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Overview 

• Vectors and matrices 
• Basic vector/matrix operations 
• Various matrix types 
• Projections 

 

• More on matrix types 
• Matrix determinants 
• Matrix inversion 
• Eigenanalysis 
• Singular value decomposition 
• Matrix Calculus 
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Orthogonal/Orthonormal vectors 

• Two vectors are orthogonal if they are perpendicular to one another 

– A.B = 0 

– A vector that is perpendicular to a plane is orthogonal to every vector on the 
plane 

 

• Two vectors are orthonormal if 

– They are orthogonal 

– The length of each vector is 1.0 

– Orthogonal vectors can be made orthonormal by normalizing their lengths to 1.0 
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Orthogonal matrices 

• Orthogonal Matrix  :  AAT = ATA = I 

– The matrix is square 

– All row vectors are orthonormal to one another 
• Every vector is perpendicular to the hyperplane formed by all other vectors 

– All column vectors are also orthonormal to one another 

– Observation: In an orthogonal matrix if the length of the row vectors 
is 1.0, the length of the column vectors is also 1.0 

– Observation: In an orthogonal matrix no more than one row can 
have all entries with the same polarity (+ve or –ve) 
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Orthogonal and Orthonormal Matrices 

• Orthogonal matrices will retain the length and relative 
angles between transformed vectors 

– Essentially, they are combinations of rotations, reflections and 
permutations 

– Rotation matrices and permutation matrices are all orthonormal 
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Orthogonal and Orthonormal Matrices 

• If the vectors in the matrix are not unit length, it cannot 
be orthogonal 
– AAT != I,   ATA != I 

– AAT = Diagonal or ATA = Diagonal, but not both 

– If all the entries are the same length, we can get AAT = ATA = Diagonal, though 

• A non-square matrix cannot be orthogonal 
– AAT=I or ATA = I, but not both   
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Matrix Rank and Rank-Deficient Matrices 

• Some matrices will eliminate one or more dimensions during 
transformation 

– These are rank deficient matrices 

– The rank of the matrix is the dimensionality of the transformed 
version of a full-dimensional object 
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Matrix Rank and Rank-Deficient Matrices 

• Some matrices will eliminate one or more dimensions during 
transformation 
– These are rank deficient matrices 

– The rank of the matrix is the dimensionality of the transformed 
version of a full-dimensional object 
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Projections are often examples of rank-deficient transforms 
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 P = W (WTW)-1 WT ; Projected Spectrogram = P*M 

 The original spectrogram can never be recovered 
 P is rank deficient 

 P explains all vectors in the new spectrogram as a mixture of 
only the 4 vectors in W 
 There are only a maximum of 4 linearly independent bases 

 Rank of P is 4 

M =  

W =  



Non-square Matrices 

• Non-square matrices add or subtract axes 
– More rows than columns  add axes 

• But does not increase the dimensionality of the dataaxes 
• May reduce dimensionality of the data 
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Non-square Matrices 

• Non-square matrices add or subtract axes 
– More rows than columns  add axes 

• But does not increase the dimensionality of the data 

– Fewer rows than columns  reduce axes 
• May reduce dimensionality of the data 
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The Rank of  a Matrix 

• The matrix rank is the dimensionality of the transformation of a full-
dimensioned object in the original space 

 

• The matrix can never increase dimensions 
– Cannot convert a circle to a sphere or a line to a circle 

 

• The rank of a matrix can never be greater than the lower of its two 
dimensions 
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The Rank of Matrix 
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 Projected Spectrogram = P * M 
 Every vector in it is a combination of only 4 bases 

 The rank of the matrix is the smallest no. of bases required to 
describe the output 
 E.g. if note no. 4 in P could be expressed as a combination of notes 1,2 

and 3, it provides no additional information 

 Eliminating note no. 4 would give us the same projection 

 The rank of P would be 3! 

