

Machine Learning for Signal Processing Data driven representations: 1. Eigenfaces and Eigenrepresentations

Class 5. 15 Sep 2015

Instructor: Bhiksha Raj

Recall: Representing images

aboard Apollo space capsule. 1038 x 1280 - 142k LIFE

Apollo Xi 1280 x 1255 - 226k LIFE

aboard Apollo space capsule. 1029 x 1280 - 128k LIFE

Building Apollo space ship. 1280 x 1257 - 114k LIFE

aboard Apollo space capsule. 1017 x 1280 - 130k **I IFF**

1228 x 1280 - 181k LIFE

Apollo 10 space ship, w. 1280 x 853 - 72k LIFE

Splashdown of Apollo XI mission. 1280 x 866 - 184k LIFF

Earth seen from space during the 1280 x 839 - 60k **LIFE**

Apollo Xi 844 x 1280 - 123k **I IFF**

1223 x 1280 - 214k LIFE

Apollo 11 1280 x 1277 - 142k LIFE

Apollo 8 Crew 968 x 1280 - 125k **LIFF**

- The most common element in the image: background
	- Or rather large regions of relatively featureless shading
	- Uniform sequences of numbers

• Checkerboards with different variations

$$
\text{Im}\, a \, e \approx w_1 B_1 + w_2 B_2 + w_3 B_3 + \dots
$$
\n
$$
W = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ \vdots \end{bmatrix} \qquad B = [B_1 \ B_2 \ B_3]
$$
\n
$$
BW \approx \text{Im}\, a \, g \, e
$$
\n
$$
W = \text{pinv}(B) \text{Im}\, a \, g \, e
$$
\n
$$
PROJECTION = BW
$$

- "Bases" are the "standard" units such that all instances can be expressed a weighted combinations of these units
- Ideal requirements: Bases must be orthogonal
- Checkerboards are one choice of bases
	- Orthogonal
	- But not "smooth"
- Other choices of bases: Complex exponentials, Wavelets, etc..

Data specific bases?

- **Issue**: **The bases we have considered so far are** *data agnostic*
	- Checkerboards, Complex exponentials, Wavelets..
	- We use the same bases regardless of the data we analyze
		- Image of face vs. Image of a forest
		- Segment of speech vs. Seismic rumble
- How about data specific bases
	- Bases that consider the underlying data
		- E.g. is there something better than checkerboards to describe faces
		- Something better than complex exponentials to describe music?

The Energy Compaction Property

- **Define "better"?**
- The description

 $X = w_1 B_1 + w_2 B_2 + w_3 B_3 + ... + w_N B_N$

- The ideal: $\hat{X}_i \approx w_1 B_1 + w_2 B_2 + ... + w_i B_i$ $v_1 - w_2 - v_2$ $Error_i = \|X - \hat{X}_i\|^2$ $Error_{\tilde{i}} < Error_{\tilde{i}-1}$
	- If the description is terminated at any point, we should still get most of the information about the data
		- Error should be small

Data-specific description of faces

- A collection of images
	- All normalized to 100x100 pixels
- What is common among all of them?
	- Do we have a common descriptor?

A typical face

The typical face

- **Assumption: There is a "typical" face that captures most of what is common to all faces**
	- Every face can be represented by a scaled version of a typical face
	- $-$ We will denote this face as V
- Approximate **every** face f as $f = w_f V$
- Estimate V to minimize the squared error
	- $-$ How? What is V ?

A collection of least squares typical faces

- Approximate every face f as $f = w_{f,1} V_1 + w_{f,2} V_2 + w_{f,3} V_3 + ... + w_{f,k} V_k$
	- $\rm ~V_2$ is used to "correct" errors resulting from using only $\rm V_1.$ So on average

$$
f - (w_{f,1}V_{f,1} + w_{f,2}V_{f,2})\|^{2} < ||f - w_{f,1}V_{f,1}||^{2}
$$

 V_3 corrects errors remaining after correction with V_2

$$
\left\|f-(w_{f,1}V_{f,1}+w_{f,2}V_{f,2}+w_{f,3}V_{f,3})\right\|^2 < \left\|f-(w_{f,1}V_{f,1}+w_{f,2}V_{f,2})\right\|^2
$$

– And so on..

