varepsilon) = Gaussian(\varepsilon; 0, \Theta_{\varepsilon})$

Again, direct use of f() can be disastrous

Solution: Linearize

$$P(s_{t-1} \mid o_{0:t-1}) = Gaussian(s_{t-1}; \hat{s}_{t-1}, \hat{R}_{t-1})$$

 $s_t = f(s_{t-1}) + \varepsilon$ $rac{s_t}{s_t} \approx \varepsilon + f(\hat{s}_{t-1}) + J_f(\hat{s}_{t-1})(s_{t-1} - \hat{s}_{t-1})$

- Linearize around the mean of the updated distribution of s at t-1
 - Which should be Gaussian 11-755/18

Prediction

$$s_t = f(s_{t-1}) + \varepsilon$$
 $rac{s_t}{s_t} \approx \varepsilon + f(\hat{s}_{t-1}) + J_f(\hat{s}_{t-1})(s_{t-1} - \hat{s}_{t-1})$

 $P(s_{t-1} | o_{0:t-1}) = Gaussian(s_{t-1}; \hat{s}_{t-1}, \hat{R}_{t-1}) \qquad P(\varepsilon) = Gaussian(\varepsilon; 0, \Theta_{\varepsilon})$

The state transition probability is now:

 $P(s_{t} | s_{t-1}) = Gaussian(s_{t}; f(\hat{s}_{t-1}) + J_{f}(\hat{s}_{t-1})(s_{t-1} - \hat{s}_{t-1}), \Theta_{\varepsilon})$

The predicted state probability is:

$$P(s_t \mid o_{0:t-1}) = \int_{-\infty}^{\infty} P(s_{t-1} \mid o_{0:t-1}) P(s_t \mid s_{t-1}) ds_{t-1}$$

Prediction

 $P(s_{t-1} \mid o_{0:t-1}) = Gaussian(s_{t-1}; \hat{s}_{t-1}, \hat{R}_{t-1})$

 $P(s_{t} | s_{t-1}) = Gaussian(s_{t}; f(\hat{s}_{t-1}) + J_{f}(\hat{s}_{t-1})(s_{t-1} - \hat{s}_{t-1}), \Theta_{\varepsilon})$

$$P(s_t \mid o_{0:t-1}) = \int_{-\infty}^{\infty} P(s_{t-1} \mid o_{0:t-1}) P(s_t \mid s_{t-1}) ds_{t-1}$$

$$P(s_{t} | o_{0:t-1}) = \int_{-\infty}^{\infty} Gaussian(s_{t-1}; \hat{s}_{t-1}, \hat{R}_{t-1}) Gaussian(s_{t}; f(\hat{s}_{t-1}) + J_{f}(\hat{s}_{t-1})(s_{t-1} - \hat{s}_{t-1}), \Theta_{\varepsilon}) ds_{t-1}$$

The predicted state probability is:

 $P(s_t \mid o_{0:t-1}) = Gaussian\left(s_t; \hat{f}(s_{t-1}), J_f(\hat{s}_{t-1}), \hat{R}_{t-1}J_f(\hat{s}_{t-1})^T + \Theta_{\varepsilon}\right)$

• Gaussian!!

- This is actually only an approximation

The linearized prediction/update

$$o_t = g(s_t) + \gamma$$

 $s_t = f(s_{t-1}) + \varepsilon$

- Given: two non-linear functions for state update and observation generation
- Note: the equations are *deterministic* non-linear functions of the state variable
 - They are *linear* functions of the noise!
 - Non-linear functions of stochastic noise are slightly more complicated to handle

Linearized Prediction and Update

• Prediction for time t

$$P(s_t \mid o_{0:t-1}) = Gaussian(s_t; \bar{s}_t, R_t)$$

$$\bar{s}_t = f(\hat{s}_{t-1}) \qquad \qquad R_t = J_f(\hat{s}_{t-1})\hat{R}_{t-1}J_f(\hat{s}_{t-1})^T + \Theta_{\varepsilon}$$

Update at time t

$$P(s_t | o_{0:t}) = Gaussian(s_t; \hat{s}_t, \hat{R}_t)$$

$$\hat{s}_t = \bar{s}_t + R_t J_g(\bar{s}_t)^T (J_g(\bar{s}_t) R_t J_g(\bar{s}_t)^T + \Theta_{\gamma})^{-1} (o_t - g(\bar{s}_t))$$

$$\hat{R}_t = (I - R_t J_g(\bar{s}_t)^T (J_g(\bar{s}_t) R_t J_g(\bar{s}_t)^T + \Theta_{\gamma})^{-1} J_g(\bar{s}_t))R_t$$

Linearized Prediction and Update

• Prediction for time t

$$P(s_t \mid o_{0:t-1}) = Gaussian(s_t; \bar{s}_t, R_t)$$

$$\bar{s}_t = f(\hat{s}_{t-1}) \qquad \qquad R_t = A_t \hat{R}_{t-1} A_t^T + \Theta_{\varepsilon}$$

Update at time t

$$P(s_t \mid o_{0:t}) = Gaussian(s_t; \hat{s}_t, \hat{R}_t)$$
$$\hat{s}_t = \bar{s}_t + R_t B_t^T (B_t R_t B_t^T + \Theta_{\gamma})^{-1} (o_t - g(\bar{s}_t))$$
$$\hat{R}_t = (I - R_t B_t^T (B_t R_t B_t^T + \Theta_{\gamma})^{-1} B_t) R_t$$

 $A_{t} = J_{f}(\hat{s}_{t-1})$ $B_{t} = J_{g}(\bar{s}_{t})$

• Prediction

$$\overline{s}_t = f(\hat{s}_{t-1})$$

$$A_{t} = J_{f}(\hat{s}_{t-1})$$
$$B_{t} = J_{g}(\bar{s}_{t})$$

$$\boldsymbol{R}_t = \boldsymbol{\Theta}_{\varepsilon} + \boldsymbol{A}_t \hat{\boldsymbol{R}}_{t-1} \boldsymbol{A}_t^T$$

Update

$$\boldsymbol{K}_{t} = \boldsymbol{R}_{t}\boldsymbol{B}_{t}^{T} \left(\boldsymbol{B}_{t}\boldsymbol{R}_{t}\boldsymbol{B}_{t}^{T} + \boldsymbol{\Theta}_{\gamma}\right)^{-1}$$

$$\hat{s}_t = \bar{s}_t + K_t (o_t - g(\bar{s}_t))$$

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

The Kalman filter

• Prediction

$$\bar{s}_t = A_t \hat{s}_{t-1} + \mu_{\varepsilon}$$

$$R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$$

• Update

$$\boldsymbol{K}_{t} = \boldsymbol{R}_{t}\boldsymbol{B}_{t}^{T} \left(\boldsymbol{B}_{t}\boldsymbol{R}_{t}\boldsymbol{B}_{t}^{T} + \boldsymbol{\Theta}_{\gamma}\right)^{-1}$$

$$\hat{s}_t = \overline{s}_t + K_t \left(o_t - B_t \overline{s}_t \right)$$

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

• Prediction

$$\bar{s}_t = f(\hat{s}_{t-1})$$

$$R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$$

$$s_t = f(s_{t-1}) + \varepsilon$$
$$o_t = g(s_t) + \varepsilon$$

$$A_{t} = J_{f}(\hat{s}_{t-1})$$
$$B_{t} = J_{g}(\bar{s}_{t})$$

• Update

$$\boldsymbol{K}_{t} = \boldsymbol{R}_{t}\boldsymbol{B}_{t}^{T} \left(\boldsymbol{B}_{t}\boldsymbol{R}_{t}\boldsymbol{B}_{t}^{T} + \boldsymbol{\Theta}_{\gamma}\right)^{-1}$$

$$\hat{s}_t = \bar{s}_t + K_t (o_t - g(\bar{s}_t))$$

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

Prediction

$$\overline{s}_t = f(\hat{s}_{t-1})$$

$$s_t = f(s_{t-1}) + \mathcal{E}$$

$$O_t = g(s_t) + \mathcal{E}$$

The predicted state at time t is obtained simply by propagating the estimated state at t-1 through the state dynamics equation $K_t = K_t B_t (B_t K_t B_t + \Theta_y)$

$$\hat{s}_t = \bar{s}_t + K_t (o_t - g(\bar{s}_t))$$

$$\hat{R}_t = (I - K_t B_t) R_t$$

Prediction

$$\bar{s}_t = f(\hat{s}_{t-1})$$

$$R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$$

$$s_t = f(s_{t-1}) + \mathcal{E}$$
$$o_t = g(s_t) + \mathcal{E}$$

$$A_t = J_f(\hat{s}_{t-1})$$

 $R = I(\overline{c})$

The prediction is imperfect. The variance of the predictor = variance of $\epsilon_{\rm t}$ + variance of As_{\rm t-1}

A is obtained by linearizing f()

 $\mathbf{n}_t \boldsymbol{\nu}_t \mathbf{\mu}_t$

• Prediction

$$\bar{s}_t = f(\hat{s}_{t-1})$$

$$s_t = f(s_{t-1}) + \varepsilon$$

$$o_t = g(s_t) + \mathcal{E}$$

$$R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$$

$$B_t = J_g(\bar{s}_t)$$

$$\boldsymbol{K}_{t} = \boldsymbol{R}_{t}\boldsymbol{B}_{t}^{T} \left(\boldsymbol{B}_{t}\boldsymbol{R}_{t}\boldsymbol{B}_{t}^{T} + \boldsymbol{\Theta}_{\gamma}\right)^{-1}$$

The Kalman gain is the slope of the MAP estimator that predicts s from o RBT = C_{so} , (BRB^T+ Θ) = C_{oo} B is obtained by linearizing g()

• Prediction

$$s_t = f(s_{t-1}) + \mathcal{E}$$

$$\bar{s}_{t} = f(\hat{s}_{t-1}) \longrightarrow o_{t} = g(s_{t}) + \epsilon$$

$$R_{t} = \Theta_{\epsilon} + A_{t}\hat{R}_{t-1}A_{t}^{T}$$

We can also predict the *observation* from the predicted state using the observation equation

$$\hat{s}_t = \bar{s}_t + K_t \left(o_t - g(\bar{s}_t) \right)$$

$$\hat{R}_t = (I - K_t B_t) R_t$$

$$\overline{o}_t = g(\overline{s}_t)$$

Prediction

$$\bar{s}_t = f(\hat{s}_{t-1})$$

$$s_t = f(s_{t-1}) + \varepsilon$$

$$o_t = g(s_t) + \mathcal{E}$$

 $\overline{O}_t = g(\overline{S}_t)$

$$R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$$

We must correct the predicted value of the state after making an observation

$$\hat{s}_t = \bar{s}_t + K_t (o_t - g(\bar{s}_t))$$

The correction is the difference between the *actual* observation and the *predicted* observation, scaled by the Kalman Gain

Prediction

$$\bar{s}_t = f(\hat{s}_{t-1})$$

$$R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$$

$$O_{i} = g(S_{i}) + \mathcal{E}$$

 $S_{\star} = f(S_{\star-1}) + \mathcal{E}$

$$B_t = J_g(\bar{s}_t)$$

The uncertainty in state decreases if we observe the data and make a correction

The reduction is a multiplicative "shrinkage" based on Kalman gain and B

$$\hat{R}_t = (I - K_t B_t) R_t$$

• Prediction

$$\bar{s}_t = f(\hat{s}_{t-1})$$

$$R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$$

$$s_t = f(s_{t-1}) + \varepsilon$$
$$o_t = g(s_t) + \varepsilon$$

$$A_{t} = J_{f}(\hat{s}_{t-1})$$
$$B_{t} = J_{g}(\bar{s}_{t})$$

• Update

$$\boldsymbol{K}_{t} = \boldsymbol{R}_{t}\boldsymbol{B}_{t}^{T} \left(\boldsymbol{B}_{t}\boldsymbol{R}_{t}\boldsymbol{B}_{t}^{T} + \boldsymbol{\Theta}_{\gamma}\right)^{-1}$$

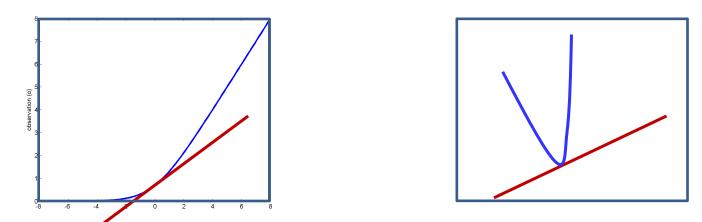
$$\hat{s}_t = \bar{s}_t + K_t (o_t - g(\bar{s}_t))$$

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

EKFs

- EKFs are probably the most commonly used algorithm for tracking and prediction
 - Most systems are non-linear
 - Specifically, the relationship between state and observation is usually nonlinear
 - The approach can be extended to include non-linear functions of noise as well
- The term "Kalman filter" often simply refers to an *extended* Kalman filter in most contexts.
- But..

