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Overview

More on matrix types

Matrix determinants

Matrix inversion
Eigenanalysis

Singular value decomposition
Matrix Calculus
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Orthogonal/Orthonormal vectors

X U
A=y B=|v
7 W

AB=0 = xu+w+zw=0

* Two vectors are orthogonal if they are perpendicular to one another
— AB=0

— A vector that is perpendicular to a plane is orthogonal to every vector on the
plane

 Two vectors are orthonormal if
— They are orthogonal
— The length of each vector is 1.0

— Orthogonal vectors can be made orthonormal by normalizing their lengths to 1.0
11-755/18-797 3
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Orthogonal matrices

Jos  Jo125  —40.375
0 075 05

* Orthogonal Matrix : AA"= ATA = |

The matrix is square
All row vectors are orthonormal to one another

* Every vector is perpendicular to the hyperplane formed by all other vectors

All column vectors are also orthonormal to one another

Observation: In an orthogonal matrix if the length of the row vectors
is 1.0, the length of the column vectors is also 1.0

Observation: In an orthogonal matrix no more than one row can
have all entries with the same polarity (+ve or —ve)
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Orthogonal and Orthonormal Matrices

2 AX ;

—

* Orthogonal matrices will retain the length and relative
angles between transformed vectors

— Essentially, they are combinations of rotations, reflections and
permutations

— Rotation matrices and permutation matrices are all orthonormal

11-755/18-797 5



* |If the vectors in the matrix are not unit length, it cannot

Orthogonal and Orthonormal Matrices

1

J05

o

0

be orthogonal
— AATI=1, ATAl=|

—+/0.0675
v0.125
0.75

v0.1875
-~0.375
0.5

— AAT" = Diagonal or A'A = Diagonal, but not both

— If all the entries are the same length, we can get AA™ = ATA = Diagonal, though

A non-square matrix cannot be orthogonal
— AA'=| or ATA = |, but not both
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Matrix Rank and Rank-Deficient Matrices

il

P*Cone= i

Some matrices will eliminate one or more dimensions during
transformation
— These are rank deficient matrices

— The rank of the matrix is the dimensionality of the transformed
version of a full-dimensional object
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Matrix Rank and Rank-Deficient Matrices

Pz

1.0000 a o
] 0.z500 —-0.4330 o.5000 -0.250a0 0.4330
] -0.4330 0.7500 -0.z500 o.1z50 -0.2165
0.4330 -0.21a5 0.3750
‘0‘5""
’ ) b — 05 U_E. ) - s
45 FTS
Rank = 2 Rank =1

 Some matrices will eliminate one or more dimensions during
transformation
— These are rank deficient matrices

— The rank of the matrix is the dimensionality of the transformed
version of a full-dimensional object
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Projections are often examples of rank-deficient transforms
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= P=W (W'W)!WT; Projected Spectrogram = P*M
m The original spectrogram can never be recovered
o Pis rank deficient

= P explains all vectors in the new spectrogram as a mixture of

only the 4 vectors in W
o There are only a maximum of 4 linearly independent bases

o Rankof Pis4
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Non-square Matrices

XX XN
Yi Y, Yn
X = 2D data

* Non-square matrices add or subtract axes
— More rows than columns = add axes

o =

P = transform

9
9
0_

>

X XN

=
N> <5
N
N> <5
=

N>
[EY
N

P

PX = 3D, rank 2

' But does not increase the dimensionality of the data

11-755/18-797
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Non-square Matrices

X X .. X 50 5
b " 31 2 IR
i Y2 Yn 1 Y2 - - Y
5 1 1
| 4, Zy |
X = 3D data, rank 3 P = transform PX = 2D, rank 2

* Non-square matrices add or subtract axes

— Fewer rows than columns = reduce axes

* May reduce dimensionality of the data
11-755/18-797 11
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The Rank of a Matrix

o e - 05

7
i “
WA
WA Z
45 A 05 0 05 1 15 8 9
. .