 $-$ **V** = $[V_1 \, V_2 \, V_3]$

- Estimate V to minimize the squared error
	- *How? What is V?*

A recollection

$$
U = NS \approx M
$$

$$
S = \text{pinv}(N)M
$$

- Finding the best explanation of music M in terms of notes N
- Also finds the *score* S of M in terms of N

11-755/18-797 10

- Finding the *notes* N given music M and score S
- Also finds best explanation of M in terms of S

11-755/18-797 11

Find the four notes and their score that generate the closest approximation to M

11-755/18-797 12

The same problem

Typical faces

- $U =$ Approximation
- Here V, W and U are ALL unknown and must be determined \bullet
	- Such that the squared error between U and F is minimum
- For each face \bullet

V

-
$$
f = w_{f,1} V_1 + w_{f,2} V_2 + w_{f,3} V_3 + ... + w_{f,K} V_K
$$

- For the collection of faces: $F \approx V W$ \bullet
	- $-$ V is $D x K$ and W is $K x N$
		- D is the no. of pixels, N , is the no. of faces in the set ٠

11-755/18-797

Abstracting the problem: Finding the *FIRST* **typical face**

• Each "point" represents a face in "pixel space"

- Each "point" represents a face in "pixel space"
- Any "typical face" V is a vector in this space

- Each "point" represents a face in "pixel space"
- The "typical face" V is a vector in this space
- The *approximation* w_f V for any face f is the *projection* of f onto V
- The distance between f and its projection w_fV is the *projection error* for f

- *Every* face in our data will suffer error when approximated by its projection on V
- The total squared length of all error lines is the *total squared projection error*

Abstracting the problem: Finding the *FIRST* **typical face**

Abstracting the problem: Finding the *FIRST* **typical face**

Abstracting the problem:

Abstracting the problem: Finding the *FIRST* **typical face**

- The problem of finding the first typical face V_1 : Find the V for which the total projection error is minimum!
- This "minimum squared error" V is our "best" first typical face
- **It is also the first** *Eigen face*

- Consider: approximating **x** = *w***v**
	- E.g **x** is a face, and "**v**" is the "typical face"
- Finding an approximation *w***v** which is closest to **x**
	- In a Euclidean sense
	- Basically projecting **x** onto **v**

Formalizing the Problem: Error from approximating a single vector v

- Projection of a vector **x** on to a vector **v** $\hat{\mathbf{x}} = \mathbf{v} \frac{\mathbf{v} \cdot \mathbf{x}}{|\mathbf{v}|^2}$ $\mathbf{v}^T \mathbf{x}$ $\hat{\mathbf{x}} = \mathbf{v} \frac{\mathbf{v} - \mathbf{x}}{|\mathbf{v}|^2}$ $T_{\bullet r}$ $= \mathbf{v} \frac{\mathbf{v} \cdot \mathbf{A}}{a}$
- Assuming **v** is of unit length: $\hat{\mathbf{x}} = \mathbf{v}\mathbf{v}^T\mathbf{x}$

error =
$$
\mathbf{x} - \hat{\mathbf{x}}
$$
 = $\mathbf{x} - \mathbf{w}^T \mathbf{x}$ squared error = $\|\mathbf{x} - \mathbf{w}^T \mathbf{x}\|^2$

MLSI Error from approximating a single vector v vv T**x** \geq **x-vv** T**x x**

• Minimum squared approximation error from approximating **x** as it as *w***v**

x

$$
e(\mathbf{x}) = \left\| \mathbf{x} - \mathbf{v} \mathbf{v}^T \mathbf{x} \right\|^2
$$

