

Machine Learning for Signal Processing Data driven representations: 1. Eigenfaces and Eigenrepresentations

Class 5. 15 Sep 2015

Instructor: Bhiksha Raj

Recall: Representing images

aboard Apollo space capsule. 1038 x 1280 - 142k LIFE

Apollo Xi 1280 x 1255 - 226k LIFE

aboard Apollo space capsule. 1029 x 1280 - 128k LIFE

Building Apollo space ship. 1280 x 1257 - 114k LIFE

aboard Apollo space capsule. 1017 x 1280 - 130k LIFE

1228 x 1280 - 181k LIFE

Apollo 10 space ship, w. 1280 x 853 - 72k LIFE

Splashdown of Apollo XI mission. 1280 x 866 - 184k LIFE

Earth seen from space during the 1280 x 839 - 60k LIFE

Apollo Xi 844 x 1280 - 123k LIFE

working on Apollo space project. 1280 x 956 - 117k LIFE

the moon as seen from Apollo 8 1223 x 1280 - 214k

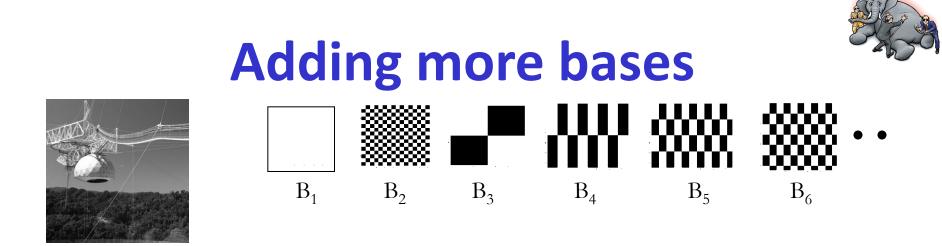
1280 x 1277 - 142k LIFE

Apollo 8 Crew 968 x 1280 - 125k LIFE

- The most common element in the image: background
 - Or rather large regions of relatively featureless shading

LIFE

Uniform sequences of numbers



Checkerboards with different variations

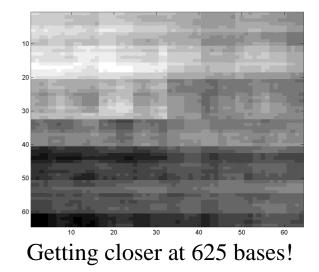
$$\operatorname{Im} age \approx w_{1}B_{1} + w_{2}B_{2} + w_{3}B_{3} + \dots$$

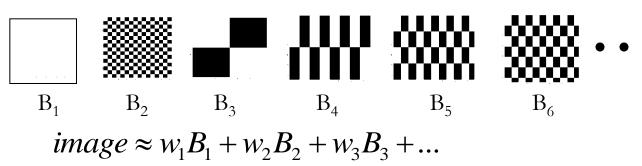
$$W = \begin{bmatrix} w_{1} \\ w_{2} \\ w_{3} \\ \vdots \\ \vdots \end{bmatrix} \qquad B = [B_{1} \ B_{2} \ B_{3}]$$

$$BW \approx \operatorname{Im} age$$

$$W = pinv(B) \operatorname{Im} age$$

$$PROJECTION = BW$$





- "Bases" are the "standard" units such that all instances can be expressed a weighted combinations of these units
- Ideal requirements: Bases must be orthogonal
- Checkerboards are one choice of bases
 - Orthogonal
 - But not "smooth"
- Other choices of bases: Complex exponentials, Wavelets, etc..

Data specific bases?

- Issue: The bases we have considered so far are *data agnostic*
 - Checkerboards, Complex exponentials, Wavelets..
 - We use the same bases regardless of the data we analyze
 - Image of face vs. Image of a forest
 - Segment of speech vs. Seismic rumble
- How about data specific bases
 - Bases that consider the underlying data
 - E.g. is there something better than checkerboards to describe faces
 - Something better than complex exponentials to describe music?

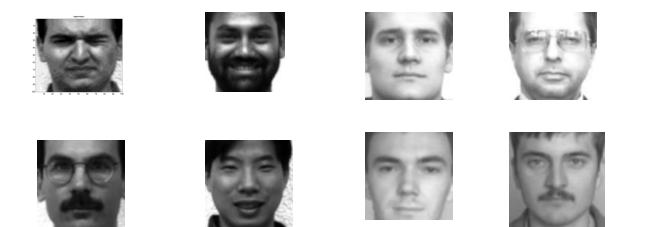
The Energy Compaction Property

- Define "better"?
- The description

 $X = w_1 B_1 + w_2 B_2 + w_3 B_3 + \ldots + w_N B_N$

- The ideal: $\hat{X}_i \approx w_1 B_1 + w_2 B_2 + \dots + w_i B_i$ $Error_i = \left\| X - \hat{X}_i \right\|^2$ $Error_i < Error_{i-1}$
 - If the description is terminated at any point, we should still get most of the information about the data
 - Error should be small

Data-specific description of faces



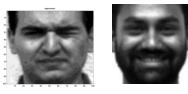
- A collection of images
 - All normalized to 100x100 pixels
- What is common among all of them?
 - Do we have a common descriptor?

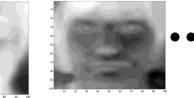
A typical face

The typical face

- Every face can be represented by a scaled version of a typical face
- We will denote this face as V
- Approximate every face f as $f = w_f V$
- Estimate V to minimize the squared error
 - How? What is V?

A collection of least squares typical faces





- Assumption: There are a set of *K* "typical" faces that captures most of all faces
- Approximate every face f as $f = w_{f,1} V_1 + w_{f,2} V_2 + w_{f,3} V_3 + .. + w_{f,k} V_k$
 - V_2 is used to "correct" errors resulting from using only $V_1\!.$ So on average

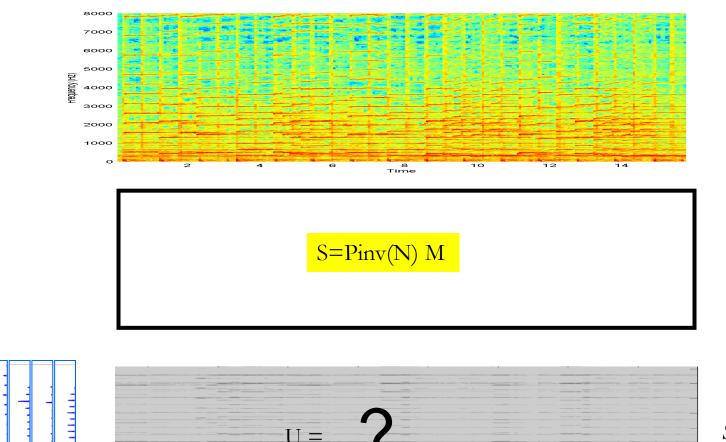
$$f - (w_{f,1}V_{f,1} + w_{f,2}V_{f,2}) \Big\|^2 < \Big\| f - w_{f,1}V_{f,1} \Big\|^2$$

- V_3 corrects errors remaining after correction with V_2

$$\left\|f - (w_{f,1}V_{f,1} + w_{f,2}V_{f,2} + w_{f,3}V_{f,3})\right\|^2 < \left\|f - (w_{f,1}V_{f,1} + w_{f,2}V_{f,2})\right\|^2$$

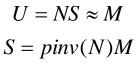
- And so on..
- $\mathbf{V} = [\mathbf{V}_1 \, \mathbf{V}_2 \, \mathbf{V}_3]$
- Estimate V to minimize the squared error
 - How? What is V?