31 .2 1 9
51 1 6 0

The matrix rank is the dimensionality of the transformation of a full-
dimensioned object in the original space

The matrix can never increase dimensions
— Cannot convert a circle to a sphere or a line to a circle

The rank of a matrix can never be greater than the lower of its two
dimensions
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The Rank

e e ==

of Matrix
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m Projected Spectrogram=P * M

o Every vector in it is a combination of only 4 bases

= The rank of the matrix is the smallest no. of bases required to

describe the output

o E.g.if note no. 4 in P could be expressed as a combination of notes 1,2

and 3, it provides no additional information

o Eliminating note no. 4 would give us the same projection

o The rank of P would be 3!

11-755/18-797
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Matrix rank is unchanged by transposition
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* |f an N-dimensional object is compressed to a
K-dimensional object by a matrix, it will also
ne compressed to a K-dimensional object by
the transpose of the matrix
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Matrix Determinant

Fi+r3

(r2) (a+c b+d) (r1+r2) Fi+r2+13

ic.d)

4 = [ﬂ- b] (r2) A=
) ¢ df (2

(2.b) (r1)

e The determinant is the “volume” of a matrix

* Actually the volume of a parallelepiped formed from its
row vectors

— Also the volume of the parallelepiped formed from its column
vectors

e Standard formula for determinant: in text book

11-755/18-797 15
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Matrix Determinant: Another Perspective

Volume=Vv, Volume =V,

08 0 o1 Y[
0 08 08|

0.7 09 07

e The determinant is the ratio of N-volumes

— If V, is the volume of an N-dimensional sphere “O” in N-dimensional
space
* Ois the complete set of points or vertices that specify the object

— If V, is the volume of the N-dimensional ellipsoid specified by A*O,
where A is a matrix that transforms the space

- IAl =V2/V1

11-755/18-797 16



Matrix Determinants

Matrix determinants are only defined for square matrices

— They characterize volumes in linearly transformed space of the same
dimensionality as the vectors

Rank deficient matrices have determinant O

— Since they compress full-volumed N-dimensional objects into zero-
volume N-dimensional objects

* E.g.a 3-Dsphereinto a 2-D ellipse: The ellipse has 0 volume (although it
does have area)

Conversely, all matrices of determinant O are rank deficient

— Since they compress full-volumed N-dimensional objects into
zero-volume objects

11-755/18-797
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Multiplication properties

* Properties of vector/matrix products
— Associative

A-(B-C)=(A-B)-C
— Distributive
A-B+C)=A-B+A-C
— NOT commutative!ll
A-B=B-A

* left multiplications # right multiplications
— Transposition

(A-B) =BT -AT

11-755/18-797
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Determinant properties

Associative for square matrices ‘A B- C‘ — ‘A‘ . ‘B‘ . ‘C‘

— Scaling volume sequentially by several matrices is equal to scaling
once by the product of the matrices

Volume of sum != sum of Volumes ‘(B-|-C)‘ —+ ‘B‘ —|—‘C‘

Commutative
— The order in which you scale the volume of an object is irrelevant

A-B|=[B-Al=|A[B]

11-755/18-797
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Matrix Inversion

A matrix transforms an
N-dimensional object to a
different N-dimensional

object Ca 0k o
K T=|1.0 0.8
0.7 0.9

What transforms the new o
object back to the original? Q{_, ) ?}Tl

. . 2 7 9
— The inverse transformation S

The inverse transformation is
called the matrix inverse

11-755/18-797 20
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Matrix Inversion

* The product of a matrix and its inverse is the
identity matrix

— Transforming an object, and then inverse
transforming it gives us back the original object

TT ' D=D=TT " =1

11-755/18-797 21
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Inverting rank-deficient matrice

“f1 0 0
0 25 —0.433
0 -0433 075

* Rank deficient matrices “flatten” objects

— In the process, multiple points in the original object get mapped to the same
point in the transformed object

* |tis not possible to go “back” from the flattened object to the original
object
— Because of the many-to-one forward mapping

* Rank deficient matrices have no inverse

11-755/18-797 22
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= The projection matrix is rank deficient

= You cannot recover the original spectrogram from the

projected one..