• Optimal value of $w: w = \mathbf{v}^T \mathbf{x}$

MLSF Error from approximating a single vector v vv T**x** \geq **x-vv** T**x x**

• Error from projecting a vector **x** on to a vector onto a unit vector **v** $e(\mathbf{x}) = ||\mathbf{x} - \mathbf{w}^T \mathbf{x}||^2$ $e(\mathbf{x}) = ||\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}$

x

$$
e(\mathbf{x}) = (\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})^T (\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}) = (\mathbf{x}^T - \mathbf{x}^T\mathbf{v}\mathbf{v}^T)(\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})
$$

$$
= \mathbf{x}^T\mathbf{x} - \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{x} - \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{x} + \mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{v}\mathbf{v}^T\mathbf{x}
$$

MLSF Error from approximating a single vector v vv T**x** \geq **x-vv** T**x x**

• Error from projecting a vector **x** on to a vector onto a unit vector **v** $e(\mathbf{x}) = ||\mathbf{x} - \mathbf{w}^T \mathbf{x}||^2$ $e(\mathbf{x}) = ||\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}$

x

$$
e(\mathbf{x}) = (\mathbf{x} - \mathbf{w}^T \mathbf{x})^T (\mathbf{x} - \mathbf{w}^T \mathbf{x}) = (\mathbf{x}^T - \mathbf{x}^T \mathbf{w}^T) (\mathbf{x} - \mathbf{w}^T \mathbf{x})
$$

$$
= \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{w}^T \mathbf{x} - \mathbf{x}^T \mathbf{w}^T \mathbf{x} + \mathbf{x}^T \mathbf{w}^T \mathbf{w}^T \mathbf{x}
$$

MLSF Error from approximating a single vector v vv T**x** \geq **x-vv** T**x x**

• Error from projecting a vector **x** on to a vector onto a unit vector **v** $e(\mathbf{x}) = ||\mathbf{x} - \mathbf{w}^T \mathbf{x}||^2$ $e(\mathbf{x}) = ||\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}$

x

$$
e(\mathbf{x}) = (\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})^T (\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x}) = (\mathbf{x}^T - \mathbf{x}^T\mathbf{v}\mathbf{v}^T)(\mathbf{x} - \mathbf{v}\mathbf{v}^T\mathbf{x})
$$

$$
= \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x} - \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x} + \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x}
$$

$$
e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x}
$$

MLSP Error from approximating a single vector v vv T**x**

This is the very familiar pythogoras' theorem!!

Error for *many* **vectors**

- Error for one vector: $e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x}$
- Error for many vectors

$$
E = \sum_{i} e(\mathbf{x}_{i}) = \sum_{i} (\mathbf{x}_{i}^{T} \mathbf{x}_{i} - \mathbf{x}_{i}^{T} \mathbf{w}^{T} \mathbf{x}_{i}) = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{x}_{i}^{T} \mathbf{w}^{T} \mathbf{x}_{i}
$$

• **Goal: Estimate v to minimize this error!**

Error for *many* **vectors**

- Total error: $\left|E = \sum \mathbf{x}_i^T \mathbf{x}_i \sum \mathbf{x}_i^T \mathbf{v} \mathbf{v}^T \mathbf{x}_i\right|$ *i i* $i \perp \perp$ ^{\mathbf{A}_i} $E = \sum \mathbf{x}_i^T \mathbf{x}_i - \sum \mathbf{x}_i^T \mathbf{v} \mathbf{v}^T \mathbf{x}$
- Add constraint: $\mathbf{v}^T \mathbf{v} = 1$
- Constrained objective to minimize:

$$
E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{x}_{i}^{T} \mathbf{w}^{T} \mathbf{x}_{i} + \lambda (\mathbf{v}^{T} \mathbf{v} - 1)
$$

