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Overview 

• Vectors and matrices 

• Basic vector/matrix operations 

• Various matrix types 

• Projections 
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Book 

• Fundamentals of Linear Algebra, Gilbert Strang 
 

• Important to be very comfortable with linear algebra 
– Appears repeatedly in the form of Eigen analysis, SVD, Factor 

analysis 

– Appears through various properties of matrices that are used in 
machine learning 

– Often used in the processing of data of various kinds 

– Will use sound and images as examples 
 

• Today’s lecture: Definitions 
– Very small subset of all that’s used 

– Important subset, intended to help you recollect 
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Incentive to use linear algebra 

• Simplified notation! 

 

• Easier intuition 

– Really convenient geometric interpretations 
 

• Easy code translation! 
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for i=1:n 

  for j=1:m 

    c(i)=c(i)+y(j)*x(i)*a(i,j) 

  end 

end 

C=x*A*y 
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And other things you can do 

• Manipulate Data 

• Extract information from data 

• Represent data.. 

• Etc. 
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Scalars, vectors, matrices, … 

• A scalar a is a number 
– a = 2, a = 3.14, a = -1000, etc. 

 

• A vector a is a linear arrangement of a collection of scalars 
 

 

 

• A matrix A is a rectangular arrangement of a collection of 
scalars 
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Vectors in the abstract 
• Ordered collection of numbers 

– Examples: [3 4 5], [a b c d], .. 

– [3 4 5] != [4 3 5]  Order is important 

• Typically viewed as identifying (the path from origin to) a location in an 
N-dimensional space 
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Vectors in reality 
• Vectors usually hold sets of 

numerical attributes 

– X, Y, Z coordinates  

• [1, 2, 0] 

– [height(cm) weight(kg)] 

– [175  72] 

– A location in Manhattan  

• [3av 33st] 

• A series of daily temperatures  

• Samples in an audio signal 

• Etc. 
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[-2.5av  6st] 

[2av  4st] 

[1av  8st] 



Matrices 
• Matrices can be square or rectangular 

 

 

 
 

– Can hold data 
• Images, collections of sounds, etc. 

• Or represent operations as we shall see 

– A matrix can be vertical stacking of row vectors 

 

 

– Or a horizontal arrangement of column vectors 
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Dimensions of a matrix 

• The matrix size is specified by the number of rows and 
columns 

 
 

 
– c = 3x1 matrix: 3 rows and 1 column 

– r = 1x3 matrix:  1 row and 3 columns 

 

 

 
– S = 2 x 2 matrix 

– R = 2 x 3 matrix 

– Pacman = 321 x 399 matrix 
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Representing an image as a matrix 
• 3 pacmen 

• A 321 x 399 matrix 

– Row and Column = position 

• A 3 x 128079 matrix 

– Triples of x,y and value 

• A 1 x 128079 vector 

– “Unraveling” the matrix 

 

• Note: All of these can be recast as the 
matrix that forms the image 

– Representations 2 and 4 are equivalent 

• The position is not represented 
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Basic arithmetic operations 

• Addition and subtraction 

– Element-wise operations 
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Vector Operations 

• Operations tell us how to get from origin to the 
result of the vector operations 
– (3,4,5) + (3,-2,-3) = (6,2,2) 
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Operations example 

• Adding random values to different 
representations of the image 
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Vector norm 

• Measure of how long a vector is: 

– Represented as 

 
 

• Geometrically the shortest 
distance to travel from the origin 
to the destination 

– As the crow flies 

– Assuming Euclidean Geometry 
 

• MATLAB syntax:  
 norm(x) 
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Transposition 

• A transposed row vector becomes a column (and vice versa) 

 

 

 

 

• A transposed matrix gets all its row (or column) vectors 
transposed in order 

 

 

 
 

• MATLAB syntax: a’ 
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Vector multiplication 
• Multiplication by scalar 

 

 

• Dot product, or inner product 

– Vectors must have the same number of elements 

– Row vector times column vector = scalar 

 

 

 
 

• Outer product or vector direct product 

– Column vector times row vector = matrix 
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Vector dot product 
• Example: 

– Coordinates are yards, not ave/st 

– a = [200 1600],  

b = [770 300]  
 

• The dot product of the two vectors 
relates to the length of a projection 

– How much of the first vector have we 
covered by following the second one? 

