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Data driven representations: 
1. Eigenfaces and Eigenrepresentations 

Class 5.  15 Sep 2015 

 

Instructor: Bhiksha Raj 
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Recall: Representing images 

• The most common element in the image: 
background 

– Or rather large regions of relatively featureless shading 

– Uniform sequences of numbers 
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Adding more bases 

• Checkerboards with different variations 
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Getting closer at 625 bases! 



“Bases” 

• “Bases” are the “standard” units such that all instances can be 
expressed a weighted combinations of these units 

• Ideal requirements: Bases must be orthogonal 

• Checkerboards are one choice of bases 
– Orthogonal 

– But not “smooth” 

• Other choices of bases:  Complex exponentials,  Wavelets, 
etc.. 
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Data specific bases? 

• Issue:  The bases we have considered so far are data 
agnostic 

– Checkerboards,  Complex exponentials, Wavelets.. 

– We use the same bases regardless of the data we analyze 
• Image of face  vs.  Image of a forest 

• Segment of speech vs. Seismic rumble 

 

• How about data specific bases 

– Bases that consider the underlying data 
• E.g. is there something better than checkerboards to describe 

faces 

• Something better than complex exponentials to describe music? 
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The Energy Compaction Property 

• Define “better”? 

• The description 

 

• The ideal: 

 

 

– If the description is terminated at any point,  we should 

still get most of the information about the  data 

• Error should be small 
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• A collection of images 

– All normalized to 100x100 pixels 

• What is common among all of them? 

– Do we have a common descriptor? 
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A typical face 

• Assumption: There is a “typical” face that captures most of 

what is common to all faces 

– Every face can be represented by a scaled version of a typical face 

– We will denote this face as V 

• Approximate every face f as f  = wf  V 

• Estimate V to minimize the squared error 

– How?  What is V? 
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A collection of least squares typical faces 

• Assumption: There are a set of K “typical” faces that captures most of all faces 

• Approximate every face f as f  = wf,1 V1+ wf,2 V2 + wf,3 V3 +.. + wf,k Vk  

– V2 is used to “correct” errors resulting from using only V1. So on average 
 

 

– V3 corrects errors remaining after correction with V2 
 

 

– And so on.. 

– V = [V1 V2 V3] 

• Estimate V to minimize the squared error 

– How? What is V? 
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A recollection 
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How about the other way? 
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Finding Everything 
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The same problem 

13 

F =                         

U = Approximation 

W 

V 

Typical faces 
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Abstracting the problem:  
Finding the FIRST typical face 

• Each “point” represents a face in “pixel space” 
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Abstracting the problem:  
Finding the FIRST typical face 

• Each “point” represents a face in “pixel space” 

• Any “typical face” V is a vector in this space 
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Abstracting the problem:  
Finding the FIRST typical face 

• Each “point” represents a face in “pixel space” 

• The “typical face” V is a vector in this space 

• The approximation wf, V for any face f is the projection of f onto V 

• The distance between f and its projection wfV is the projection error for f 
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Abstracting the problem:  
Finding the FIRST typical face 

• Every face in our data will suffer error when 
approximated by its projection on V 

• The total squared length of all error lines is the total 
squared projection error 
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Abstracting the problem:  
Finding the FIRST typical face 

• The problem of finding the first typical face V1: 
Find the V for which the total projection error is minimum! 

• This “minimum squared error” V is our “best” first typical face 

• It is also the first Eigen face 

11-755/18-797 18 

Pixel 1 

P
ix

el
 2

 

V 



Abstracting the problem:  
Finding the FIRST typical face 

• The problem of finding the first typical face V1: 
Find the V for which the total projection error is minimum! 

• This “minimum squared error” V is our “best” first typical face 

• It is also the first Eigen face 
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Abstracting the problem:  
Finding the FIRST typical face 

• The problem of finding the first typical face V1: 
Find the V for which the total projection error is minimum! 

• This “minimum squared error” V is our “best” first typical face 

• It is also the first Eigen face 
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Abstracting the problem:  
Finding the FIRST typical face 

• The problem of finding the first typical face V1: 
Find the V for which the total projection error is minimum! 

• This “minimum squared error” V is our “best” first typical face 

• It is also the first Eigen face 
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Abstracting the problem:  
Finding the FIRST typical face 

• The problem of finding the first typical face V1: 
Find the V for which the total projection error is minimum! 