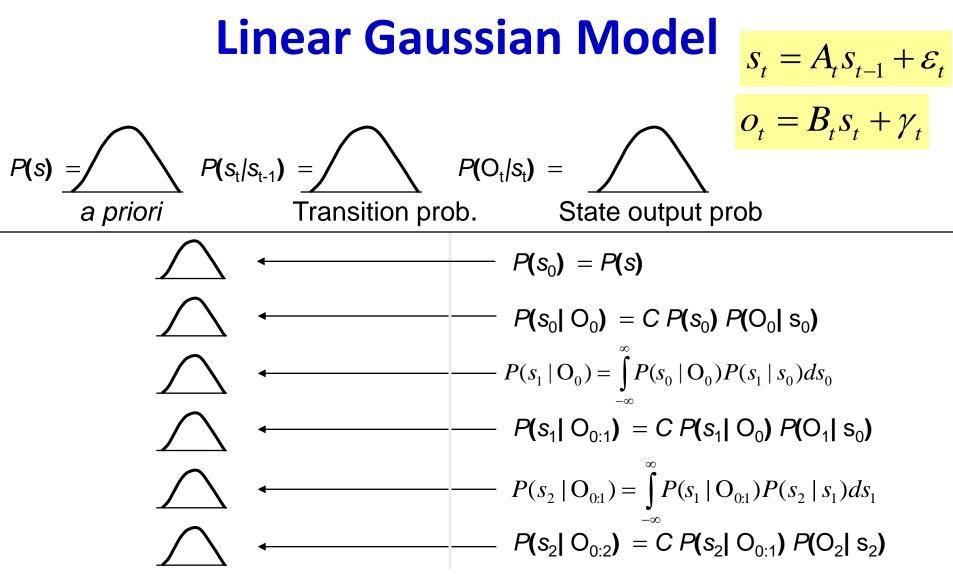
EKFs have limitations



- If the non-linearity changes too quickly with s, the linear approximation is invalid
 - Unstable
- The estimate is often biased
 - The true function lies entirely on one side of the approximation
- Various extensions have been proposed:
 - Invariant extended Kalman filters (IEKF)
 - Unscented Kalman filters (UKF)

A different problem: Non-Gaussian PDFs $o_t = g(s_t) + \gamma$ $s_t = f(s_{t-1}) + \varepsilon$

- We have assumed so far that:
 - $P_0(s)$ is Gaussian or can be approximated as Gaussian
 - $P(\varepsilon)$ is Gaussian
 - $P(\gamma)$ is Gaussian
- This has a happy consequence: All distributions remain Gaussian



All distributions remain Gaussian

A different problem: Non-Gaussian MLSP PDFs

$$o_t = g(s_t) + \gamma$$
 $s_t = f(s_{t-1}) + \varepsilon$

- We have assumed so far that:
 - $P_0(s)$ is Gaussian or can be approximated as Gaussian
 - $P(\varepsilon)$ is Gaussian
 - $P(\gamma)$ is Gaussian
- This has a happy consequence: All distributions remain Gaussian
- But when any of these are not Gaussian, the results are not so happy

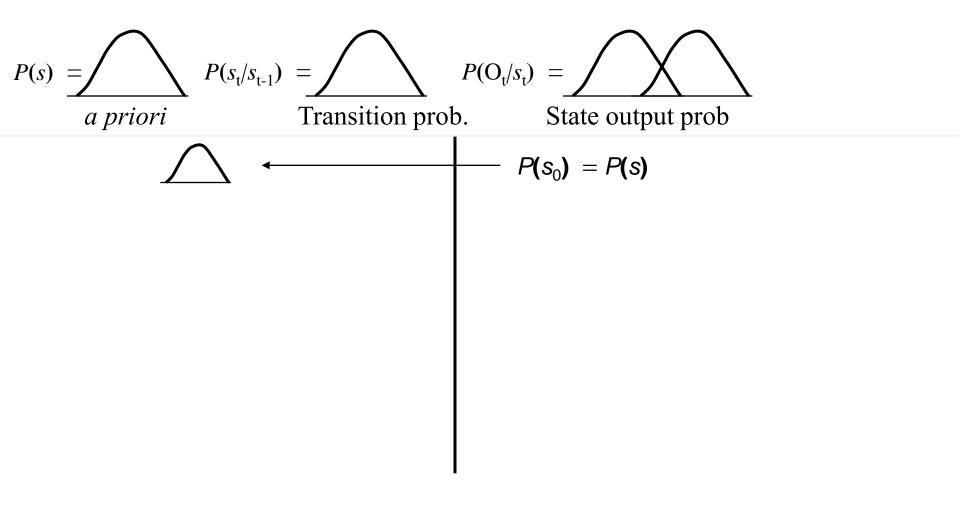
A simple case

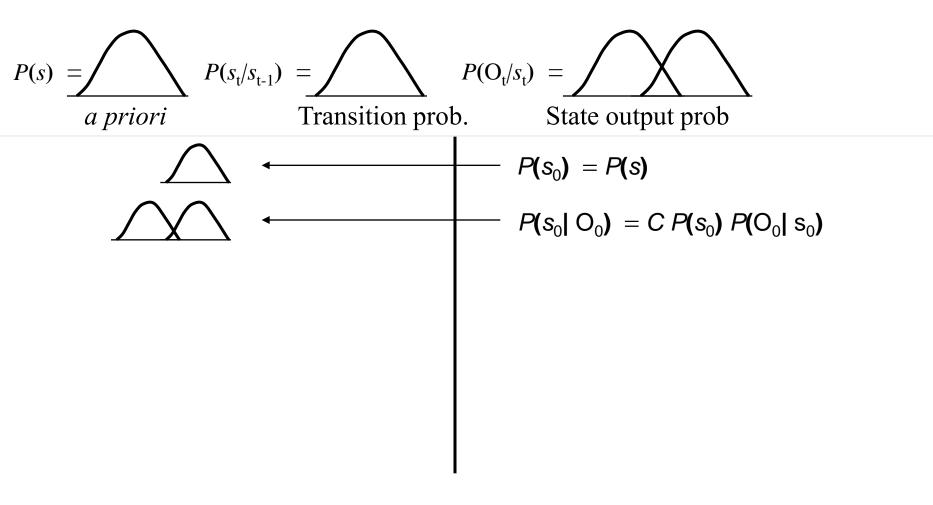
$$O_t = Bs_t + \gamma$$

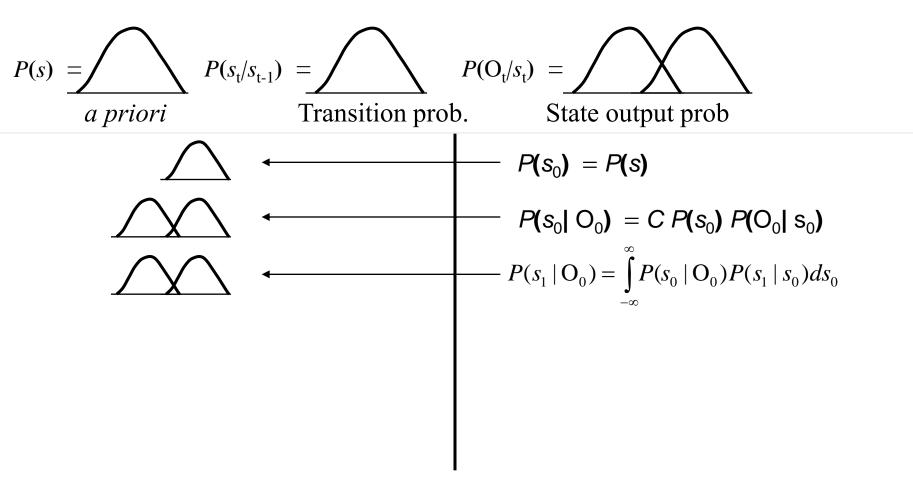
$$P(\gamma) = \sum_{i=0}^{1} w_i Gaussian(\gamma; \mu_i, \Theta_i)$$

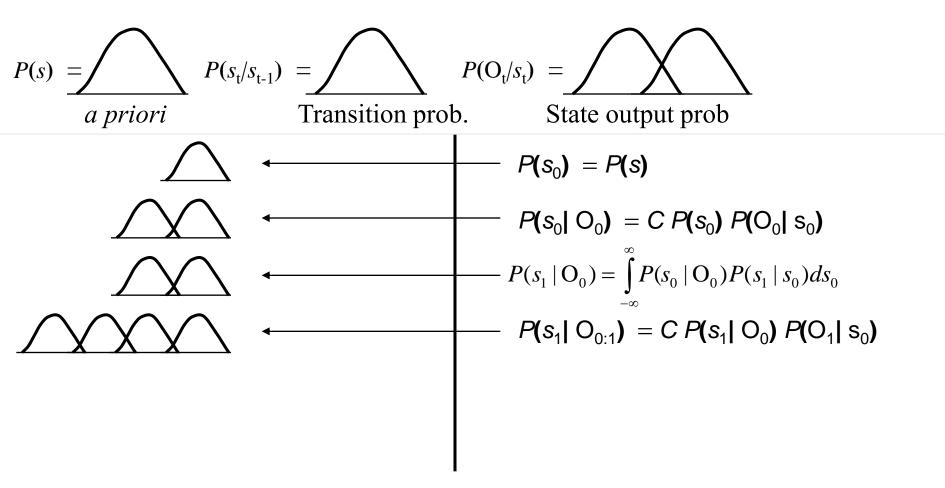
- $P(\gamma)$ is a mixture of only two Gaussians
- *o* is a linear function of *s*
 - Non-linear functions would be linearized anyway
- P(o|s) is also a Gaussian mixture!

