

Machine Learning for Signal Processing Fundamentals of Linear Algebra - 2

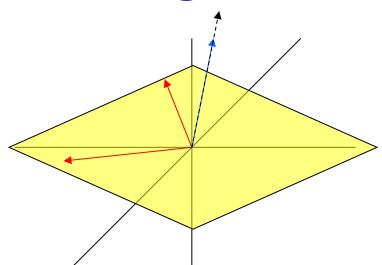
Class 3. 8 Sep 2015

Instructor: Bhiksha Raj

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Projections
- More on matrix types
- Matrix determinants
- Matrix inversion
- Eigenanalysis
- Singular value decomposition
- Matrix Calculus

Orthogonal/Orthonormal vectors



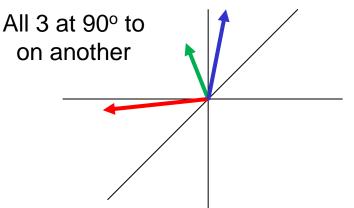
$$A = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$B = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

$$A.B = 0$$
 \Rightarrow $xu + yv + zw = 0$

- Two vectors are orthogonal if they are perpendicular to one another
 - A.B = 0
 - A vector that is perpendicular to a plane is orthogonal to every vector on the plane
- Two vectors are orthonormal if
 - They are orthogonal
 - The length of each vector is 1.0
 - Orthogonal vectors can be made orthonormal by normalizing their lengths to 1.0

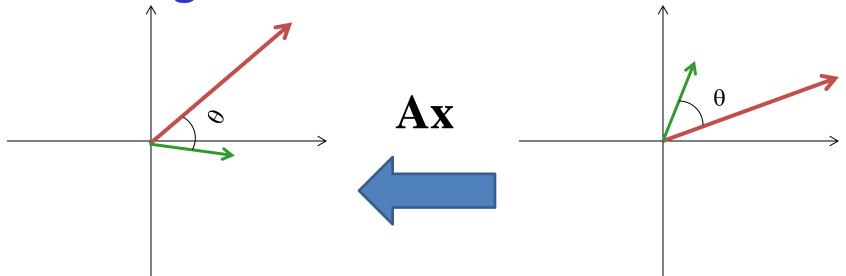
Orthogonal matrices



$$\begin{bmatrix}
\sqrt{0.5} & -\sqrt{0.125} & \sqrt{0.375} \\
\sqrt{0.5} & \sqrt{0.125} & -\sqrt{0.375} \\
0 & \sqrt{0.75} & 0.5
\end{bmatrix}$$

- Orthogonal Matrix: $AA^T = A^TA = I$
 - The matrix is square
 - All row vectors are orthonormal to one another
 - Every vector is perpendicular to the hyperplane formed by all other vectors
 - All column vectors are also orthonormal to one another
 - Observation: In an orthogonal matrix if the length of the row vectors is 1.0, the length of the column vectors is also 1.0
 - Observation: In an orthogonal matrix no more than one row can have all entries with the same polarity (+ve or -ve)

Orthogonal and Orthonormal Matrices



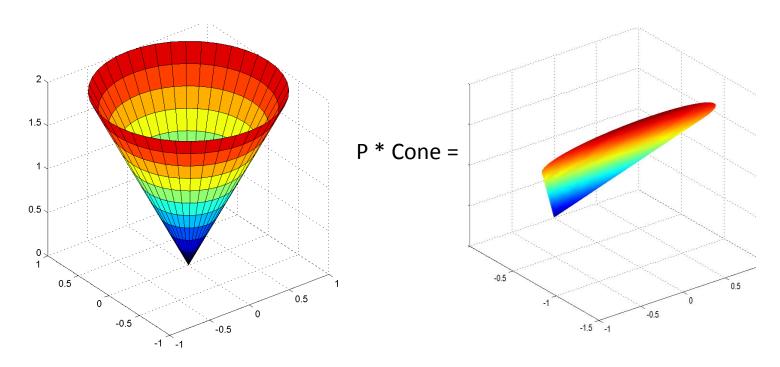
- Orthogonal matrices will retain the length and relative angles between transformed vectors
 - Essentially, they are combinations of rotations, reflections and permutations
 - Rotation matrices and permutation matrices are all orthonormal

Orthogonal and Orthonormal Matrices

$$\begin{bmatrix} 1 & -\sqrt{0.0675} & \sqrt{0.1875} \\ \sqrt{0.5} & \sqrt{0.125} & -\sqrt{0.375} \\ 0 & \sqrt{0.75} & 0.5 \end{bmatrix}$$

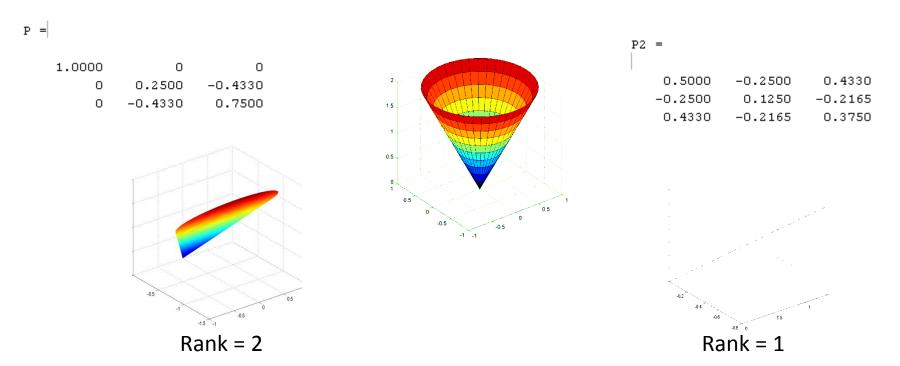
- If the vectors in the matrix are not unit length, it cannot be orthogonal
 - $-AA^{T}!=I, A^{T}A!=I$
 - AA^T = Diagonal or A^TA = Diagonal, but not both
 - If all the entries are the same length, we can get $AA^T = A^TA = Diagonal$, though
- A non-square matrix cannot be orthogonal
 - $AA^T = I$ or $A^TA = I$, but not both

Matrix Rank and Rank-Deficient Matrices



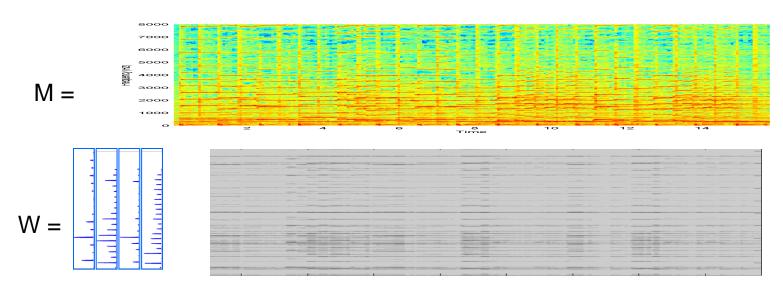
- Some matrices will eliminate one or more dimensions during transformation
 - These are rank deficient matrices
 - The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Matrix Rank and Rank-Deficient Matrices