Two Matrix Identities

• Derivative w.r.t **v**

$$
E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{x}_{i}^{T} \mathbf{w}^{T} \mathbf{x}_{i} + \lambda (\mathbf{v}^{T} \mathbf{v} - 1)
$$

$$
\frac{d\mathbf{v}^T \mathbf{v}}{d\mathbf{v}} = 2\mathbf{v}
$$

$$
\frac{d\mathbf{x}^T\mathbf{v}\mathbf{v}^T\mathbf{x}}{d\mathbf{v}} = \frac{d\mathbf{v}^T\mathbf{x}\mathbf{x}^T\mathbf{v}}{d\mathbf{v}} = 2\mathbf{x}\mathbf{x}^T\mathbf{v}
$$

Minimizing error

• Differentiating w.r.t **v** and equating to 0

$$
-2\sum_i \mathbf{x}_i \mathbf{x}_i^T \mathbf{v} + 2\lambda \mathbf{v} = 0
$$

$$
\left(\sum_{i} \mathbf{X}_{i} \mathbf{X}_{i}^{T}\right) \mathbf{v} = \lambda \mathbf{v}
$$

The correlation matrix

$$
\left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}\right) \mathbf{v} = \lambda \mathbf{v}
$$

• The encircled term is the *correlation matrix*

$$
\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_N \end{bmatrix}
$$

$$
\mathbf{x} = \text{Data Matrix}
$$

$$
\mathbf{x} = \frac{\sum_{i} \mathbf{x}_i \mathbf{x}_i^T = \mathbf{X} \mathbf{X}^T = \mathbf{R}}{\sum_{i} \sum_{i} \sum_{i} \sum_{j} \sum_{j} \sum_{k} \text{for relation}}
$$

$$
\sum_{i} \mathbf{x}_i \mathbf{x}_i^T = \mathbf{X} \mathbf{X}^T = \mathbf{R}
$$

The best "basis"

- The minimum-error basis is found by solving $Rv = \lambda v$
- **v** is an Eigen vector of the correlation matrix **R** $-\lambda$ is the corresponding Eigen value

What about the total error?

$$
E = \sum_i \mathbf{x}_i^T \mathbf{x}_i - \sum_i \mathbf{v}^T \mathbf{x}_i \mathbf{x}_i^T \mathbf{v}
$$

• $\mathbf{x}^T \mathbf{v} = \mathbf{v}^T \mathbf{x}$ (inner product)

$$
= \sum_i \mathbf{x}_i^T \mathbf{x}_i - \mathbf{v}^T \Bigg(\sum_i \mathbf{x}_i \mathbf{x}_i^T \Bigg) \mathbf{v}
$$

$$
E = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \mathbf{v}^{T} \mathbf{R} \mathbf{v} = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \mathbf{v}^{T} \lambda \mathbf{v} = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \lambda \mathbf{v}^{T} \mathbf{v}
$$

$$
E = \sum_{i} \mathbf{x}_i^T \mathbf{x}_i - \lambda
$$

Minimizing the error

- The total error is $=\sum \mathbf{x}_i^T \mathbf{x}_i$ *i* $E = \sum_{i} \mathbf{x}_i^T \mathbf{x}_i - \lambda$
- We already know that the optimal basis is an Eigen vector
- The total error depends on the *negative* of the corresponding Eigen value
- To *minimize* error, we must *maximize*
- i.e. Select the Eigen vector with the largest Eigen value

The typical face

- Compute the correlation matrix for your data $-$ Arrange them in matrix **X** and compute $R = XX^T$
- Compute the *principal* Eigen vector of R
	- The Eigen vector with the largest Eigen value
- This is the typical face

The *approximation* **with the first**

- The first typical face models some of the characteristics of the faces
	- Simply by scaling its grey level
- But the approximation has error

• The *second* typical face must explain some of this error

The *second* **typical face**

The *first* typical face

- Approximation with only the first typical face has error
- The *second* face must explain this error
- How do we find this this face?

