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Representing Data 

• The first and most important step in 
processing signals is representing them 
appropriately 
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Representing an Elephant 
• It was six men of Indostan,  

To learning much inclined,  
Who went to see the elephant,  
(Though all of them were blind),  
That each by observation  
Might satisfy his mind. 

 
• The first approached the elephant,  

And happening to fall  
Against his broad and sturdy side,  
At once began to bawl:  
"God bless me! But the elephant  
Is very like a wall!“ 

 
• The second, feeling of the tusk,  

Cried: "Ho! What have we here,  
So very round and smooth and sharp?  
To me 'tis very clear,  
This wonder of an elephant  
Is very like a spear!“ 

 
• The third approached the animal,  

And happening to take  
The squirming trunk within his hands,  
Thus boldly up and spake:  
"I see," quoth he, "the elephant  
Is very like a snake!“ 
 

• The fourth reached out an eager hand,  
And felt about the knee.  
"What most this wondrous beast is like  
Is might plain," quoth he;  
"Tis clear enough the elephant  
Is very like a tree." 

• The fifth, who chanced to touch the ear,  
Said: "E'en the blindest man  
Can tell what this resembles most:  
Deny the fact who can,  
This marvel of an elephant  
Is very like a fan.“ 

 

• The sixth no sooner had begun  
About the beast to grope,  
Than seizing on the swinging tail  
That fell within his scope,  
"I see," quoth he, "the elephant  
Is very like a rope.“ 

 

• And so these men of Indostan  
Disputed loud and long,  
Each in his own opinion  
Exceeding stiff and strong.  
Though each was partly right,  
All were in the wrong. 
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Representation 

• Describe these images 

– Such that a listener 
can visualize what you 
are describing 

 

• More images 
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Still more images 
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How do you describe them? 



Representation 

• Pixel-based descriptions are uninformative 
 

• Content-based descriptions are infeasible in 
the general case 
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Sounds 

• Sounds are just sequences of numbers 
 

• When plotted, they just look like blobs 
– Which leads to “natural sounds are blobs” 

• Or more precisely, “sounds are sequences of numbers that, when plotted, 
look like blobs” 

– Which wont get us anywhere 
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Representation 

• Representation is description 

• But in compact form 

• Must describe the salient characteristics of the data 

– E.g. a pixel-wise description of the two images here will be 
completely different 

 

 

 

 

 

• Must allow identification, comparison, storage, 
reconstruction.. 
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Representing images 

• The most common element in the image: background 

– Or rather large regions of relatively featureless shading 

– Uniform sequences of numbers 
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Representing images using a “plain” image 

• Most of the figure is a more-or-less uniform shade 
– Dumb approximation – a image is a block of uniform shade 

• Will be mostly right! 

• How to compute the “best” description? Projection 
– Represent the images as vectors and compute the projection of the 

image on the “basis” 
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Adding more bases 

• Lets improve the approximation 

• Images have some fast varying regions 
– Dramatic changes 

– Add a second picture that has very fast changes 

• A checkerboard where every other pixel is black and the rest are white 
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Adding still more bases 

• Regions that change with different speeds 
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Representation using checkerboards 

• A “standard” representation 

– Checker boards are the same regardless of the picture you’re 
trying to describe 

• As opposed to using “nose shape” to describe faces and “leaf colour” 
to describe trees. 

 

• Any image can be specified as (for example) 
0.8*checkerboard(0) + 0.2*checkerboard(1) + 
0.3*checkerboard(2) .. 
 

• The definition is sufficient to reconstruct the image to 
some degree 

– Not perfectly though 
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What about sounds? 

• Square wave equivalents of checker boards 
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Projecting sounds 
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General Philosophy of Representation 
• Identify a set of standard structures 

– E.g. checkerboards 

– We will call these “bases” 
 

• Express the data as a weighted combination of these bases 

– X = w1 B1 + w2 B2 + w3 B3 + … 

• Chose weights w1, w2, w3.. for the best representation of X 

– I.e. the error between X and Si wi Bi is minimized 

– The error is generally chosen to be ||X – Si wi Bi||2 

 

• The weights w1, w2, w3..  fully specify the data 

– Since the bases are known beforehand 

– Knowing the weights is sufficient to reconstruct the data 
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Bases requirements 
• Non-redundancy 

– Each basis must represent information not already 

represented by other bases 

– I.e.  bases must be orthogonal 

• <Bi, Bj> = 0 for i != j 

– Mathematical benefit:  can compute wi = <Bi,X> 

• Compactness 

– Must be able to represent most of X with fewest bases 

– Completeness: For D-dimensional data, need no more 

than D bases 
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Bases based representation 

• Place all bases in basis matrix B 

 

 

• For orthogonal bases 
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Bases based representation 

• Challenge:   Choice of appropriate bases 
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Why checkerboards are great bases 

• We cannot explain one 
checkerboard in terms of 
another 
– The two are orthogonal to one 

another! 
 