A recollection



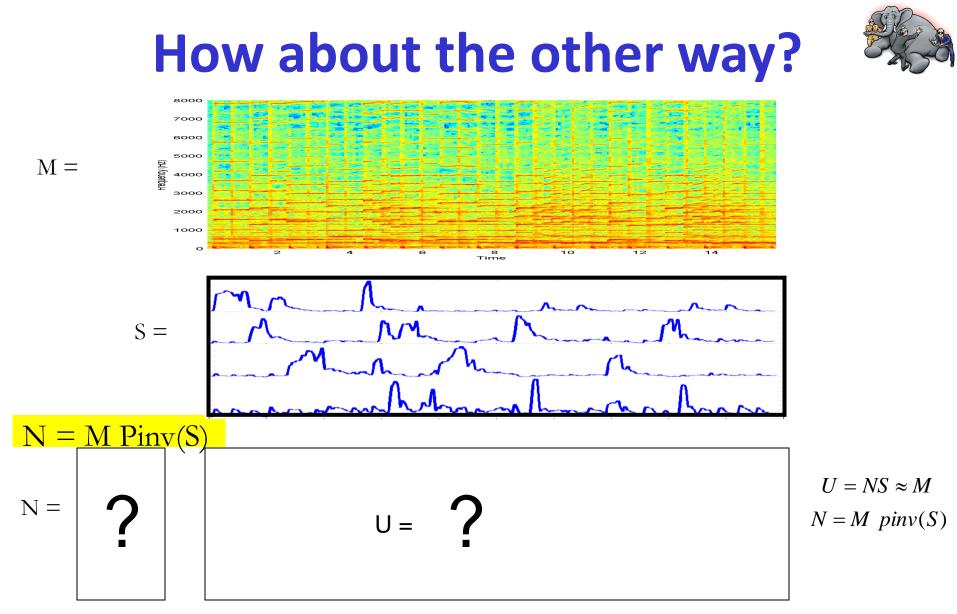
M =

N =



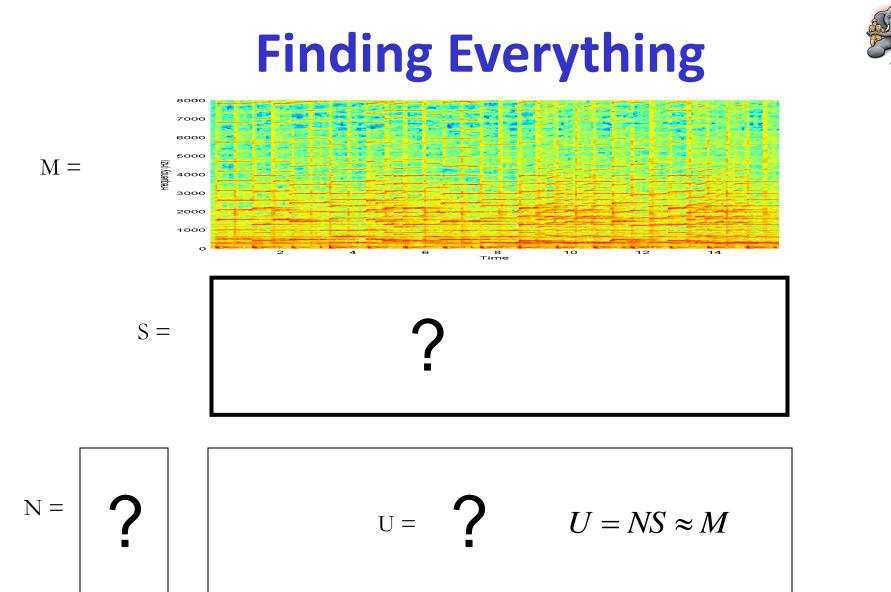
- Finding the best explanation of music ${\rm M}$ in terms of notes ${\rm N}$
- Also finds the score S of M in terms of N

11-755/18-797



- Finding the notes ${\bf N}$ given music ${\bf M}$ and score ${\bf S}$
- Also finds best explanation of ${\rm M}$ in terms of ${\rm S}$

11-755/18-797



 Find the four notes and their score that generate the closest approximation to M

11-755/18-797

The same problem

U = Approximation

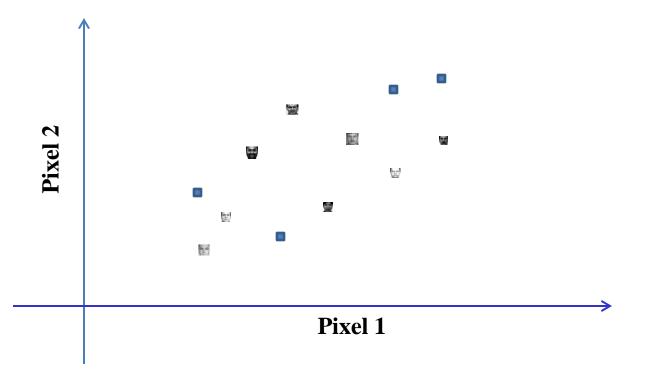
Typical faces

٠

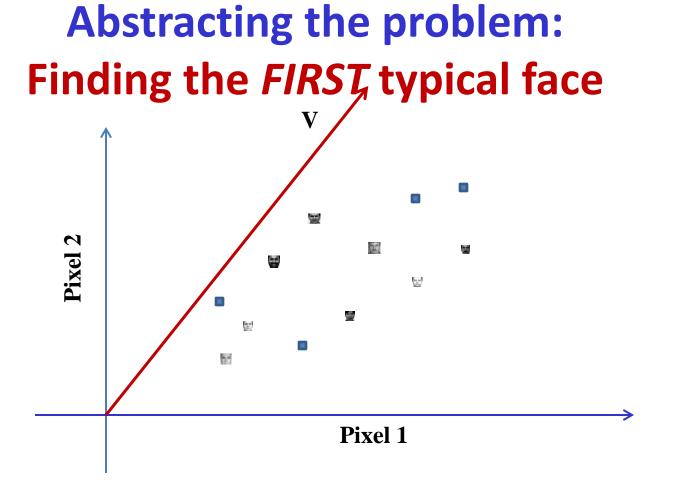
- Here V, W and U are ALL unknown and must be determined
 - Such that the squared error between U and F is minimum
- For each face

$$- f = w_{f,1} V_1 + w_{f,2} V_2 + w_{f,3} V_3 + ... + w_{f,K} V_K$$

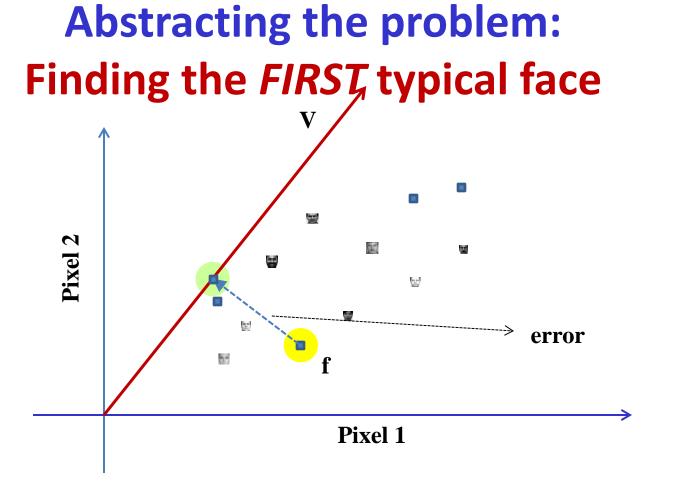
- For the collection of faces: $F \approx V W$
 - V is $D \ge K$ and $W = K \ge N$
 - D is the no. of pixels, $\ N,$ is the no. of faces in the set



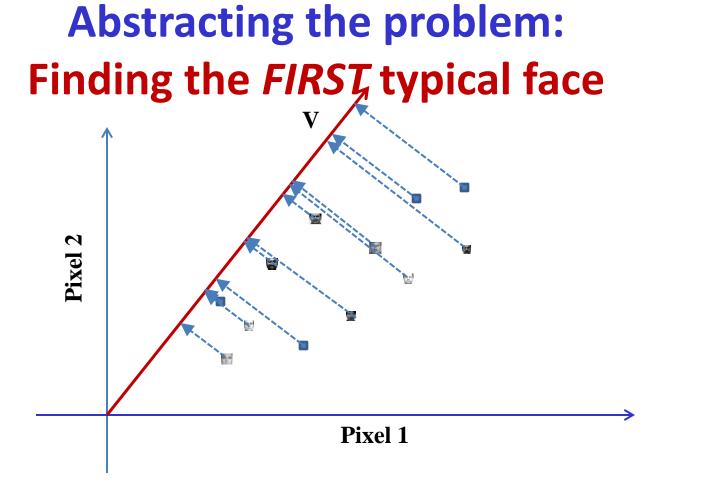
• Each "point" represents a face in "pixel space"



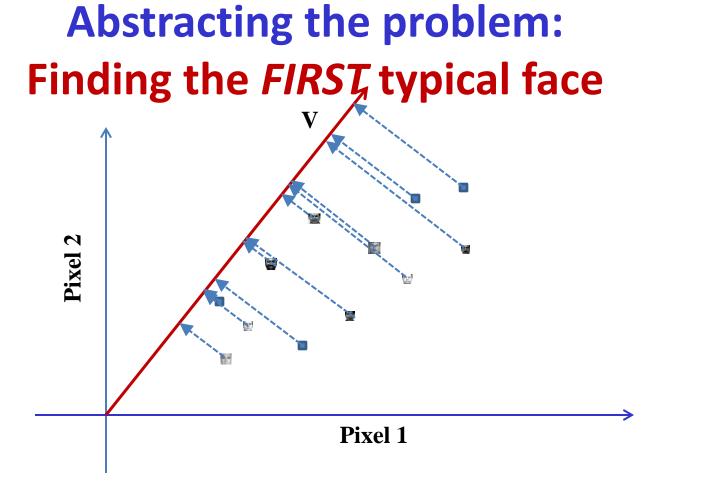
- Each "point" represents a face in "pixel space"
- Any "typical face" ${\rm V}$ is a vector in this space

