Machine Learning for Signal

Processing
Data driven representations:
1. Eigenfaces and Eigenrepresentations

Class 5. 15 Sep 2015

Instructor: Bhiksha Raj
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aboard Apollo space capsule Apollo Xi aboard Apollo space capsule Building Apollo space ship aboard Apollo space capsule.
1038 x 1280 - 142k 1280 x 1255 - 226k 1029 x 1280 - 128k 1280 x 1257 - 114k 1017 x 1280 - 130k
LIFE LIFE LIFE LIFE LIFE

Apollo Xi Apollo 10 space ship. w Splashdown of Apollo XI mission Earth seen from space during the  Apollo Xi
1228 x 1280 - 181k 1280 x 853 - 72k 1280 x 866 - 184k 1280 x 839 - 60k 844 x 1280 - 123k
EIEE LIFE LIFE LIFE LIFE

e

the moon as seen from Apollo 8 Apollo 11

1223 x 1280 - 214k 1280 x 1277 - 142k
LIFE LIFE LIFE

Apollo 8
1278 x 1280 - 74k
LIFE

Apollo 8 Crew
968 x 1280 - 125k

* The most common element in the image:
background
— Or rather large regions of relatively featureless shading

— Uniform sequences of numbers
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Adding more bases

* Checkerboards with different variations

Image~ wy By + wW,B, +W3B3 +...

W =" B=[B, B; Bs]

- BW ~ Image
W = pinv(B) Image ;
PROJECTION =BW  Getting closer at 625 bases!
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“Bases”
e T
B, B, B. B,

Image = w, B, +w,B, +w,B, +...

e “Bases” are the “standard” units such that all instances can be
expressed a weighted combinations of these units

* |deal requirements: Bases must be orthogonal

* Checkerboards are one choice of bases
— Orthogonal
— But not “smooth”

* Other choices of bases: Complex exponentials, Wavelets,
etc..
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Data specific bases?

* |Issue: The bases we have considered so far are data
agnostic
— Checkerboards, Complex exponentials, Wavelets..
— We use the same bases regardless of the data we analyze

* Image of face vs. Image of a forest
* Segment of speech vs. Seismic rumble

 How about data specific bases

— Bases that consider the underlying data

e E.g.is there something better than checkerboards to describe
faces

* Something better than complex exponentials to describe music?
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MLSP

Vichielzaming for SaraProcessing Gt

The Energy Compaction Property

e Define “better”?

 The description

X =wB, +w,B, +w,B; +...+wB,

* The ideal:

A 12
X. ~W,B, +W,B, +...+W.B Error, =X - X

Error, < Error,_,

— |f the description is terminated at any point, we should
still get most of the information about the data

 Error should be small
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Data-specific description of faces ™

W ey

=

YR

* A collection of images

— All normalized to 100x100 pixels
* What is common among all of them?

— Do we have a common descriptor?
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A typical face
Q" lh h‘

The typical face

40 50 60 70 80 90 100

Assumption: There is a “typical” face that captures most of
what is common to all faces

— Every face can be represented by a scaled version of a typical face

— We will denote this face as V
* Approximate every facefast = w,V

* Estimate V to minimize the squared error
— How? Whatis V?
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III

faces that captures most of all faces

e Assumption: There are a set of K “typica

* Approximate every facefast = w¢, V,+ we, V, + we, Vo +0 +wp Vi
— V,is used to “correct” errors resulting from using only V. So on average
2 2
Hf — (W, ,1Vf ,1+Wf,2Vf,2)H <Hf — Wi ,1Vf 1”
— V;corrects errors remaining after correction with V,,
2 2
H =Wy Vg +We Vo, + WV 3)” < H f— (W Vi + W,V 2)”
— Andsoon..
- V=[V;V, V]
* Estimate V to minimize the squared error
— How? Whatis V?
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Finding the best explanation of music M in terms of notes N
Also finds the score S of M in terms of N
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N = M Pinv(S