M =  



Matrix rank is unchanged by transposition 

• If an N-dimensional object is compressed to a  
K-dimensional object by a matrix, it will also 
be compressed to a K-dimensional object by 
the transpose of the matrix 
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Matrix Determinant 

• The determinant is the “volume” of a matrix 

• Actually the volume of a parallelepiped formed from its 
row vectors 
– Also the volume of the parallelepiped formed from its column 

vectors 

• Standard formula for determinant: in text book 
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Matrix Determinant: Another Perspective 

• The determinant is the ratio of N-volumes 

– If V1 is the volume of an N-dimensional sphere “O” in N-dimensional 
space 

• O is the complete set of points or vertices that specify the object 

– If V2 is the volume of the N-dimensional ellipsoid specified by A*O,  
where A is a matrix that transforms the space 

– |A| = V2 / V1 
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Matrix Determinants 
• Matrix determinants are only defined for square matrices 

– They characterize volumes in linearly transformed space of the same 
dimensionality as the vectors 

 

• Rank deficient matrices have determinant 0 

– Since they compress full-volumed N-dimensional objects into zero-
volume N-dimensional objects 

• E.g. a 3-D sphere into a 2-D ellipse:  The ellipse has 0 volume (although it 
does have area) 

 

• Conversely, all matrices of determinant 0 are rank deficient 

– Since they compress full-volumed N-dimensional objects into  
zero-volume objects 
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Multiplication properties 
• Properties of vector/matrix products 

– Associative 
 

 

– Distributive 
 

 

– NOT commutative!!! 
 

 

• left multiplications ≠ right multiplications 

– Transposition 
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 
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Determinant properties 
• Associative for square matrices 

 

– Scaling volume sequentially by several matrices is equal to scaling 
once by the product of the matrices 

 

• Volume of sum != sum of Volumes 

 
 

• Commutative 

– The order in which you scale the volume of an object is irrelevant 
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Matrix Inversion 

• A matrix transforms an  
N-dimensional object to a 
different N-dimensional 
object 

 

• What transforms the new 
object back to the original? 

– The inverse transformation 
 

• The inverse transformation is 
called the matrix inverse 
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Matrix Inversion 

• The product of a matrix and its inverse is the 
identity matrix 

– Transforming an object, and then inverse 
transforming it gives us back the original object 
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Inverting rank-deficient matrices 

• Rank deficient matrices “flatten” objects 
– In the process, multiple points in the original object get mapped to the same 

point in the transformed  object 
 

• It is not possible to go “back” from the flattened object to the original 
object 
– Because of the many-to-one forward mapping 

 

• Rank deficient matrices have no inverse 
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Rank Deficient Matrices 
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 The projection matrix is rank deficient 

 You cannot recover the original spectrogram from the 
projected one.. 

M =  



Revisiting Projections and Least Squares 
• Projection computes a least squared error estimate 

• For each vector V in the music spectrogram matrix 

– Approximation:  Vapprox = a*note1 + b*note2 + c*note3.. 

 

 

 

 

 

– Error vector E =  V – Vapprox 

– Squared error energy for V     e(V) = norm(E)2 

 

• Projection computes Vapprox for all vectors such that Total error is 
minimized 

• But WHAT ARE “a” “b” and “c”? 
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The Pseudo Inverse (PINV) 

• We are approximating spectral vectors V as the 
transformation of the vector [a b c]T 

– Note – we’re viewing the collection of bases in T as a 
transformation 

 

• The solution is obtained using the pseudo inverse 

– This give us a LEAST SQUARES solution 

• If T were square and invertible Pinv(T) = T-1, and V=Vapprox 
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Explaining music with one note 
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 Recap:  P = W (WTW)-1 WT, Projected Spectrogram = P*M 
 

 Approximation:  M = W*X 

 The amount of W in each vector = X = PINV(W)*M 

 W*Pinv(W)*M = Projected Spectrogram 

 W*Pinv(W) = Projection matrix!! 

M =  

W =  

X =PINV(W)*M 

PINV(W) = (WTW)-1WT 



Explanation with multiple notes 
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 X =  Pinv(W) * M;   Projected matrix = W*X = W*Pinv(W)*M 

M =  

W =  

X=PINV(W)M 



How about the other way? 
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Pseudo-inverse (PINV) 

• Pinv()  applies to non-square matrices 

• Pinv ( Pinv (A))) = A 

• A*Pinv(A)= projection matrix! 

– Projection onto the columns of A 
 

• If A = K x N matrix and K > N, A projects N-D vectors 
into a higher-dimensional K-D space 

– Pinv(A) = NxK matrix 

– Pinv(A)*A = I  in this case 

• Otherwise  A * Pinv(A) = I 
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Matrix inversion (division) 

• The inverse of matrix multiplication 
– Not element-wise division!! 

• Provides a way to “undo” a linear transformation 
– Inverse of the unit matrix is itself 

– Inverse of a diagonal is diagonal 

– Inverse of a rotation is a (counter)rotation (its transpose!) 

– Inverse of a rank deficient matrix does not exist! 
• But pseudoinverse exists 

• For square matrices: Pay attention to multiplication side! 