– Must normalize by the length of the 
“target” vector 
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Vector dot product 

• Vectors are spectra 
– Energy at a discrete set of frequencies 

– Actually 1 x 4096 

– X axis is the index of the number in the vector 
• Represents frequency 

– Y axis is the value of the number in the vector 
• Represents magnitude 
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Vector dot product 

• How much of C is also in E 
– How much can you fake a C by playing an E 

– C.E / |C||E| = 0.1 

– Not very much 

• How much of C is in C2? 
– C.C2 / |C| /|C2| = 0.5 

– Not bad, you can fake it 

• To do this, C, E, and C2 must be the same size 
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Vector outer product 

• The column vector is the spectrum 

• The row vector is an amplitude modulation 

• The outer product is a spectrogram 

– Shows how the energy in each frequency varies with time 

– The pattern in each column is a scaled version of the spectrum 

– Each row is a scaled version of the modulation 
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Multiplying a vector by a matrix 
• Generalization of vector scaling 

 

 

– Left multiplication: Dot product of each vector pair 

 

 

 

– Dimensions must match!! 

• No. of columns of  matrix = size of vector 

• Result inherits the number of rows from the matrix 
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Multiplying a vector by a matrix 
• Generalization of vector multiplication 

 
– Right multiplication: Dot product of each vector 

pair 

 

 

 

– Dimensions must match!! 
• No. of rows of  matrix = size of vector 

• Result inherits the number of columns from the matrix 
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Multiplication of vector space by matrix 

• The matrix rotates and scales the space 

– Including its own vectors 
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Multiplication of vector space by matrix 

• The normals to the row vectors in the matrix become the 
new axes 
– X axis = normal to the second row vector 

• Scaled by the inverse of the length of the first row vector 
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Matrix Multiplication 

• The k-th axis corresponds to the normal to the hyperplane represented 
by the 1..k-1,k+1..N-th row vectors in the matrix 

– Any set of K-1 vectors represent a hyperplane of dimension K-1 or less 
 

• The distance along the new axis equals the length of the projection on 
the k-th row vector 

– Expressed in inverse-lengths of the vector 
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Matrix Multiplication: Column space 

• So much for spaces .. what does multiplying a 
matrix by a vector really do? 

• It mixes the column vectors of the matrix 
using the numbers in the vector 

• The column space of the Matrix is the 
complete set of all vectors that can be formed 
by mixing its columns 
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Matrix Multiplication: Row space 

• Left multiplication mixes the row vectors of 
the matrix. 

• The row space of the Matrix is the complete 
set of all vectors that can be formed by mixing 
its rows 
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Matrix multiplication: Mixing vectors 

• A physical example 

– The three column vectors of the matrix X are the spectra of 
three notes 

– The multiplying column vector Y is just a mixing vector 

– The result is a sound that is the mixture of the three notes 
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Matrix multiplication: Mixing vectors 

• Mixing two images 
– The images are arranged as columns  

• position value not included 

– The result of the multiplication is rearranged as an image 
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Multiplying matrices 

• Simple vector multiplication: Vector outer 
product 
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Multiplying matrices 

• Generalization of vector multiplication 

– Outer product of dot products!! 

 

 

 

– Dimensions must match!! 

• Columns of first matrix = rows of second 

• Result inherits the number of rows from the first matrix 
and the number of columns from the second matrix 
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Multiplying matrices: Another 
view 

• Simple vector multiplication: Vector inner 
product 
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Matrix multiplication: another view 
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Why is that useful? 

• Sounds: Three notes modulated 
independently 

11-755/18-797 35 



















1..

.249

0..