• This “minimum squared error” V is our “best” first typical face 

• It is also the first Eigen face 

11-755/18-797 22 

Pixel 1 

P
ix

el
 2

 

V1 



Formalizing the Problem: Error from 
approximating a single vector 

• Consider:  approximating x = wv 

– E.g x is a face, and “v” is the “typical face” 

• Finding an approximation wv which is closest to x  

– In a Euclidean sense 

– Basically projecting x onto v 
 

 

 

11-755/18-797 23 

x 

y 

v 

x 

Approximating: x = wv 



Formalizing the Problem: Error from 
approximating a single vector 

• Projection of a vector x on to a vector v 
 

 

• Assuming v is of unit length: 
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Error from approximating a single 
vector 

• Minimum squared approximation error from 
approximating x as it as wv 

 

 

• Optimal value of w:  w = vTx  
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Error from approximating a single 
vector 

• Error from projecting a vector x on to a vector 
onto a unit vector v 
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Error from approximating a single 
vector 

• Error from projecting a vector x on to a vector 
onto a unit vector v 
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Error from approximating a single 
vector 

• Error from projecting a vector x on to a vector 
onto a unit vector v 
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Error from approximating a single 
vector 
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Error for many vectors 

• Error for one vector: 

• Error for many vectors 

 

 

• Goal:  Estimate v to minimize this error! 
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Error for many vectors 

• Total error: 
 

• Add constraint:  vTv = 1 

• Constrained objective to minimize:  
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Two Matrix Identities 

• Derivative w.r.t v 
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Minimizing error 

 
 

• Differentiating w.r.t  v and equating to 0 
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The correlation matrix 

• The encircled term is the correlation matrix 
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The best “basis” 

• The minimum-error basis is found by solving 
 

 

• v is an Eigen vector of the correlation matrix R 

–  is the corresponding Eigen value 
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What about the total error? 

• xTv = vTx   (inner product) 
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Minimizing the error 
• The total error is 

 

• We already know that the optimal basis is an 
Eigen vector 

• The total error depends on the negative of the 
corresponding Eigen value 

• To minimize error, we must maximize  

• i.e. Select the Eigen vector with the largest 
Eigen value 
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The typical face 

• Compute the correlation matrix for your data 
– Arrange them in matrix X  and compute R = XXT 

 

• Compute the principal Eigen vector of R 
– The Eigen vector with the largest Eigen value 

 

• This is the typical face 
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The approximation with the first 
typical face 

• The first typical face models 
some of the characteristics 
of the faces 

• Simply by scaling its grey level 

• But the approximation has 
error 

 

• The second typical face 
must explain some of this 
error 
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? 

The second typical face 

• Approximation with only the first typical face 
has error 

• The second face must explain this error 

• How do we find this this face? 

11-755/18-797 40 

The first typical face 

The second typical face? 



Solution: Iterate 

• Get the “error” 
faces by 
subtracting the 
first-level 
approximation 
from the 
original image 

 

• Repeat the 
estimation on 
the “error” 
images 
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Solution: Iterate 

• Get the “error” 
faces by 
subtracting the 
first-level 
approximation 
from the 
original image 

 

• Repeat the 
estimation on 
the “error” 
images 
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Abstracting the problem:  
Finding the second typical face 

• Each “point” represents an error face in “pixel space” 
 

• Find the vector V2 such that the projection of these 
error faces on V2 results in the least error 
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Minimizing error 

 
 

• Differentiating w.r.t  v and equating to 0 
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Minimizing error 
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The same math applies 

but now to the set 

of error data points 

• The minimum-error basis is found by solving 
 

 

• v2 is an Eigen vector of the correlation matrix Re 

corresponding to the largest eigen value  of Re 
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Which gives us our second typical 
face 

• But approximation with the two faces will still result in error 

• So we need more typical faces to explain this error 

 

• We can do this by subtracting the appropriately scaled version 
of the second “typical” face from the error images and 
repeating the process 
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Solution: Iterate 

• Get the  second-
level “error” faces 
by subtracting the 
scaled second 
typical face from 
the first-level error 

 

• Repeat the 
estimation on the 
second-level 
“error” images 
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An interesting property 

• Each “typical face” will be orthogonal to all 
other typical faces 

– Because each of them is learned to explain what 
the rest could not 

– None of these faces can explain one another! 
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To add more faces 

• We can continue the process, refining the 
error each time 

– An instance of a procedure is called “Gram-
Schmidt” orthogonalization 

 

• OR… we can do it all at once 
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With many typical faces 

• Approximate every face f as f  = wf,1 V1+ wf,2 V2 +... + wf,k Vk  
 

• Here W, V and U are ALL unknown and must be determined 
– Such that the squared error between U and M is minimum 
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With multiple bases 

• Assumption: all bases v1 v2 v3.. are unit length 

• Assumption:  all bases are orthogonal to one another: vi
Tvj = 0 if i != j 

– We are trying to find the optimal K-dimensional subspace to project the data 

– Any set of vectors in this subspace will define the subspace 

– Constraining them to be orthogonal does not change this 
 

• I.e. if  V = [v1 v2 v3 … ],      VTV = I 

– Pinv(V) = VT 

 