• This means we can determine 
the contributions of individual 
bases separately 
– Joint decomposition with multiple 

bases gives the same result as 
separate decomposition with each 

– This never holds true if one basis 
can explain another 
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Checker boards are not good bases 

• Sharp edges 

– Can never be used to explain rounded curves 
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Sinusoids ARE good bases 

• They are orthogonal 

• They can represent rounded shapes nicely 

– Unfortunately, they cannot represent sharp corners 
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What are the frequencies of the sinusoids 

• Follow the same format as the 
checkerboard: 
– DC 

– The entire length of the signal is 
one period 

– The entire length of the signal is 
two periods. 

• And so on.. 

 

• The k-th sinusoid: 
– F(n) = sin(2pkn/N) 

• N is the length of the signal 

• k is the number of periods in N 
samples 
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How many frequencies in all? 

• A max of L/2 periods are possible 

• If we try to go to (L/2 + X) periods, it ends up being identical to having (L/2 
– X) periods 

– With sign inversion 
 

• Example for L = 20 

– Red curve = sine with 9 cycles (in a 20 point sequence) 

• Y(n) = sin(2p9n/20) 

– Green curve = sine with 11 cycles in 20 points 

• Y(n) = -sin(2p11n/20) 

– The blue lines show the actual samples obtained 

• These are the only numbers stored on the computer 

• This set is the same for both sinusoids 
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How to compose the signal from sinusoids 

• The sines form the vectors of the projection matrix 
– Pinv() will do the trick as usual 

11-755/18-797 25 

SignalBBBBBWPROJECTION

SignalBpinvW

SignalBW

T .)(

)(
1





]  [          321

3

2

1

332211

BBBB

w

w

w

W

BwBwBwSignal







































B1 B2 B3 





































3

2

1

w

w

w

= 



How to compose the signal from sinusoids 

• The sines form the vectors of the projection matrix 
– Pinv() will do the trick as usual 
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Interpretation.. 

• Each sinusoid’s amplitude is adjusted until it gives us the 
least squared error 

– The amplitude is the weight of the sinusoid 

• This can be done independently for each sinusoid 
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Interpretation.. 

• Each sinusoid’s amplitude is adjusted until it gives us the 
least squared error 

– The amplitude is the weight of the sinusoid 
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• Every sine starts at zero 

– Can never represent a signal that is non-zero in the first sample! 

• Every cosine starts at 1 

– If the first sample is zero, the signal cannot be represented!  
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Sines by themselves are not enough 



The need for phase 

• Allow the sinusoids to move! 
 
 

• How much do the sines shift? 
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Determining phase 

• Least squares fitting: move the sinusoid left / right, and 
at each shift, try all amplitudes 
– Find the combination of amplitude and phase that results in the 

lowest squared error 

• We can still do this separately for each sinusoid 
– The sinusoids are still orthogonal to one another 

11-755/18-797 33 



Determining phase 

• Least squares fitting: move the sinusoid left / right, and 
at each shift, try all amplitudes 
– Find the combination of amplitude and phase that results in the 

lowest squared error 

• We can still do this separately for each sinusoid 
– The sinusoids are still orthogonal to one another 

11-755/18-797 34 



Determining phase 

• Least squares fitting: move the sinusoid left / right, and 
at each shift, try all amplitudes 
– Find the combination of amplitude and phase that results in the 

lowest squared error 

• We can still do this separately for each sinusoid 
– The sinusoids are still orthogonal to one another 

11-755/18-797 35 



Determining phase 
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The problem with phase 

• This can no longer be expressed as a simple linear algebraic 
equation 
– The “basis matrix” depends on the unknown phase 

• I.e. there’s a component of the basis itself that must be estimated! 

• Linear algebraic notation can only be used if the bases are 
fully known 
– We can only (pseudo) invert a known matrix 
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• The cosine is the real part of a complex exponential 

– The sine is the imaginary part 

• A phase term for the sinusoid becomes a multiplicative 
term for the complex exponential!! 
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Complex Exponential to the rescue 
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Explaining with Complex Exponentials 
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• Like sinusoids, a complex exponential of one 
frequency can never explain one of another 

– They are orthogonal 
 

• They represent smooth transitions 
 

• Bonus: They are complex 

– Can even model complex data! 
 

