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Recap: An automotive example 

• Determine automatically, by only listening to a running 
automobile, if it is: 

– Idling; or 

– Travelling at constant velocity; or 

– Accelerating; or 

– Decelerating 

• Assume (for illustration) that we only record energy level 
(SPL) in the sound 

– The SPL is measured once per second 
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The Model! 

• The state-space model 
– Assuming all transitions from a state are equally probable 
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Overall procedure 

• At T=0 the predicted state distribution is the initial state probability 

• At each time T, the current estimate of the distribution over states 
considers all observations x0 ... xT 

– A natural outcome of the Markov nature of the model 

• The prediction+update is identical to the forward computation for 
HMMs to within a normalizing constant 
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Predict the 
distribution of the 

state at T 

Update the 
distribution of the 

state at T 
after observing xT 

T=T+1 

P(ST | x0:T-1)  = SST-1
  P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T)  = C. P(ST | x0:T-1) P(xT|ST) 

PREDICT UPDATE 



Estimating the state 

• The state is estimated from the updated 
distribution 

– The updated distribution is propagated into time, not 
the state 
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Estimate(ST) 

Predict the 
distribution of the 

state at T 

Update the 
distribution of the 

state at T 
after observing xT 

T=T+1 

Estimate(ST) = argmax ST
P(ST | x0:T) 

P(ST | x0:T-1)  = SST-1
  P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T)  = C. P(ST | x0:T-1) P(xT|ST) 



Predicting the next observation 

• The probability distribution for the observations at the next 

time is a mixture: 

– P(xT|x0:T-1) = SST
 P(xT|ST) P(ST|x0:T-1) 

• The actual observation can be predicted from P(xT|x0:T-1) 
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Predict P(xT|x0:T-1) 

Predict the 
distribution of the 

state at T 

Update the 
distribution of the 

state at T 
after observing xT 

T=T+1 

Predict xT 

P(ST | x0:T-1)  = SST-1
  P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T)  = C. P(ST | x0:T-1) P(xT|ST) 



Continuous state system 

• The state is a continuous valued parameter that is not directly 

seen 

– The state is the position of navlab  or the star 

 

• The observations are dependent on the state and are the only 

way of knowing about the state 

– Sensor readings (for navlab) or recorded image (for the telescope) 
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Update after Ot:  

Discrete vs. Continuous State Systems 

Prediction at time t:  
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Special case: Linear Gaussian model 

• A linear state dynamics equation 
– Probability of state driving term  is Gaussian 

– Sometimes viewed as a driving term m and additive 
zero-mean noise 

• A linear observation equation 
– Probability of observation noise  is Gaussian 

• At, Bt and Gaussian parameters assumed known 
– May vary with time 
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The Linear Gaussian model (KF) 

• Iterative prediction and update 
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The Kalman filter 

• Prediction 
 

 

 

 

• Update 
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The Kalman filter 

• Prediction 
 

 

 

 

• Update 
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The predicted state at time t is obtained  
simply by propagating the estimated state 
 at t-1 through the state dynamics equation 



The Kalman filter 

• Prediction 
 

 

 

 

• Update 
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The prediction is imperfect. The variance 
of the predictor = variance of t + variance  
of Ast-1 

 
The two simply add because t is not  
correlated with st 



The Kalman filter 

• Prediction 
 

 

 

 

• Update 
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We can also predict the observation from 
the predicted state using the observation 
equation 
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MAP Recap (for Gaussians) 
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MAP Recap: For Gaussians 
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The Kalman filter 

• Prediction 
 

 

 

 

• Update 
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This is the slope of the MAP estimator 
that predicts s from o 
RBT =  Cso,   (BRBT+) = Coo 

This is also called the Kalman Gain 



The Kalman filter 

• Prediction 
 

 

 

 

• Update 
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The correction is the difference between 
the actual observation and the predicted 
observation, scaled by the Kalman Gain 

We must correct the predicted value of 
the state after making an observation 
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The Kalman filter 

• Prediction 

 

 

• Update: 
 

 

 

 

• Update 
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The uncertainty in state decreases if we 
observe the data and make a correction 
 
The reduction is a multiplicative “shrinkage” 
based on Kalman gain and B 
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The Kalman filter 

• Prediction 

 

 

• Update: 
 

 

 

 

• Update 
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Linear Gaussian Model 

P(s0| O0)   C P(s0) P(O0| s0)  
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P(s2| O0:2)   C P(s2| O0:1) P(O2| s2)  