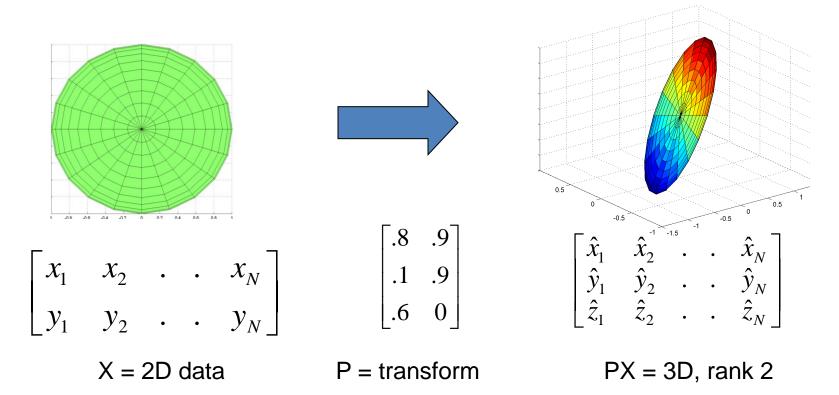
- Some matrices will eliminate one or more dimensions during transformation
 - These are rank deficient matrices
 - The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Projections are often examples of rank-deficient transforms



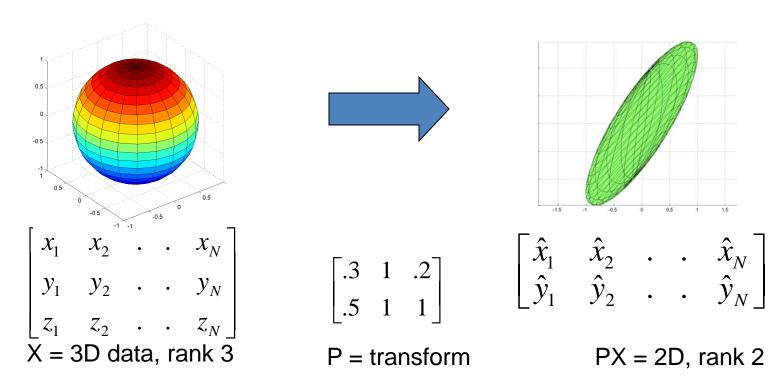
- $P = W (W^TW)^{-1} W^T$; Projected Spectrogram = P^*M
- The original spectrogram can never be recovered
 - P is rank deficient
- P explains all vectors in the new spectrogram as a mixture of only the 4 vectors in W
 - There are only a maximum of 4 linearly independent bases
 - Rank of P is 4

Non-square Matrices



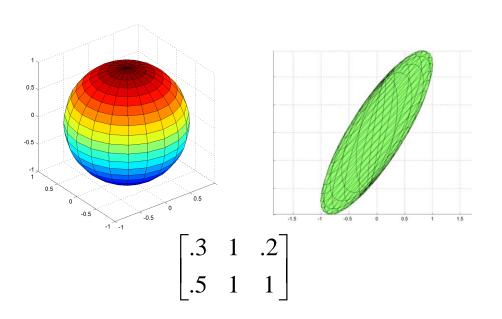
- Non-square matrices add or subtract axes
 - More rows than columns \rightarrow add axes
 - But does not increase the dimensionality of the data

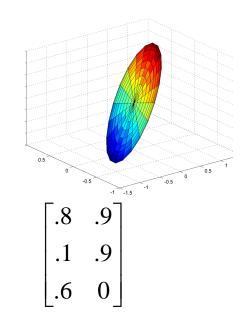
Non-square Matrices



- Non-square matrices add or subtract axes
 - More rows than columns → add axes
 - But does not increase the dimensionality of the data
 - Fewer rows than columns → reduce axes
 - May reduce dimensionality of the data

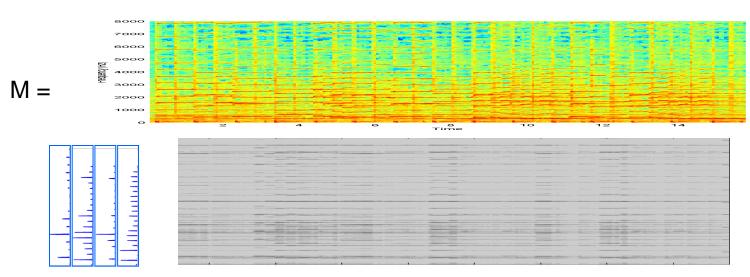
The Rank of a Matrix





- The matrix rank is the dimensionality of the transformation of a fulldimensioned object in the original space
- The matrix can never *increase* dimensions
 - Cannot convert a circle to a sphere or a line to a circle
- The rank of a matrix can never be greater than the lower of its two dimensions

The Rank of Matrix



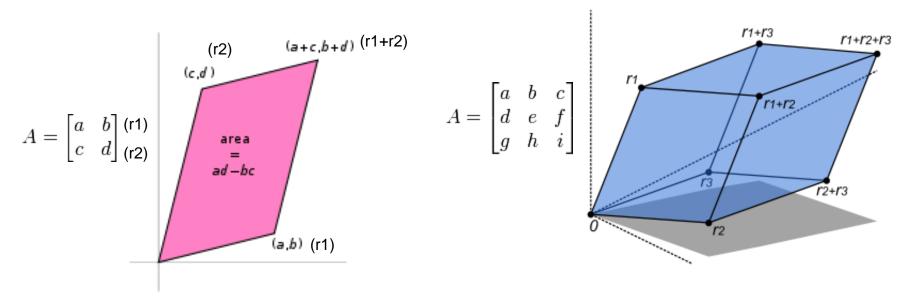
- Projected Spectrogram = P * M
 - Every vector in it is a combination of only 4 bases
- The rank of the matrix is the smallest no. of bases required to describe the output
 - E.g. if note no. 4 in P could be expressed as a combination of notes 1,2 and 3, it provides no additional information
 - Eliminating note no. 4 would give us the same projection
 - The rank of P would be 3!

Matrix rank is unchanged by transposition



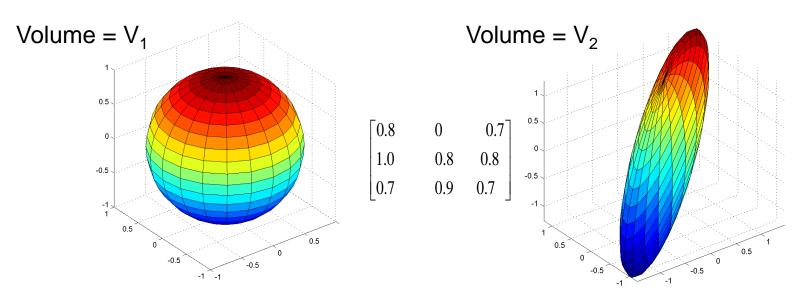
 If an N-dimensional object is compressed to a K-dimensional object by a matrix, it will also be compressed to a K-dimensional object by the transpose of the matrix

Matrix Determinant



- The determinant is the "volume" of a matrix
- Actually the volume of a parallelepiped formed from its row vectors
 - Also the volume of the parallelepiped formed from its column vectors
- Standard formula for determinant: in text book

Matrix Determinant: Another Perspective



- The determinant is the ratio of N-volumes
 - If V₁ is the volume of an N-dimensional sphere "O" in N-dimensional space
 - O is the complete set of points or vertices that specify the object
 - If V_2 is the volume of the N-dimensional ellipsoid specified by A*O, where A is a matrix that transforms the space

$$- |A| = V_2 / V_1$$

17

Matrix Determinants

- Matrix determinants are only defined for square matrices
 - They characterize volumes in linearly transformed space of the same dimensionality as the vectors
- Rank deficient matrices have determinant 0
 - Since they compress full-volumed N-dimensional objects into zerovolume N-dimensional objects
 - E.g. a 3-D sphere into a 2-D ellipse: The ellipse has 0 volume (although it does have area)
- Conversely, all matrices of determinant 0 are rank deficient
 - Since they compress full-volumed N-dimensional objects into zero-volume objects