Solution: Iterate

• Get the "error" faces by subtracting the first-level approximation from the original image

Solution: Iterate

• Get the "error" faces by subtracting the first-level approximation from the original image

• Repeat the estimation on the "error" images

Abstracting the problem: Finding the *second* **typical face**

- Each "point" represents an *error* face in "pixel space"
- Find the vector V_2 such that the projection of these error faces on V_2 results in the least error

Minimizing error

• Differentiating w.r.t **v** and equating to 0

$$
-2\sum_{i} \mathbf{e}_{i} \mathbf{e}_{i}^{T} \mathbf{v} + 2\lambda \mathbf{v} = 0
$$

$$
\left(\sum_{i} \mathbf{e}_{i} \mathbf{e}_{i}^{T}\right) \mathbf{v} = \lambda \mathbf{v}
$$

Minimizing error

The same math applies but now to the set of *error data points*

• The minimum-error basis is found by solving

$$
\mathbf{R}_e \mathbf{v}_2 = \lambda \mathbf{v}_2 \qquad \qquad \mathbf{R}_e = \sum \mathbf{e} \mathbf{e}^T
$$

• \mathbf{v}_2 is an Eigen vector of the correlation matrix \mathbf{R}_e corresponding to the largest eigen value λ of **R**_e

Which gives us our second typical face

- But approximation with the two faces will *still* result in error
- So we need more typical faces to explain *this* error
- We can do this by subtracting the appropriately scaled version of the second "typical" face from the error images and repeating the process

Solution: Iterate Error face Second-level error

• Get the secondlevel "error" faces by subtracting the scaled second typical face from the first-level error

Repeat the estimation on the second-level "error" images

An interesting property

- Each "typical face" will be orthogonal to all other typical faces
	- Because each of them is learned to explain what the rest could not
	- None of these faces can explain one another!

To add more faces

- We can continue the process, refining the error each time
	- An instance of a procedure is called "Gram-Schmidt" orthogonalization

• OR… we can do it all at once

- Approximate **every** face f as $f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k$
- Here W, V and U are ALL unknown and must be determined
	- Such that the squared error between U and M is minimum

With multiple bases

- **•** Assumption: all bases v_1 v_2 v_3 .. are unit length
- Assumption: all bases are orthogonal to one another: $\mathbf{v}_i^T \mathbf{v}_j = 0$ if $i := j$
	- We are trying to find the optimal K-dimensional subspace to project the data
	- Any set of vectors in this subspace will define the subspace
	- Constraining them to be orthogonal does not change this
- I.e. if $V = [v_1 v_2 v_3 ...]$, $V^T V = I$
	- $-$ Pinv(**V**) = V^T
- Projection matrix for $V = VPinv(V) = VV^T$

With multiple bases

• Projection for a vector

$$
\hat{\mathbf{x}} = \mathbf{V}\mathbf{V}^T\mathbf{x}
$$

• Error vector $= |{\bf x}-\hat{{\bf x}} = {\bf x} - {\bf V}{\bf V}^T{\bf x}$

• Error length =

$$
e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{V} \mathbf{V}^T \mathbf{x}
$$

With multiple bases

• Error for one vector:

$$
e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{V} \mathbf{V}^T \mathbf{x}
$$

• Error for many vectors

$$
E = \sum_i \mathbf{x}_i^T \mathbf{x}_i - \sum_i \mathbf{x}_i^T \mathbf{V} \mathbf{V}^T \mathbf{x}_i
$$

• **Goal: Estimate V to minimize this error!**

Minimizing error

• With constraint **V**^T**V** = **I**, objective to minimize

$$
E = \sum_{i} \mathbf{x}_i^T \mathbf{x}_i - \sum_{i} \mathbf{x}_i^T \mathbf{V} \mathbf{V}^T \mathbf{x}_i + trace\left(\Lambda\left(\mathbf{V}^T \mathbf{V} - \mathbf{I}\right)\right)
$$

- $-$ Note: now Λ is a diagonal matrix
- $-$ The constraint simply ensures that $\mathbf{v}^T\mathbf{v} = 1$ for every basis
- Differentiating w.r.t **V** and equating to 0

$$
-2\left(\sum_i \mathbf{x}_i \mathbf{x}_i^T\right) \mathbf{V} + 2\Lambda \mathbf{V} = 0
$$