All distributions remain Gaussian 

P(s)   P(st|st-1)   P(Ot|st)   

P(s0)   P(s) 

a priori Transition prob. State output prob 

tttt sBo 

tttt sAs  1



Problems 

• f() and/or g() may not be nice linear functions 

– Conventional Kalman update rules are no longer 
valid 

 

•  and/or  may not be Gaussian 

– Gaussian based update rules no longer valid 
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Problems 

• f() and/or g() may not be nice linear functions 

– Conventional Kalman update rules are no longer 
valid 

 

•  and/or  may not be Gaussian 

– Gaussian based update rules no longer valid 
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The problem with non-linear 
functions 

• Estimation requires knowledge of P(o|s) 

– Difficult to estimate for nonlinear g() 

– Even if it can be estimated, may not be tractable with update loop 
 

• Estimation also requires knowledge of P(st|st-1) 

– Difficult for nonlinear f() 

– May not be amenable to closed form integration 
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The problem with nonlinearity 

• The PDF may not have a closed form 

 

 

 

 

 

 

• Even if a closed form exists initially, it will typically 
become intractable very quickly 
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Example: a simple nonlinearity 

• P(o|s) = ? 

– Assume  is Gaussian 

– P() = Gaussian(; m, ) 
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Example: a simple nonlinearity 

• P(o|s) = ? 
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Example: At T=0. 

• Update 
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UPDATE: At T=0. 

• = Not Gaussian 
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Prediction for T = 1 
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Update at T=1 and later 

• Update at T=1 

 

 

– Intractable 
 

• Prediction for T=2 

 
 

– Intractable 
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The State prediction Equation 

• Similar problems arise for the state prediction 
equation 

 

• P(st|st-1) may not have a closed form 

• Even if it does, it may become intractable within 
the prediction and update equations 

– Particularly the prediction equation, which includes an 
integration operation 
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Simplifying the problem: Linearize 

• The tangent at any point  is a good local 
approximation if the function is sufficiently 
smooth  
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Simplifying the problem: Linearize 

• The tangent at any point  is a good local 
approximation if the function is sufficiently 
smooth  
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Simplifying the problem: Linearize 

• The tangent at any point  is a good local 
approximation if the function is sufficiently 
smooth  
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Simplifying the problem: Linearize 

• The tangent at any point  is a good local 
approximation if the function is sufficiently 
smooth  
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Linearizing the observation function 

• Simple first-order Taylor series expansion 

– J() is the Jacobian matrix 

• Simply a determinant for scalar state 
 

• Expansion around a priori (or predicted) mean 
of the state 
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Most probability is in the low-error 
region 

• P(s) is small approximation error is large 
– Most of the probability mass of s is in low-error 

regions 
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Linearizing the observation function 

• Observation PDF is Gaussian 
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UPDATE. 

• Gaussian!! 

– Note: This is actually only an approximation 
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Prediction? 
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 Solution: Linearize 
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 Again, direct use of f() can be disastrous 

 Linearize around the mean of the updated 

distribution of s at t-1 
 Which should be Gaussian  
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Prediction 

• The state transition probability is now: 
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Prediction 

• Gaussian!! 
– This is actually only an approximation 
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The linearized prediction/update 

• Given: two non-linear functions for state update and 
observation generation 

 

• Note: the equations are deterministic non-linear 
functions of the state variable 

– They are linear functions of the noise! 

– Non-linear functions of stochastic noise are slightly more 
complicated to handle 
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Linearized Prediction and Update 

• Prediction for time t 
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 Update at time t 
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Linearized Prediction and Update 

• Prediction for time t 
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 Update at time t 

 tttt RssGaussiansP ,;)o|( 1-t:0 

 

T

tttttt ARARsfs 11
ˆ                 )ˆ(

 ttttt RssGaussianosP ˆ,ˆ;)|( :0 

 
  tt

T

ttt

T

ttt

tt

T

ttt

T

tttt

RBBRBBRIR

sgoBRBBRss
1

1

)(ˆ

)()(ˆ












)(

)ˆ( 1

tgt

tft

sJB

sJA



 



The Extended Kalman filter 

• Prediction 
 

 

 

 

• Update 
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The Kalman filter 

• Prediction 
 

 

 

 

• Update 
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The Extended Kalman filter 

• Prediction 
 

 

 

 

• Update 
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The Extended Kalman filter 

• Prediction 
 

 

 

 

• Update 
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The predicted state at time t is obtained  
simply by propagating the estimated state 
 at t-1 through the state dynamics equation 
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The Extended Kalman filter 