Multiplication properties

- Properties of vector/matrix products
 - Associative

$$\mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$$

Distributive

$$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$$

NOT commutative!!!

$$\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$$

- *left multiplications* ≠ *right multiplications*
- Transposition

$$(\mathbf{A} \cdot \mathbf{B})^T = \mathbf{B}^T \cdot \mathbf{A}^T$$

Determinant properties

Associative for square matrices

$$|\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}| = |\mathbf{A}| \cdot |\mathbf{B}| \cdot |\mathbf{C}|$$

- Scaling volume sequentially by several matrices is equal to scaling once by the product of the matrices
- Volume of sum != sum of Volumes

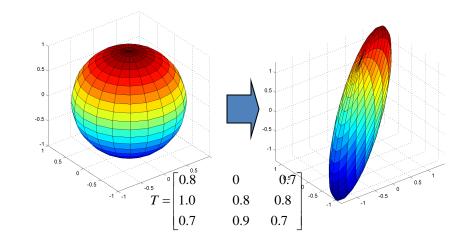
$$\left| (\mathbf{B} + \mathbf{C}) \right| \neq \left| \mathbf{B} \right| + \left| \mathbf{C} \right|$$

- Commutative
 - The order in which you scale the volume of an object is irrelevant

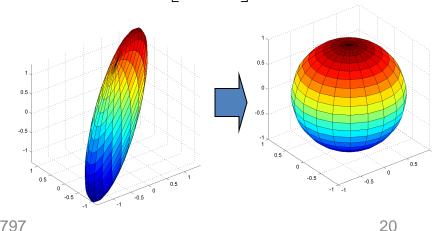
$$|\mathbf{A} \cdot \mathbf{B}| = |\mathbf{B} \cdot \mathbf{A}| = |\mathbf{A}| \cdot |\mathbf{B}|$$

Matrix Inversion

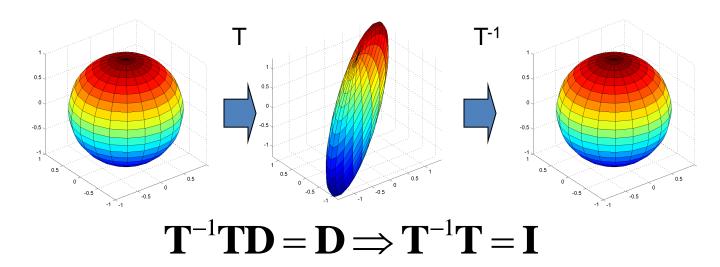
- A matrix transforms an N-dimensional object to a different N-dimensional object
- What transforms the new object back to the original?
 - The inverse transformation
- The inverse transformation is called the matrix inverse



$$Q = \begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} = T^{-1}$$



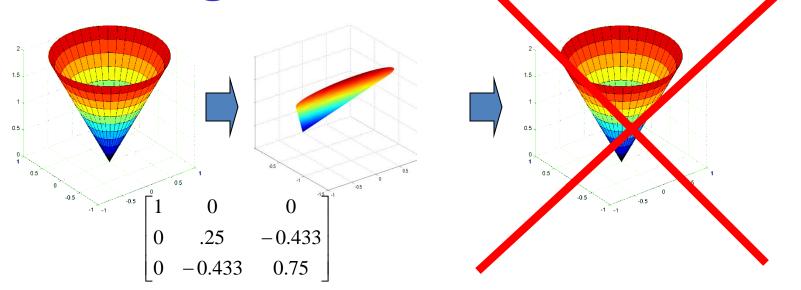
Matrix Inversion



- The product of a matrix and its inverse is the identity matrix
 - Transforming an object, and then inverse transforming it gives us back the original object

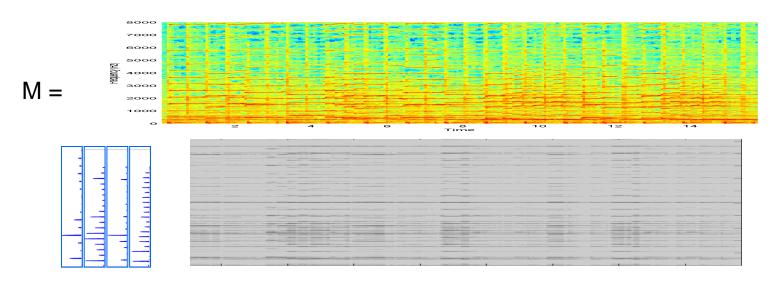
$$TT^{-1}D = D \Longrightarrow TT^{-1} = I$$

Inverting rank-deficient matrices



- Rank deficient matrices "flatten" objects
 - In the process, multiple points in the original object get mapped to the same point in the transformed object
- It is not possible to go "back" from the flattened object to the original object
 - Because of the many-to-one forward mapping
- Rank deficient matrices have no inverse

Rank Deficient Matrices



- The projection matrix is rank deficient
- You cannot recover the original spectrogram from the projected one..

Revisiting Projections and Least Squares

- Projection computes a *least squared error* estimate
- For each vector V in the music spectrogram matrix
 - Approximation: $V_{approx} = a*note1 + b*note2 + c*note3...$

$$T = \begin{bmatrix} b \\ b \\ c \end{bmatrix}$$

$$V_{approx} = T \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$V_{approx} = T \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

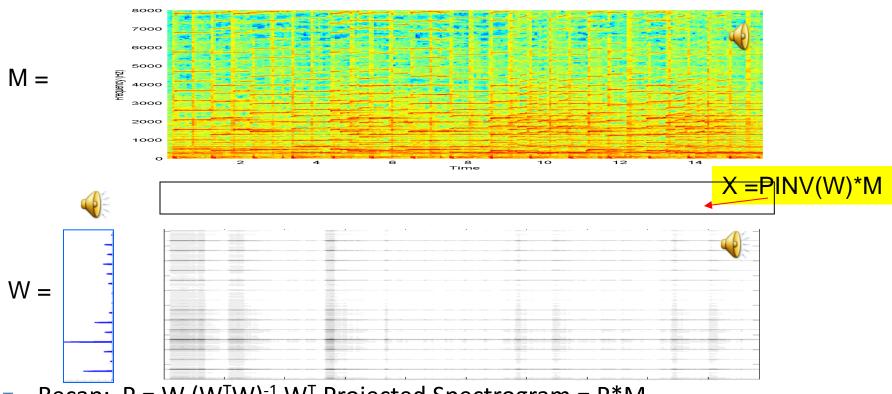
- Error vector $E = V V_{approx}$
- Squared error energy for $V = e(V) = norm(E)^2$
- Projection computes V_{approx} for all vectors such that Total error is minimized
- But WHAT ARE "a" "b" and "c"?