Finding the optimal K bases

- Compute the Eigendecompsition of the correlation matrix
- Select *K* Eigen vectors
- But which *K*?
- Total error =

$$
E = \sum_{i} \mathbf{x}_i^T \mathbf{x}_i - \sum_{j=1}^K \lambda_j
$$

• Select *K* eigen vectors corresponding to the *K* largest Eigen values Eigendecompsition of the

trix

vectors
 $E = \sum_i \mathbf{x}_i^T \mathbf{x}_i - \sum_{j=1}^K \lambda_j$

vectors corresponding to the *K*

alues
 $\sum_{11\text{-}755/18-797}$

Eigen Faces!

- Arrange your input data into a matrix **X**
- Compute the correlation $\mathbf{R} = \mathbf{X}\mathbf{X}^{\mathrm{T}}$
- Solve the Eigen decomposition: $\mathbf{R}\mathbf{V} = \Lambda \mathbf{V}$
- The Eigen vectors corresponding to the *K* largest eigen values are our optimal bases
- We will refer to these as *eigen faces.*

How many Eigen faces

- How to choose "K" (number of Eigen faces)
- Lay all faces side by side in vector form to form a matrix – In my example: 300 faces. So the matrix is 10000 x 300
- Multiply the matrix by its transpose
	- The correlation matrix is 10000x10000

Eigen faces

- Compute the eigen vectors
	- Only 300 of the 10000 eigen values are non-zero
		- Why?
- Retain eigen vectors with high eigen values (>0)
	- Could use a higher threshold

- eigenface3
- The eigen vector with the highest eigen value is the first typical face
- The vector with the second highest eigen value is the second typical face.
- Etc.

Representing a face

Representation $\left\| \begin{array}{ccc} 0 & \cdots & \cdots \end{array} \right\|$ = $\left[w_1 w_2 w_3 \ldots \right]^T$

• The weights with which the eigen faces must be combined to compose the face are used to represent the face!

• One outcome of the "energy compaction principle": the approximations are recognizable

• Approximating a face with one basis:

$$
f = w_1 \mathbf{v}_1
$$

• One outcome of the "energy compaction principle": the approximations are recognizable

• Approximating a face with one Eigenface:

 $f = w_1 \mathbf{v}_1$

• One outcome of the "energy compaction principle": the approximations are recognizable

• Approximating a face with 10 eigenfaces: $f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + ... w_{10} \mathbf{v}_{10}$
 \vdots \vdots

• One outcome of the "energy compaction principle": the approximations are recognizable

• Approximating a face with 30 eigenfaces:

 $f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + ... + w_{10} \mathbf{v}_{10} + ... + w_{30} \mathbf{v}_{30}$
 \vdots ...^{11-755/18-797}

• One outcome of the "energy compaction principle": the approximations are recognizable

• Approximating a face with 60 eigenfaces:

 $f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + ... + w_{10} \mathbf{v}_{10} + ... + w_{30} \mathbf{v}_{30} + ... + w_{60} \mathbf{v}_{60}$
 \vdots

How did I do this?

• Hint: only changing weights assigned to Eigen faces..

eigenface1 eigenface2

eigenface3

- The Eigenimages (bases) are very specific to the class of data they are trained on
	- Faces here
- They will not be useful for other classes

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces

• Eigen bases are class specific

- Composing a fishbowl from Eigenfaces
- With 1 basis

$$
f = w_1 \mathbf{v}_1
$$

• Eigen bases are class specific

- Composing a fishbowl from Eigenfaces
- With 10 bases

$$
f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots + w_{10} \mathbf{v}_{10}
$$

• Eigen bases are class specific

- Composing a fishbowl from Eigenfaces
- With 30 bases

$$
f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots + w_{10} \mathbf{v}_{10} + \dots + w_{30} \mathbf{v}_{30}
$$

• Eigen bases are class specific

- Composing a fishbowl from Eigenfaces
- With 100 bases

 $f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + ... + w_{10} \mathbf{v}_{10} + ... + w_{30} \mathbf{v}_{30} + ... + w_{100} \mathbf{v}_{100}$

Universal bases

• Universal bases..