• They can also model real data 

– exp(j x ) + exp(-j x) is real 
• cos(x) + j sin(x)  + cos(x) – j sin(x) = 2cos(x) 
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Complex exponentials are well behaved 



Complex Exponential bases 

• Explain the data using L complex exponential bases 
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• Conjugate symmetry 
 

–                                                                     is real 

• The complex exponentials with frequencies equally 
spaced from L/2 are complex conjugates 
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•                                                                    is real 

 

– The complex exponentials with frequencies equally spaced from 
L/2 are complex conjugates 

• “Frequency = k”  k periods in L samples 

 

 

 

– Is also real 

– If the two exponentials are multiplied by numbers that are 
conjugates of one another the result is real 

11-755/18-797 43 








 








 

L

nxL
j

L

nxL
j

)2/(
2exp

)2/(
2exp pp








 








 

L

nxL
jaconjugate

L

nxL
ja

)2/(
2exp)(

)2/(
2exp pp

Complex exponentials are well behaved 



Complex Exponential bases 

• For real signals: 

• The weights given to the (L/2 + k)th basis and the (L/2 – k)th 
basis should be complex conjugates, to make the result real 

• Fortunately, a least squares fit will give us complex conjugate 
weights to both bases automatically 
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Complex Exponential Bases: Algebraic 
Formulation 

• Note that SL/2+x = conjugate(SL/2-x) for real s 
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Shorthand Notation 

• Note that SL/2+x = conjugate(SL/2-x) 
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A quick detour 

• Real Orthonormal matrix: 

– XXT = X XT = I 

• But only if all entries are real 

– The inverse of X is its own transpose 
 

• Definition: Hermitian 

– XH = Complex conjugate of XT 
 

• Complex Orthonormal matrix 

– XXH = XH X = I 

– The inverse of a complex orthonormal matrix is its own 
Hermitian 
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W-1 = WH 
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 The complex exponential basis is orthogonal 
 Its inverse is its own Hermitian 

 W-1 = WH 



Doing it in matrix form 

–  Because W-1 = WH 
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The Discrete Fourier Transform 

• The matrix to the right is called the “Fourier 
Matrix” 

• The weights (S0, S1. . Etc.) are called the Fourier 
transform 
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• The matrix to the left is the inverse Fourier matrix 
 

• Multiplying the Fourier transform by this matrix gives us 
the signal right back from its Fourier transform 
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The Inverse Discrete Fourier Transform 



The Fourier Matrix 

• Left panel: The real part of the Fourier matrix 

– For a 32-point signal 

• Right panel: The imaginary part of the Fourier matrix 

11-755/18-797 52 



The FAST Fourier Transform 

• The outcome of the transformation with the Fourier matrix is the 
DISCRETE FOURIER TRANSFORM (DFT) 

• The FAST Fourier transform is an algorithm that takes advantage of 
the symmetry of the matrix to perform the matrix multiplication 
really fast 

• The FFT computes the DFT 
– Is much faster if the length of the signal can be expressed as 2N 
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Images 

• The complex exponential is two dimensional 

– Has a separate X frequency and Y frequency 

• Would be true even for checker boards! 

– The 2-D complex exponential must be unravelled 
to form one component of the Fourier matrix 

• For a KxL image, we’d have K*L bases in the matrix 
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Typical Image Bases 

• Only real components of bases shown 
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DFT: Properties 

• The DFT coefficients are complex 

– Have both a magnitude and a phase 

 
 

• Simple linear algebra tells us that 

– DFT(A + B) = DFT(A) + DFT(B) 

– The DFT of the sum of two signals is the DFT of their sum 
 

• A horribly common approximation in sound processing 

– Magnitude(DFT(A+B)) = Magnitude(DFT(A)) + Magnitude(DFT(B)) 

– Utterly wrong 

– Absurdly useful 
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Symmetric signals 

• If a signal is (conjugate) symmetric around L/2, the Fourier coefficients are real! 

– A(L/2-k) * exp(-j *f*(L/2-k)) + A(L/2+k) * exp(-j*f*(L/2+k)) is always real if 

A(L/2-k) = conjugate(A(L/2+k)) 

– We can pair up samples around the center all the way; the final summation term is always real 

• Overall symmetry properties 

– If the signal is real, the FT is (conjugate) symmetric 

– If the signal is (conjugate) symmetric, the FT is real 

– If the signal is real and symmetric, the FT is real and symmetric 
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The Discrete Cosine Transform 

• Compose a symmetric signal or image 

– Images would be symmetric in two dimensions 
 

• Compute the Fourier transform 

– Since the FT is symmetric, sufficient to store only half the coefficients 
(quarter for an image) 

• Or as many coefficients as were originally in the signal / image 
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DCT 

• Not necessary to compute a 2xL sized FFT 
– Enough to compute an L-sized cosine transform 

– Taking advantage of the symmetry of the problem 

• This is the Discrete Cosine Transform 
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Images and DCT 

• Most common coding is the DCT 

• JPEG: Each 8x8 element of the picture is converted using a 
DCT 

• The DCT coefficients are quantized and stored 
– Degree of quantization = degree of compression 