The Pseudo Inverse (PINV)

$$V_{approx} = T \begin{bmatrix} a \\ b \\ c \end{bmatrix} \qquad V \approx T \begin{bmatrix} a \\ b \\ c \end{bmatrix} = PINV(T) * V$$

- We are approximating spectral vectors V as the transformation of the vector $[a\ b\ c]^T$
 - Note we're viewing the collection of bases in T as a transformation
- The solution is obtained using the pseudo inverse
 - This give us a LEAST SQUARES solution
 - If T were square and invertible Pinv(T) = T⁻¹, and V=V_{approx}

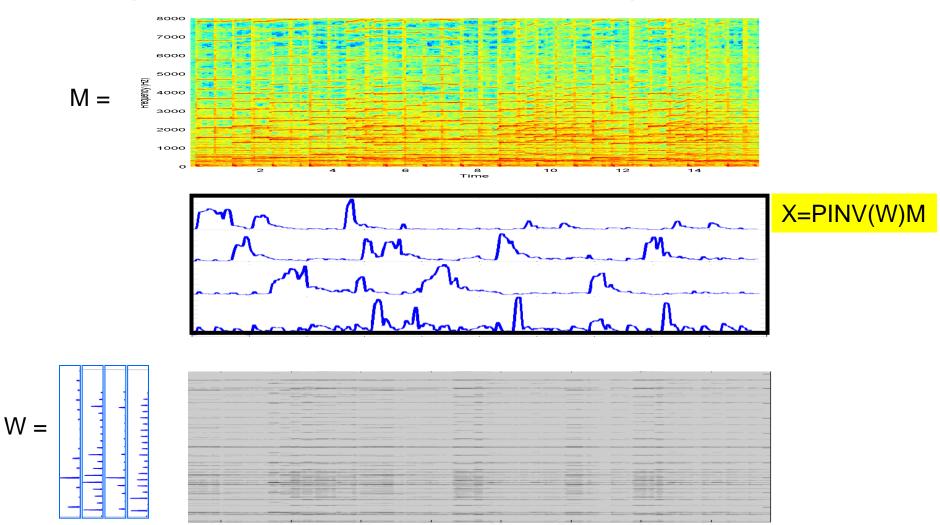
Explaining music with one note



- Recap: $P = W (W^TW)^{-1} W^{T}$, Projected Spectrogram = P*M
- Approximation: M = W*X
- The amount of W in each vector = X = PINV(W)*M
- W*Pinv(W)*M = Projected Spectrogram
 - W*Pinv(W) = Projection matrix!!

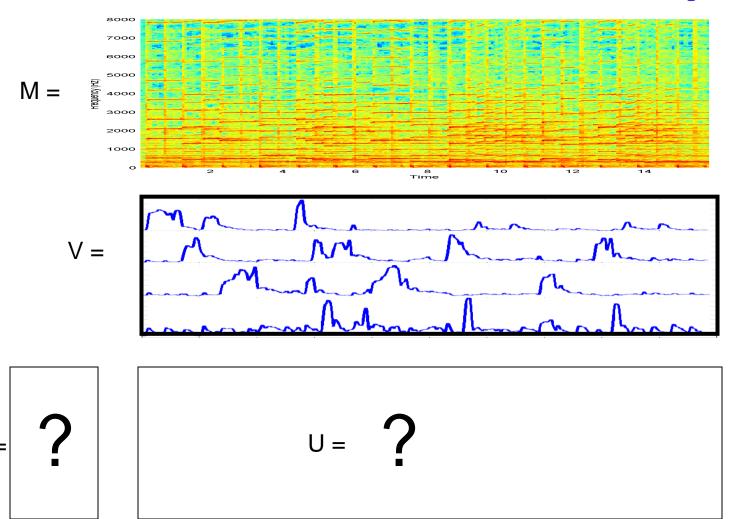
 $PINV(W) = (W^{T}W)^{-1}W^{T}$

Explanation with multiple notes



X = Pinv(W) * M; Projected matrix = W*X = W*Pinv(W)*M

How about the other way?



•
$$WV \approx M$$

■
$$WV \approx M$$
 $W = M Pinv(V)$

$$U = WV$$

Pseudo-inverse (PINV)

- Pinv() applies to non-square matrices
- Pinv (Pinv (A))) = A
- A*Pinv(A)= projection matrix!
 - Projection onto the columns of A
- If A = K x N matrix and K > N, A projects N-D vectors into a higher-dimensional K-D space
 - Pinv(A) = NxK matrix
 - Pinv(A)*A = I in this case
- Otherwise A * Pinv(A) = I

30

Matrix inversion (division)

- The inverse of matrix multiplication
 - Not element-wise division!!
- Provides a way to "undo" a linear transformation
 - Inverse of the unit matrix is itself
 - Inverse of a diagonal is diagonal
 - Inverse of a rotation is a (counter)rotation (its transpose!)
 - Inverse of a rank deficient matrix does not exist!
 - But pseudoinverse exists
- For square matrices: Pay attention to multiplication side! $\mathbf{A} \cdot \mathbf{B} = \mathbf{C}, \ \mathbf{A} = \mathbf{C} \cdot \mathbf{B}^{-1}, \ \mathbf{B} = \mathbf{A}^{-1} \cdot \mathbf{C}$

$$A \cdot B = C, A = C \cdot B^{-1}, B = A^{-1} \cdot C$$

If matrix is not square use a matrix pseudoinverse:

$$\mathbf{A} \cdot \mathbf{B} \approx \mathbf{C}, \ \mathbf{A} = \mathbf{C} \cdot \mathbf{B}^+, \ \mathbf{B} = \mathbf{A}^+ \cdot \mathbf{C}$$

31

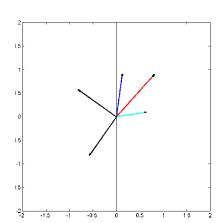
Eigenanalysis

- If something can go through a process mostly unscathed in character it is an eigen-something

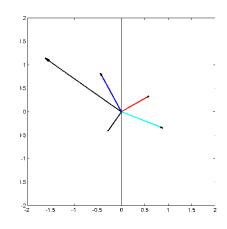
- A vector that can undergo a matrix multiplication and keep pointing the same way is an eigenvector
 - Its length can change though
- How much its length changes is expressed by its corresponding eigenvalue
 - Each eigenvector of a matrix has its eigenvalue
- Finding these "eigenthings" is called eigenanalysis

EigenVectors and EigenValues

Black vectors are eigen vectors



$$M = \begin{bmatrix} 1.5 & -0.7 \\ -0.7 & 1.0 \end{bmatrix}$$

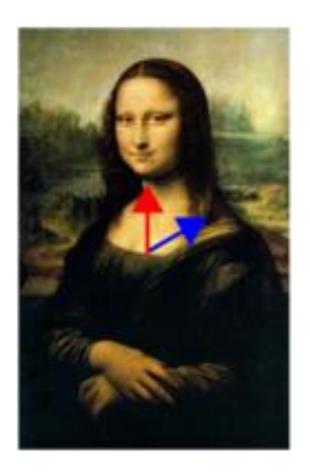


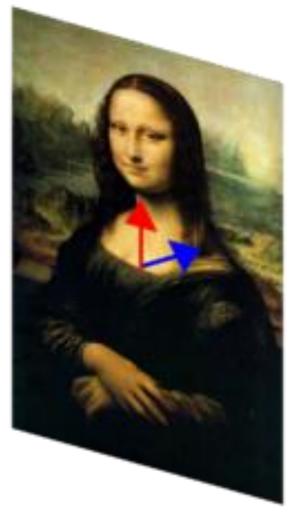
- Vectors that do not change angle upon transformation
 - They may change length

$$MV = \lambda V$$

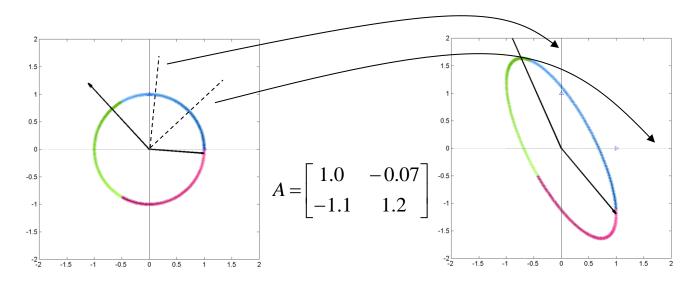
- V = eigen vector
- $-\lambda$ = eigen value