11-755/18-797
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Revisiting Projections and Least Squares

* Projection computes a least squared error estimate
* For each vector V in the music spectrogram matrix

— Approximation: V, ., =a*notel + b*note2 + c*note3..

d
0|0
T=||g|gE V. =T|b
888 approx
C

— ErrorvectorE= V-V, .,

— Squared error energy for V. e(V) = norm(E)?
* Projection computes V., for all vectors such that Total error is
minimized
* But WHAT ARE “a” “b” and “c”?

11-755/18-797 24
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The Pseudo Inverse (PINV)

a
T|b
c

Vv

approx —

d

) VaT|b

C

a

‘ [b} — PINV (T) *V

C

* We are approximating spectral vectors V as the
transformation of the vector [a b c]’

— Note — we’re viewing the collection of bases in T as a

transformation

 The solution is obtained using the pseudo inverse
— This give us a LEAST SQUARES solution

* If T were square and invertible Pinv(T) = T, and V=V

11-755/18-797
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X=PINV(W)*M

[ |

= Recap: P= W(WTW)1WT PrOJected Spectrogram

S|

m  Approximation: M = W*X

=  The amount of W in each vector = X = PINV(W)*M

= W*Pinv(W)*M = Projected Spectrogram

o W*Pinv(W) = Projection matrix!!
11-755/18-797
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= X = Pinv(W)*M; Projected matrix = W*X = W*Pinv(W)*M
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s WV =M  W=MPinv(V) U=WV
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Pseudo-inverse (PINV)

Pinv() applies to non-square matrices
Pinv ( Pinv (A))) = A

A*Pinv(A)= projection matrix!

— Projection onto the columns of A

If A=K x N matrix and K> N, A projects N-D vectors
into a higher-dimensional K-D space

— Pinv(A) = NxK matrix
— Pinv(A)*A =1 in this case
Otherwise A * Pinv(A) =1

11-755/18-797 29
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Matrix inversion (division)

The inverse of matrix multiplication
— Not element-wise division!!

Provides a way to “undo” a linear transformation
— Inverse of the unit matrix is itself
— Inverse of a diagonal is diagonal
— Inverse of a rotation is a (counter)rotation (its transpose!)
— Inverse of a rank deficient matrix does not exist!
* But pseudoinverse exists

For square matrices: Pay attention to multlpllcat|on side!

A-B=C, A=C-B"', B=A"-C

If matrix is not square use a matrix pseudoinverse:

A-B=C, A=C-B", B=A"-C

11-755/18-797 30
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Eigenanalysis

If something can go through a process mostly
unscathed in character it is an eigen-something

— Sound example: @ @ @ @

A vector that can undergo a matrix multiplication and
keep pointing the same way is an eigenvector
— Its length can change though

How much its length changes is expressed by its
corresponding eigenvalue

— Each eigenvector of a matrix has its eigenvalue

Finding these “eigenthings” is called eigenanalysis

11-755/18-797 31
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EigenVectors and EigenValues

Black '5 :
1 M| 15 -07] .
vectors L// ~0.7 1.0
are 0 i;> : 0 _

eigen
vectors

* Vectors that do not change angle upon
transformation
— They may change length

MV = AV

— V = eigen vector

— A =eigen value
11-755/18-797 32



Eigen vector example

11-755/18-797

MLSP

Vichielzaming for SaraProcessing Gt

33



MLSP

Matrix multiplication revisited

1.0 —-0.07 | -5
A=
-11 1.2 i

* Matrix transformation “transforms” the space

— Warps the paper so that the normals to the two
vectors now lie along the axes

11-755/18-797 34
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A stretching operation