• Also used to represent textures etc for pattern recognition 
and other forms of analysis 
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Representing Sound and Images 

• “Deterministic” representations of audio time 
series and image data.. 
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Aside: some tricks to computing 
Fourier transforms 

• Direct computation of the Fourier transform 
can result in poor representations 

• Boundary effects can cause error 

– Solution : Windowing 

• The size of the signal can introduce 
inefficiency 

– Solution: Zero padding 
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Sound: A thought experiment 

• Analysis: Analyze the sound 
using a bank of tuning forks 

 

• Transduce the vibrations  
and store / transmit them 

 

• Synthesis:  Activate tuning 
forks with the transduced 
signal 

 

• What do we get? 

11-755/18-797 88 

+ 

FT 

Inverse FT 



The Fourier Transform and Perception: 
Sound 

• The Fourier transforms 
represents the signal 
analogously to a bank of 
tuning forks 

 

• Our ear has a bank of 
tuning forks 

• The output of the Fourier 
transform is perceptually 
very meaningful 
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The Fourier Transform and Perception: 
Sound 

• Processing Sound: 

• Analyze the sound using a 
bank of tuning forks 

• Sample the transduced 
output of the turning forks 
at periodic intervals 
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Sound parameterization 

• The signal is processed in segments of 25-64 ms 

– Because the properties of audio signals change quickly 

– They are “stationary” only very briefly 
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• The signal is processed in segments of 25-64 ms 

– Because the properties of audio signals change quickly 

– They are “stationary” only very briefly 

• Adjacent segments overlap by 15-48 ms 
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Each segment is typically 25-64 

milliseconds wide 
Audio signals typically do not change 

significantly within this short time interval 

Segments shift every 10-

16  milliseconds  

Sound parameterization 
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Each segment is windowed 

and a DFT is computed from it 
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and a DFT is computed from it 
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Computing a Spectrogram 
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Computing the Spectrogram 
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Compute Fourier Spectra of segments of audio and stack them side-by-side 

The Fourier spectrum of each window can be inverted to get back the signal. 

Hence the spectrogram can be inverted to obtain a time-domain signal 

 

In this example each segment was 25 ms long and adjacent segments overlapped by 

15 ms 

 

 



The result of parameterization 

• Each column here represents the FT of a single segment of signal 
64ms wide. 
– Adjacent segments overlap by 48 ms. 

• DFT details 
– 1024 points (16000 samples a second). 

– 2048 point DFT – 1024 points of zero padding. 

– Only 1025 points of each DFT are shown 
• The rest are “reflections”  

• The value shown is actually the magnitude of the complex spectral 
values 
– Most of our analysis / operations are performed on the magnitude 
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Representing Images 

• DCT of small segments 

– 8x8 

– Each image becomes a matrix of DCT vectors 

• DCT of the image 
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DCT 

Npixels / 64 columns 



Downsampling-based representations 

• Downsampling an example 

– Trying to reduce size by factor of 4 each time 

• Select every alternate sample row-wise and column-wisee 

– What exactly did we capture? 

• Clue : Results are horrible. 
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Downsampling-based representations 

• Nasty aliasing effects! 
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The Gaussian Kernel 

• A two-dimensional image of a Gaussian 
• Characterized by 

– Center (mean) 
– Standard deviation s  (assumed same in both directions) 

• I.e. sphereical Gaussian 

• The image can be represented by a vector 
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The Gaussian Kernel matrix 

• Each column is one Gaussian 
– Representing a Gaussian centered at one of the pixels 

in the image 

• As many columns as pixels 
– Also as many rows as pixels 
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Downsampling-based representations 

• Transform with Gaussian 
kernel matrix 

• Then downsample 
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Downsampling-based representations 
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The Gaussian Pyramid 

• Successive smoothing and scaling 

• The entire collection of images is the Gaussian 
pyramid 
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Laplacians 
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Laplacian Pyramid 
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Remember.. 

• The Gaussian is an anti-aliasing filter 

• The Gaussian pyramid is the low-pass filtered 
version of the image 

• The Laplacian pyramid is the high-pass filtered 
version of the image 
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The Gaussian/Laplacian 
Decomposition 

• Each low-pass filtered image is downsampled  

• The process is recursively performed 
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The discrete wavelet transform 

• Very similar in structure 
• But the bases at each scale are orthogonal to 

bases at other scales 
– As opposed to a Gaussian kernel matrix 
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Haar Wavelets 

• We have already encountered Haar wavelets 
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Other characterizations 

• Content-based characterizations 

– E.g.  Hough transform 

• Captures linear arrangements of pixels 

– Radon transform 

– SIFT features 

– Etc. 

 

• Will revisit in homework.. 
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