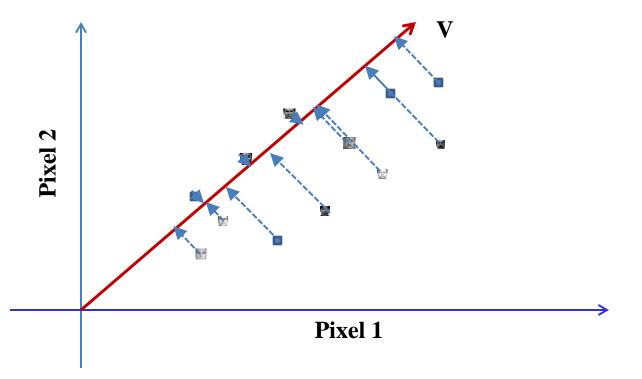


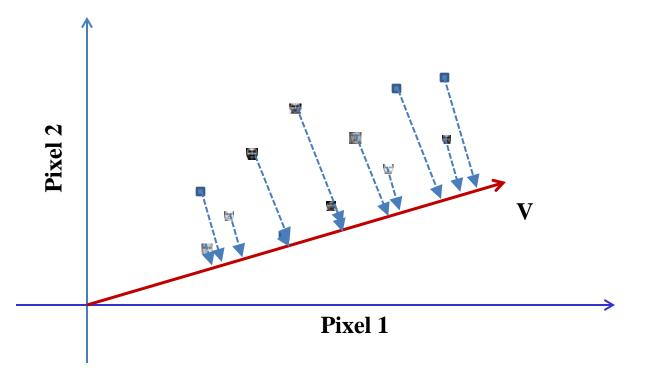
- Each "point" represents a face in "pixel space"
- The "typical face" V is a vector in this space
- The *approximation* w_{f_s} V for any face f is the *projection* of f onto V
- The distance between f and its projection $w_f V$ is the projection error for f

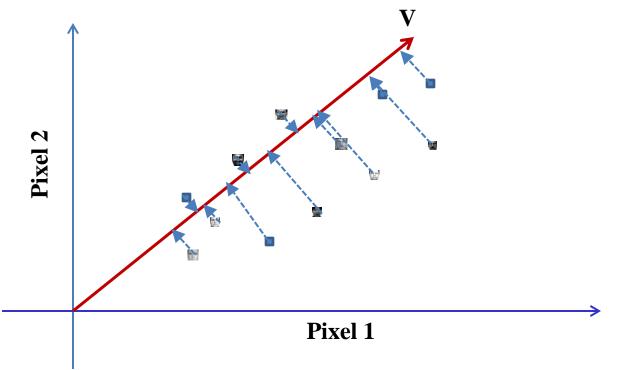


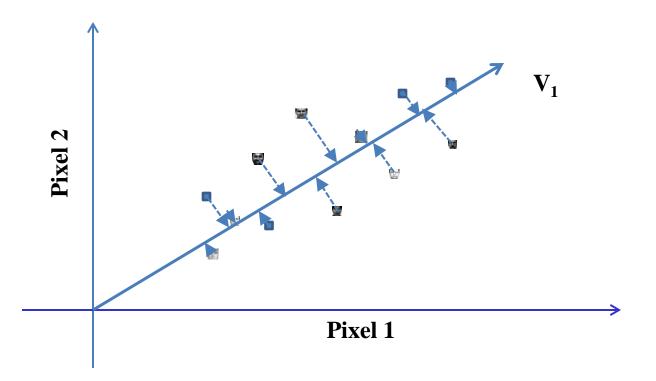
- Every face in our data will suffer error when approximated by its projection on ${\rm V}$
- The total squared length of all error lines is the *total* squared projection error



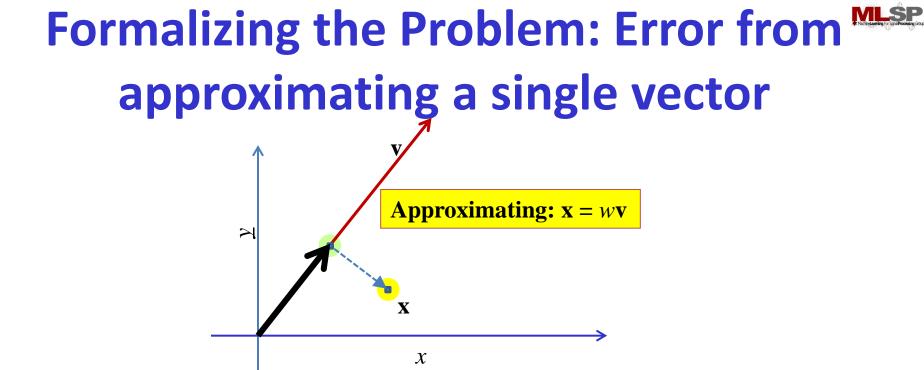






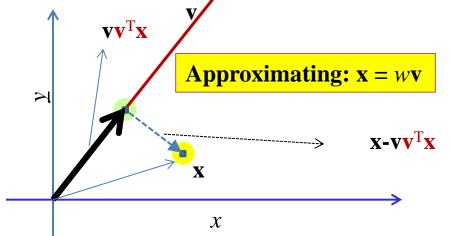


- The problem of finding the first typical face V_1 : Find the V for which the total projection error is minimum!
- This "minimum squared error" V is our "best" first typical face
- It is also the first *Eigen face*



- Consider: approximating $\mathbf{x} = w\mathbf{v}$
 - E.g x is a face, and "v" is the "typical face"
- Finding an approximation wv which is closest to x
 - In a Euclidean sense
 - Basically projecting ${\bf x}$ onto ${\bf v}$

Formalizing the Problem: Error from approximating a single vector



- Projection of a vector **x** on to a vector **v** $\hat{\mathbf{x}} = \mathbf{v} \frac{\mathbf{v}^T \mathbf{x}}{|\mathbf{v}|^2}$
- Assuming v is of unit length: $\hat{\mathbf{x}} = \mathbf{v}\mathbf{v}^T\mathbf{x}$

error = $\mathbf{x} - \hat{\mathbf{x}} = \mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}$ squared error = $\|\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}\|^2$

 Minimum squared approximation error from approximating x as it as wv

х

$$e(\mathbf{x}) = \left\| \mathbf{x} - \mathbf{v} \mathbf{v}^T \mathbf{x} \right\|^2$$

• Optimal value of w: $w = \mathbf{v}^{\mathrm{T}}\mathbf{x}$

• Error from projecting a vector \mathbf{x} on to a vector onto a unit vector \mathbf{v} $e(\mathbf{x}) = \|\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}\|^2$

х

$$e(\mathbf{x}) = (\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})^T (\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}) = (\mathbf{x}^T - \mathbf{x}^T\mathbf{v}\mathbf{v}^T)(\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})$$
$$= \mathbf{x}^T\mathbf{x} - \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{x} - \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{x} + \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{v}^T\mathbf{x}$$

• Error from projecting a vector \mathbf{x} on to a vector onto a unit vector \mathbf{v} $e(\mathbf{x}) = \|\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}\|^2$

х

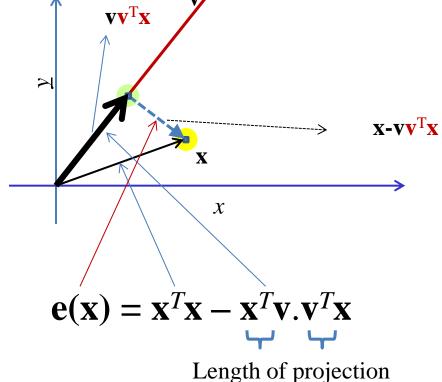
$$e(\mathbf{x}) = (\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})^T (\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}) = (\mathbf{x}^T - \mathbf{x}^T\mathbf{v}\mathbf{v}^T)(\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})$$
$$= \mathbf{x}^T\mathbf{x} - \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{x} - \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{x} + \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{v}^T\mathbf{x}$$
$$= \mathbf{1}$$

• Error from projecting a vector \mathbf{x} on to a vector onto a unit vector \mathbf{v} $e(\mathbf{x}) = \|\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}\|^2$

х

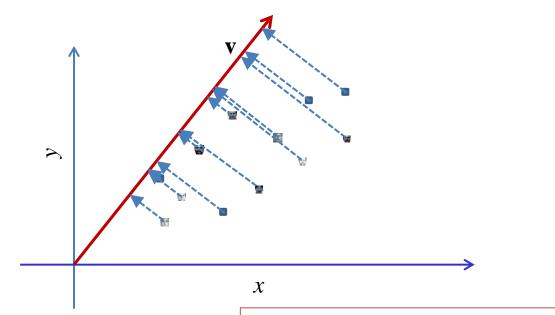
$$e(\mathbf{x}) = (\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})^T (\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}) = (\mathbf{x}^T - \mathbf{x}^T\mathbf{v}\mathbf{v}^T)(\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})$$

$$= \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x} - \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x} + \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x}$$
$$e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x}$$



This is the very familiar pythogoras' theorem!!