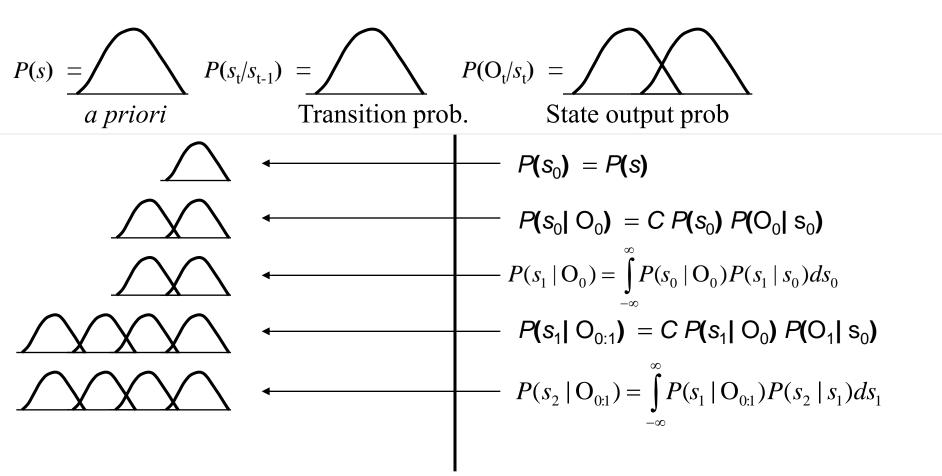
62

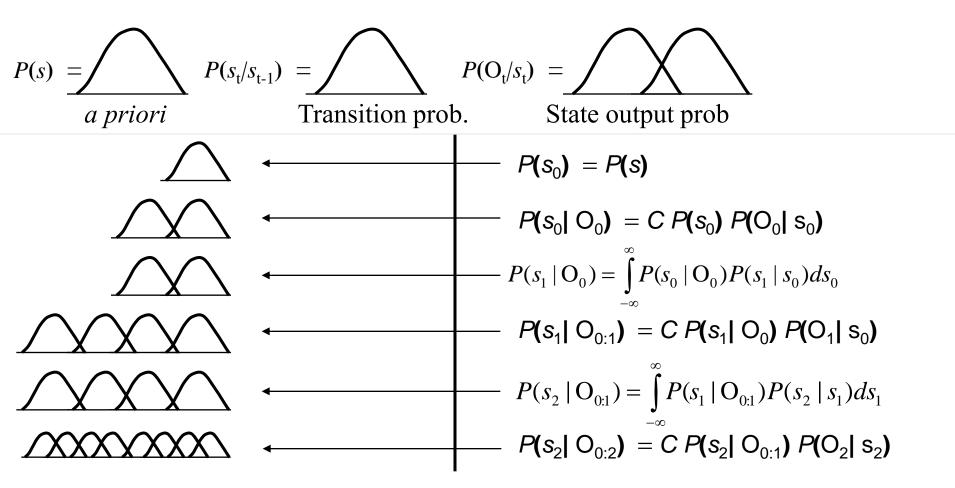




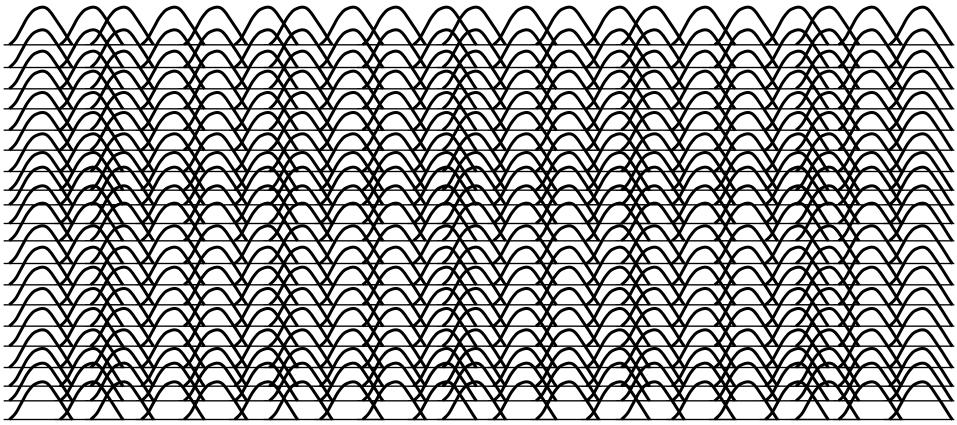








When $P(O_t/s_t)$ has more than one Gaussian, after only a few time steps...



We have too many Gaussians for comfort..

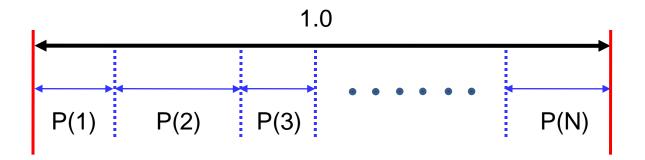
Related Topic: How to sample from a Distribution?

- "Sampling from a Distribution P(x; Γ) with parameters Γ "
- Generate random numbers such that
 - The distribution of a large number of generated numbers is $P(x; \Gamma)$
 - The parameters of the distribution are Γ
- Many algorithms to generate RVs from a variety of distributions
 - Generation from a uniform distribution is well studied
 - Uniform RVs used to sample from multinomial distributions
 - Other distributions: Most commonly, transform a uniform RV to the desired distribution

Sampling from a multinomial

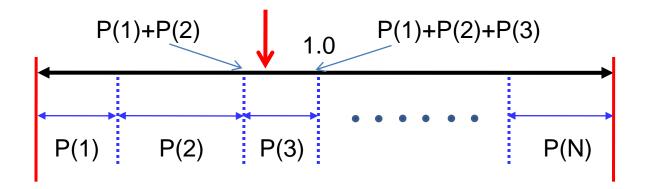
- Given a multinomial over N symbols, with probability of ith symbol = P(i)
- Randomly generate symbols from this distribution
- Can be done by sampling from a uniform distribution

Sampling a multinomial



Segment a range (0,1) according to the probabilities P(i)
 The P(i) terms will sum to 1.0

Sampling a multinomial



- Segment a range (0,1) according to the probabilities P(i)
 The P(i) terms will sum to 1.0
- Randomly generate a number from a uniform distribution
 Matlab: "rand".
 - Generates a number between 0 and 1 with uniform probability
- If the number falls in the ith segment, select the ith symbol

Related Topic: Sampling from a Gaussian

- Many algorithms
 - Simplest: add many samples from a uniform RV
 - The sum of 12 uniform RVs (uniform in (0,1)) is approximately Gaussian with mean 6 and variance 1
 - For scalar Gaussian, mean μ , std dev σ :

$$x = \sum_{i=1}^{12} r_i - 6$$

- Matlab : $x = \mu + randn^* \sigma$
 - "randn" draws from a Gaussian of mean=0, variance=1

Related Topic: Sampling from a Gaussian

- Multivariate (d-dimensional) Gaussian with mean μ and covariance Θ
 - Compute eigen value matrix Λ and eigenvector matrix E for Θ
 - $\Theta = \mathsf{E} \land \mathsf{E}^{\mathsf{T}}$
 - Generate d 0-mean unit-variance numbers x₁..x_d
 - Arrange them in a vector:

 $\mathsf{X} = [\mathsf{x}_1 \dots \mathsf{x}_d]^\mathsf{T}$

– Multiply X by the square root of Λ and E , add μ

 $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{E} \operatorname{sqrt}(\boldsymbol{\Lambda}) \mathbf{X}$

Sampling from a Gaussian Mixture

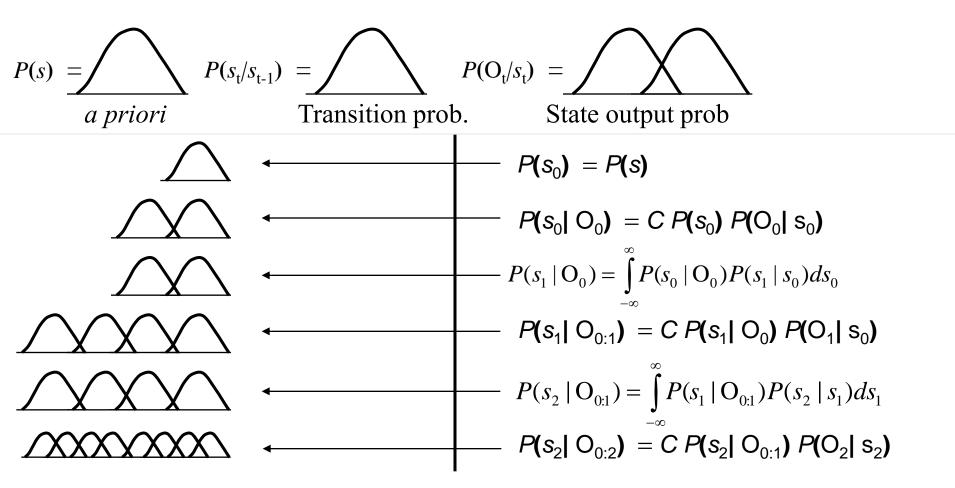
$$\sum_{i} w_{i} Gaussian(X; \mu_{i}, \Theta_{i})$$

 Select a Gaussian by sampling the multinomial distribution of weights:

$$j \sim multinomial(w_1, w_2, ...)$$

• Sample from the selected Gaussian $Gaussian(X; \mu_j, \Theta_j)$

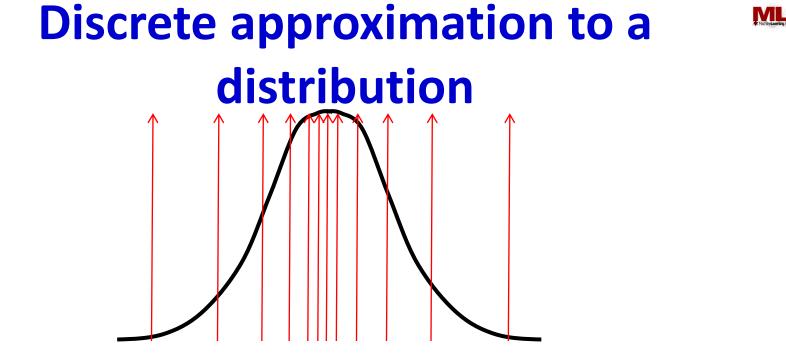
When distributions are not Gaussian



When $P(O_t/s_t)$ has more than one Gaussian, after only a few time steps...

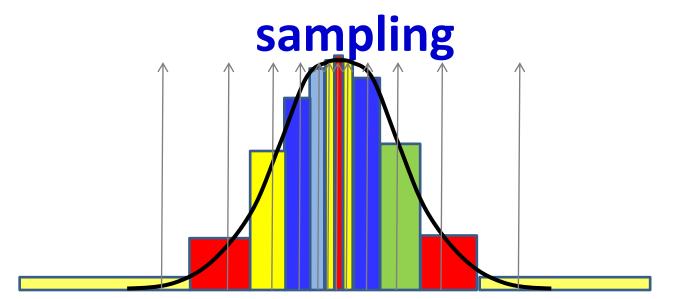
The problem of the exploding distribution

- The complexity of the distribution increases exponentially with time
- This is a consequence of having a *continuous* state space
 - Only Gaussian PDFs propagate without increase of complexity
- *Discrete-state* systems do not have this problem
 - The number of states in an HMM stays fixed
 - However, discrete state spaces are too coarse
- Solution: Combine the two concepts
 - *Discretize* the state space dynamically



- A large-enough collection of randomly-drawn samples from a distribution will approximately quantize the space of the random variable into equi-probable regions
 - We have more random samples from high-probability regions and fewer samples from low-probability reigons

Discrete approximation: Random



- A PDF can be approximated as a uniform probability distribution over randomly drawn samples
 - Since each sample represents approximately the same probability mass (1/M if there are M samples)

$$P(x) \approx \frac{1}{M} \sum_{i=0}^{M-1} \delta(x - x_i)$$

Note: Properties of a discrete distribution

$$P(x) \approx \frac{1}{M} \sum_{i=0}^{M-1} \delta(x - x_i)$$
 $P(x)P(y | x) \propto \sum_{i=0}^{M-1} P(y | x_i) \delta(x - x_i)$

 The product of a discrete distribution with another distribution is simply a weighted discrete probability

$$P(x) \approx \sum_{i=0}^{M-1} w_i \delta(x - x_i) \qquad \qquad \int_{-\infty}^{\infty} P(x) P(y \mid x) dx = \sum_{i=0}^{M-1} w_i P(y \mid x_i)$$