U=NS~M

N = ’) U= ’) N =M pinv(S)

* Finding the notes N given music M and score S
e Also finds best explanation of M in terms of S
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= Find the four notes and their score that generate the
closest approximation to M
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The same problem

Typical faces

* HereV, W and U are ALL unknown and must be determined

— Such that the squared error between U and F is minimum

* For each face
- t= Wiy Vit wey Vo +wes Vi 0+ wee Vi
* For the collection of faces: F~ VW
— Vis DxK and Wis Kx N

* D isthe no. of pixels, N, is the no. of faces in the set

11-755/18-797
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Abstracting the problem: MLSP
Finding the FIRST typical face

AN

Pixel 2

v

Pixel 1

Each “point” represents a face in “pixel space”
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Abstracting the problem: MLSE
Finding the FIRST, typical face
\%

Pixel 2

v

Pixel 1

* Each “point” represents a face in “pixel space”
* Any “typical face” V is a vector in this space
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Abstracting the problem: MLSE
Finding the FIRST, typical face
\%

Pixel 2

v

Pixel 1

)

Each “point” represents a face in “pixel space’
The “typical face” V is a vector in this space
The approximation w, V for any face f is the projection of f onto V

The distance between f and its projection w.V is the projection error for £
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Abstracting the problem: MLSP
Finding the FIRST, typical face
v /"

Pixel 2

v

Pixel 1

e FEvery face in our data will suffer error when
approximated by its projection on V

* The total squared length of all error lines is the total
squared projection error
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Abstracting the problem: MLSP
Finding the FIRST, typical face
v /"

Pixel 2

v

Pixel 1

* The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!
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Abstracting the problem: MLSP
Finding the FIRST typical face

Pixel 2

v

Pixel 1

* The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!
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Abstracting the problem: MLSP
Finding the FIRST typical face

N
[ ]
| '
| \ \
\ \ \
(Q\] \ \
?) ﬂ | ﬁ\ '\‘ ‘\‘
>< \\ ‘\ W x \‘ \‘
o - % \ b5 \ )
\ M
\ V
Voo
VoA
Wy
>
Pixel 1

* The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!
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Abstracting the problem: MLSP
Finding the FIRST typical face
V

AN

Pixel 2

v

Pixel 1

* The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!
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Abstracting the problem: MLSP
Finding the FIRST typical face

AN

Vi

Pixel 2

v

Pixel 1

The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!

This “minimum squared error” V is our “best” first typical face
It is also the first Eigen face

11-755/18-797 22



Formalizing the Problem: Error from "™~

approximating a single vector

Approximating: x = wv

v

* Consider: approximating X = wv
— E.g xis a face, and “v” is the “typical face”
* Finding an approximation WV which is closest to x

— In a Euclidean sense

— Basically projecting x onto v

11-755/18-797 23



Formalizing the Problem: Error from "™~

approximating a single vector

Approximating: x = wv

~ \-i -------------------------------- > X = VVTX

N
7

* Projection of a vector X on to a vector Vv
. V'X

X=V >

v

* Assuming V is of unit length: X=w'x

2
error = x-X = x-w'x  squarederror= |x—w"x|

11-755/18-797 24



MLSP

Error from approximating a single
vector

* Minimum squared approximation error from
approximating X as it as Wv

2
e(x) = Hx = WTXH

e Optimal value of w: w=v'x

11-755/18-797 25



MLSP

Error from approximating a single
vector

* Error from projecting a vector X on to a vector
onto a unit vector v e(x)= Hx—waH2

e(x) = (x—WTx)T (X—WTX) = (xT —x'w' XX—WTX)

X' X=X"W X=X W x+x"W'w'x

11-755/18-797 26



MLSP

Error from approximating a single
vector

* Error from projecting a vector X on to a vector
onto a unit vector v e(x)= Hx—waH2

e(x) = (x—WTx)T (X—WTX) = (xT —x'w' XX—WTX)