Error for many vectors

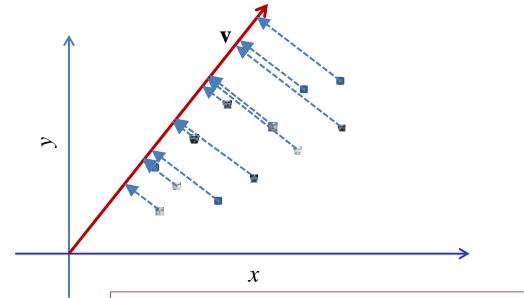


- Error for one vector: $e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x}$
- Error for many vectors

$$E = \sum_{i} e(\mathbf{x}_{i}) = \sum_{i} \left(\mathbf{x}_{i}^{T} \mathbf{x}_{i} - \mathbf{x}_{i}^{T} \mathbf{v} \mathbf{v}^{T} \mathbf{x}_{i} \right) = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{x}_{i}^{T} \mathbf{v} \mathbf{v}^{T} \mathbf{x}_{i}$$

• Goal: Estimate v to minimize this error!

Error for many vectors



- Total error: $E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} \sum_{i} \mathbf{x}_{i}^{T} \mathbf{v} \mathbf{v}^{T} \mathbf{x}_{i}$
- Add constraint: $\mathbf{v}^{\mathrm{T}}\mathbf{v} = 1$
- Constrained objective to minimize:

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{x}_{i}^{T} \mathbf{v} \mathbf{v}^{T} \mathbf{x}_{i} + \lambda (\mathbf{v}^{T} \mathbf{v} - 1)$$

Two Matrix Identities

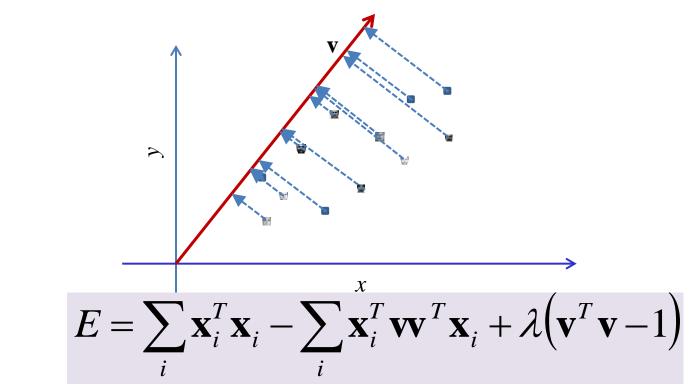
• Derivative w.r.t v

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{x}_{i}^{T} \mathbf{v} \mathbf{v}^{T} \mathbf{x}_{i} + \lambda (\mathbf{v}^{T} \mathbf{v} - 1)$$

$$\frac{d\mathbf{v}^T\mathbf{v}}{d\mathbf{v}} = 2\mathbf{v}$$

$$\frac{d\mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x}}{d\mathbf{v}} = \frac{d\mathbf{v}^T \mathbf{x} \mathbf{x}^T \mathbf{v}}{d\mathbf{v}} = 2\mathbf{x} \mathbf{x}^T \mathbf{v}$$

Minimizing error



• Differentiating w.r.t $\,v$ and equating to 0

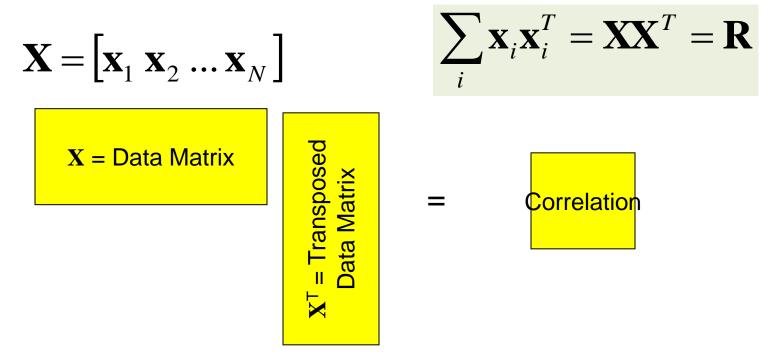
$$-2\sum_{i}\mathbf{x}_{i}\mathbf{x}_{i}^{T}\mathbf{v}+2\lambda\mathbf{v}=0$$

$$\left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}\right) \mathbf{v} = \lambda \mathbf{v}$$

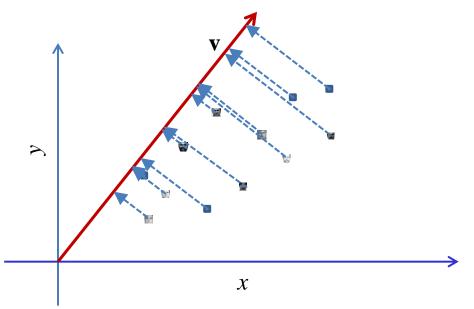
The correlation matrix

$$\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{v} = \lambda \mathbf{v}$$

• The encircled term is the *correlation matrix*



The best "basis"



- The minimum-error basis is found by solving $\mathbf{R}\mathbf{v} = \lambda \mathbf{v}$
- ${\bf v}$ is an Eigen vector of the correlation matrix ${\bf R}$ λ is the corresponding Eigen value

What about the total error?

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{v}^{T} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{v}$$

• $\mathbf{x}^{\mathrm{T}}\mathbf{v} = \mathbf{v}^{\mathrm{T}}\mathbf{x}$ (inner product)

$$= \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \mathbf{v}^{T} \left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \right) \mathbf{v}$$

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \mathbf{v}^{T} \mathbf{R} \mathbf{v} = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \mathbf{v}^{T} \lambda \mathbf{v} = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \lambda \mathbf{v}^{T} \mathbf{v}$$

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \lambda$$

Minimizing the error

• The total error is $E = \sum \mathbf{x}_i^T \mathbf{x}_i - \lambda$

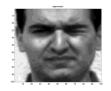
- We already know that the optimal basis is an Eigen vector
- The total error depends on the *negative* of the corresponding Eigen value
- To *minimize* error, we must *maximize* λ
- i.e. Select the Eigen vector with the largest Eigen value

The typical face

- Compute the correlation matrix for your data

 Arrange them in matrix X and compute R = XX^T
- Compute the *principal* Eigen vector of R
 - The Eigen vector with the largest Eigen value
- This is the typical face

The approximation with the first



- The first typical face models some of the characteristics of the faces
 - Simply by scaling its grey level
- But the approximation has error

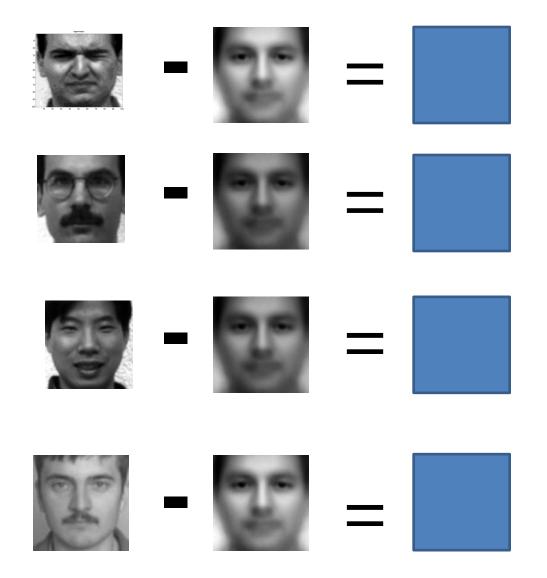
 The *second* typical face must explain some of this error

The second typical face

The first typical face

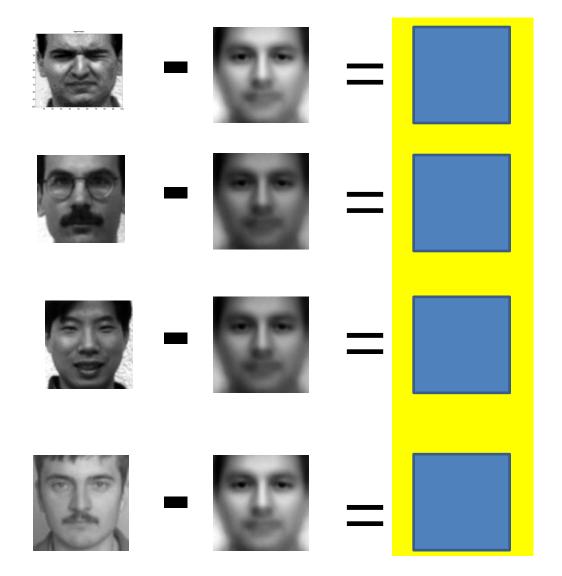
- Approximation with only the first typical face has error
- The second face must explain this error
- How do we find this this face?