• The integral of the product is a mixture distribution

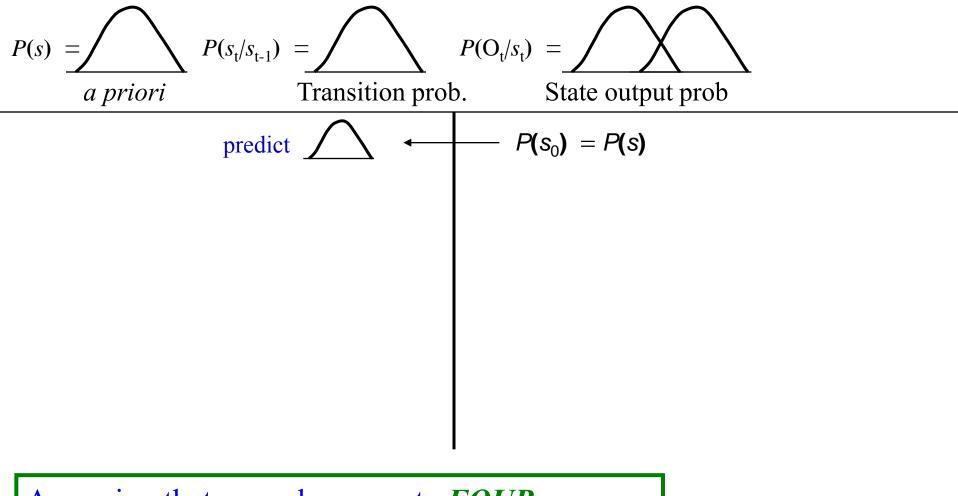
Discretizing the state space

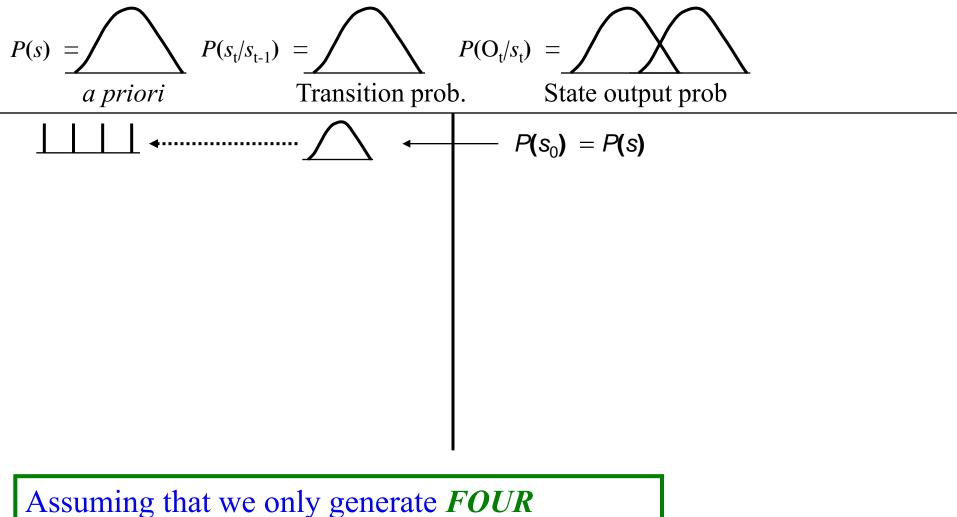
At each time, discretize the predicted state space

$$P(s_t | o_{0:t}) \approx \frac{1}{M} \sum_{i=0}^{M-1} \delta(s_t - s_i)$$

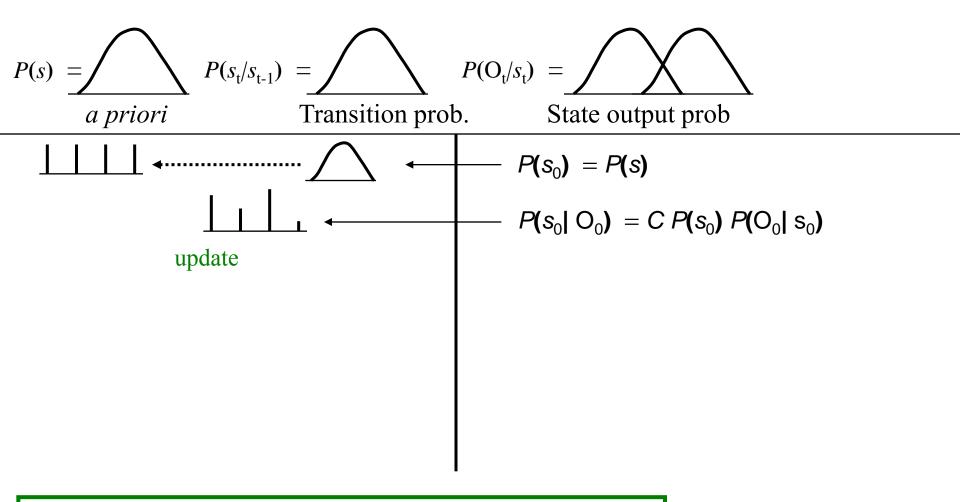
- s_i are randomly drawn samples from P($s_t | o_{0:t}$)

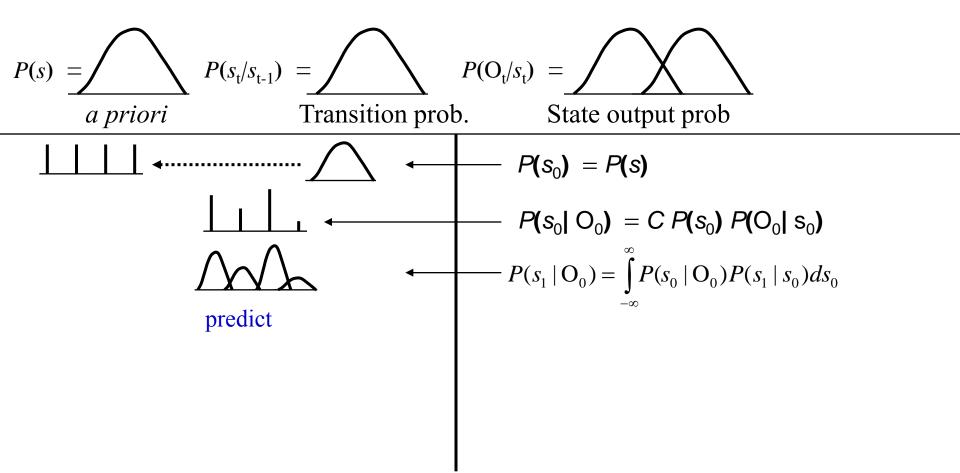
• Propagate the discretized distribution



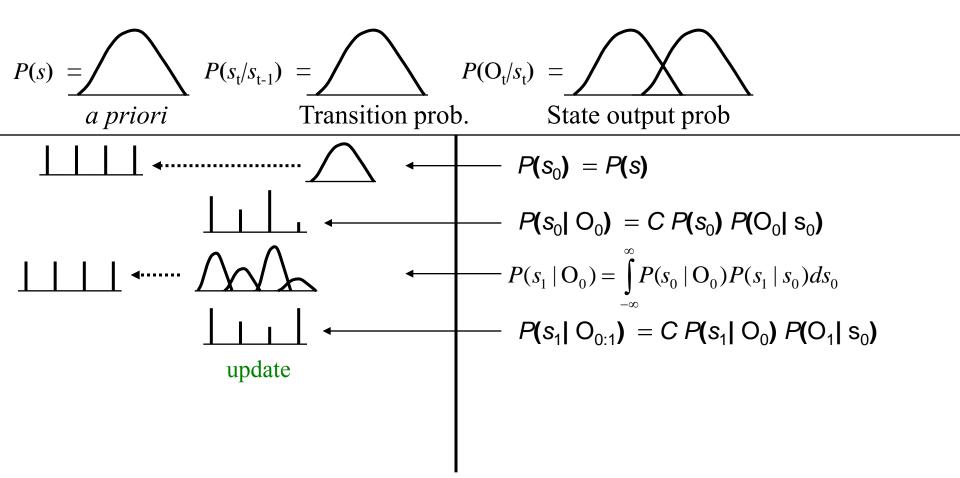


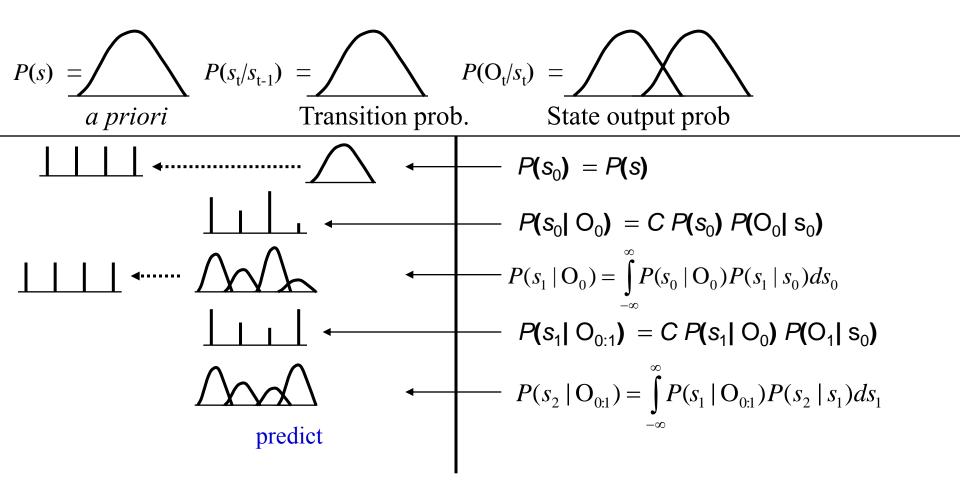
samples from the predicted distributions