 

• If matrix is not square use a matrix pseudoinverse: 
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 

A B  C,  A  CB1,  B  A
1 C
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Eigenanalysis 

• If something can go through a process mostly 
unscathed in character it is an eigen-something 

– Sound example: 

• A vector that can undergo a matrix multiplication and 
keep pointing the same way is an eigenvector 

– Its length can change though 

• How much its length changes is expressed by its 
corresponding eigenvalue 

– Each eigenvector of a matrix has its eigenvalue 

• Finding these “eigenthings” is called eigenanalysis 

11-755/18-797 31 



EigenVectors and EigenValues 

• Vectors that do not change angle upon 

transformation 

– They may change length 

 

 

– V = eigen vector 

– l = eigen value 
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Eigen vector example 
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Matrix multiplication revisited 

• Matrix transformation “transforms” the space 

– Warps the paper so that the normals to the two 
vectors now lie along the axes 
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A stretching operation 

• Draw two lines 

• Stretch / shrink the paper along these lines by factors l1 
and l2 

– The factors could be negative – implies flipping the paper 

• The result is a transformation of the space 
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A stretching operation 
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 Draw two lines 

 Stretch / shrink the paper along these lines by factors l1 
and l2 

 The factors could be negative – implies flipping the paper 

 The result is a transformation of the space 



A stretching operation 
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 Draw two lines 

 Stretch / shrink the paper along these lines by factors l1 
and l2 

 The factors could be negative – implies flipping the paper 

 The result is a transformation of the space 



Physical interpretation of eigen vector 

• The result of the stretching is exactly the same as transformation by a 
matrix 

• The axes of stretching/shrinking are the eigenvectors 

– The degree of stretching/shrinking are the corresponding eigenvalues 

• The EigenVectors and EigenValues convey all the information about the 
matrix 
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Physical interpretation of eigen vector 

• The result of the stretching is exactly the same as transformation by a 
matrix 

• The axes of stretching/shrinking are the eigenvectors 

– The degree of stretching/shrinking are the corresponding eigenvalues 

• The EigenVectors and EigenValues convey all the information about the 
matrix 
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Eigen Analysis 
• Not all square matrices have nice eigen values and 

vectors 
– E.g. consider a rotation matrix 

 

 

 

 

 

– This rotates every vector in the plane 
• No vector that remains unchanged 

 

• In these cases the Eigen vectors and values are complex 
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Singular Value Decomposition 

• Matrix transformations convert circles to ellipses 

• Eigen vectors are vectors that do not change direction in the 
process 

• There is another key feature of the ellipse to the left that carries 
information about the transform 

– Can you identify it? 
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Singular Value Decomposition 

• The major and minor axes of the transformed ellipse 
define the ellipse 

– They are at right angles 

• These are transformations of right-angled vectors on 
the original circle! 
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Singular Value Decomposition 

• U and V are orthonormal matrices 

– Columns are orthonormal vectors 

• S is a diagonal matrix 
 

• The right singular vectors in V are transformed to the left singular vectors 
in U 

– And scaled by the singular values that are the diagonal entries of S 
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Singular Value Decomposition 
• The left and right singular vectors are not the same 

– If A is not a square matrix, the left and right singular vectors will 
be of different dimensions 

 

• The singular values are always real 
 

• The largest singular value is the largest amount by which a 
vector is scaled by A 

– Max (|Ax| / |x|) = smax 

• The smallest singular value is the smallest amount by which 
a vector is scaled by A 

– Min (|Ax| / |x|) = smin 

– This can be 0 (for low-rank or non-square matrices) 
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The Singular Values 

• Square matrices: product of singular values = determinant of  the matrix 

– This is also the product of the eigen values 

– I.e. there are two different sets of axes whose products give you the area of 
an ellipse 

 

• For any “broad” rectangular matrix A, the largest singular value of any 
square submatrix B cannot be larger than the largest singular value of A 

– An analogous rule applies to the smallest singular value 

– This property is utilized in various problems, such as compressive sensing 
45 
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SVD vs. Eigen Analysis 

• Eigen analysis of a matrix A: 
– Find two vectors such that their absolute directions are not changed by the 

transform 

• SVD of a matrix A: 
– Find two vectors such that the angle between them is not changed by the 

transform 

• For one class of matrices, these two operations are the same 
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A matrix vs. its transpose 

• Multiplication by matrix A: 

– Transforms right singular vectors in V to left singular 
vectors U 

• Multiplication by its transpose AT: 

– Transforms left singular vectors U to right singular vector V 

• A AT  :  Converts V to U, then brings it back to V 

– Result: Only scaling 
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Symmetric Matrices 