Draw two 1ines

Stretch / shrink the paper along these lines by factors A,
and A,

— The factors could be negative — implies flipping the paper
The result is a transformation of the space

11-755/18-797 35
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A stretching operation

Draw two lines
Stretch / shrink the paper along these lines by factors A,
and A,

o The factors could be negative — implies flipping the paper
The result is a transformation of the space
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A stretching operation

Draw two lines
Stretch / shrink the paper along these lines by factors A,
and A,

o The factors could be negative — implies flipping the paper
The result is a transformation of the space
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Physical interpretation of eigen vector

* The result of the stretching is exactly the same as transformation by a
matrix

The axes of stretching/shrinking are the eigenvectors

— The degree of stretching/shrinking are the corresponding eigenvalues

The EigenVectors and EigenValues convey all the information about the
matrix

11-755/18-797 38
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Physical interpretation of eigen vector

V=V, V]
|4 0
A‘_o A
M =VAV ™

* The result of the stretching is exactly the same as transformation by a
matrix

e The axes of stretching/shrinking are the eigenvectors

— The degree of stretching/shrinking are the corresponding eigenvalues

* The EigenVectors and EigenValues convey all the information about the
matrix

11-755/18-797 39
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Eigen Analysis

* Not all square matrices have nice eigen values and
vectors

— E.g. consider a rotation matrix

i\

0 =

sin@

cos @

{cosé’ —sind

|

S

— This rotates every vector in the plane

\_—

* No vector that remains unchanged

* In these cases the Eigen vectors and values are complex

11-755/18-797 40
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Singular Value Decomposition

1.0 -0.07
A=
-11 1.2

Matrix transformations convert circles to ellipses

Eigen vectors are vectors that do not change direction in the
process

There is another key feature of the ellipse to the left that carries
information about the transform

— Can you identify it?

11-755/18-797 41
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Singular Value Decomposition
S

-

 The major and minor axes of the transformed ellipse
define the ellipse

||||||||||||

— They are at right angles

* These are transformations of right-angled vectors on
the original circle!

11-755/18-797 42
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Singular Value Decomposition

s U | { 1.0 —0.07} |
158¢ — A: 15
| -11 1.2 |
i A=USVT i
matlab:
[U,SV]=svd(A) "7

1 1 1 1 1 1 1 1 1 1
256 2 415 1 DA o 04 1 15 2 25 -2.I5 2I -1 .I5 1I -D.IS 0 D.IS 1I 1.I5 2I 2.I5

U and V are orthonormal matrices
— Columns are orthonormal vectors

S is a diagonal matrix

The right singular vectors in V are transformed to the left singular vectors

in U
— And scaled by the singular values that are the diagonal entries of S

11-755/18-797 43
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Singular Value Decomposition

The left and right singular vectors are not the same

— If A'is not a square matrix, the left and right singular vectors will
be of different dimensions

The singular values are always real

The largest singular value is the largest amount by which a
vector is scaled by A

— Max (|Ax]| / |x]) = S;a
The smallest singular value is the smallest amount by which
a vector is scaled by A
— Min (JAx| / [x])
— This can be 0O (for low-rank or non-square matrices)

= Smin

11-755/18-797 44
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The Singular Values

18r \J
72| 1 1 1 1 1 1 1 1 1
2A -2 -148 -1 04 ] 0s 1 14 2 25

e Square matrices: product of singular values = determinant of the matrix

— This is also the product of the eigen values

— l.e. there are two different sets of axes whose products give you the area of
an ellipse

* For any “broad” rectangular matrix A, the largest singular value of any
square submatrix B cannot be larger than the largest singular value of A

— An analogous rule applies to the smallest singular value
— This property is utilized in varjpus problems, such as compressive sensing
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SVD vs. Eigen Analysis

a2l L L L L L L L L L
25 -2 -1.5 -1 05 ] 05 1 15 2 28

Eigen analysis of a matrix A:

— Find two vectors such that their absolute directions are not changed by the
transform