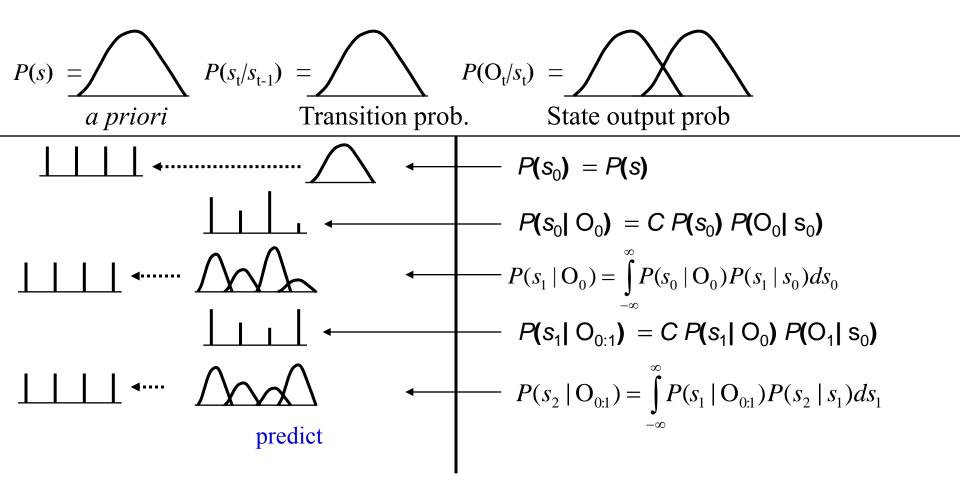


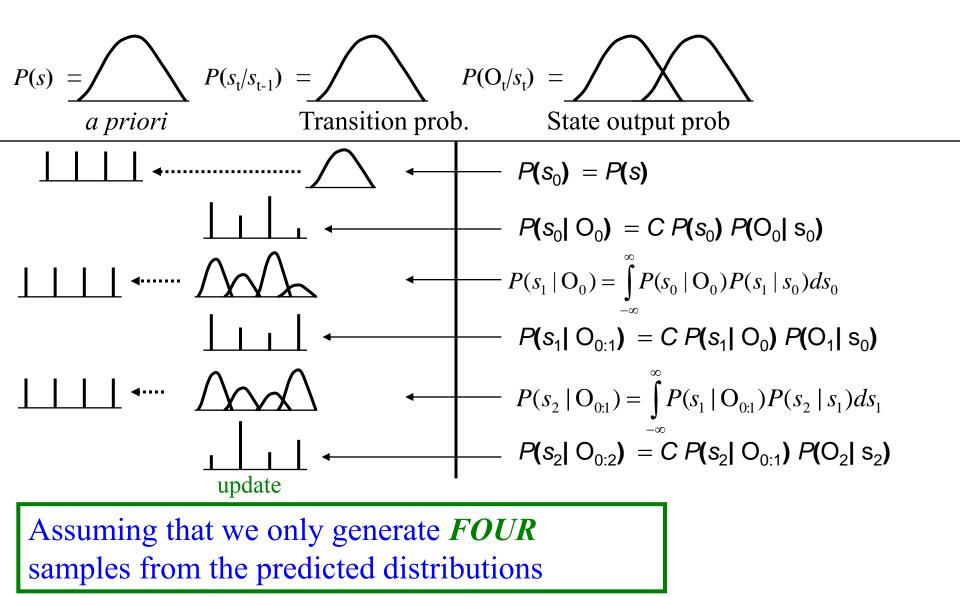




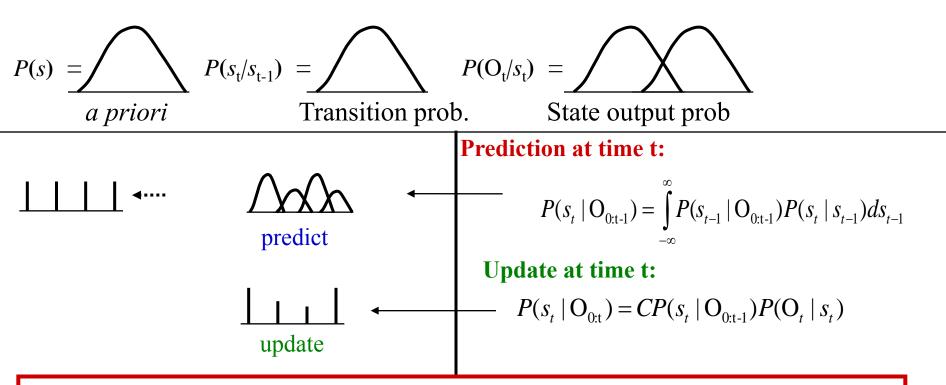








- Discretize state space at the prediction step
 - By sampling the continuous predicted distribution
 - If appropriately sampled, all generated samples may be considered to be equally probable
 - Sampling results in a **discrete** uniform distribution
- Update step updates the distribution of the quantized state space
 - Results in a discrete non-uniform distribution
- Predicted state distribution for the next time instant will again be continuous
 - Must be **discretized** again by sampling
- At any step, the current state distribution will not have more components than the number of samples generated at the previous sampling step
 - The complexity of distributions remains constant



Number of mixture components in predicted distribution governed by number of samples in discrete distribution

By deriving a small (100-1000) number of samples at each time instant, all distributions are kept manageable

$$o_{t} = g(s_{t}) + \gamma$$

$$S_{t} = f(s_{t-1}) + \varepsilon$$

$$P_{\gamma}(\gamma)$$

$$P_{\varepsilon}(\varepsilon)$$

- At t = 0, sample the initial state distribution $P(s_0 | o_{-1}) = P(s_0) \approx \frac{1}{M} \sum_{i=0}^{M-1} \delta(s_0 - \bar{s}_i^0) \text{ where } \bar{s}_i^0 \leftarrow P_0(s)$
- Update the state distribution with the observation

$$P(s_t \mid o_{0:t}) = C \sum_{i=0}^{M-1} P_{\gamma}(o_t - g(\bar{s}_i^t)) \delta(s_t - \bar{s}_i^t)$$

 $C = \frac{1}{\sum_{i=0}^{M-1} P_{\gamma}(o_{t} - g(\bar{s}_{i}^{t}))}$

• Predict the state distribution at the next time

$$P(s_t \mid o_{0:t-1}) = C \sum_{i=0}^{M-1} P_{\gamma}(o_{t-1} - g(\bar{s}_i^{t-1})) P_{\varepsilon}(s_t - f(\bar{s}_i^{t-1}))$$

• Sample the predicted state distribution

$$P(s_t \mid o_{0:t-1}) \approx \frac{1}{M} \sum_{i=0}^{M-1} \delta(s_t - \overline{s}_i^t) \text{ where } \overline{s}_i^t \leftarrow P(s_t \mid o_{0:t-1})$$

$$o_t = g(s_t) + \gamma \quad P_{\gamma}(\gamma) \qquad \qquad s_t = f(s_{t-1}) + \varepsilon \quad P_{\varepsilon}(\varepsilon)$$

Predict the state distribution at t

$$P(s_t \mid o_{0:t-1}) = C \sum_{i=0}^{M-1} P_{\gamma}(o_{t-1} - g(\bar{s}_i^{t-1})) P_{\varepsilon}(s_t - f(\bar{s}_i^{t-1}))$$

- Sample the predicted state distribution at t $P(s_t \mid o_{0:t-1}) \approx \frac{1}{M} \sum_{i=1}^{M-1} \delta(s_t - \overline{s}_i^t) \text{ where } \overline{s}_i^t \leftarrow P(s_t \mid o_{0:t-1})$
- Update the state distribution at t $P(s_t \mid o_{0:t}) = C \sum_{i=0}^{M-1} P_{\gamma}(o_t - g(\bar{s}_i^t)) \delta(s_t - \bar{s}_i^t) \qquad C = \frac{1}{\sum_{i=0}^{M-1} P_{\gamma}(o_t - g(\bar{s}_i^t))}$

Estimating a state

• The algorithm gives us a discrete updated distribution over states:

$$P(s_t \mid o_{0:t}) = C \sum_{i=0}^{M-1} P_{\gamma}(o_t - g(\bar{s}_i^t)) \delta(s_t - \bar{s}_i^t)$$

• The actual state can be estimated as the mean of this distribution $\hat{s}_{t} = C \sum_{i}^{M-1} \bar{s}_{i}^{t} P_{\gamma}(o_{t} - g(\bar{s}_{i}^{t}))$

Alternately, it can be the most likely sample

$$\hat{s}_t = \bar{s}_i^t$$
: $j = \arg \max_i P_{\gamma}(o_t - g(\bar{s}_i^t))$

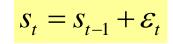
Simulations with a Linear Model

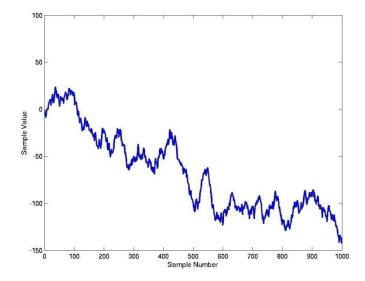
$$S_t = S_{t-1} + \mathcal{E}_t \qquad O_t = S_t + X_t$$

- \mathbf{E}_{t} has a Gaussian distribution with 0 mean, known variance
- x_{t} has a mixture Gaussian distribution with known parameters
- Simulation:
 - Generate state sequence S_{t} from model
 - Generate sequence of \mathcal{X}_{t} from model with one \mathcal{X}_{t} term for every S_{t} term
 - Generate observation sequence O_{t} from S_{t} and \mathcal{X}_{t}
 - Attempt to estimate S_t from O_t

Simulation: Synthesizing data

Generate state sequence according to: ε_t is Gaussian with mean 0 and variance 10



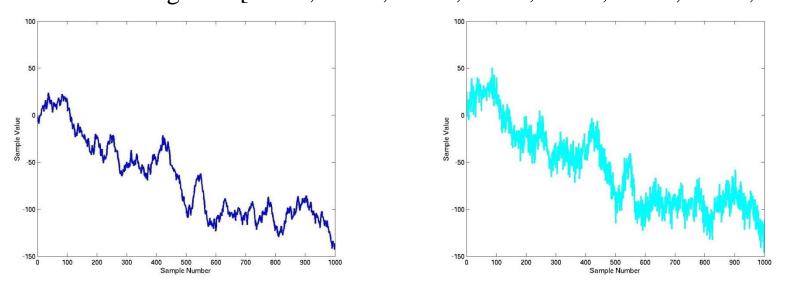


Simulation: Synthesizing data

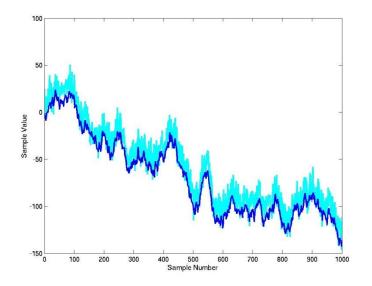
Generate state sequence according to: ε_t is Gaussian with mean 0 and variance 10

$$S_t = S_{t-1} + \mathcal{E}_t$$

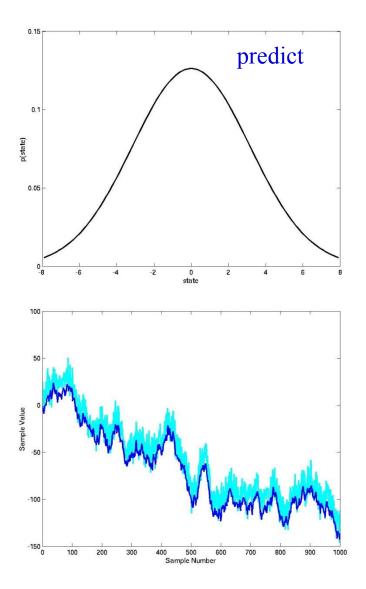
Generate observation sequence from state sequence according to: $O_t = S_t + X_t$ x_t is mixture Gaussian with parameters: Means = [-4, 0, 4, 8, 12, 16, 18, 20] Variances = [10, 10, 10, 10, 10, 10, 10] Mixture weights = [0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125]