• Prediction 
 

 

 

 

• Update 
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The prediction is imperfect. The variance 
of the predictor = variance of t + variance  
of Ast-1 

 
A is obtained by linearizing f()  



The Extended Kalman filter 

• Prediction 
 

 

 

 

• Update 
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The Kalman gain is the slope of the MAP 
estimator that predicts s from o 
RBT =  Cso,   (BRBT+) = Coo 

B is obtained by linearizing g() 
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The Extended Kalman filter 

• Prediction 
 

 

 

 

• Update 
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We can also predict the observation from 
the predicted state using the observation 
equation 
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The Extended Kalman filter 

• Prediction 
 

 

 

 

• Update 
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The correction is the difference between 
the actual observation and the predicted 
observation, scaled by the Kalman Gain 

We must correct the predicted value of 
the state after making an observation 



The Extended Kalman filter 

• Prediction 
 

 

 

 

• Update 
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The uncertainty in state decreases if we 
observe the data and make a correction 
 
The reduction is a multiplicative “shrinkage” 
based on Kalman gain and B 
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The Extended Kalman filter 

• Prediction 
 

 

 

 

• Update 
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EKFs 

• EKFs are probably the most commonly used algorithm 
for tracking and prediction 

– Most systems are non-linear 

– Specifically, the relationship between state and 
observation is usually nonlinear 

– The approach can be extended to include non-linear 
functions of noise as well 

 

• The term “Kalman filter” often simply refers to an 
extended Kalman filter in most contexts. 

 

• But.. 
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EKFs have limitations 

• If the non-linearity changes too quickly with s, the linear 
approximation is invalid 

– Unstable 

• The estimate is often biased 

– The true function lies entirely on one side of the approximation 
 

• Various extensions have been proposed: 

– Invariant extended Kalman filters (IEKF) 

– Unscented Kalman filters (UKF) 
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A different problem: Non-Gaussian 
PDFs 

• We have assumed so far that: 

– P0(s) is Gaussian or can be approximated as Gaussian 

– P() is Gaussian 

– P() is Gaussian 
 

• This has a happy consequence: All distributions remain 
Gaussian 

 

• But when any of these are not Gaussian, the results are not 
so happy 

11-755/18797 59 

  )( 1tt sfs )( tt sgo



Linear Gaussian Model 
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A different problem: Non-Gaussian 
PDFs 

• We have assumed so far that: 

– P0(s) is Gaussian or can be approximated as Gaussian 

– P() is Gaussian 

– P() is Gaussian 
 

• This has a happy consequence: All distributions remain 
Gaussian 

 

• But when any of these are not Gaussian, the results are not 
so happy 
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A simple case 

• P() is a mixture of only two Gaussians  
 

• o is a linear function of s 

– Non-linear functions would be linearized anyway 

• P(o|s) is also a Gaussian mixture! 
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When distributions are not Gaussian 
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P(s2| O0:2)   C P(s2| O0:1) P(O2| s2)  

When P(Ot|st) has more than one Gaussian, after only a few time steps… 



When distributions are not Gaussian 

We have too many Gaussians for comfort.. 
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Related Topic: How to sample from a 
Distribution? 

• “Sampling from a Distribution P(x; G) with parameters G” 

• Generate random numbers such that 

– The distribution of a large number of generated numbers is P(x; G)  

– The parameters of the distribution are G 
 

• Many algorithms to generate RVs from a variety of 
distributions 

– Generation from a uniform distribution is well studied 

– Uniform RVs used to sample from multinomial distributions 

– Other distributions: Most commonly, transform a uniform RV to 
the desired distribution 

11-755/18797 70 



Sampling from a multinomial 

• Given a multinomial over N symbols, with 

probability of ith symbol = P(i) 

• Randomly generate symbols from this 

distribution 

• Can be done by sampling from a uniform 

distribution 
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Sampling a multinomial 

• Segment a range (0,1) according to the probabilities P(i) 

– The P(i) terms will sum to 1.0 
 

• Randomly generate a number from a uniform distribution 

– Matlab:  “rand”. 

– Generates a number between 0 and 1 with uniform probability 
 

• If the number falls in the ith segment, select the ith symbol 
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Sampling a multinomial 

• Segment a range (0,1) according to the probabilities P(i) 

– The P(i) terms will sum to 1.0 
 

• Randomly generate a number from a uniform distribution 

– Matlab:  “rand”. 