=X' X=X W'X=X"W'Xx+x"Ww'w'x
=1

11-755/18-797 27



MLSP

Error from approximating a single
vector

* Error from projecting a vector X on to a vector
onto a unit vector v e(x)= Hx—waH2

e(x) = (x—WTx)T (X—WTX) = (xT —x'w' XX—WTX)

X' X=X"W X=X"W"'x+X"W'X

e(X) =x"x—x"w'x
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MLSP

Error from approximating a single
vector

e(X) = x'x — xTv.vTx
Y
Length of projection

This is the very familiar pythogoras’ theorem!!
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MLSP
Error for many vectors

~
7

* Error for one vector: e(X) =X' X=X W 'X
* Error for many vectors

E = Ze(xi) = Z(xiTxi —xiTWTxi) =D XX = D XiW'X

e Goal: Estimate vV to minimize this error!
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MLSP
Error for many vectors

~
7

X
* Total error: EZZXiTXi—ZXiTWTXi
i [

e Add constraint: viv=1
* Constrained objective to minimize:
E=>%%—-) X WX +/1(VTV—1)
i [

L11-/55/18-19/ 31



MLSP
Two Matrix Identities

e Derivative w.r.t v E =ZXTXi —ZXTWTXi +A(vTv-1)
dv'v
=2V
dv

dx'w'x dv'xx'v
dv dv

= 2xX' Vv

11-755/18-797 32



MLSEP
Minimizing error

~
7

E = foxi —Z)X<iTWTxi + (v v-1)

e Differentiating w.r.t v and equatingto O
—2) X X[ V+2iv=0 (ZX-XijzﬁV
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Vichielzaming for SaraProcessing Gt

The correlation matrix

= AV

e The encircled term is the correlation matrix

T T
X =[x, X, ..x,] ZX‘X‘ =X =R

X = Data Matrix

£

Correlation

Transposed
Data Matrix

XT =

11-755/18-797 34



MLSP
The best “basis”

~
7

* The minimum-error basis is found by solving
Rv = Av

* Vis an Eigen vector of the correlation matrix R
— A is the corresponding Eigen value
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Vichielzaming for SaraProcessing Gt

What about the total error?
E :inTxi —ZvTxixiTv
o XTv=vVTIX (innelr produc’lc)
- inTxi —V' (inxiT jv
E = inTxi ~V'Rv = inTxi ~V' AV = inTxi —~ V'V
E :inTxi ~A

11-755/18-797 36



Minimizing the error
The total erroris E= inTxi —A

We already know that the optimal basis is an

Eigen vector

MLSP

The total error depends on the negative of the

corresponding Eigen value
To minimize error, we must maximize A
I.e. Select the Eigen vector with the largest

Eigen value

11-755/18-797
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MLSP

The typical face

¥ F
g ¥ 0

 Compute the correlation matrix for your data
— Arrange them in matrix X and compute R = XX'

The typical face

 Compute the principal Eigen vector of R
— The Eigen vector with the largest Eigen value

* This is the typical face

11-755/18-797 38



The approximation with the first ™=

- - typical face

ﬂ | * The first typical face models
some of the characteristics
of the faces

e Simply by scaling its grey level

e But the approximation has
! “ error

 The second typical face
must explain some of this
error

11-755/18-797 39



The second typical face o

The first typical face
ﬂ w ¥ e, ”h h‘ ﬁ

' ! h& ﬁ The second typical face?
' | ,

e Approximation with only the first typical face
has error

* The second face must explain this error
* How do we find this this face?