Solution: Iterate



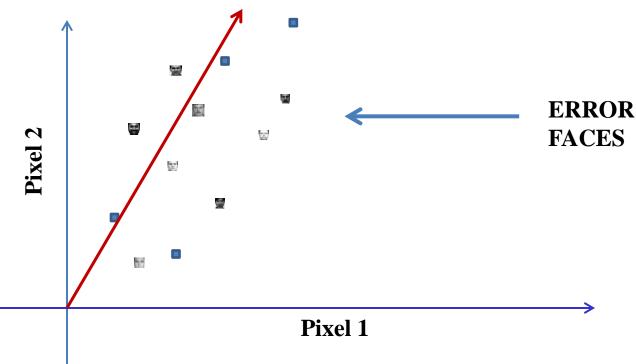
 Get the "error" faces by subtracting the first-level approximation from the original image

Solution: Iterate



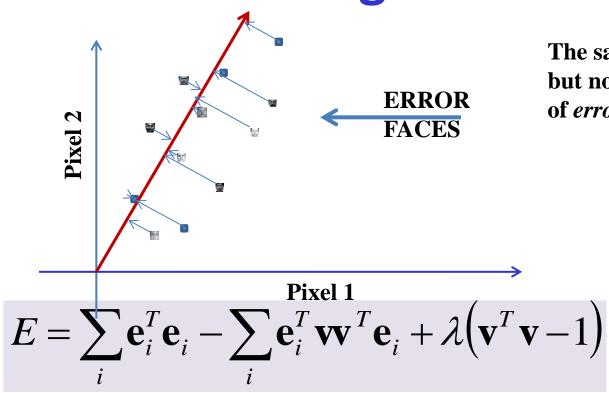
- Get the "error" faces by subtracting the first-level approximation from the original image
- Repeat the estimation on the "error" images

Abstracting the problem: Finding the second typical face



- Each "point" represents an *error* face in "pixel space"
- Find the vector V₂ such that the projection of these error faces on V₂ results in the least error

Minimizing error



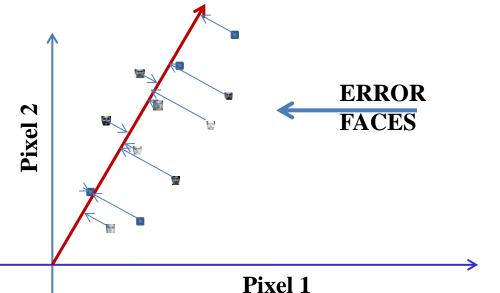
The same math applies but now to the set of *error data points*

- Differentiating w.r.t $\, v$ and equating to 0

$$-2\sum_{i}\mathbf{e}_{i}\mathbf{e}_{i}^{T}\mathbf{v}+2\lambda\mathbf{v}=0$$

$$\left(\sum_{i} \mathbf{e}_{i} \mathbf{e}_{i}^{T}\right) \mathbf{v} = \lambda \mathbf{v}$$

Minimizing error



The same math applies but now to the set of *error data points*

• The minimum-error basis is found by solving

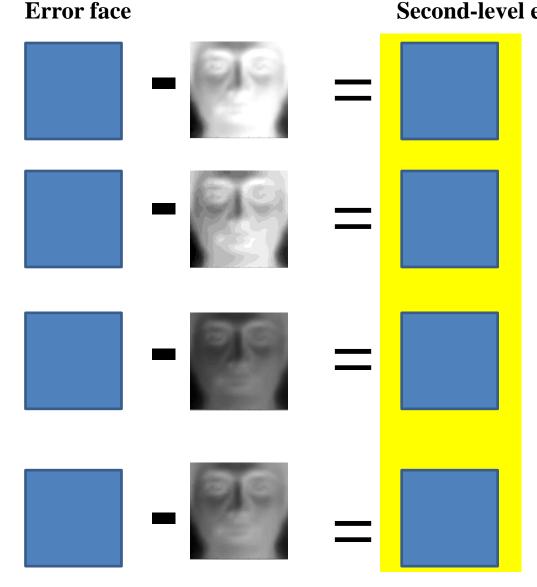
$$\mathbf{R}_{e}\mathbf{v}_{2} = \lambda \mathbf{v}_{2} \qquad \qquad \mathbf{R}_{e} = \sum \mathbf{e}\mathbf{e}^{T}$$

v₂ is an Eigen vector of the correlation matrix R_e corresponding to the largest eigen value λ of R_e

Which gives us our second typication face

- But approximation with the two faces will *still* result in error
- So we need more typical faces to explain *this* error
- We can do this by subtracting the appropriately scaled version of the second "typical" face from the error images and repeating the process

Solution: Iterate



Get the secondlevel "error" faces
by subtracting the
scaled second
typical face from
the first-level error

 Repeat the estimation on the second-level "error" images

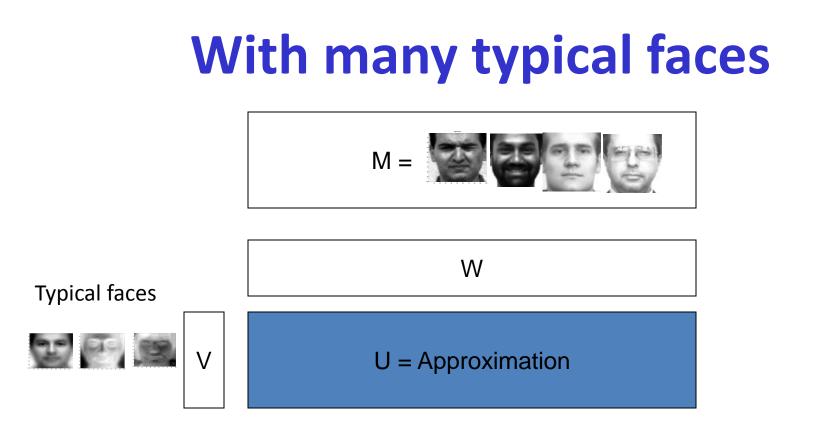
An interesting property

- Each "typical face" will be orthogonal to all other typical faces
 - Because each of them is learned to explain what the rest could not
 - None of these faces can explain one another!

To add more faces

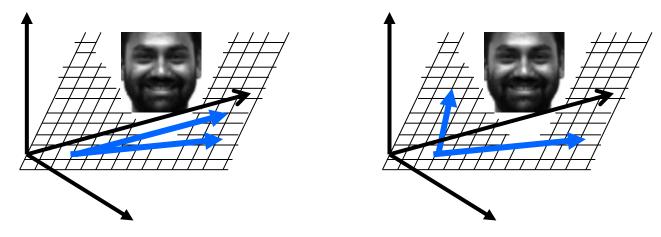
- We can continue the process, refining the error each time
 - An instance of a procedure is called "Gram-Schmidt" orthogonalization

• OR... we can do it all at once



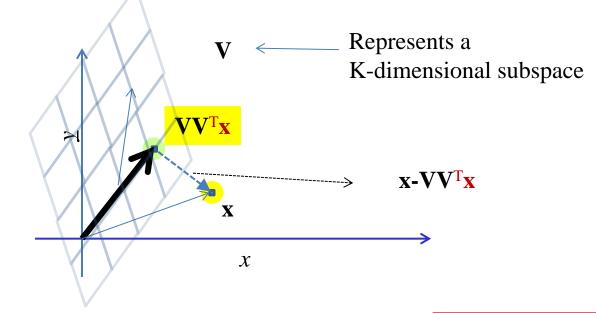
- Approximate every face f as $f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k$
- Here W, V and U are ALL unknown and must be determined
 - Such that the squared error between U and M is minimum

With multiple bases



- Assumption: all bases v₁ v₂ v₃... are unit length
- Assumption: all bases are orthogonal to one another: $v_i^T v_i = 0$ if i != j
 - We are trying to find the optimal K-dimensional subspace to project the data
 - Any set of vectors in this subspace will define the subspace
 - Constraining them to be orthogonal does not change this
- I.e. if $V = [v_1 v_2 v_3 ...], V^T V = I$
 - Pinv(V) = V^T
- Projection matrix for $\mathbf{V} = \mathbf{V} \mathsf{Pinv}(\mathbf{V}) = \mathbf{V} \mathbf{V}^{\mathsf{T}}$

With multiple bases



Projection for a vector

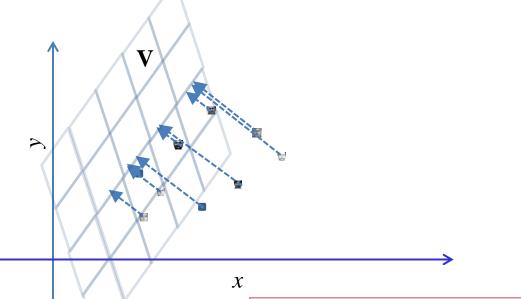
$$\hat{\mathbf{x}} = \mathbf{V}\mathbf{V}^T\mathbf{x}$$

• Error vector = $\mathbf{x} - \hat{\mathbf{x}} = \mathbf{x} - \mathbf{V}\mathbf{V}^T\mathbf{x}$

• Error length =

$$e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{V} \mathbf{V}^T \mathbf{x}$$

With multiple bases



• Error for one vector:

$$e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{V} \mathbf{V}^T \mathbf{x}$$

• Error for many vectors

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{x}_{i}^{T} \mathbf{V} \mathbf{V}^{T} \mathbf{x}_{i}$$

• Goal: Estimate V to minimize this error!