– Generates a number between 0 and 1 with uniform probability 
 

• If the number falls in the ith segment, select the ith symbol 
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Related Topic: Sampling from a 
Gaussian 

• Many algorithms 

– Simplest: add many samples from a uniform RV 

– The sum of 12 uniform RVs (uniform in (0,1)) is 
approximately Gaussian with mean 6 and variance 1 

– For scalar Gaussian, mean m, std dev s: 

 

 

• Matlab :   x = m + randn* s 

– “randn” draws from a Gaussian of mean=0, 
variance=1 

11-755/18797 74 





12

1

6
i

irx



Related Topic: Sampling from a 
Gaussian 

• Multivariate (d-dimensional) Gaussian with 
mean m and covariance  

– Compute eigen value matrix  and eigenvector 
matrix E for  

•  = E  ET 

– Generate d 0-mean unit-variance numbers x1..xd 

– Arrange them in a vector: 

           X = [x1 .. xd]T 

– Multiply X by the square root of  and E, add m 

                      Y = m + E sqrt() X 
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Sampling from a Gaussian Mixture 

• Select a Gaussian by sampling the multinomial 
distribution of weights: 

 

          j ~  multinomial(w1, w2, …) 
 

• Sample from the selected Gaussian  
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When distributions are not Gaussian 

P(s)  = P(st|st-1)  = P(Ot|st)  = 

a priori Transition prob. State output prob 

P(s0)   P(s) 

P(s0| O0)   C P(s0) P(O0| s0)  

0010001 )|()O|()O|( dsssPsPsP 






P(s1| O0:1)   C P(s1| O0) P(O1| s0)  

1121:011:02 )|()O|()O|( dsssPsPsP 






P(s2| O0:2)   C P(s2| O0:1) P(O2| s2)  

When P(Ot|st) has more than one Gaussian, after only a few time steps… 



The problem of the exploding 
distribution 

• The complexity of the distribution increases exponentially 
with time 

• This is a consequence of having a continuous state space 

– Only Gaussian PDFs propagate without increase of complexity 
 

• Discrete-state systems do not have this problem 

– The number of states in an HMM stays fixed 

– However, discrete state spaces are too coarse 

 

• Solution: Combine the two concepts 

– Discretize the state space dynamically 
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Discrete approximation to a 
distribution 

• A large-enough collection of randomly-drawn samples 
from a distribution will approximately quantize the 
space of the random variable into equi-probable 
regions 

– We have more random samples from high-probability 
regions and fewer samples from low-probability reigons 
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Discrete approximation: Random 
sampling 

• A PDF can be approximated as  a uniform probability distribution 
over randomly drawn samples 

– Since each sample represents approximately the same probability 
mass (1/M if there are M samples) 
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Note: Properties of a discrete 
distribution 

• The product of a discrete distribution with 
another distribution is simply a weighted 
discrete probability 

 

 

• The integral of the product is a mixture 
distribution 
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Discretizing the state space 

• At each time, discretize the predicted state 
space 

 

 

– si are randomly drawn samples from P(st|o0:t) 

• Propagate the discretized distribution 
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Particle Filtering 

Assuming that we only generate FOUR  

samples from the predicted distributions 

a priori Transition prob. State output prob 

predict 

P(s)  = P(st|st-1)  = P(Ot|st)  = 

P(s0)   P(s) 
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Particle Filtering 
• Discretize state space at the prediction step 

– By sampling the continuous predicted distribution 
• If appropriately sampled, all generated samples may be considered to be equally 

probable 

– Sampling results in a discrete uniform distribution 
 

• Update step updates the distribution of the quantized state space 

– Results in a discrete non-uniform distribution 
 

• Predicted state distribution for the next time instant will again be 
continuous 

– Must be discretized again by sampling 

 

• At any step, the current state distribution will not have more components 
than the number of samples generated at the previous sampling step 

– The complexity of distributions remains constant 
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Particle Filtering 

Number of mixture components in predicted distribution governed 

by number of samples in discrete distribution 

 

By deriving a small (100-1000) number of samples at each time 

instant, all distributions are kept manageable 

111-t:011-t:0 )|()O|()O|( 





 ttttt dsssPsPsP

Prediction at time t:  

)|O()O|()O|( 1-t:0t:0 tttt sPsCPsP 

Update at time t:  

a priori Transition prob. State output prob 

predict sample 

update 

P(s)  = P(st|st-1)  = P(Ot|st)  = 



Particle Filtering 

• At t = 0, sample the initial state distribution 
 

 

 

• Update the state distribution with the observation 
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Particle Filtering 

• Predict the state distribution at the next time 
 

 