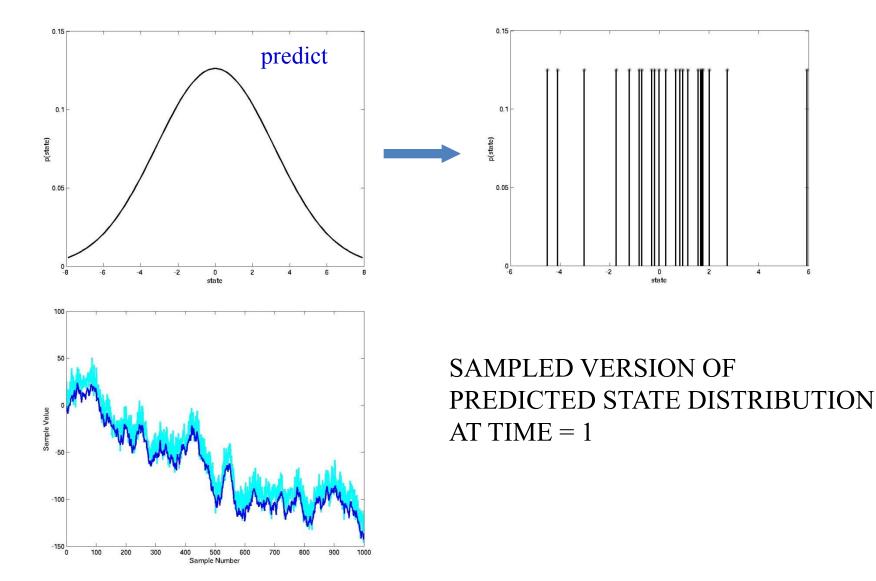
Simulation: Synthesizing data

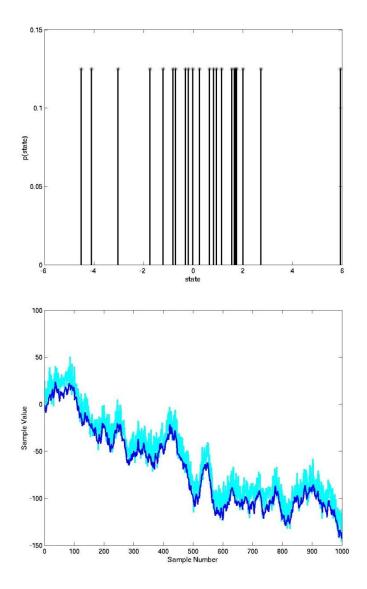


Combined figure for more compact representation

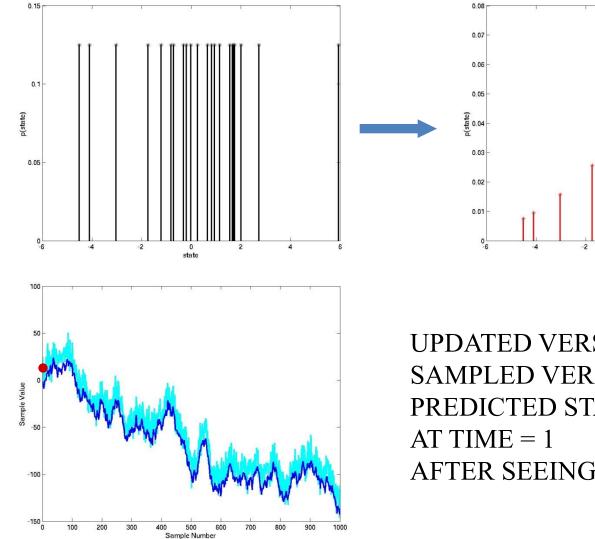


PREDICTED STATE DISTRIBUTION AT TIME = 1





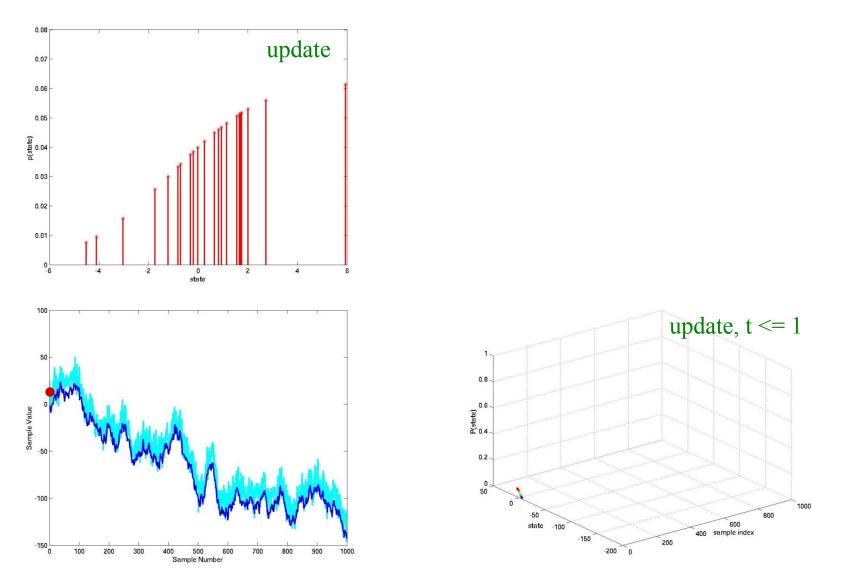
SAMPLED VERSION OF PREDICTED STATE DISTRIBUTION AT TIME = 1

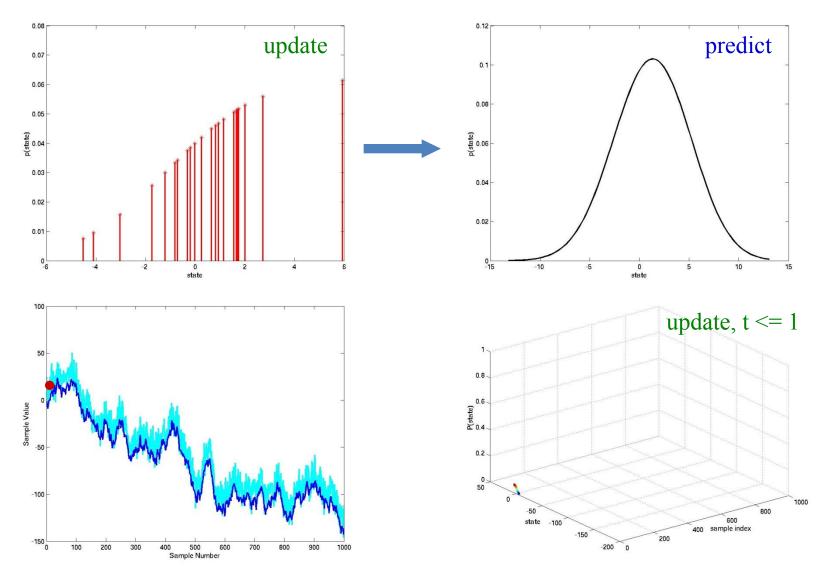


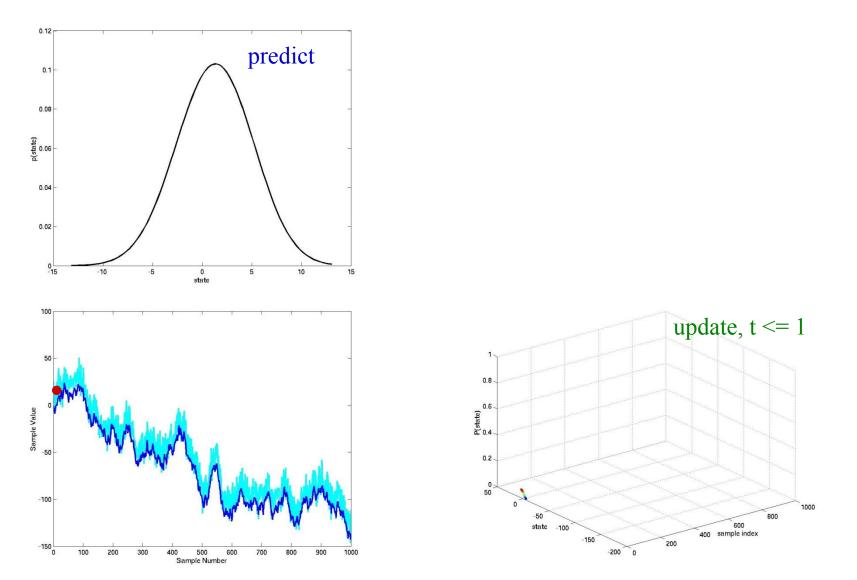
update

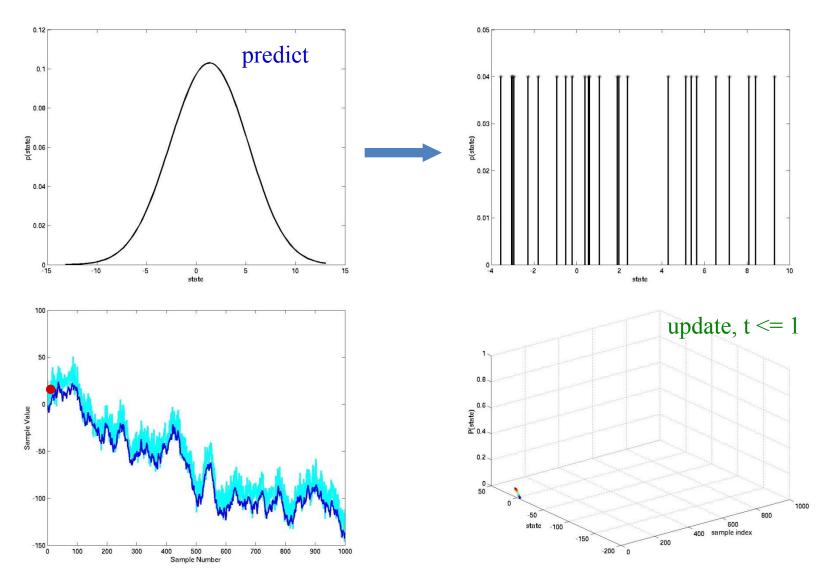
UPDATED VERSION OF SAMPLED VERSION OF PREDICTED STATE DISTRIBUTION AT TIME = 1 AFTER SEEING FIRST OBSERVATION