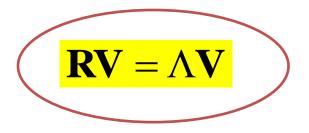
Minimizing error

• With constraint $\mathbf{V}^{\mathrm{T}}\mathbf{V} = \mathbf{I}$, objective to minimize

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{x}_{i}^{T} \mathbf{V} \mathbf{V}^{T} \mathbf{x}_{i} + trace \left(\Lambda \left(\mathbf{V}^{T} \mathbf{V} - \mathbf{I} \right) \right)$$

- Note: now Λ is a diagonal matrix
- The constraint simply ensures that $\mathbf{v}^{\mathrm{T}}\mathbf{v} = 1$ for every basis
- Differentiating w.r.t $\,{\bf V}$ and equating to 0

$$-2\left(\sum_{i}\mathbf{x}_{i}\mathbf{x}_{i}^{T}\right)\mathbf{V}+2\Lambda\mathbf{V}=0$$



Finding the optimal K bases

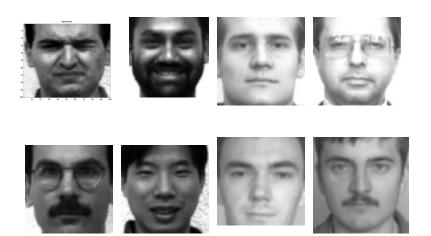
$\mathbf{RV} = \Lambda \mathbf{V}$

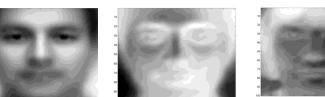
- Compute the Eigendecompsition of the correlation matrix
- Select *K* Eigen vectors
- But which K?
- Total error =

$$E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{j=1}^{K} \lambda_{j}$$

Select K eigen vectors corresponding to the K largest Eigen values

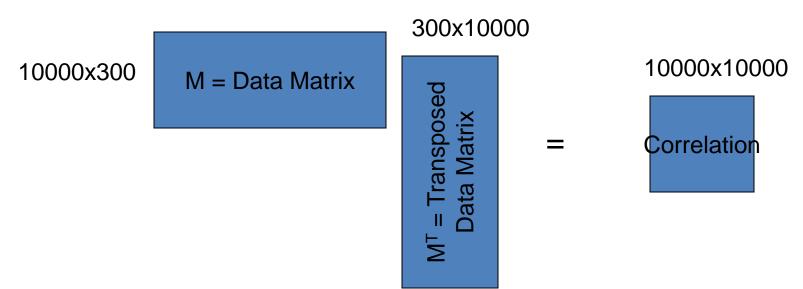
Eigen Faces!





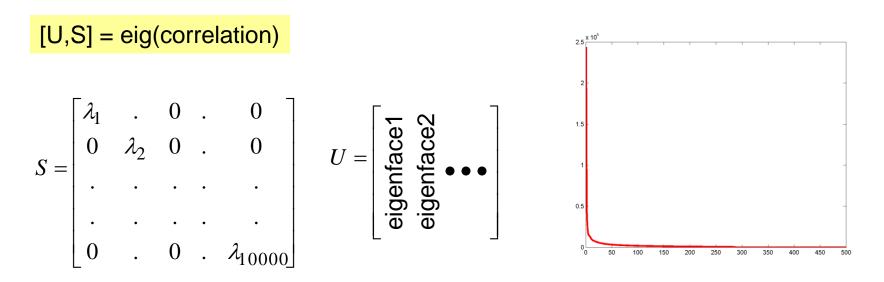
- Arrange your input data into a matrix ${\bf X}$
- Compute the correlation ${\bm R} = {\bm X} {\bm X}^{\rm T}$
- Solve the Eigen decomposition: $\mathbf{RV} = \Lambda \mathbf{V}$
- The Eigen vectors corresponding to the *K* largest eigen values are our optimal bases
- We will refer to these as *eigen faces*.

How many Eigen faces

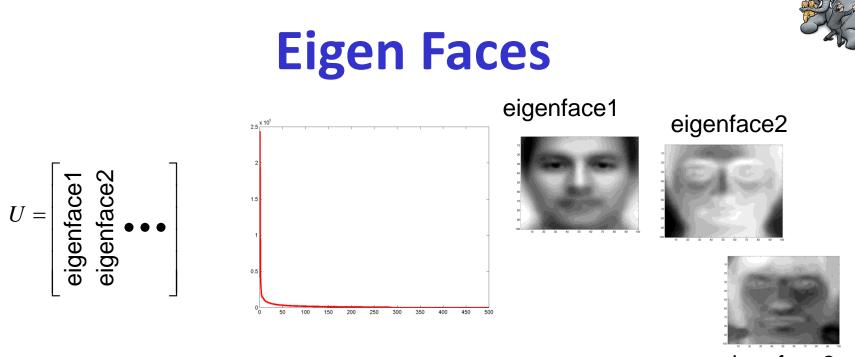


- How to choose "K" (number of Eigen faces)
- Lay all faces side by side in vector form to form a matrix
 In my example: 300 faces. So the matrix is 10000 x 300
- Multiply the matrix by its transpose
 - The correlation matrix is 10000x10000

Eigen faces



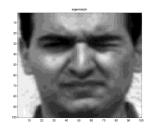
- Compute the eigen vectors
 - Only 300 of the 10000 eigen values are non-zero
 - Why?
- Retain eigen vectors with high eigen values (>0)
 - Could use a higher threshold

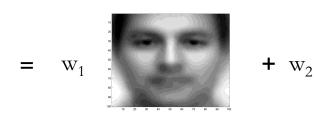


eigenface3

- The eigen vector with the highest eigen value is the first typical face
- The vector with the second highest eigen value is the second typical face.
- Etc.

Representing a face





Representation

 $[w_1 w_2 w_3 \dots]^T$

+ W₃

 The weights with which the eigen faces must be combined to compose the face are used to represent the face!

 One outcome of the "energy compaction principle": the approximations are recognizable

• Approximating a face with one basis:

$$f = w_1 \mathbf{v}_1$$

 One outcome of the "energy compaction principle": the approximations are recognizable

• Approximating a face with one Eigenface:

 $f = w_1 \mathbf{v}_1$

 One outcome of the "energy compaction principle": the approximations are recognizable

• Approximating a face with 10 eigenfaces: $f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots w_{10} \mathbf{v}_{10}$

 One outcome of the "energy compaction principle": the approximations are recognizable

• Approximating a face with 30 eigenfaces:

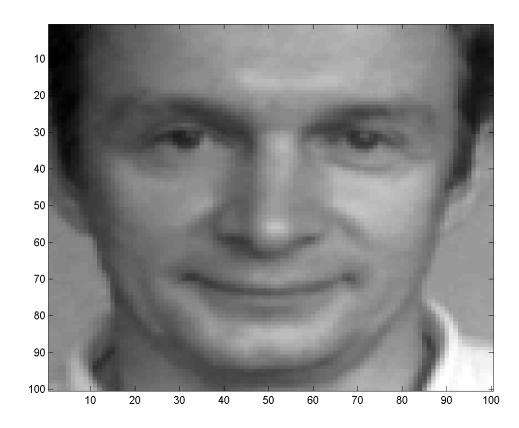
 $f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots + w_{10} \mathbf{v}_{10} + \dots + w_{30} \mathbf{v}_{30}$

 One outcome of the "energy compaction principle": the approximations are recognizable

• Approximating a face with 60 eigenfaces:

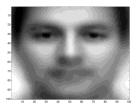
 $f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots + w_{10} \mathbf{v}_{10} + \dots + w_{30} \mathbf{v}_{30} + \dots + w_{60} \mathbf{v}_{60}$

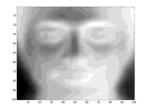
How did I do this?