SVD of a matrix A:

— Find two vectors such that the angle between them is not changed by the
transform

For one class of matrices, these two operations are the same
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A matrix vs. its transpose

* Multiplication by matrix A:

— Transforms right singular vectors in V to left singular
vectors U

* Multiplication by its transpose A':
— Transforms left singular vectors U to right singular vector V

« AAT : Converts V to U, then brings it back to V
— Result: Only scaling

11-755/18-797 47



Symmetric Matrices

* Matrices that do not change on transposition
— Row and column vectors are identical

* The left and right singular vectors are identical
- U=V
— A=USUT

 They are identical to the Eigen vectors of the matrix

* Symmetric matrices do not rotate the space
— Only scaling and, if Eigen values are negative, reflection

11-755/18-797
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Symmetric Matrices

%‘
-0.5 0

* Matrices that do not change on transposition
— Row and column vectors are identical

 Symmetric matrix: Eigen vectors and Eigen values are
always real

* Eigen vectors are always orthogonal
— At 90 degrees to one another

11-755/18-797
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Symmetrlc Matrices

§

\%w -
-05 0

1.5 -0.7
0.7 1

* Eigen vectors point in the direction of the
major and minor axes of the ellipsoid resulting
from the transformation of a spheroid

— The eigen values are the lengths of the axes

11-755/18-797 50
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Symmetric matrices

Eigen vectors V, are orthonormal

T — s -
Listing all eigen vectors in matrix form V
— VT= VI
— VIiv=]
— VVIi=]
M Vi = }\/Vl

In matrix form : MV =V A
— A is a diagonal matrix with all eigen values

— T
M V A V 11-755/18-797 51
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Square root of a symmetric matrix

C =VAV'
Sgrt(C) =V.Sart(A)V'

Sqrt(C).Sqrt(C) =V.Sart(A)V 'V.Sgrt(A) V'

=V.Sqrt(A).Sqrt(A)V ' =VAV' =C

11-755/18-797 52



Definiteness..

e SVD: Singular values are always positive!
* Eigen Analysis: Eigen values can be real or imaginary

— Real, positive Eigen values represent stretching of the space along
the Eigen vector

— Real, negative Eigen values represent stretching and reflection
(across origin) of Eigen vector

— Complex Eigen values occur in conjugate pairs

* Asquare (symmetric) matrix is positive definite if all Eigen
values are real and positive, and are greater than O
— Transformation can be explained as stretching and rotation
— If any Eigen value is zero, the matrix is positive semi-definite

11-755/18-797
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Positive Definiteness..

* Property of a positive definite matrix: Defines
inner product norms

— xTAx is always positive for any vector x if A is positive
definite

* Positive definiteness is a test for validity of Gram
matrices
— Such as correlation and covariance matrices

— We will encounter these and other gram matrices
later
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The Correlation and Covariance Matrices
A \

1T —

(I/N)Ziak,iak,j

e

>[Il

Consider a set of column vectors ordered as a DxN matrix A

The correlation matrix is
— C=(1/N) AAT
— Represents the directions in which the “energy” in the signal lies

If the average (mean) of the vectors in A is subtracted out of all
vectors, Cis the covariance matrix

— covariance = correlation + mean * mean’

— Represents the directions in which the “spread” of the signal lies
Diagonal elements represent the energy/spread of individual components

— Off diagonal elements represent how two components are related

* How much knowing one lets us guess the value of the other

55
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Square root of the Covariance Matrix

* The square root of the covariance matrix
represents the elliptical scatter of the data

 The Eigenvectors of the matrix represent the
major and minor axes

— “Modes” in direction of scatter

11-755/18-797 56
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The Correlation Matrix

Any vector V = a,,, * eigenvecl + a,,, *eigenvec2 + ..