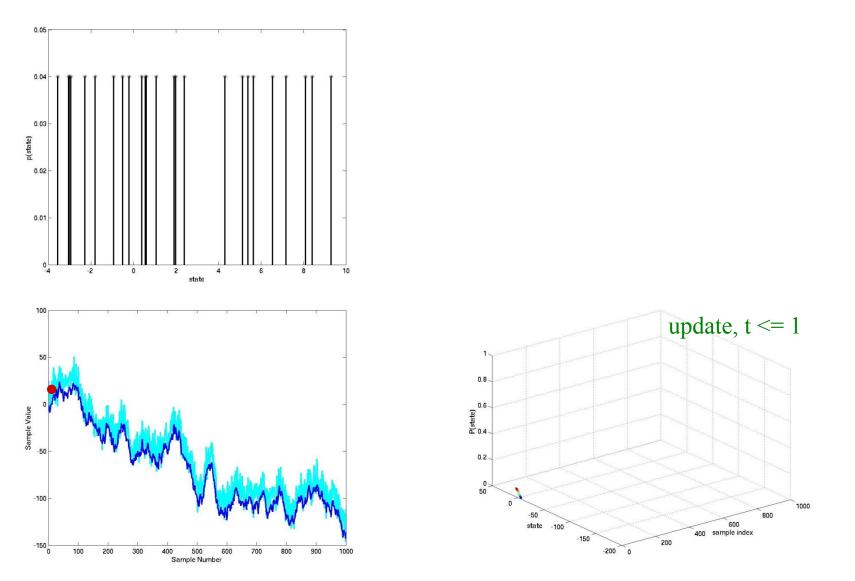
state

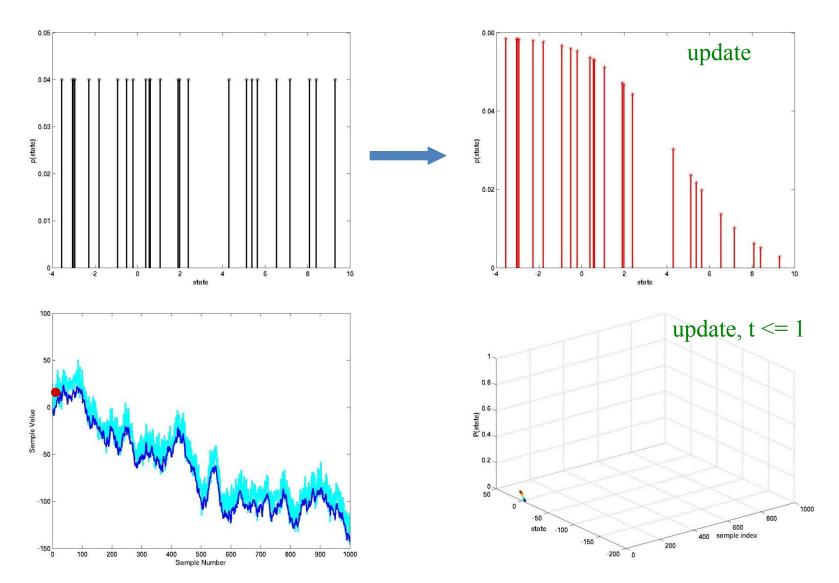


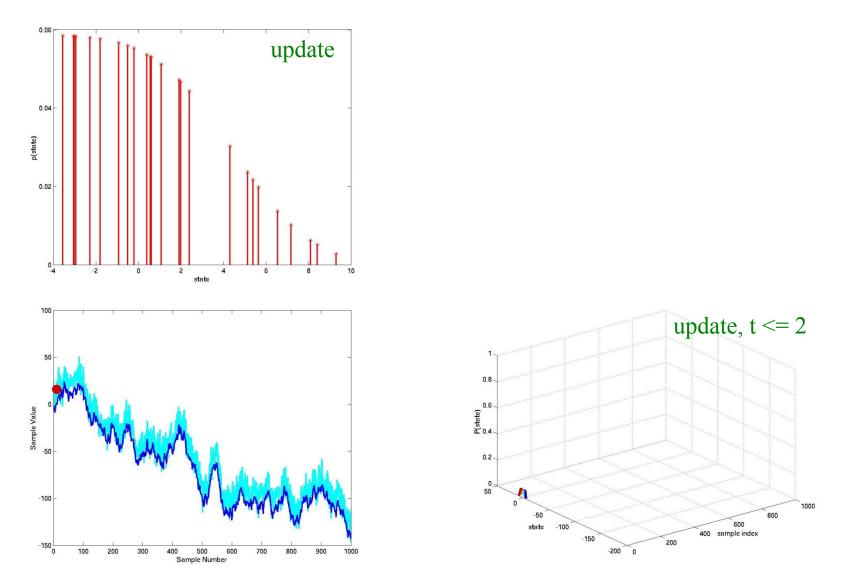




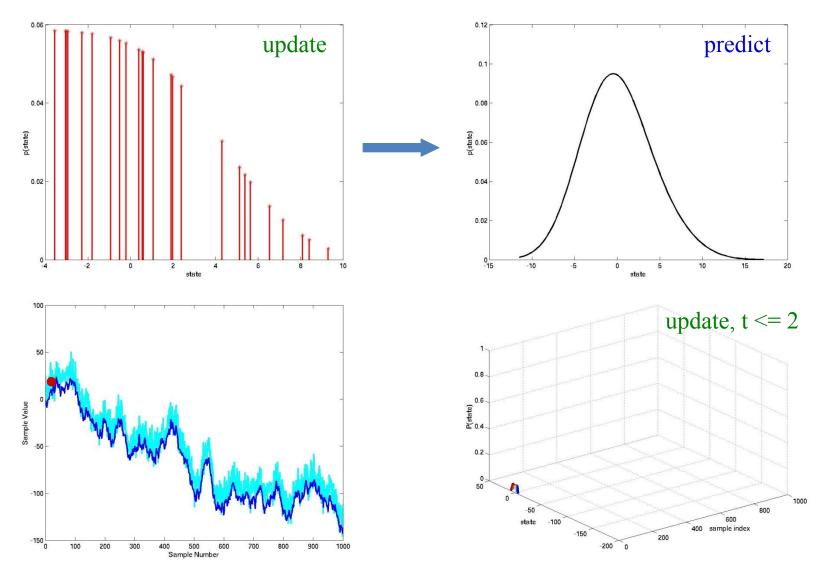


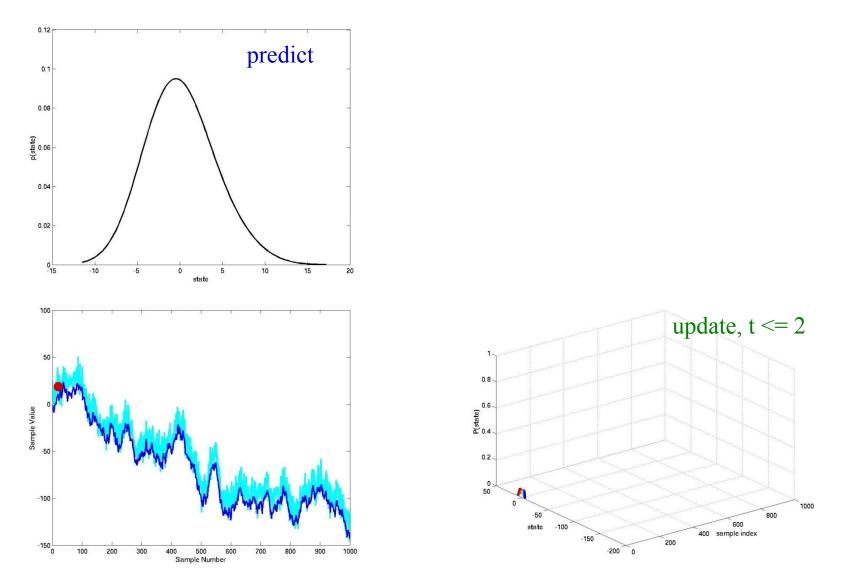


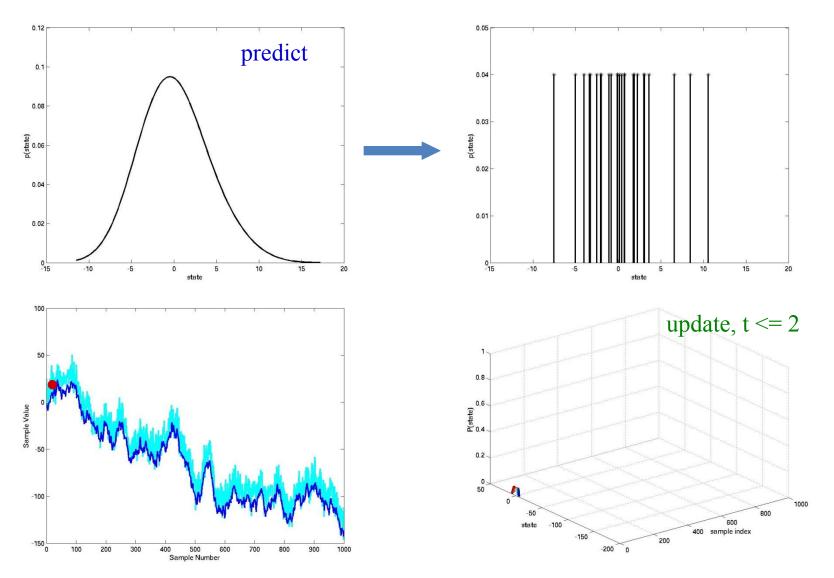




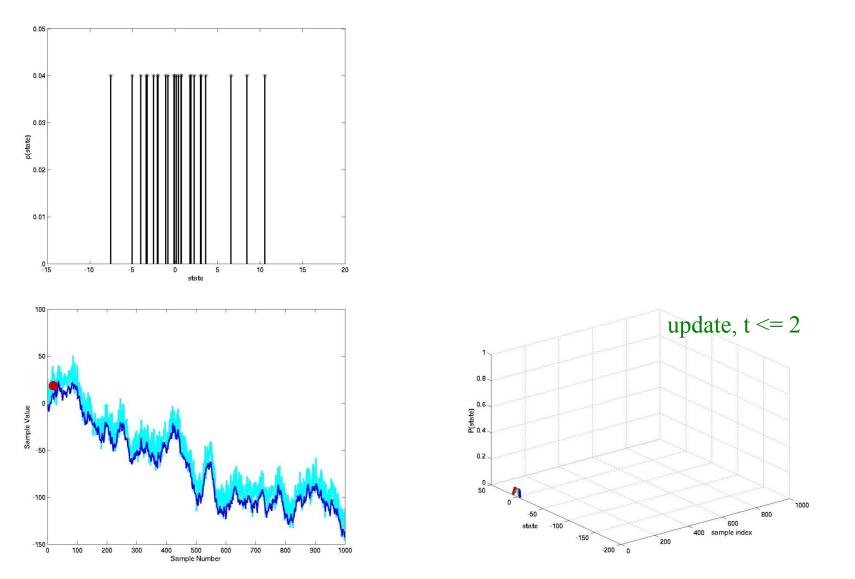
11-755/18797



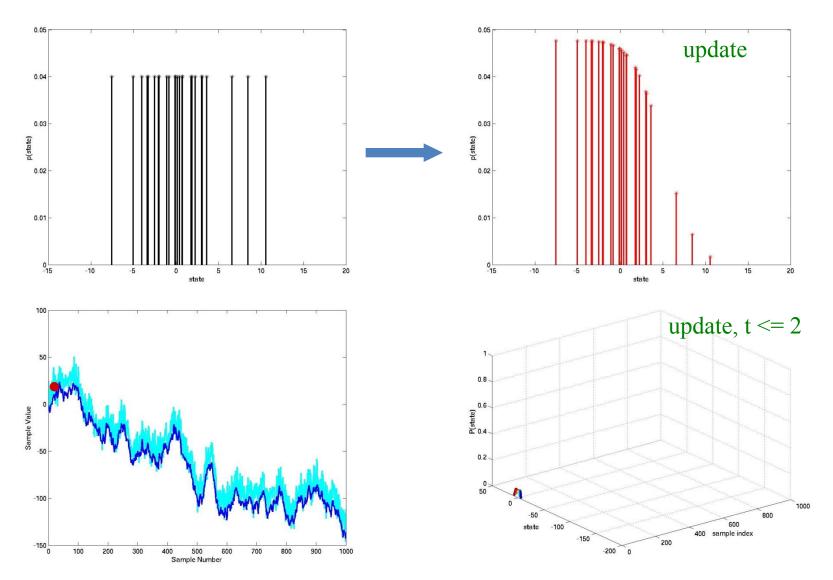


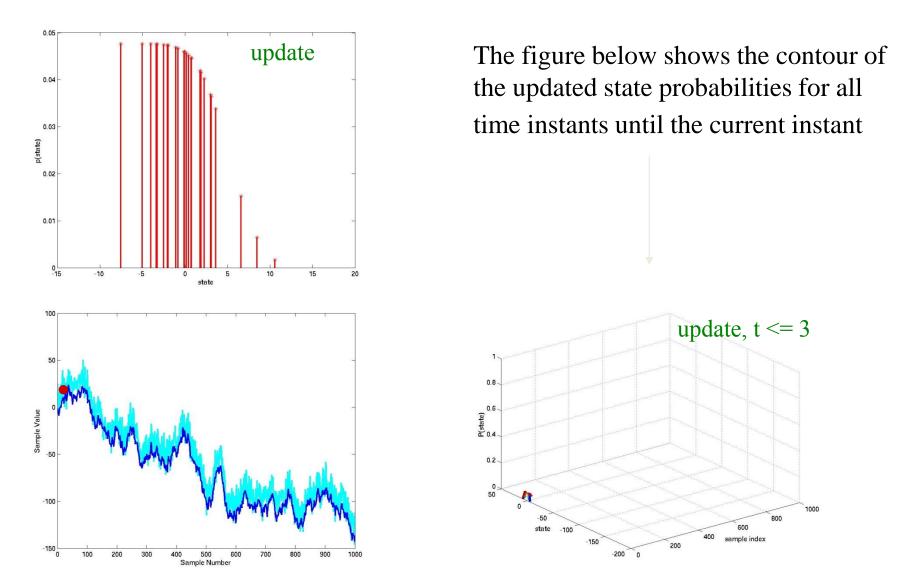


11-755/18797



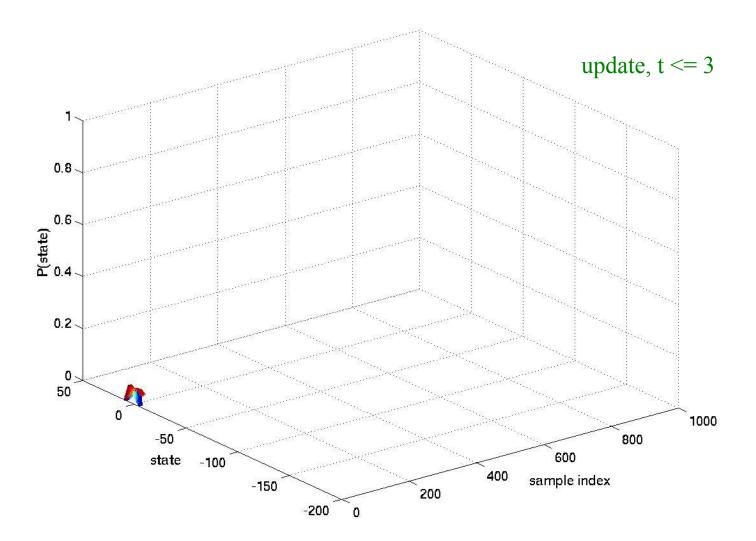
11-755/18797



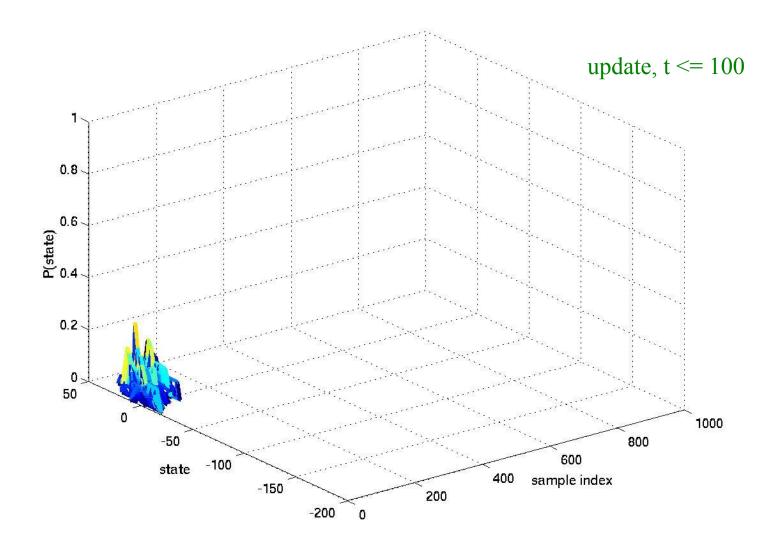


11-755/18797

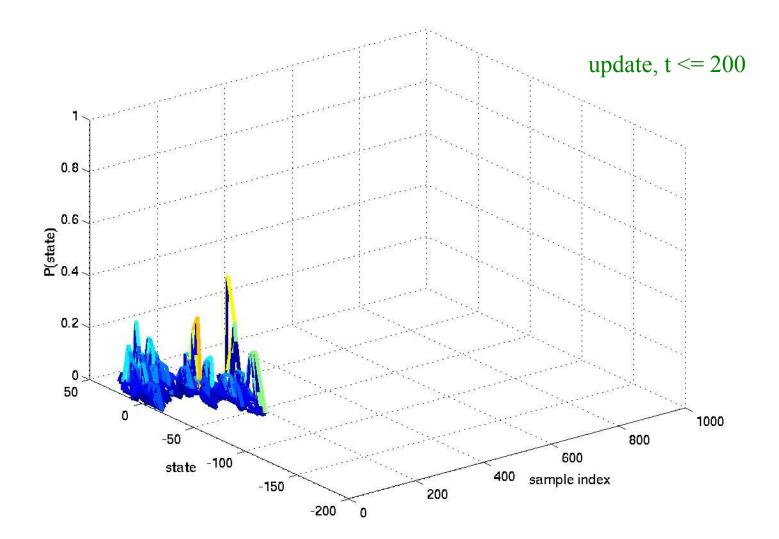
Simulation: Updated Probs Until MLSP T=3

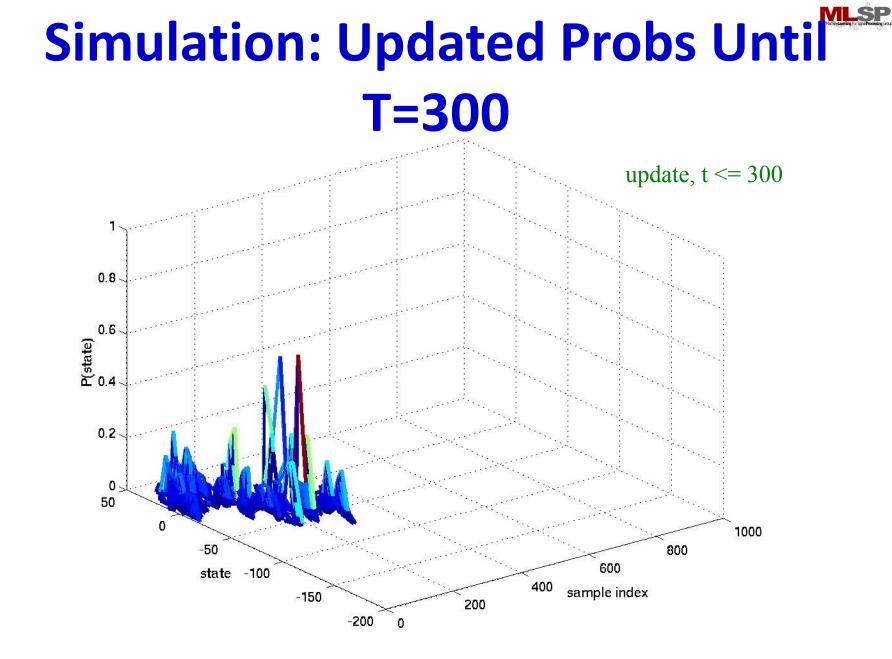


Simulation: Updated Probs Until



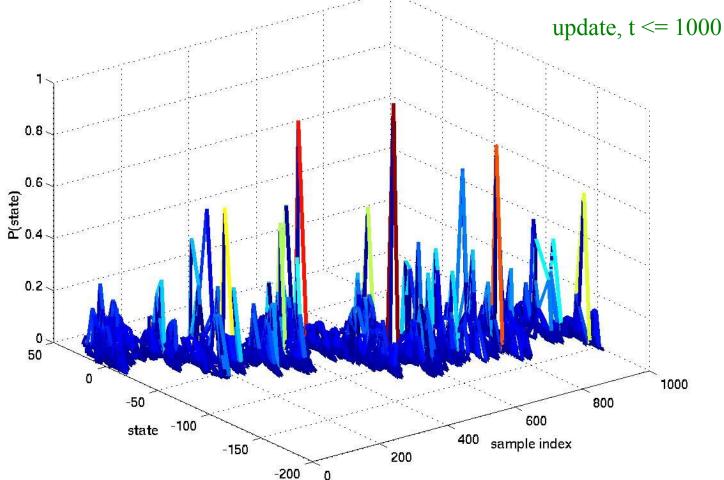
Simulation: Updated Probs Until



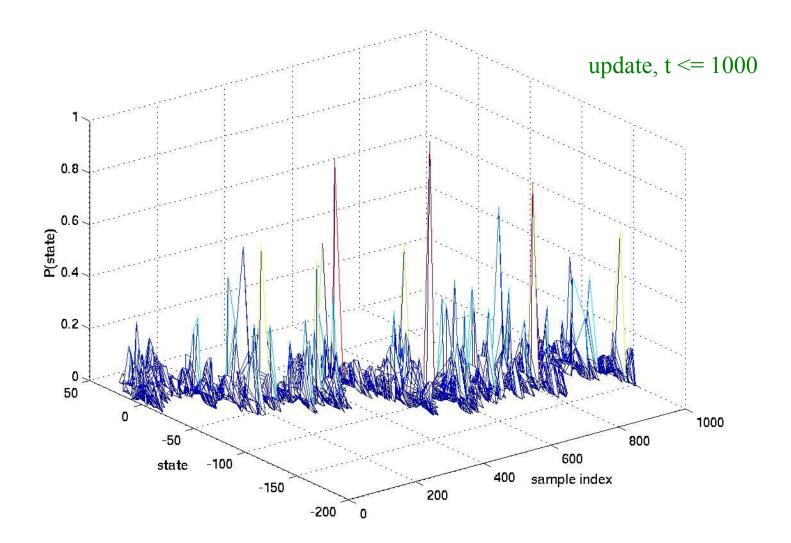


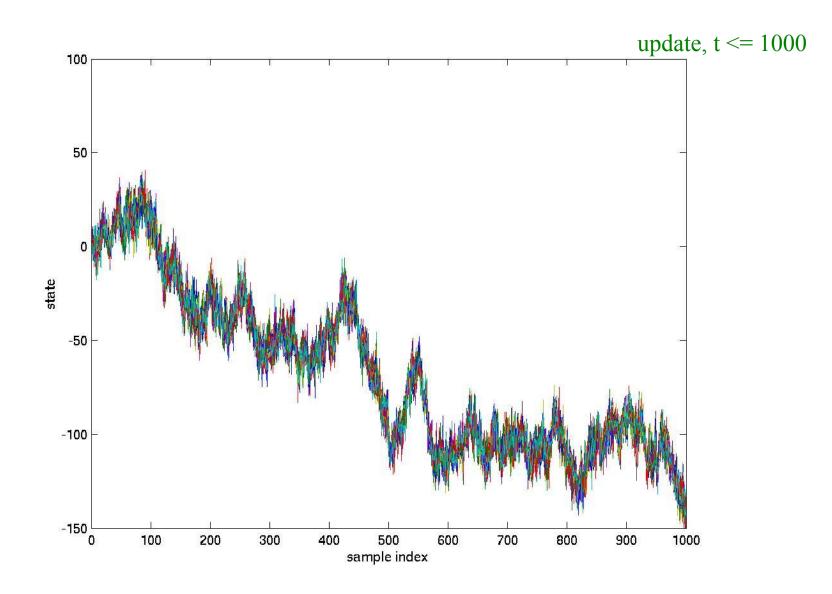
Simulation: Updated Probs Until **T=500** update, t <= 500 0.8 9.0 P(state) P'0 0.2 0 ~ 50 0 1000 -50 800 600 state -100 400 sample index -150 200 -200 0