• Projection matrix for V =  VPinv(V) = VVT 
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With multiple bases 

• Projection for a vector 

• Error vector = 

 

• Error length =   

 

 
11-755/18-797 52 

xVVxxxx
TTTe )(

xVVx
Tˆ

xVVxxx
T ˆ

x 

y 

V 

x 

VVTx 

x-VVTx 

Represents a  

K-dimensional subspace 



With multiple bases 

• Error for one vector: 

• Error for many vectors 

 

 

• Goal:  Estimate V to minimize this error! 
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Minimizing error 

• With constraint VTV = I, objective to 
minimize 

 

 

– Note: now L is a diagonal matrix 

– The constraint simply ensures that vTv = 1 for 
every basis 

• Differentiating w.r.t  V and equating to 0 
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Finding the optimal K bases 

• Compute the Eigendecompsition of the 
correlation matrix 

• Select K Eigen vectors 

• But which K? 

• Total error =  

• Select K eigen vectors corresponding to the K 
largest Eigen values 
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Eigen Faces! 

• Arrange your input data into a matrix X 

• Compute the correlation R = XXT 

• Solve the Eigen decomposition:  RV = LV 

• The Eigen vectors corresponding to the  K largest eigen values 
are our optimal bases 

• We will refer to these as eigen faces. 
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How many Eigen faces 

• How to choose “K” (number of Eigen faces) 

• Lay all faces side by side in vector form to form a matrix 
– In my example: 300 faces. So the matrix is 10000 x 300 

• Multiply the matrix by its transpose 
– The correlation matrix is 10000x10000 
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Eigen faces 

• Compute the eigen vectors 
– Only 300 of the 10000 eigen values are non-zero 

• Why? 

• Retain eigen vectors with high eigen values (>0) 
– Could use a higher threshold 
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Eigen Faces 

• The eigen vector with the highest eigen value is the first typical face 

• The vector with the second highest eigen value is the second typical 
face. 

• Etc. 
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Representing a face 

• The weights with which the eigen faces must 
be combined to compose the face are used to 
represent the face! 
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Energy Compaction Example 

• One outcome of the “energy compaction 
principle”:  the approximations are 
recognizable 

 

 

 

• Approximating a face with one basis: 
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Energy Compaction Example 

• One outcome of the “energy compaction 
principle”:  the approximations are 
recognizable 

 

 

 

• Approximating a face with one Eigenface: 
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Energy Compaction Example 

• One outcome of the “energy compaction 
principle”:  the approximations are 
recognizable 

 

 

 

• Approximating a face with 10 eigenfaces: 
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Energy Compaction Example 

• One outcome of the “energy compaction 
principle”:  the approximations are 
recognizable 

 

 

 

• Approximating a face with 30 eigenfaces: 
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Energy Compaction Example 

• One outcome of the “energy compaction 
principle”:  the approximations are 
recognizable 

 

 

 

• Approximating a face with 60 eigenfaces: 
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How did I do this? 

• Hint:  only changing weights assigned to Eigen faces.. 
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Class specificity 

• The Eigenimages (bases) are very specific to 
the class of data they are trained on 

– Faces here 

• They will not be useful for other classes 
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Class specificity 

• Eigen bases are class specific 

 
 

 

 

• Composing a fishbowl from Eigenfaces 
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Class specificity 

• Eigen bases are class specific 

 
 

 

 

• Composing a fishbowl from Eigenfaces 

• With 1 basis 
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Class specificity 

• Eigen bases are class specific 

 
 

 

 

• Composing a fishbowl from Eigenfaces 

• With 10 bases 
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Class specificity 

• Eigen bases are class specific 

 
 

 

 

• Composing a fishbowl from Eigenfaces 

• With 30 bases 
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Class specificity 

• Eigen bases are class specific 

 
 

 

 

• Composing a fishbowl from Eigenfaces 

• With 100 bases 
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Universal bases 
• Universal bases.. 

 
 
 
 
 
 
 
 
 

• End up looking a lot like discrete cosine transforms!!!! 
• DCTs are the best “universal” bases 

– If you don’t know what your data are, use the DCT 
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An audio example 

• The spectrogram has 974 vectors of dimension 
1025 

• The covariance matrix is size 1025 x 1025 

• There are 1025 eigenvectors 
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Eigenvalues and Eigenvectors 

• Left panel: Matrix with 1025 eigen vectors 

• Right panel: Corresponding eigen values 

– Most Eigen values are close to zero 

• The corresponding eigenvectors are “unimportant” 
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Eigenvalues and Eigenvectors 

• The vectors in the spectrogram are linear combinations of all 
1025 Eigen vectors 