Zy ay; = eigenvalue(i)

* Projections along the N Eigen
vectors with the largest Eigen
values represent the N greatest
“energy-carrying” components of the matrix

* Conversely, N “bases” that result in the least square
error are the N best Eigen vectors

11-755/18-797 57
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An audio example

1000
soo L= i B o rie MR Sp To s e
800 f—+

=
FoOo |

S00

SO0 — =~

42400

300 —

200 [ — A

100

* The spectrogram has 974 vectors of dimension
1025

* The covariance matrix is size 1025 x 1025
* There are 1025 eigenvectors

11-755/18-797 58
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Eigen Reduction

M = spectrogram  1025x1000
C=M.M" 1025x1025
V = 1025x1025 [V,L]=eig(C)

reduced [Vl - V25] 1025x25
M lowdim — Pinv (Vreduced)M 25x1000

M =V M lowdim 1025x1000

reconstrudted reduced

Compute the Correlation
Compute Eigen vectors and values

Create matrix from the 25 Eigen vectors corresponding to 25 highest Eigen
values

Compute the weights of the 25 eigenvectors

To reconstruct the spectrogram — compute the projection on the 25 Eigen
vectors

11-755/18-797 59
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Eigenvalues and Eigenvectors

M = spectrogram

* Left panel: Matrix with 1025 eigen vectors

* Right panel: Corresponding eigen values
— Most Eigen values are close to zero

* The corresponding eigenvectors are “unimportant”

11-755/18-797

C=MMT
[V.L]=eig(C)
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\\\\\\\\

 The vectors in the spectrogram are linear combinations of all
1025 Eigen vectors
* The Eigen vectors with low Eigen values contribute very little

— The average value of a, is proportional to the square root of the
Eigenvalue

— lIgnoring these will not affect the composition of the spectrogram
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An audio examele

reduced_[vl - V25]

MLSP
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M lowdim — PinV (Vreduced) M

| | | B [ I158 § B E N LI | e | |m im EIEEN | 1l i) ey (= | i B |
100 200 300 400 S00 S00 TOO S00 D00

The same spectrogram projected down to the 25 eigen
vectors with the highest eigen values

— Only the 25-dimensional weights are shown

* The weights with which the 25 eigen vectors must be added to
compose a least squares approximation to the spectrogram

11-755/18-797
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An audio example

&
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M V M

reconstruded — reduced lowdim

* The same spectrogram constructed from only the 25
Eigen vectors with the highest Eigen values
— Looks similar
* With 100 Eigenvectors, it would be indistinguishable from the original
— Sounds pretty close

— But now sufficient to store 25 numbers per vector (instead of
1024)
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SVD vs. Eigen decomposition

SVD cannot in general be derived directly from the Eigen
analysis and vice versa

But for matrices of the form M = DD', the Eigen
decomposition of M is related to the SVD of D
— SVD: D=USVT
— DD'= USVTVSUT =US2UT

The “left” singular vectors are the Eigen vectors of M

— Show the directions of greatest importance

The corresponding singular values of D are the square roots of
the Eigen values of M

— Show the importance of the Eigen vector
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Thin SVD, compact SVD, reduced SVD
NX

N MxM
VT

NxM

>
c

NxM

SVD can be computed much more efficiently than Eigen
decomposition

Thin SVD: Only compute the first N columns of U
— All that is required if N < M

Compact SVD: Only the left and right singular vectors corresponding to
non-zero singular values are computed

11-755/18-797 68



MLSP

Why bother with Eigens/SVD

Can provide a unique insight into data
— Strong statistical grounding

— Can display complex interactions
between the data

— Can uncover irrelevant parts of the
data we can throw out

Can provide basis functions

— A set of elements to compactly
describe our data

— Indispensable for performing
compression and classification

Used over and over and still perform
amazingly well

11-755/18-797

od BN ™ B
-
i E
E !
- | ]
Eigenfaces
Using a linear transform of

the above “eigenvectors” we
can compose various faces
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Trace
. .
S /aiz Yy Y| Tr(A)=a,+a,,+a;+a,
d,, [a,, a
A | %2 (G2 /23 24
A1 Gy (33 Gy Tr(A) = Zai,i
— A -
| 841 Ay Q3 Ay |

e The trace of a matrix is the sum of the
diagonal entries

* |tis equal to the sum of the Eigen values!