11-755/18-797 40



Solution: Iterate

* Get the “error”
faces by
subtracting the
first-level
approximation
from the
original image

11-755/18-797 41



MLSP

Solution: Iterate

* Get the “error”
faces by
subtracting the
first-level
approximation
from the
original image

* Repeat the
estimation on
the “error”
Images

11-755/18-797 42



Abstracting the problem: MLSE
Finding the second typical face

A a

B < ERROR
¥ FACES

Pixel 2

v

Pixel 1

* Each “point” represents an error face in “pixel space”

* Find the vector V, such that the projection of these
error faces on V, results in the least error

11-755/18-797 43



MLSP

Minimizing error

A The same math applies
but now to the set

ERROR of error data points

: D e T
¥ FACES

Pixel 2

N
7

Pixel 1

E=>ele,—> efw'e + (v v—-1)
e Differentiating w.r.t v and equatingto O

_zZeieiTv—kZlV:O (Z:eieiT szZV
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Vichielzaming for SaraProcessing Gt

Minimizing error

1 The same math applies
but now to the set
o~ ! ﬂR of error data points
< Y FACES
o
S
Pixel 1 .

* The minimum-error basis is found by solving
R.vV, =Av, R, =) ee

* V, is an Eigen vector of the correlation matrix R,
corresponding to the largest eigen value A of R,

11-755/18-797 45



face

* But approximation with the two faces will still result in error
* So we need more typical faces to explain this error

* We can do this by subtracting the appropriately scaled version
of the second “typical” face from the error images and

repeating the process

11-755/18-797 46



Solution: Iterate e

Error face Second-level error

e Get the second-
level “error” faces
by subtracting the
scaled second
typical face from
the first-level error

* Repeat the
estimation on the
second-level
“error” images
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An interesting property

* Each “typical face” will be orthogonal to all
other typical faces

— Because each of them is learned to explain what
the rest could not

— None of these faces can explain one another!

11-755/18-797
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MLSP

To add more faces

 We can continue the process, refining the
error each time

— An instance of a procedure is called “Gram-
Schmidt” orthogonalization

e OR... wecandoit all at once

11-755/18-797 49



Typical faces

* Approximate every facefast =w; V,+w;, V, +.. + w; V.

e Here W,V and U are ALL unknown and must be determined
— Such that the squared error between U and M is minimum

11-755/18-797 50



MLSP

With multiple bases

[ [/ [ [ 7T [/ 77 7 [ [/ [/ 7T 777 7

Assumption: all bases v, v, v;.. are unit length

Assumption: all bases are orthogonal to one another: Viij =0ifi!=]j
— We are trying to find the optimal K-dimensional subspace to project the data
— Any set of vectors in this subspace will define the subspace
— Constraining them to be orthogonal does not change this

le.if V=[v,v,v;..], VIV=I
— Pinv(V)=VT

Projection matrix for V= VPinv(V) = VVT
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MLSP

With multiple bases

vy < Representsa
K-dimensional subspace

* Projection for a vector x=W'x

e Error vector = X—X=X—VV'X

* Errorlength = g(x)=x"x—x"WTx
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MLSP

With multiple bases

N

N
7

T T T
e Error for one vector: €(X)=X X=X WV X
* Error for many vectors

E=> Xx{X,—> x{ WX

e Goal: Estimate V to minimize this error!
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Minimizing error
* With constraint VTV = |, objective to
minimize

E =D XX~ 2 X W, +trace(A(VTV 1))

— Note: now A is a diagonal matrix

— The constraint simply ensures that v'v = 1 for
every basis

e Differentiating w.r.t V and equatingto 0

- Sxx v+ 2av=0



MLSP

Finding the optimal K bases
RV = AV

Compute the Eigendecompsition of the
correlation matrix

Select K Eigen vectors
But which K? K
. T
Totalerror= E= in X _Z;/Ij
| J=

Select K eigen vectors corresponding to the K
largest Eigen values
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Eigen Faces!