• Matrices that do not change on transposition 
– Row and column vectors are identical 

• The left and right singular vectors are identical 
– U = V 
– A = U S UT 

• They are identical to the Eigen vectors of the matrix 
• Symmetric matrices do not rotate the space 

– Only scaling and, if Eigen values are negative, reflection 
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Symmetric Matrices 

• Matrices that do not change on transposition 
– Row and column vectors are identical 

• Symmetric matrix: Eigen vectors and Eigen values are 
always real 

• Eigen vectors are always orthogonal 
– At 90 degrees to one another 
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Symmetric Matrices 

• Eigen vectors point in the direction of the 
major and minor axes of the ellipsoid resulting 
from the transformation of a spheroid 

– The eigen values are the lengths of the axes 
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Symmetric matrices 
• Eigen vectors Vi are orthonormal 

– Vi
TVi = 1 

 

– Vi
TVj = 0, i != j 

 

• Listing all eigen vectors in matrix form V 

– VT = V-1 

 

– VT V = I 
 

– V VT= I 
 

• M Vi = lVi 
 

• In matrix form  :  M V  = V  

–  is a diagonal matrix with all eigen values 
 

• M = V  VT 
11-755/18-797 51 



Square root of a symmetric matrix 
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Definiteness.. 

• SVD: Singular values are always positive! 

• Eigen Analysis:  Eigen values can be real or imaginary 

– Real, positive Eigen values represent stretching of the space along 
the Eigen vector 

– Real, negative Eigen values represent stretching and reflection 
(across origin) of Eigen vector 

– Complex Eigen values occur in conjugate pairs 
 

• A square (symmetric) matrix is positive definite if all Eigen 
values are real and positive, and are greater than 0 

– Transformation can be explained as stretching and rotation 

– If any Eigen value is zero, the matrix is positive semi-definite 
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Positive Definiteness.. 

• Property of a positive definite matrix:  Defines 

inner product norms 

– xTAx  is always positive for any vector x if A is positive 

definite 

• Positive definiteness is a test for validity of Gram 

matrices 

– Such as correlation and covariance matrices 

– We will encounter these and other gram matrices 

later 
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The Correlation and Covariance Matrices 

• Consider a set of column vectors ordered as a DxN matrix A 

• The correlation matrix is 
– C = (1/N) AAT 

– Represents the directions in which the “energy” in the signal lies 

• If the average  (mean) of the vectors in A is  subtracted out of all 
vectors, C is  the covariance matrix 
– covariance = correlation + mean * meanT 
– Represents the directions in which the “spread” of the signal lies 

• Diagonal elements represent the energy/spread of individual components 
– Off diagonal elements represent how two components are related 

• How much knowing one lets us guess the value of the other 
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Square root of the Covariance Matrix 

• The square root of the covariance matrix 
represents the elliptical scatter of the data 

• The Eigenvectors of the matrix represent the 
major and minor axes 

– “Modes” in direction of scatter 
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The Correlation Matrix 

• Projections along the N Eigen  
vectors with the largest Eigen  
values represent the N greatest  
“energy-carrying” components of the matrix 

 

• Conversely, N “bases” that result in the least square 
error are the N best Eigen vectors 
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Any vector V = aV,1 * eigenvec1 + aV,2 *eigenvec2 + .. 

SV aV,i = eigenvalue(i) 



An audio example 

• The spectrogram has 974 vectors of dimension 
1025 

• The covariance matrix is size 1025 x 1025 

• There are 1025 eigenvectors 
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Eigen Reduction 

• Compute the Correlation 

• Compute Eigen vectors and values 

• Create matrix from the 25 Eigen vectors corresponding to 25 highest Eigen 
values 

• Compute the weights of the 25 eigenvectors 

• To reconstruct the spectrogram – compute the projection on the 25 Eigen 
vectors  
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Eigenvalues and Eigenvectors 

• Left panel: Matrix with 1025 eigen vectors 

• Right panel: Corresponding eigen values 

– Most Eigen values are close to zero 

• The corresponding eigenvectors are “unimportant” 
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Eigenvalues and Eigenvectors 

• The vectors in the spectrogram are linear combinations of all 
1025 Eigen vectors 

• The Eigen vectors with low Eigen values contribute very little 

– The average value of ai is proportional to the square root of the 
Eigenvalue 

– Ignoring these will not affect the composition of the spectrogram 
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An audio example 

• The same spectrogram projected down to the 25 eigen 
vectors with the highest eigen values 