• The Eigen vectors with low Eigen values contribute very little 

– The average value of ai is proportional to the square root of the 
Eigenvalue 

– Ignoring these will not affect the composition of the spectrogram 
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An audio example 

• The same spectrogram projected down to the 25 eigen 
vectors with the highest eigen values 

– Only the 25-dimensional weights are shown 
• The weights with which the 25 eigen vectors must be added to 

compose a least squares approximation to the spectrogram 
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An audio example 

• The same spectrogram constructed from only the 25 
Eigen vectors with the highest Eigen values 

– Looks similar 
• With 100 Eigenvectors, it would be indistinguishable from the original 

– Sounds pretty close 

– But now sufficient to store 25 numbers per vector (instead of 
1024) 
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SVD instead of Eigen 

• Do we need to compute a 10000 x 10000 correlation matrix and 
then perform Eigen analysis? 
– Will take a very long time on your laptop 

• SVD 
– Only need to perform “Thin” SVD. Very fast 

• U = 10000 x 300 
– The columns of U are the eigen faces! 

– The Us corresponding to the “zero” eigen values are not computed 

• S = 300 x 300 

• V = 300 x 300 
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Using SVD to compute Eigenbases 

                       [U, S, V] = SVD(X) 

 

• U will have the Eigenvectors 
 

• Thin SVD for 100 bases: 

                     [U,S,V] = svds(X, 100) 

• Much more efficient 
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Eigen Decomposition of data 

• Nothing magical about faces or sound – can 
be applied to any data. 

– Eigen analysis is one of the key components of 
data compression and representation 

– Represent N-dimensional data by the weights of 
the K leading Eigen vectors 

• Reduces effective dimension of the data from N to K 

• But requires knowledge of Eigen vectors 
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Eigen decomposition of what? 

• Eigen decomposition of the correlation matrix 

 

• Is there an alternate way? 
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Linear vs. Affine 

• The model we saw 

– Approximate every face f as  
f  = wf,1 V1+ wf,2 V2 +... + wf,k Vk  

– Linear combination of bases 
 

• If you add a constant 

            f  = wf,1 V1+ wf,2 V2 +... + wf,k Vk + m 

– Affine combination of bases 
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Estimation with the constant 
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Estimation with the constant 

11-755/18-797 86 



Estimation the remaining 
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Estimating the Affine model 
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Estimating the Affine model 
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Properties of the affine model 
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Linear vs. Affine 

• The model we saw 

– Approximate every face f as  
f  = wf,1 V1+ wf,2 V2 +... + wf,k Vk  

– The Karhunen Loeve Transform 

– Retains maximum Energy for any order k 
 

• If you add a constant 

            f  = wf,1 V1+ wf,2 V2 +... + wf,k Vk + m 

– Principal Component Analysis 

– Retains maximum Variance for any order k 
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How do they relate 

• Relationship between correlation matrix and 
covariance matrix 

                      R = C + mmT 

 

• Karhunen Loeve bases are Eigen vectors of R 

• PCA bases are Eigen vectors of C 

• How do they relate  

– Not easy to say.. 
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The Eigen vectors 

• The Eigen vectors of C are the major axes of 
the ellipsoid Cv, where v are the vectors on 
the unit sphere 
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The Eigen vectors 

• The Eigen vectors of R are the major axes of 
the ellipsoid  Cv + mmTv 

 

• Note that mmT has rank 1 and mmTv is a line 
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The Eigen vectors 

• The principal Eigenvector of R lies between the principal Eigen vector of C 
and m 

 

 

• Similarly the principal Eigen value 

 

 

• Similar logic is not easily extendable to the other Eigenvectors, however 

11-755/18-797 95 

mmT 

||||
)1(

m

m
ee   CR

10 

2||||)1( m  CR



Eigenvectors 

• Turns out:  Eigenvectors of the correlation matrix represent the 
major and minor axes of an ellipse centered at the origin which 
encloses the data most compactly 

 

• The SVD of data matrix X uncovers these vectors 

• KLT 
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Eigenvectors 

• Turns out:  Eigenvectors of the covariance represent the major and 
minor axes of an ellipse centered at the mean which encloses the 
data most compactly 

 

• PCA  uncovers these vectors 

• In practice, “Eigen faces” refers to PCA faces, and not KLT faces 
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What about sound? 

• Finding Eigen bases for speech signals: 

 

• Look like DFT/DCT 

• Or wavelets 

 

 

 

• DFTs are pretty good most of the time 
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Eigen Analysis 

• Can often find surprising features in your data 

• Trends, relationships, more 

• Commonly used in recommender systems 

 

• An interesting example.. 
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Eigen Analysis 

• Cheng Liu’s research on pipes.. 
• SVD automatically separates useful and uninformative 

features 
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