031

X 

















.....195.09.08.07.06.05.0

......5.005.07.09.01

.....05.075.0175.05.00

Y 



Matrix multiplication: Mixing modulated 
spectra 

• Sounds: Three notes modulated 
independently 
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Matrix multiplication: Mixing modulated 
spectra 

• Sounds: Three notes modulated 
independently 
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Matrix multiplication: Mixing modulated 
spectra 

• Sounds: Three notes modulated 
independently 
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Matrix multiplication: Mixing modulated 
spectra 

• Sounds: Three notes modulated 
independently 
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Matrix multiplication: Mixing modulated 
spectra 

• Sounds: Three notes modulated 
independently 
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Matrix multiplication: Image 
transition 

• Image1 fades out linearly 

• Image 2 fades in linearly 
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Matrix multiplication: Image 
transition 

• Each column is one image 
– The columns represent a sequence of images of decreasing 

intensity 

• Image1 fades out linearly 
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Matrix multiplication: Image 
transition 

 

• Image 2 fades in linearly 
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Matrix multiplication: Image 
transition 

• Image1 fades out linearly 

• Image 2 fades in linearly 
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The Identity Matrix 

• An identity matrix is a square matrix where 

– All diagonal elements are 1.0 

– All off-diagonal elements are 0.0 

• Multiplication by an identity matrix does not change vectors 
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Diagonal Matrix 

• All off-diagonal elements are zero 

• Diagonal elements are non-zero 

• Scales the axes 
– May flip axes 
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Diagonal matrix to transform images 

• How? 
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100

010

002

• Location-based 
representation 

• Scaling matrix – only scales 
the X axis 

– The Y axis and pixel value are 
scaled by identity 

• Not a good way of scaling. 
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• Better way 

• Interpolate 
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Modifying color 

• Scale only Green 
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Permutation Matrix 

• A permutation matrix simply rearranges the axes 

– The row entries are axis vectors in a different order 

– The result is a combination of rotations and reflections 

• The permutation matrix effectively permutes the 
arrangement of the elements in a vector 
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Permutation Matrix 

• Reflections and 90 degree rotations of images 
and objects 
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Permutation Matrix 

• Reflections and 90 degree rotations of images and objects 

– Object represented as a matrix of 3-Dimensional “position” vectors 

– Positions identify each point on the surface 
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Rotation Matrix 

• A rotation matrix rotates the vector by some angle q

• Alternately viewed, it rotates the axes 

– The new axes are at an angle q to the old one 
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Rotating a picture 

• Note the representation: 3-row matrix 
– Rotation only applies on the “coordinate” rows 
– The value does not change 
– Why is pacman grainy? 
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3-D Rotation 

• 2 degrees of freedom 

– 2 separate angles 

• What will the rotation matrix be? 
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Matrix Operations: Properties 

• A+B = B+A 

• AB != BA 
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Projections 

• What would we see if the cone to the left were transparent if we 
looked at it from above the plane shown by the grid? 

– Normal to the plane 

– Answer: the figure to the right 

• How do we get this?  Projection 
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Projection Matrix 

• Consider any plane specified by a set of vectors W1, W2.. 

– Or matrix [W1 W2 ..] 

– Any vector can be projected onto this plane 

– The matrix A that rotates and scales the vector so that it becomes its 
projection is a projection matrix 
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Projection Matrix 

• Given a set of vectors W1, W2, which form a matrix W = [W1 W2.. ] 

• The projection matrix to transform a vector X to its projection on the plane is 

–  P = W (WTW)-1 WT 

• We will visit matrix inversion shortly 

• Magic – any set of vectors from the same plane that are expressed as a matrix 
will give you the same projection matrix 

– P = V (VTV)-1 VT 
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Projections 

• HOW? 
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Projections 

• Draw any two vectors W1 and W2 that lie on the plane 
– ANY two so long as they have different angles 

• Compose a matrix W = [W1 W2] 

• Compose the projection matrix P = W (WTW)-1 WT 

• Multiply every point on the cone by P to get its projection 

• View it  
– I’m missing a step here – what is it? 
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Projections 

• The projection actually projects it onto the plane, but you’re still seeing 
the plane in 3D 

– The result of the projection is a 3-D vector 

– P = W (WTW)-1 WT = 3x3,  P*Vector = 3x1 

– The image must be rotated till the plane is in the plane of the paper 

• The Z axis in this case will always be zero and can be ignored 

• How will you rotate it? (remember you know W1 and W2) 
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Projection matrix properties 