- End up looking a lot like *discrete cosine transforms!!!!*
- *DCTs are the best "universal" bases*
	- *If you don't know what your data are, use the DCT*

An audio example

- The spectrogram has 974 vectors of dimension 1025
- The covariance matrix is size 1025 x 1025
- There are 1025 eigenvectors

Eigenvalues and Eigenvectors

- Left panel: Matrix with 1025 eigen vectors
- Right panel: Corresponding eigen values
	- Most Eigen values are close to zero
		- The corresponding eigenvectors are "unimportant"

Eigenvalues and Eigenvectors

- The vectors in the spectrogram are linear combinations of all 1025 Eigen vectors
- The Eigen vectors with low Eigen values contribute very little
	- $-$ The average value of a_i is proportional to the square root of the Eigenvalue
	- Ignoring these will not affect the composition of the spectrogram

- The same spectrogram projected down to the 25 eigen vectors with the highest eigen values
	- Only the 25-dimensional weights are shown
		- The weights with which the 25 eigen vectors must be added to compose a least squares approximation to the spectrogram

- The same spectrogram constructed from only the 25 Eigen vectors with the highest Eigen values
	- Looks similar
		- With 100 Eigenvectors, it would be indistinguishable from the original
	- Sounds pretty close
	- But now sufficient to store 25 numbers per vector (instead of 1024)

SVD instead of Eigen

- Do we need to compute a 10000 x 10000 correlation matrix and then perform Eigen analysis?
	- Will take a very long time on your laptop
- SVD
	- Only need to perform "Thin" SVD. Very fast
		- \cdot U = 10000 x 300
			- The columns of U are the eigen faces!
			- The Us corresponding to the "zero" eigen values are not computed
		- $S = 300 \times 300$
		- $V = 300 \times 300$

Using SVD to compute Eigenbases

[U, S, V] = SVD(X)

- U will have the Eigenvectors
- Thin SVD for 100 bases: **[U,S,V] = svds(X, 100)**
- Much more efficient

Eigen Decomposition of data

- Nothing magical about faces or sound can be applied to any data.
	- Eigen analysis is one of the key components of data compression and representation
	- Represent N-dimensional data by the weights of the K leading Eigen vectors
		- Reduces effective dimension of the data from N to K
		- But requires knowledge of Eigen vectors

Eigen decomposition of what?

• Eigen decomposition of the *correlation* matrix

• Is there an alternate way?

Linear vs. Affine

- The model we saw
	- Approximate **every** face f as $f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k$
	- Linear combination of bases
- If you add a constant $f = w_{f1} V_1 + w_{f2} V_2 + ... + w_{fk} V_k + m$
	- *Affine* combination of bases

Estimation with the constant

• Estimate

$$
f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k + m
$$

- Lets do this incrementally first:
- $f \approx m$
	- For every face
	- $-$ Find *m* to optimize the approximation

Estimation with the constant

- Estimate
	- $f \approx m$
	- for every f!
- Error over all faces $E = \sum_f ||f m||^2$
- Minimizing the error with respect to m , we simply get

$$
-m=\frac{1}{N}\sum_{f}f
$$

• The *mean* of the data

Estimation the remaining

- Same procedure as before:
	- Remaining "typical faces" must model what the constant m could not
- Subtract the constant from every data point $-\hat{f} = f - m$
- Now apply the model:

 $-\hat{f} = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k$

- This is just Eigen analysis of the "mean-normalized" data
	- Also called the "centered" data