Eigen vector example



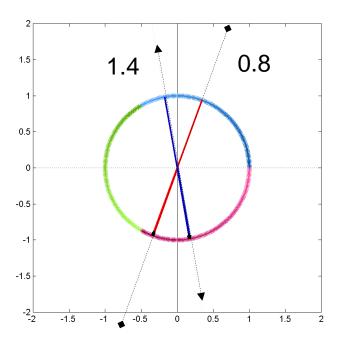


Matrix multiplication revisited



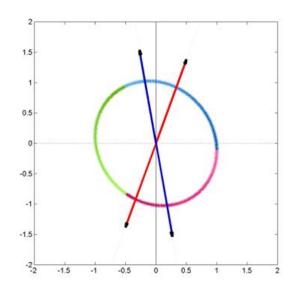
- Matrix transformation "transforms" the space
 - Warps the paper so that the normals to the two vectors now lie along the axes

A stretching operation



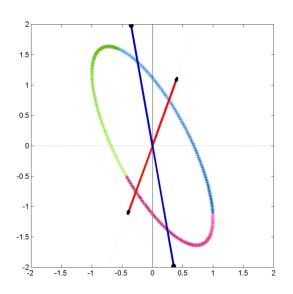
- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2
 - The factors could be negative implies flipping the paper
- The result is a transformation of the space

A stretching operation



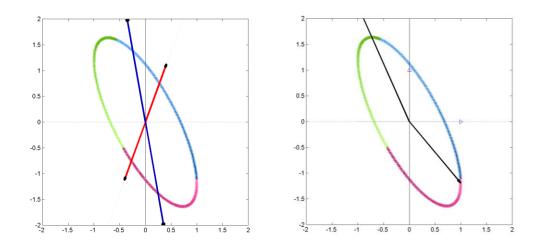
- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2
 - The factors could be negative implies flipping the paper
- The result is a transformation of the space

A stretching operation



- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2
 - The factors could be negative implies flipping the paper
- The result is a transformation of the space

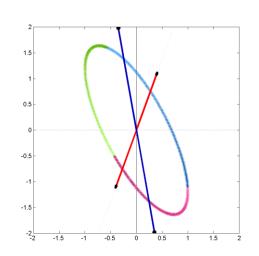
Physical interpretation of eigen vector

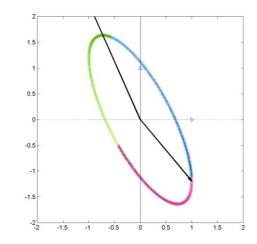


- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
 - The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Physical interpretation of eigen vector

$$V = \begin{bmatrix} V_1 & V_2 \\ \Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$
$$M = V\Lambda V^{-1}$$



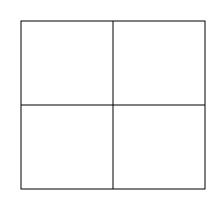


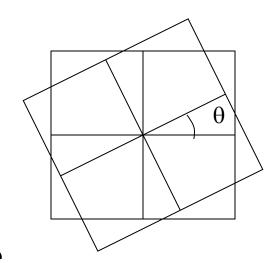
- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
 - The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Eigen Analysis

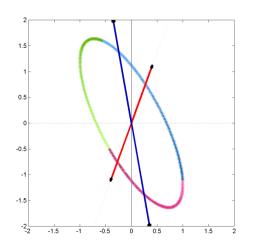
- Not all square matrices have nice eigen values and vectors
 - E.g. consider a rotation matrix

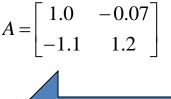
$$\mathbf{R}_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$X = \begin{bmatrix} x \\ y \end{bmatrix}$$
$$X_{new} = \begin{bmatrix} x' \\ y \end{bmatrix}$$

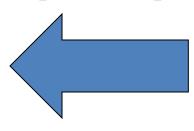


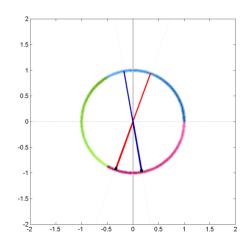


- This rotates every vector in the plane
 - No vector that remains unchanged
- In these cases the Eigen vectors and values are complex

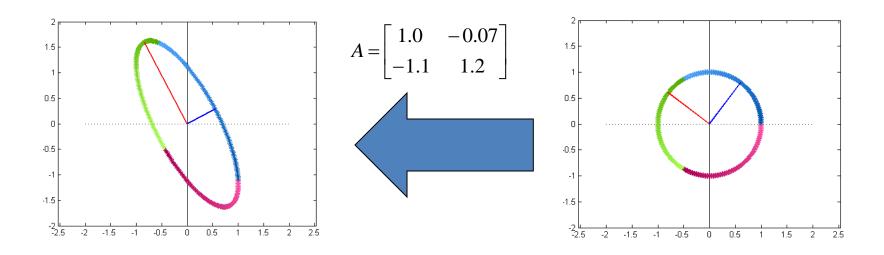




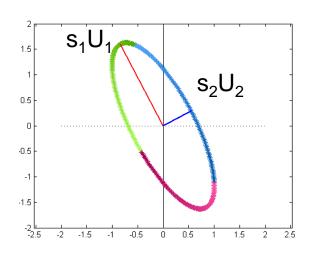




- Matrix transformations convert circles to ellipses
- Eigen vectors are vectors that do not change direction in the process
- There is another key feature of the ellipse to the left that carries information about the transform
 - Can you identify it?



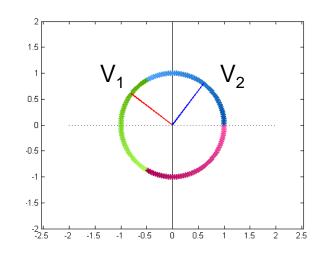
- The major and minor axes of the transformed ellipse define the ellipse
 - They are at right angles
- These are transformations of right-angled vectors on the original circle!



$$A = \begin{bmatrix} 1.0 & -0.07 \\ -1.1 & 1.2 \end{bmatrix}$$

$$A = U S V^T$$

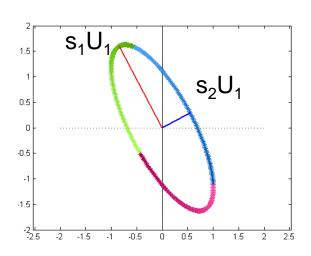
matlab: [U,S,V] = svd(A)

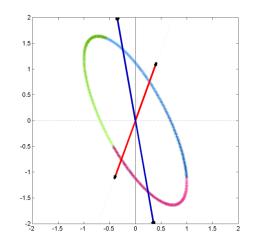


- U and V are orthonormal matrices
 - Columns are orthonormal vectors
- S is a diagonal matrix
- The right singular vectors in V are transformed to the left singular vectors in U
 - And scaled by the singular values that are the diagonal entries of S

- The left and right singular vectors are not the same
 - If A is not a square matrix, the left and right singular vectors will be of different dimensions
- The singular values are always real
- The largest singular value is the largest amount by which a vector is scaled by A
 - $Max (|Ax| / |x|) = s_{max}$
- The smallest singular value is the smallest amount by which a vector is scaled by A
 - Min (|Ax| / |x|) = s_{min}
 - This can be 0 (for low-rank or non-square matrices)