– Only the 25-dimensional weights are shown 
• The weights with which the 25 eigen vectors must be added to 

compose a least squares approximation to the spectrogram 
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An audio example 

• The same spectrogram constructed from only the 25 
Eigen vectors with the highest Eigen values 

– Looks similar 
• With 100 Eigenvectors, it would be indistinguishable from the original 

– Sounds pretty close 

– But now sufficient to store 25 numbers per vector (instead of 
1024) 
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SVD vs. Eigen decomposition 

• SVD cannot in general be derived directly from the Eigen 
analysis and vice versa 

• But for matrices of the form  M = DDT, the Eigen 
decomposition of M is related to the SVD of D 
– SVD:    D = U S VT 

– DDT =  U S VT V S UT  = U S2 UT 

 

• The “left” singular vectors are the Eigen vectors of M 
– Show the directions of greatest importance 

 

• The corresponding singular values of D are the square roots of 
the Eigen values of M 
– Show the importance of the Eigen vector 
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Thin SVD, compact SVD, reduced SVD 

• SVD can be computed much more efficiently than Eigen 
decomposition 

• Thin SVD:  Only compute the first N columns of U 

– All that is required if N < M 

• Compact SVD: Only the left and right singular vectors corresponding to 
non-zero singular values are computed 
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Why bother with Eigens/SVD 
• Can provide a unique insight into data 

– Strong statistical grounding  

– Can display complex interactions 
between the data 

– Can uncover irrelevant parts of the 
data we can throw out 

• Can provide basis functions  

– A set of elements to compactly 
describe our data 

– Indispensable for performing 
compression and classification 

• Used over and over and still perform 
amazingly well 
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Eigenfaces 

Using a linear transform of  

the above “eigenvectors” we  

can compose various faces 



Trace 

• The trace of a matrix is the sum of the 
diagonal entries 

• It is equal to the sum of the Eigen values! 
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Trace 

• Often appears in Error formulae 

 

 

 

 

 

 

• Useful to know some properties.. 
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Properties of a Trace 

• Linearity:  Tr(A+B) = Tr(A) + Tr(B) 

                 Tr(c.A) = c.Tr(A) 
 

• Cycling invariance: 

– Tr (ABCD) = Tr(DABC) = Tr(CDAB) = 

Tr(BCDA) 

– Tr(AB) = Tr(BA) 
 

• Frobenius norm  F(A) = Si,j aij
2 = Tr(AAT) 
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Decompositions of matrices 
• Square A: LU decomposition 

– Decompose A  = L U 

– L is a lower triangular matrix 
• All elements above diagonal are 0 

– R is an upper triangular matrix 
• All elements below diagonal are zero 

– Cholesky decomposition:  A is symmetric, L = UT 

 

• QR decompositions: A = QR 
– Q is orthgonal: QQT = I 

– R is upper triangular 

• Generally used as tools to 
compute Eigen decomposition or least square solutions 
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Calculus of Matrices 

• Derivative of scalar w.r.t. vector 

• For any scalar z that is a function of a vector x 

• The dimensions of dz / dx  are the same as the 
dimensions of x 
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Calculus of Matrices 

• Derivative of scalar w.r.t. matrix 

• For any scalar z that is a function of a matrix X 

• The dimensions of dz / dX  are the same as 
the dimensions of X 
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Calculus of Matrices 

• Derivative of vector w.r.t. vector  

• For any Mx1 vector y that is a function of an 
Nx1 vector x 

• dy / dx  is an MxN matrix 
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Calculus of Matrices 

• Derivative of vector w.r.t. matrix 

• For any Mx1 vector y that is a function of an 
NxL matrx X 

• dy / dX  is an MxLxN tensor (note order) 
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Calculus of Matrices 

• Derivative of matrix w.r.t. matrix 

• For any MxK vector Y that is a function of an 
NxL matrx X 

• dY / dX  is an MxKxLxN tensor (note order) 
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In general 

• The derivative of an  N1 x N2 x N3 x … tensor 
w.r.t to an M1 x M2 x M3 x … tensor 

 

• Is an N1 x N2 x N3 x …  x ML x ML-1 x … x M1 
tensor 
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Compound Formulae 

• Let Y = f ( g ( h ( X ) ) ) 

 

• Chain rule (note order of multiplication) 

 

 

 

• The # represents a transposition operation 

– That is appropriate for the tensor 
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Example 

• y is N x 1 

• x is M x 1 

• A is N x M 

 

• Compute dz/dA 

– On board 
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