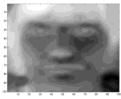
• Hint: only changing weights assigned to Eigen faces..

eigenface1





eigenface2



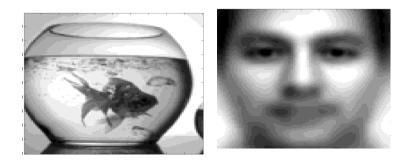
eigenface3

- The Eigenimages (bases) are very specific to the class of data they are trained on
 - Faces here
- They will not be useful for other classes

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces

• Eigen bases are class specific



- Composing a fishbowl from Eigenfaces
- With 1 basis

$$f = w_1 \mathbf{v}_1$$

• Eigen bases are class specific

- Composing a fishbowl from Eigenfaces
- With 10 bases

$$f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots + w_{10} \mathbf{v}_{10}$$

• Eigen bases are class specific

- Composing a fishbowl from Eigenfaces
- With 30 bases

$$f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots + w_{10} \mathbf{v}_{10} + \dots + w_{30} \mathbf{v}_{30}$$

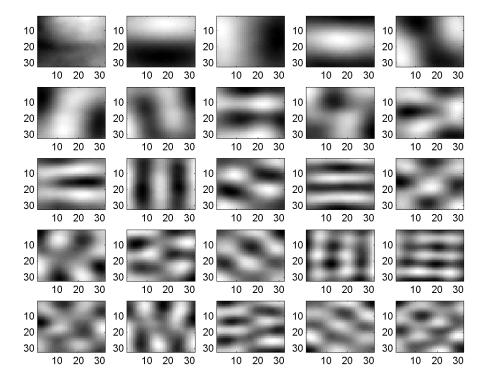
• Eigen bases are class specific

- Composing a fishbowl from Eigenfaces
- With 100 bases

 $f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots + w_{10} \mathbf{v}_{10} + \dots + w_{30} \mathbf{v}_{30} + \dots + w_{100} \mathbf{v}_{100}$

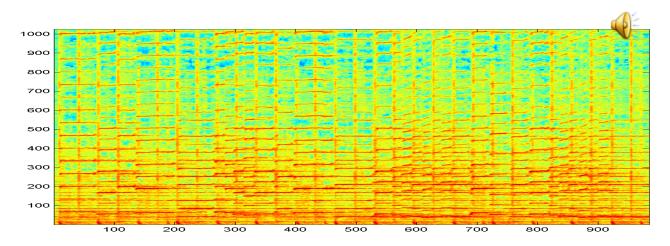
Universal bases

• Universal bases..



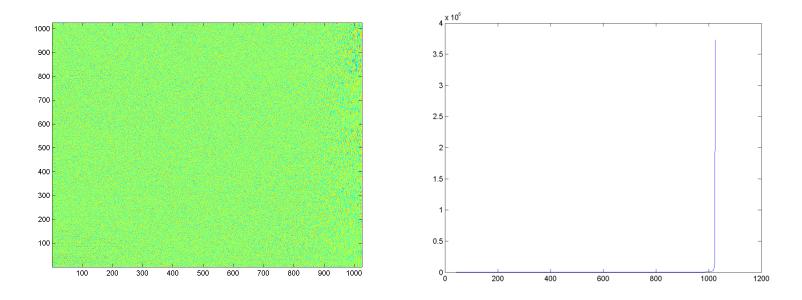
- End up looking a lot like *discrete cosine transforms!!!!*
- DCTs are the best "universal" bases
 - If you don't know what your data are, use the DCT

An audio example



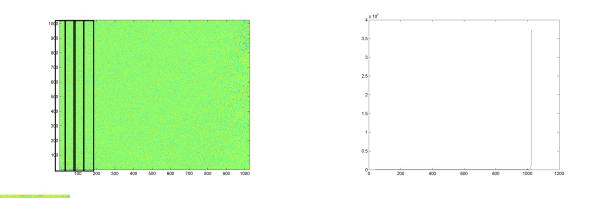
- The spectrogram has 974 vectors of dimension 1025
- The covariance matrix is size 1025 x 1025
- There are 1025 eigenvectors

Eigenvalues and Eigenvectors

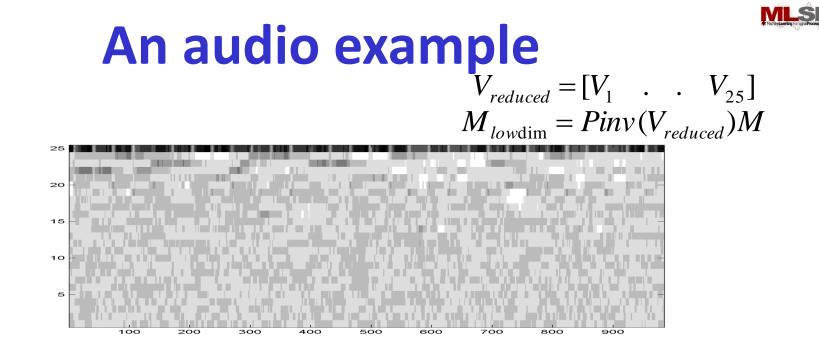


- Left panel: Matrix with 1025 eigen vectors
- Right panel: Corresponding eigen values
 - Most Eigen values are close to zero
 - The corresponding eigenvectors are "unimportant"

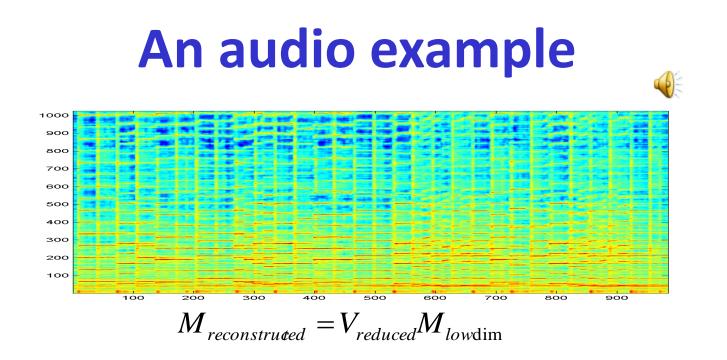
Eigenvalues and Eigenvectors



- The vectors in the spectrogram are linear combinations of all 1025 Eigen vectors
- The Eigen vectors with low Eigen values contribute very little
 - The average value of a_i is proportional to the square root of the Eigenvalue
 - Ignoring these will not affect the composition of the spectrogram

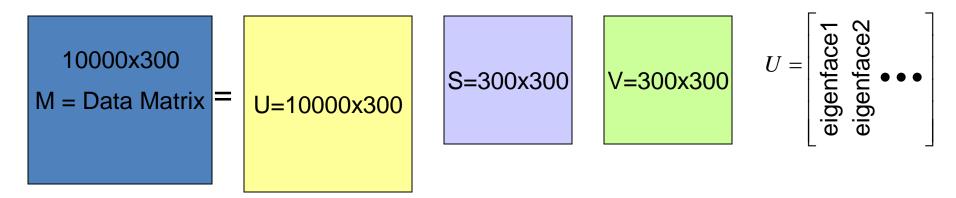


- The same spectrogram projected down to the 25 eigen vectors with the highest eigen values
 - Only the 25-dimensional weights are shown
 - The weights with which the 25 eigen vectors must be added to compose a least squares approximation to the spectrogram



- The same spectrogram constructed from only the 25 Eigen vectors with the highest Eigen values
 - Looks similar
 - With 100 Eigenvectors, it would be indistinguishable from the original
 - Sounds pretty close
 - But now sufficient to store 25 numbers per vector (instead of 1024)

SVD instead of Eigen



- Do we need to compute a 10000 x 10000 correlation matrix and then perform Eigen analysis?
 - Will take a very long time on your laptop
- SVD
 - Only need to perform "Thin" SVD. Very fast
 - U = 10000 x 300
 - The columns of U are the eigen faces!
 - The Us corresponding to the "zero" eigen values are not computed
 - S = 300 x 300
 - V = 300 x 300

Using SVD to compute Eigenbases

[U, S, V] = SVD(X)

- U will have the Eigenvectors
- Thin SVD for 100 bases:
 [U,S,V] = svds(X, 100)
- Much more efficient

Eigen Decomposition of data

- Nothing magical about faces or sound can be applied to any data.
 - Eigen analysis is one of the key components of data compression and representation
 - Represent N-dimensional data by the weights of the K leading Eigen vectors
 - Reduces effective dimension of the data from N to K
 - But requires knowledge of Eigen vectors

Eigen decomposition of what?

• Eigen decomposition of the *correlation* matrix

• Is there an alternate way?