 

• Sample the predicted state distribution 
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Particle Filtering 

• Predict the state distribution at t 
 

 

 

• Sample the predicted state distribution at t 

 

 

• Update the state distribution at t 
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Estimating a state 

• The algorithm gives us a discrete updated 
distribution over states: 

 
 

• The actual state can be estimated as the mean 
of this distribution 

 

 

• Alternately, it can be the most likely sample 
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Simulations with a Linear Model 

•  t has a Gaussian distribution with 0 mean, known variance 

• xt has a mixture Gaussian distribution with known parameters 

• Simulation:  

– Generate state sequence st from model 

– Generate sequence of xt from model with one xt term for every st term 

–  Generate observation sequence ot from st and xt 

– Attempt to estimate st from ot 

ttt xso 
ttt ss  1



Simulation: Synthesizing data 
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Generate state sequence according to:                        

t is Gaussian with mean 0 and variance 10 
ttt ss  1



Simulation: Synthesizing data 

11-755/18797 100 

Generate state sequence according to:                        

t is Gaussian with mean 0 and variance 10 
ttt ss  1

Generate observation sequence from state sequence according to:                        

xt is mixture Gaussian with parameters: 

Means = [-4, 0, 4, 8, 12, 16, 18, 20] 

Variances = [10, 10, 10, 10, 10, 10, 10, 10] 

Mixture weights = [0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125] 
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Combined figure for more compact 

representation 

Simulation: Synthesizing data 
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SIMULATION: TIME = 1 
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PREDICTED STATE DISTRIBUTION 

AT TIME = 1 

predict 



SIMULATION: TIME = 1 
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SAMPLED VERSION OF 

PREDICTED STATE DISTRIBUTION 

AT TIME = 1 

predict sample 



SIMULATION: TIME = 1 
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SAMPLED VERSION OF 

PREDICTED STATE DISTRIBUTION 

AT TIME = 1 

sample 



SIMULATION: TIME = 1 
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UPDATED VERSION OF 

SAMPLED VERSION OF 

PREDICTED STATE DISTRIBUTION 

AT TIME = 1 

AFTER SEEING FIRST OBSERVATION 

update sample 



SIMULATION: TIME = 1 
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update 

update, t <= 1 



SIMULATION: TIME = 2 
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SIMULATION: TIME = 2 
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predict 
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SIMULATION: TIME = 2 
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predict sample 

update, t <= 1 



SIMULATION: TIME = 2 
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sample 

update, t <= 1 



SIMULATION: TIME = 2 
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update sample 

update, t <= 1 



SIMULATION: TIME = 2 
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update 

update, t <= 2 



SIMULATION: TIME = 3 
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SIMULATION: TIME = 3 
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SIMULATION: TIME = 3 
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predict sample 

update, t <= 2 



SIMULATION: TIME = 3 
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sample 

update, t <= 2 



SIMULATION: TIME = 3 
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update sample 

update, t <= 2 



SIMULATION: TIME = 3 
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The figure below shows the contour of 

the updated state probabilities for all 

time instants until the current instant  

update 

update, t <= 3 



Simulation: Updated Probs Until 
T=3 
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update, t <= 3 



Simulation: Updated Probs Until 
T=100 
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update, t <= 100 



Simulation: Updated Probs Until 
T=200 
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update, t <= 200 



update, t <= 300 

Simulation: Updated Probs Until 
T=300 
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update, t <= 500 

Simulation: Updated Probs Until 
T=500 
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update, t <= 1000 

Simulation: Updated Probs Until 
T=1000 
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Updated Probs Until T = 1000 
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update, t <= 1000 



update, t <= 1000 

Updated Probs Until T = 1000 
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Updated Probs: Top View 
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update, t <= 1000 



ESTIMATED STATE 
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Observation, True States, Estimate 
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Particle Filtering 

• Generally quite effective in scenarios where EKF/UKF may 
not be applicable 

– Potential applications include tracking and edge detection in 
images! 

– Not very commonly used however 
 

• Highly dependent on sampling 

– A large number of samples required for accurate representation 

– Samples may not represent mode of distribution 

– Some distributions are not amenable to sampling 

• Use importance sampling instead: Sample a Gaussian and assign non-
uniform weights to samples 
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Prediction filters 

• HMMs 

• Continuous state systems 

– Linear Gaussian:   Kalman 

– Nonlinear Gaussian:  Extended Kalman 

– Non-Gaussian:  Particle filtering 

 

• EKFs are the most commonly used kalman 
filters.. 
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