• The projection of any vector that is already on the plane is the vector itself 

– Px = x if x is on the plane 

– If the object is already on the plane, there is no further projection to be performed 

• The projection of a projection is the projection 

– P (Px) = Px 

– That is because Px is already on the plane 

• Projection matrices are idempotent 

– P2 = P 

• Follows from the above 64 11-755/18-797 



Projections: A more physical meaning 

• Let W1, W2 .. Wk be “bases” 

• We want to explain our data in terms of these “bases” 

– We often cannot do so 

– But we can explain a significant portion of it 
 

• The portion of the data that can be expressed in terms of 
our vectors W1, W2, .. Wk,  is the projection of the data 
on the W1 .. Wk (hyper) plane 

– In our previous example, the “data” were all the points on a 
cone, and the bases were vectors on the plane 
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Projection : an example with sounds 

• The spectrogram (matrix) of a piece of music 
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 How much of the above music was composed of the 
above notes 
 I.e. how much can it be explained by the notes 



Projection: one note 

• The spectrogram (matrix) of a piece of music 
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 M = spectrogram;   W = note 

 P = W (WTW)-1 WT 

 Projected Spectrogram = P * M 

M =  

W =  



Projection: one note – cleaned up 

• The spectrogram (matrix) of a piece of music 
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Projection: multiple notes 

• The spectrogram (matrix) of a piece of music 
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 P = W (WTW)-1 WT 

 Projected Spectrogram = P * M 
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Projection: multiple notes, cleaned up 

• The spectrogram (matrix) of a piece of music 
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 P = W (WTW)-1 WT 

 Projected Spectrogram = P * M 

M =  

W =  



Projection and Least Squares 
• Projection actually computes a least squared error estimate 

• For each vector V in the music spectrogram matrix 
– Approximation:  Vapprox = a*note1 + b*note2 + c*note3.. 

 

 

 

 

– Error vector E =  V – Vapprox 

– Squared error energy for V     e(V) = norm(E)2 

– Total error = sum over all V { e(V) } = SV e(V) 

• Projection computes Vapprox for all vectors such that Total error 
is minimized 
– It does not give you “a”, “b”, “c”.. Though 

• That needs a different operation – the inverse / pseudo inverse 
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Perspective 

• The picture is the equivalent of “painting” the viewed scenery on a 
glass window 

• Feature: The lines connecting any point in the scenery and its 
projection on the window merge at a common point 

– The eye 

– As a result, parallel lines in the scene apparently merge to a point 
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An aside on Perspective.. 

•  Perspective is the result of convergence of the image to a point 

• Convergence can be to multiple points 

– Top Left: One-point perspective 

– Top Right: Two-point perspective 

– Right: Three-point perspective 

11-755/18-797 73 



Representing Perspective 

• Perspective was not always understood. 

• Carefully represented perspective can create 
illusions.. 
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Central Projection 

• The positions on the “window” are scaled along the line 

• To compute (x,y) position on the window,  we need z (distance of 
window from eye), and (x’,y’,z’)  (location being projected) 
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Homogeneous Coordinates 

• Represent points by a triplet 

– Using yellow window as reference: 

– (x,y) = (x,y,1) 

– (x’,y’) = (x,y,c’)      c’ = a’/a

– Locations on line generally represented as (x,y,c) 
• x’= x/c’ ,   y’= y/c’ 
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Homogeneous Coordinates in 3-D 

• Points are represented using FOUR coordinates 

– (X,Y,Z,c) 

– “c” is the “scaling” factor that represents the distance of the actual 
scene 

• Actual Cartesian coordinates:  

– Xactual = X/c,  Yactual = Y/c,  Zactual = Z/c 
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Homogeneous Coordinates 

• In both cases, constant “c” represents distance along the line 

with respect to a reference window 

– In 2D the plane in which all points have values (x,y,1) 

• Changing the reference plane changes the representation  

• I.e. there may be multiple Homogenous representations 

(x,y,c) that represent the same cartesian point (x’ y’) 

11-755/18-797 78 