Linear vs. Affine

- The model we saw
 - Approximate every face f as $f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k$
 - Linear combination of bases
- If you add a constant $f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k + m$ Affine combination of bases

Estimation with the constant

• Estimate

$$f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k + m$$

- Lets do this incrementally first:
- $f \approx m$
 - For every face
 - Find *m* to optimize the approximation

Estimation with the constant

- Estimate
 - f ≈ m
 - for every f!
- Error over all faces $E = \sum_{f} ||f m||^2$
- Minimizing the error with respect to *m*, we simply get

$$-m = \frac{1}{N} \sum_{f} f$$

• The *mean* of the data

Estimation the remaining

- Same procedure as before:
 - Remaining "typical faces" must model what the constant m could not
- Subtract the constant from every data point $-\hat{f} = f m$
- Now apply the model:

 $-\hat{f} = w_{f,1} V_1 + w_{f,2} V_2 + \dots + w_{f,k} V_k$

- This is just Eigen analysis of the "mean-normalized" data
 - Also called the "centered" data

Estimating the Affine model

$$f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k + m$$

• First estimate the mean *m*

$$m = \frac{1}{N} \sum_{f} f$$

• Compute the correlation matrix of the "centered" data $\hat{f} = f - m$

$$-\mathbf{C} = \sum_{f} \hat{f} \hat{f}^{T} = \sum_{f} (f - m)(f - m)^{T}$$

- This is the *covariance* matrix of the set of f

Estimating the Affine model

$$f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k + m$$

• First estimate the mean m

$$m = \frac{1}{N} \sum_{f} f$$

- Compute the covariance matrix - $C = \sum_{f} (f - m)(f - m)^{T}$
- Eigen decompose!

$\mathbf{C}\mathbf{V} = \Lambda\mathbf{V}$

 The Eigen vectors corresponding to the top k Eigen values give us the bases V_k

Properties of the affine model

- The bases $V_1,\,V_2$,..., $\!V_k$ are all orthogonal to one another
 - Eigen vectors of the symmetric Covariance matrix
- But they are *not* orthogonal to *m*
 - Because *m* is an unscaled constant
- We could jointly estimate all $\mathrm{V}_1,\mathrm{V}_2$,..., V_k and m by minimizing

 $\sum_{f} ||f - (\sum_{f} w_{f,i}V_i + m)||^2 + trace(\Lambda(\boldsymbol{V}^T\boldsymbol{V} - \boldsymbol{I}))$

Linear vs. Affine

- The model we saw
 - Approximate **every** face f as
 - $f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k$
 - The Karhunen Loeve Transform
 - Retains maximum *Energy* for any order k
- If you add a constant
 - $f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k + m$
 - Principal Component Analysis
 - Retains maximum Variance for any order k

How do they relate

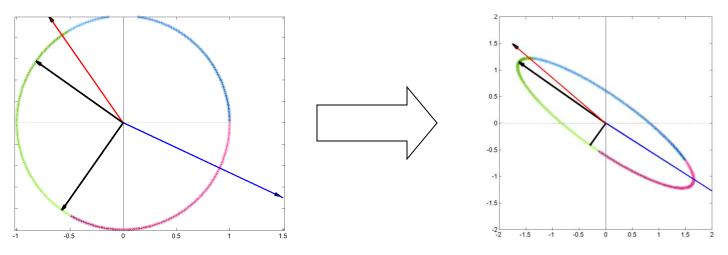
 Relationship between correlation matrix and covariance matrix

 $\mathbf{R} = \mathbf{C} + mm^{\mathrm{T}}$

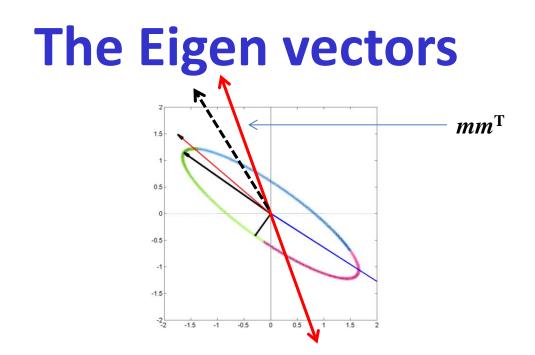
- Karhunen Loeve bases are Eigen vectors of R
- PCA bases are Eigen vectors of C
- How do they relate

– Not easy to say..

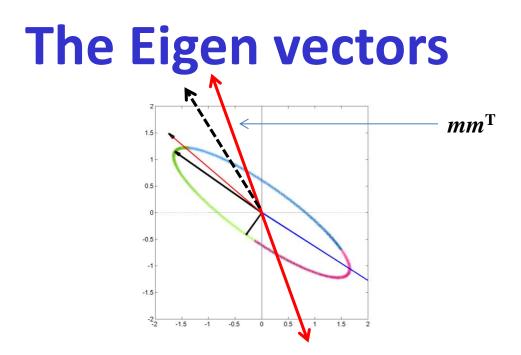
The Eigen vectors



 The Eigen vectors of *C* are the major axes of the ellipsoid *Cv*, where *v* are the vectors on the unit sphere



- The Eigen vectors of *R* are the major axes of the ellipsoid *Cv* + *mm^Tv*
- Note that *mm^T* has rank 1 and *mm^Tv* is a line



The principal Eigenvector of *R* lies between the principal Eigen vector of *C* and *m*

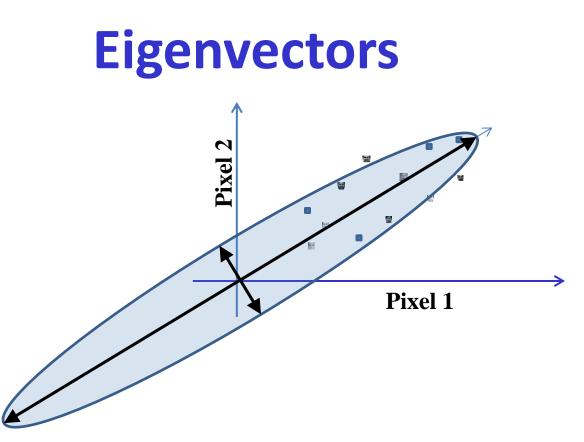
$$\mathbf{e}_{R} = \alpha \mathbf{e}_{C} + (1 - \alpha) \frac{\mathbf{m}}{\|\mathbf{m}\|}$$

 $0 \le \alpha \le 1$

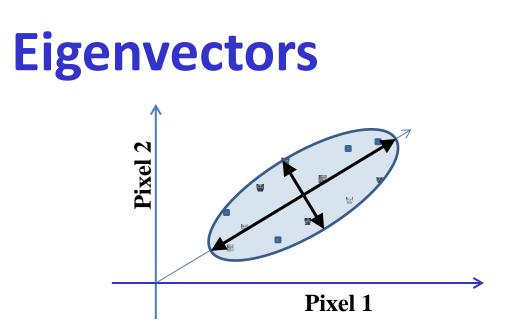
• Similarly the principal Eigen value

$$\lambda_{R} = \alpha \lambda_{C} + (1 - \alpha) \|\mathbf{m}\|^{2}$$

• Similar logic is not easily extendable to the other Eigenvectors, however



- Turns out: Eigenvectors of the *correlation* matrix represent the major and minor axes of an ellipse centered at the origin which encloses the data most compactly
- The SVD of data matrix X uncovers these vectors
 - KLT

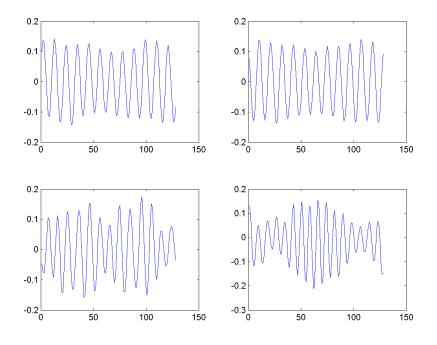


- Turns out: Eigenvectors of the *covariance* represent the major and minor axes of an ellipse centered at the *mean* which encloses the data most compactly
- PCA uncovers these vectors
- In practice, "Eigen faces" refers to PCA faces, and not KLT faces

What about sound?

• Finding Eigen bases for speech signals:

- Look like DFT/DCT
- Or wavelets



• DFTs are pretty good most of the time

Eigen Analysis

- Can often find surprising features in your data
- Trends, relationships, more
- Commonly used in recommender systems

• An interesting example..

Eigen Analysis

Figure 1. Experiment setup @Wean Hall mechanical space. Pipe with arrow indicates a 10" diameter hot water pipe carrying pressurized hot water flow, on which piezoelectric sensors are installed every 10 ft. A National instruments data acquisition system is used to acquire and store the data for later processing.

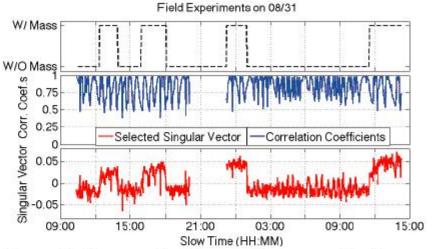


Figure 2. Damage detection results compared with conventional methods. Top: Ground truth of whether the pipe is damaged or not. Middle: Conventional method only captures temperature variations, and shows no indication of the presence of damage. Bottom: The SVD method clearly picks up the steps where damage are introduced and removed.

- Cheng Liu's research on pipes..
- SVD automatically separates useful and uninformative features