Simulation: Updated Probs Until T=1000

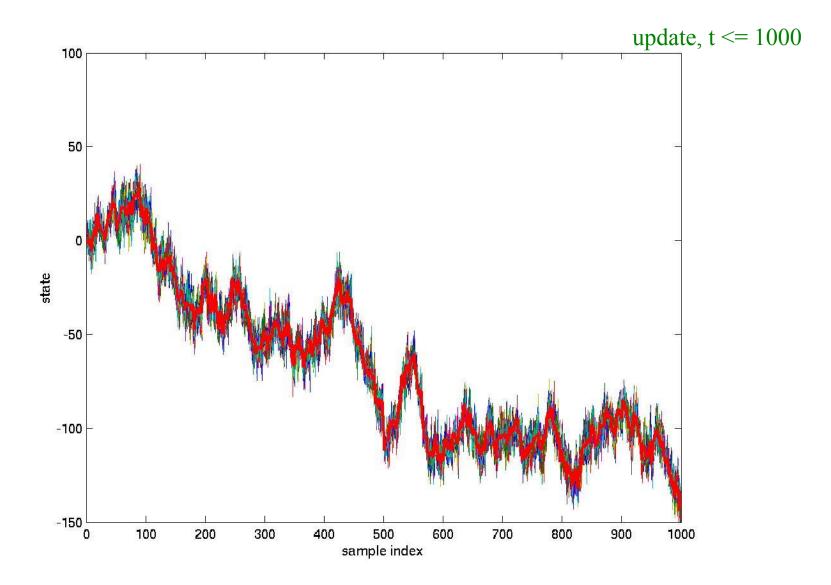


Updated Probs Until T = 1000

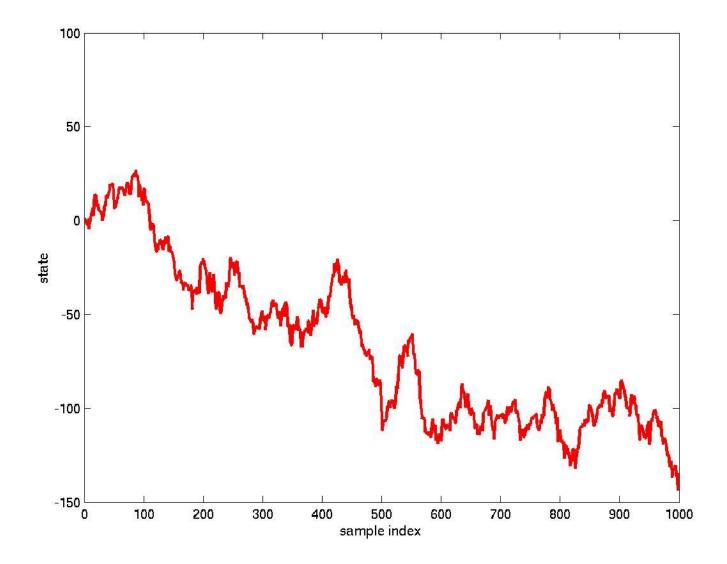




Updated Probs: Top View



ESTIMATED STATE



Observation, True States, Estimate



Particle Filtering

- Generally quite effective in scenarios where EKF/UKF may not be applicable
 - Potential applications include tracking and edge detection in images!
 - Not very commonly used however
- Highly dependent on sampling
 - A large number of samples required for accurate representation
 - Samples may not represent mode of distribution
 - Some distributions are not amenable to sampling
 - Use importance sampling instead: Sample a Gaussian and assign nonuniform weights to samples

Prediction filters

- HMMs
- Continuous state systems
 - Linear Gaussian: Kalman
 - Nonlinear Gaussian: Extended Kalman
 - Non-Gaussian: Particle filtering
- EKFs are the most commonly used kalman filters..