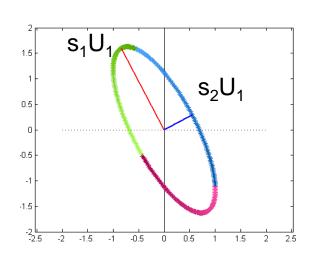
The Singular Values

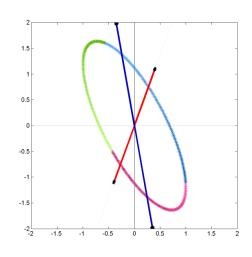




- Square matrices: product of singular values = determinant of the matrix
 - This is also the product of the eigen values
 - I.e. there are two different sets of axes whose products give you the area of an ellipse
- For any "broad" rectangular matrix A, the largest singular value of any square submatrix B cannot be larger than the largest singular value of A
 - An analogous rule applies to the smallest singular value
 - This property is utilized in various problems, such as compressive sensing

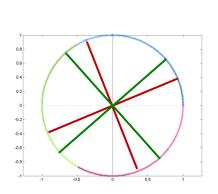
SVD vs. Eigen Analysis

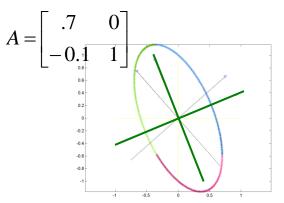


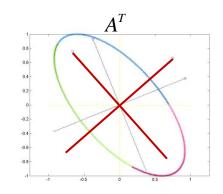


- Eigen analysis of a matrix A:
 - Find two vectors such that their absolute directions are not changed by the transform
- SVD of a matrix A:
 - Find two vectors such that the angle between them is not changed by the transform
- For one class of matrices, these two operations are the same

A matrix vs. its transpose





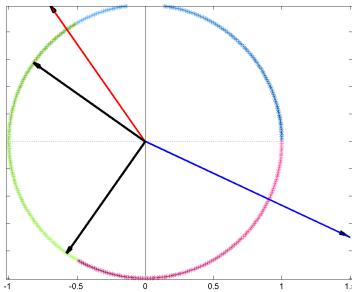


- Multiplication by matrix A:
 - Transforms right singular vectors in V to left singular vectors U
- Multiplication by its transpose A^T:
 - Transforms left singular vectors U to right singular vector V
- A A^T: Converts V to U, then brings it back to V
 - Result: Only scaling

48

Symmetric Matrices

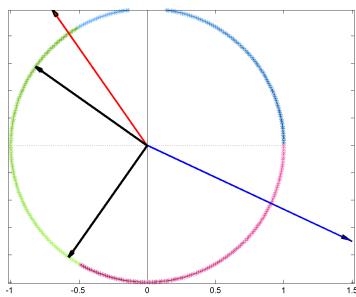
$$\begin{bmatrix} 1.5 & -0.7 \\ -0.7 & 1 \end{bmatrix}$$



- Matrices that do not change on transposition
 - Row and column vectors are identical
- The left and right singular vectors are identical
 - U = V
 - $-A = U S U^T$
- They are identical to the *Eigen vectors* of the matrix
- Symmetric matrices do not rotate the space
 - Only scaling and, if Eigen values are negative, reflection

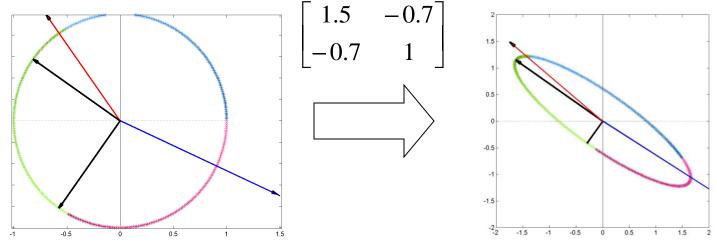
Symmetric Matrices

$$\begin{bmatrix} 1.5 & -0.7 \\ -0.7 & 1 \end{bmatrix}$$



- Matrices that do not change on transposition
 - Row and column vectors are identical
- Symmetric matrix: Eigen vectors and Eigen values are always real
- Eigen vectors are always orthogonal
 - At 90 degrees to one another

Symmetric Matrices



- Eigen vectors point in the direction of the major and minor axes of the ellipsoid resulting from the transformation of a spheroid
 - The eigen values are the lengths of the axes

Symmetric matrices

- Eigen vectors V_i are orthonormal
 - $V_i^T V_i = 1$
 - $-V_{i}^{T}V_{j}=0, i != j$
- Listing all eigen vectors in matrix form V
 - $-V^{T}=V^{-1}$
 - $V^T V = I$
 - $-VV^{T}=I$
- $M V_i = \lambda V_i$
- In matrix form : $MV = V\Lambda$
 - $-\Lambda$ is a diagonal matrix with all eigen values
- $M = V \wedge V^T$

Square root of a symmetric matrix

$$C = V\Lambda V^T$$

$$Sqrt(C) = V.Sqrt(\Lambda).V^{T}$$

$$Sqrt(C).Sqrt(C) = V.Sqrt(\Lambda).V^{T}V.Sqrt(\Lambda).V^{T}$$

$$=V.Sqrt(\Lambda).Sqrt(\Lambda)V^{T}=V\Lambda V^{T}=C$$

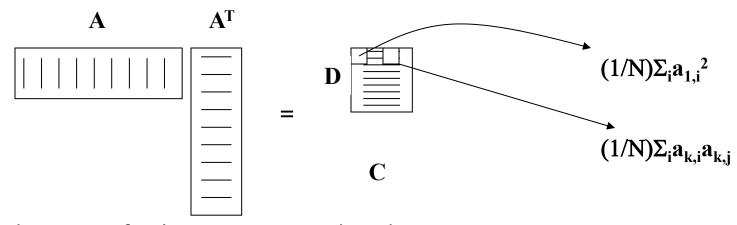
Definiteness...

- SVD: Singular values are always positive!
- Eigen Analysis: Eigen values can be real or imaginary
 - Real, positive Eigen values represent stretching of the space along the Eigen vector
 - Real, negative Eigen values represent stretching and reflection (across origin) of Eigen vector
 - Complex Eigen values occur in conjugate pairs
- A square (symmetric) matrix is positive definite if all Eigen values are real and positive, and are greater than 0
 - Transformation can be explained as stretching and rotation
 - If any Eigen value is zero, the matrix is positive semi-definite

Positive Definiteness...