Estimating the Affine model

$$
f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k + m
$$

First estimate the mean m \bullet

$$
m = \frac{1}{N} \sum_{f} f
$$

• Compute the correlation matrix of the "centered" data $\hat{f} = f - m$

$$
- C = \sum_f \hat{f} \hat{f}^T = \sum_f (f - m) (f - m)^T
$$

- This is the *covariance* matrix of the set of f

Estimating the Affine model

$$
f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k + m
$$

First estimate the mean m \bullet

$$
m = \frac{1}{N} \sum_{f} f
$$

- Compute the covariance matrix \bullet $- C = \sum_f (f - m)(f - m)^T$
- Eigen decompose! \bullet

11-755/18-797 The Eigen vectors corresponding to the top k Eigen values give us the bases V_k \bullet the bases V_k

Properties of the affine model

- The bases V_1 , V_2 ,..., V_k are all orthogonal to one another
	- Eigen vectors of the symmetric Covariance matrix
- But they are not orthogonal to m
	- Because m is an unscaled constant
- We could jointly estimate all $V_1, V_2, ..., V_k$ and m by minimizing

 $\sum_{f} ||f - (\sum_{f} w_{f,i}V_i + m)||^2 + trace(\Lambda(V^T V - I))$

Linear vs. Affine

- The model we saw
	- Approximate **every** face f as
		- $f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k$
	- The *Karhunen Loeve Transform*
	- Retains maximum *Energy* for any order k
- If you add a constant
	- $f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k + m$
	- *Principal Component Analysis*
	- Retains maximum *Variance* for any order k

How do they relate

• Relationship between correlation matrix and covariance matrix

 $\mathbf{R} = \mathbf{C} + mm^{\mathrm{T}}$

- *Karhunen Loeve* bases are Eigen vectors of **R**
- *PCA* bases are Eigen vectors of **C**
- How do they relate

– Not easy to say..

The Eigen vectors

• The Eigen vectors of *C* are the major axes of the ellipsoid *Cv*, where *v* are the vectors on the unit sphere

- The Eigen vectors of *R* are the major axes of the ellipsoid $Cv + mm^Tv$
- Note that *mm^T* has rank 1 and *mm^Tv* is a line

• The principal Eigenvector of *R* lies between the principal Eigen vector of *C* and *m*

$$
\mathbf{e}_R = \alpha \mathbf{e}_C + (1 - \alpha) \frac{\mathbf{m}}{\|\mathbf{m}\|}
$$

 $0 \leq \alpha \leq 1$

• Similarly the principal Eigen *value*

$$
\lambda_R = \alpha \lambda_C + (1 - \alpha) ||\mathbf{m}||^2
$$

• Similar logic is not easily extendable to the other Eigenvectors, however

- Turns out: Eigenvectors of the *correlation* matrix represent the major and minor axes of an ellipse centered at the origin which encloses the data most compactly
- The SVD of data matrix X uncovers these vectors
	- **KLT**

- Turns out: Eigenvectors of the *covariance* represent the major and minor axes of an ellipse centered at the *mean* which encloses the data most compactly
- PCA uncovers these vectors
- In practice, "Eigen faces" refers to *PCA* faces, and not KLT faces

What about sound?

• Finding Eigen bases for speech signals:

- Look like DFT/DCT
- Or wavelets

• DFTs are pretty good most of the time

Eigen Analysis

- Can often find surprising features in your data
- Trends, relationships, more
- Commonly used in recommender systems

• An interesting example..

Eigen Analysis

Figure1. Experiment setup @Wean Hall mechanical space. Pipe with arrow indicates a 10" diameter hot water pipe carrying pressurized hot water flow, on which piezoelectric sensors are installed every 10 ft. A National instruments data acquisition system is used to acquire and store the data for later processing.

Figure 2. Damage detection results compared with conventional methods. Top: Ground truth of whether the pipe is damaged or not. Middle: Conventional method only captures temperature variations, and shows no indication of the presence of damage. Bottom: The SVD method clearly picks up the steps where damage are introduced and removed.

- Cheng Liu's research on pipes..
- SVD automatically separates useful and uninformative features