Tr(A) = Zai,i = Z/lu
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Trace

e Often appears in Error formulae

d, d, d, d, Ci G G3 Gy
d,, d, d,, d, C- Car Cpp G5 Cyy
D = =
d,, a, a3 ay Ca1 Gy Ca3 Gy
_ 2
E=D-C error_ZEi,j error =Tr(EE")
i j

* Useful to know some properties..
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Properties of a Trace

* Linearity: Tr(A+B)=Tr(A) + Tr(B)
Tr(c.A) =c.Tr(A)

* Cycling invariance:

— Tr (ABCD) = Tr(DABC) = Tr(CDAB) =
Tr(BCDA)
— Tr(AB) = Tr(BA)

* Frobenius norm F(A) = X, a;> = Tr(AA")
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* Square A: LU decomposition

Decompositions of matrices
— Decompose A =L U

— Lis a lower triangular matrix - k

* All elements above diagonal are O

— Ris an upper triangular matrix
* All elements below diagonal are zero

— Cholesky decomposition: A is symmetric, L= U"

* QR decompositions: A = QR

— Qis orthgonal: QQ" = | B
— Ris upper triangular -

* Generally used as tools to
compute Eigen decomposition or least square solutions
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Calculus of Matrices

* Derivative of scalar w.r.t. vector
* For any scalar z that is a function of a vector X

* The dimensions of dz / dx are the same as the
dimensions of X

gy
X, —d
: X
X = . dZ _ . 1
X\ dx | dz
dx,
N x 1 vector — -

N x 1 vector
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Calculus of Matrices

 Derivative of scalar w.r.t. matrix
* For any scalar z that is a function of a matrix X

* The dimensions of dz/ dX are the same as
the dimensions of X

) dz  dz dz
) _ dz dx dx,, dx,
% — X1 X X3 d—X - d_él d; dé
_X21 X22 X23- _dX21 dX22 dX23_

N x M matrix

N x M matrix
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Calculus of Matrices

 Derivative of vector w.r.t. vector

* For any Mx1 vector y that is a function of an
Nx1 vector X

e dy/dX isan MxN matrix

oy dy

_yl_ _Xl_ dy d?(l : d):('\'
Y=l Xsl ] dx fdy,  dy,
Vv _ AN dx, dx,

M x N matrix
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Calculus of Matrices

 Derivative of vector w.r.t. matrix

* For any Mx1 vector y that is a function of an
NxL matrx X

» dy/dX isan MxLxN tensor (note order)

M x 3 x 2 tensor

Y1

Ym

X —

Xl 2 Xl 3

X22 X23_

11-755/18-797

dy _
dX

-

(1,J,k)th element =

\_

dy,
dx, j

J
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Calculus of Matrices

e Derivative of matrix w.r.t. matrix

* For any MxK vector Y that is a function of an
NxL matrx X

e dY /dX is an MxKxLxN tensor (note order)

;o
I Yii Yoo Y13_
Yor Yoo Yoz

(1,)th element =

dy,,

11-755/18-797 dXJ | 78
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In general

* The derivative of an N; x N, x N5 x ... tensor
w.rttoan M; x M, x M; x ... tensor

* Isan Ny X N, XNy x ... XM XM Xx...x M,
tensor

11-755/18-797
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Compound Formulae

* letY=1(g(h(X)))

e Chain rule (note order of multiplication)

ay _ dh(X)" dg(h(X))" df (g(h(X))
dX dX dh(X) dg(h(X))

* The # represents a transposition operation
— That is appropriate for the tensor

11-755/18-797
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z=[y-Ax|

yisNXx1
XISMx1
AISNXM

Compute dz/dA
— On board

Example

11-755/18-797
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