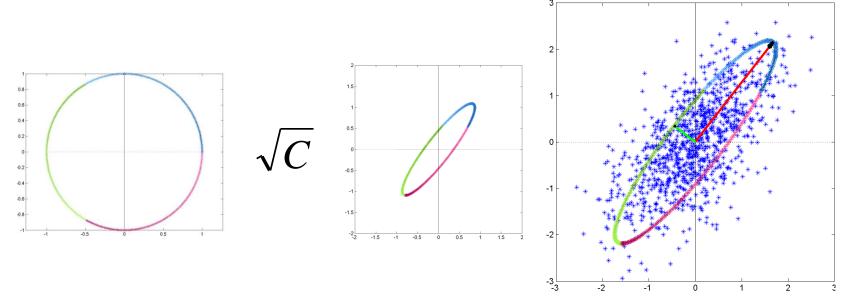
- Property of a positive definite matrix: Defines inner product norms
 - $x^T A x$ is always positive for any vector x if A is positive definite
- Positive definiteness is a test for validity of *Gram* matrices
 - Such as correlation and covariance matrices
 - We will encounter these and other gram matrices
 later

The Correlation and Covariance Matrices



- Consider a set of column vectors ordered as a DxN matrix A
- The correlation matrix is
 - $C = (1/N) AA^{T}$
 - Represents the directions in which the "energy" in the signal lies
- If the average (mean) of the vectors in A is subtracted out of all vectors, C is the covariance matrix
 - covariance = correlation + mean * mean^T
 - Represents the directions in which the "spread" of the signal lies
- Diagonal elements represent the energy/spread of individual components
 - Off diagonal elements represent how two components are related
 - How much knowing one lets us guess the value of the other

Square root of the *Covariance* Matrix



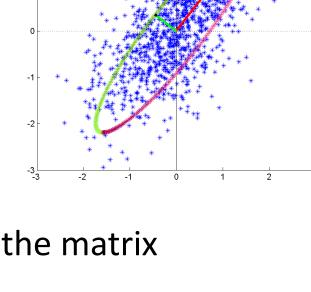
- The square root of the covariance matrix represents the elliptical scatter of the data
- The Eigenvectors of the matrix represent the major and minor axes
 - "Modes" in direction of scatter

The Correlation Matrix

Any vector $V = a_{V,1}^{*}$ eigenvec1 + $a_{V,2}^{*}$ *eigenvec2 + ...

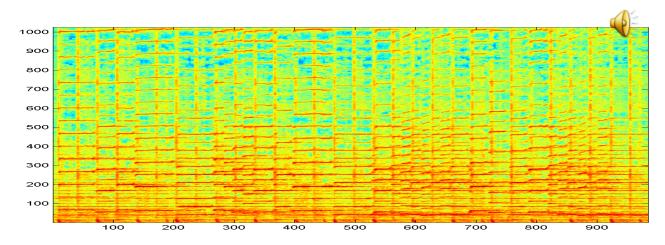
$$\Sigma_{V}$$
 $a_{V,i}$ = eigenvalue(i)

Projections along the N Eigen
 vectors with the largest Eigen
 values represent the N greatest
 "energy-carrying" components of the matrix



 Conversely, N "bases" that result in the least square error are the N best Eigen vectors

An audio example



- The spectrogram has 974 vectors of dimension 1025
- The covariance matrix is size 1025 x 1025
- There are 1025 eigenvectors

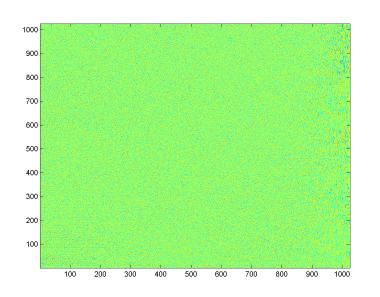
59

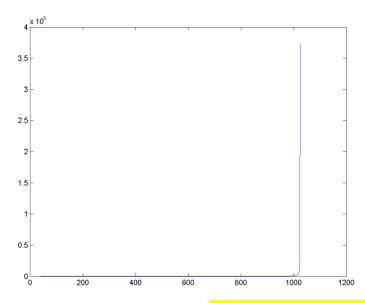
Eigen Reduction

$$M = spectrogram$$
 1025x1000
 $C = M.M^{T}$ 1025x1025
 $V = 1025x1025$ $[V, L] = eig(C)$
 $V_{reduced} = [V_{1} . . . V_{25}]$ 1025x25
 $M_{lowdim} = Pinv(V_{reduced})M$ 25x1000
 $M_{reconstructed} = V_{reduced}M_{lowdim}$ 1025x1000

- Compute the Correlation
- Compute Eigen vectors and values
- Create matrix from the 25 Eigen vectors corresponding to 25 highest Eigen values
- Compute the weights of the 25 eigenvectors
- To reconstruct the spectrogram compute the projection on the 25 Eigen vectors

Eigenvalues and Eigenvectors

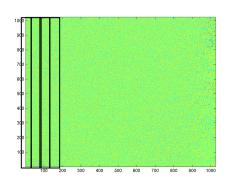


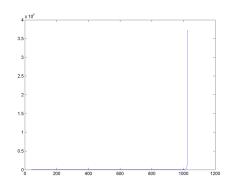


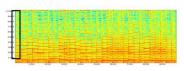
- Left panel: Matrix with 1025 eigen vectors
- Right panel: Corresponding eigen values
 - Most Eigen values are close to zero
 - The corresponding eigenvectors are "unimportant"

$$M = spectrogram$$
 $C = M.M^{T}$
 $[V, L] = eig(C)$

Eigenvalues and Eigenvectors





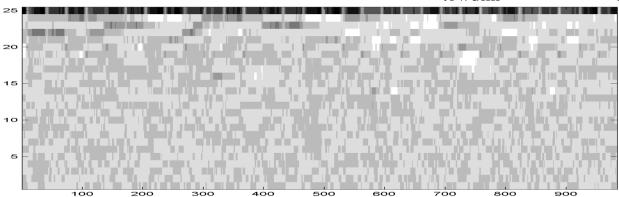


Vec = a1 *eigenvec1 + a2 * eigenvec2 + a3 * eigenvec3 ...

- The vectors in the spectrogram are linear combinations of all 1025 Eigen vectors
- The Eigen vectors with low Eigen values contribute very little
 - The average value of a_i is proportional to the square root of the Eigenvalue
 - Ignoring these will not affect the composition of the spectrogram

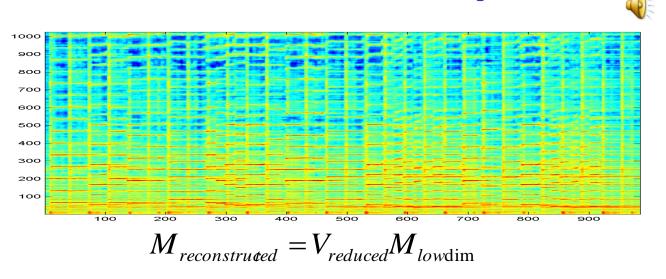
An audio example

$$egin{aligned} V_{reduced} &= [V_1 \quad . \quad . \quad V_{25}] \ M_{low ext{dim}} &= Pinv(V_{reduced})M \end{aligned}$$



- The same spectrogram projected down to the 25 eigen vectors with the highest eigen values
 - Only the 25-dimensional weights are shown
 - The weights with which the 25 eigen vectors must be added to compose a least squares approximation to the spectrogram

An audio example



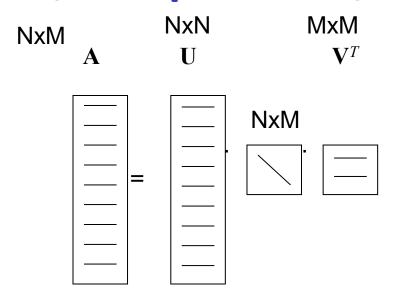
- The same spectrogram constructed from only the 25 Eigen vectors with the highest Eigen values
 - Looks similar
 - With 100 Eigenvectors, it would be indistinguishable from the original
 - Sounds pretty close
 - But now sufficient to store 25 numbers per vector (instead of 1024)

SVD vs. Eigen decomposition

- SVD cannot in general be derived directly from the Eigen analysis and vice versa
- But for matrices of the form $M = DD^T$, the Eigen decomposition of M is related to the SVD of D
 - SVD: D = U S V^T
 - DD^T = U S V^T V S U^T = U S² U^T
- The "left" singular vectors are the Eigen vectors of M
 - Show the directions of greatest importance
- The corresponding singular values of D are the square roots of the Eigen values of M
 - Show the importance of the Eigen vector

68

Thin SVD, compact SVD, reduced SVD



- SVD can be computed much more efficiently than Eigen decomposition
- Thin SVD: Only compute the first N columns of U
 - All that is required if N < M
- Compact SVD: Only the left and right singular vectors corresponding to non-zero singular values are computed

Why bother with Eigens/SVD

- Can provide a unique insight into data
 - Strong statistical grounding
 - Can display complex interactions between the data
 - Can uncover irrelevant parts of the data we can throw out
- Can provide basis functions
 - A set of elements to compactly describe our data
 - Indispensable for performing compression and classification
- Used over and over and still perform amazingly well

Eigenfaces
Using a linear transform of the above "eigenvectors" we can compose various faces

Trace

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \qquad Tr(A) = a_{11} + a_{22} + a_{33} + a_{44}$$

$$Tr(A) = \sum_{i} a_{i,i}$$

$$Tr(A) = a_{11} + a_{22} + a_{33} + a_{44}$$

- The trace of a matrix is the sum of the diagonal entries
- It is equal to the sum of the Eigen values!

$$Tr(A) = \sum_{i} a_{i,i} = \sum_{i} \lambda_{i}$$

Trace

Often appears in Error formulae

$$D = \begin{bmatrix} d_{11} & d_{12} & d_{13} & d_{14} \\ d_{21} & d_{22} & d_{23} & d_{24} \\ d_{31} & a_{32} & a_{33} & a_{34} \\ d_{41} & d_{42} & d_{43} & d_{44} \end{bmatrix} \qquad C = \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34} \\ c_{41} & c_{42} & c_{43} & c_{44} \end{bmatrix}$$

$$C = \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34} \\ c_{41} & c_{42} & c_{43} & c_{44} \end{bmatrix}$$

$$E = D - C$$
 $error = \sum_{i,j} E_{i,j}^2$ $error = Tr(EE^T)$

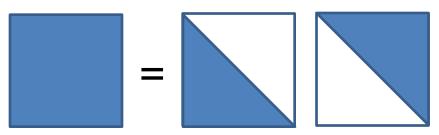
Useful to know some properties..

Properties of a Trace

- Linearity: Tr(A+B) = Tr(A) + Tr(B)Tr(c.A) = c.Tr(A)
- Cycling invariance:
 - Tr (ABCD) = Tr(DABC) = Tr(CDAB) = Tr(BCDA)
 - $-\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$
- Frobenius norm $F(A) = \sum_{i,j} a_{ij}^2 = Tr(AA^T)$

Decompositions of matrices

- Square A: LU decomposition
 - Decompose A = L U
 - L is a lower triangular matrix
 - All elements above diagonal are 0
 - R is an upper triangular matrix
 - All elements below diagonal are zero
 - Cholesky decomposition: A is symmetric, $L = U^T$
- QR decompositions: A = QR
 - Q is orthgonal: $QQ^T = I$
 - R is upper triangular
- Generally used as tools to compute Eigen decomposition or least square solutions



- Derivative of scalar w.r.t. vector
- For any scalar z that is a function of a vector x
- The dimensions of dz / dx are the same as the dimensions of x

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}$$

$$\frac{dz}{d\mathbf{x}} = \begin{vmatrix} \frac{dz}{dx_1} \\ \vdots \\ \frac{dz}{dx_N} \end{vmatrix}$$

N x 1 vector

- Derivative of scalar w.r.t. matrix
- For any scalar z that is a function of a matrix X
- The dimensions of dz / dX are the same as the dimensions of X

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix} \qquad \frac{dz}{d\mathbf{X}} = \begin{bmatrix} \frac{dz}{dx_{11}} & \frac{dz}{dx_{12}} & \frac{dz}{dx_{13}} \\ \frac{dz}{dx_{21}} & \frac{dz}{dx_{22}} & \frac{dz}{dx_{23}} \end{bmatrix}$$

N x M matrix

N x M matrix

- Derivative of vector w.r.t. vector
- For any Mx1 vector y that is a function of an Nx1 vector x
- dy / dx is an MxN matrix

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_M \end{bmatrix}$$

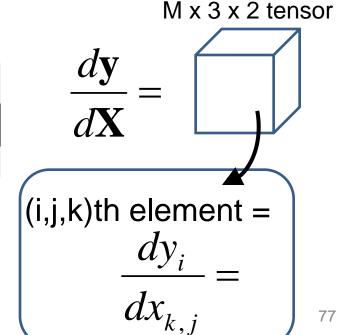
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}$$

$$\frac{d\mathbf{y}}{d\mathbf{x}} = \begin{vmatrix} \frac{dy_1}{dx_1} & \cdots & \frac{dy_1}{dx_N} \\ \vdots & \vdots & \vdots \\ \frac{dy_M}{dx_1} & \cdots & \frac{dy_M}{dx_N} \end{vmatrix}$$

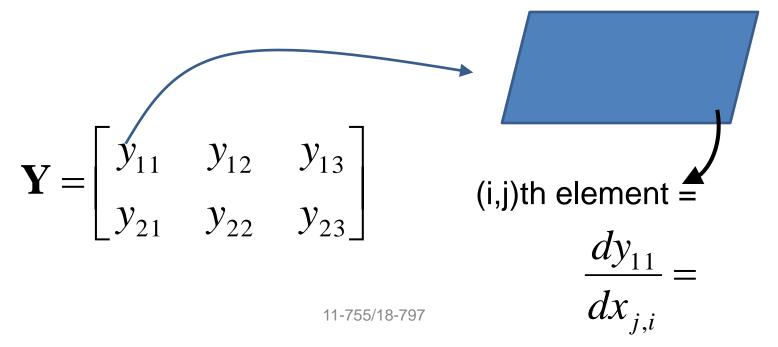
M x N matrix

- Derivative of vector w.r.t. matrix
- For any Mx1 vector \mathbf{y} that is a function of an NxL matrx \mathbf{X}
- dy / dX is an MxLxN tensor (note order)

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_M \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix} \quad \frac{d\mathbf{y}}{d\mathbf{X}} = \begin{bmatrix} y_1 & y_2 & y_3 \\ y_3 & y_4 & y_5 \end{bmatrix}$$
 (i,j,k)th elem



- Derivative of matrix w.r.t. matrix
- For any MxK vector \mathbf{Y} that is a function of an NxL matrx \mathbf{X}
- dY / dX is an MxKxLxN tensor (note order)



78

In general

• The derivative of an $N_1 \times N_2 \times N_3 \times ...$ tensor w.r.t to an $M_1 \times M_2 \times M_3 \times ...$ tensor

• Is an $N_1 \times N_2 \times N_3 \times ... \times M_L \times M_{L-1} \times ... \times M_1$ tensor

Compound Formulae

• Let
$$Y = f(g(h(X)))$$

Chain rule (note order of multiplication)

$$\frac{d\mathbf{Y}}{d\mathbf{X}} = \frac{dh(\mathbf{X})^{\#}}{d\mathbf{X}} \frac{dg(h(\mathbf{X}))^{\#}}{dh(\mathbf{X})} \frac{df(g(h(\mathbf{X})))}{dg(h(\mathbf{X}))}$$

- The # represents a transposition operation
 - That is appropriate for the tensor

Example

$$z = \|\mathbf{y} - \mathbf{A}\mathbf{x}\|^2$$

- **y** is N x 1
- **x** is M x 1
- **A** is N x M

- Compute dz/dA
 - On board