=l -}
LS
IER

Arrange your input data into a matrix X

e Compute the correlation R = XXT
e Solve the Eigen decomposition: RV = AV

* The Eigen vectors corresponding to the Klargest eigen values
are our optimal bases

 We will refer to these as eigen faces.
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How many Eigen faces

300x10000

10000x300 10000x10000

* How to choose “K” (hnumber of Eigen faces)

e Lay all faces side by side in vector form to form a matrix
— In my example: 300 faces. So the matrix is 10000 x 300

* Multiply the matrix by its transpose
— The correlation matrix is 10000x10000

11-755/18-797 57



Eigen faces

[U,S] = eig(correlation)

A . 0. 0 | N T
0 4 0 . O u_| S8
| E Eeee
(O
==
. . . . . Q) Q) L
0 0 . Aoooo) e

 Compute the eigen vectors

Only 300 of the 10000 eigen values are non-zero
e Why?

* Retain eigen vectors with high eigen values (>0)

Could use a higher threshold

11-755/18-797
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Eigen Faces

eigenfacel :
J eigenface2
SN _ ; _
4 o ! : '
O O N |
=L Lo : = ‘
O O ’
<= . r—
ORO) L

o
0 50 100 150 200 250 300 350 400 450 500

‘eig'enf-aceS

The eigen vector with the highest eigen value is the first typical face

The vector with the second highest eigen value is the second typical
face.

Etc.
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Representation -

* The weights with which the eigen faces must
be combined to compose the face are used to
represent the face!
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MLSP
Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognizable

* Approximating a face with one basis:
f =wv,
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MLSP
Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognizable

* Approximating a face with one Eigenface:
f =wv,

11-755/18-797 62



MLSP
Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognizable

&

* Approximating a face with 10 eigenfaces:
f =w v, +W,v, +..W,V,,
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MLSP
Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognizable

* Approximating a face with 30 eigenfaces:

f =WV, +W,V, +...+ W,V +...+ W,y Vs,
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MLSP
Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognizable

* Approximating a face with 60 eigenfaces:

f =WV, +W,V, +. W Vg +. W Vo ..+ Wi Vg,
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How did | do this?

10
20
30
40
50
60
70
80

90

100 L H
10 20 30 40 50 60 70 80 90 100

* Hint: only changing weights assigned to Eigen faces..

11-755/18-797
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MLSP
Class specificity

eigenfacel eigenface2

eigenface3

* The Eigenimages (bases) are very specific to
the class of data they are trained on
— Faces here

* They will not be useful for other classes
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MLSP
Class specificity

* Eigen bases are class specific

 Composing a fishbowl| from Eigenfaces
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MLSP
Class specificity

* Eigen bases are class specific

 Composing a fishbowl| from Eigenfaces
e With 1 basis

f =wyv,
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MLSE
Class specificity

* Eigen bases are class specific

 Composing a fishbowl| from Eigenfaces
* With 10 bases

f =wVv, +W,Vv, +...+W,V,,
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Class specificity

* Eigen bases are class specific

 Composing a fishbowl| from Eigenfaces
* With 30 bases

f =WV, +W,V, +...+ W,V +...+ W,y Vs,
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Class specificity

* Eigen bases are class specific

 Composing a fishbowl| from Eigenfaces
* With 100 bases

F =WV + WV, 4o A WiV e+ WagViag . WigoVi g
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MLSP
Universal bases

e Universal bases..

10 20 30 10 20 30 10 20 30 10 20 30

* End up looking a lot like discrete cosine transforms!!!!

 DCTs are the best “universal” bases
— If you don’t know what your data are, use the DCT
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MLSP

An audio example

1000
s00 [
sool
oo |-
600
SO0 - =

42400

300 —

200

100 = 2

* The spectrogram has 974 vectors of dimension
1025

 The covariance matrix is size 1025 x 1025
* There are 1025 eigenvectors
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MLSP
Eigenvalues and Eigenvectors

* Left panel: Matrix with 1025 eigen vectors

* Right panel: Corresponding eigen values
— Most Eigen values are close to zero

* The corresponding eigenvectors are “unimportant”
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MLSP

Vichiedzaming for SaraProcessing G

 The vectors in the spectrogram are linear combinations of all
1025 Eigen vectors

* The Eigen vectors with low Eigen values contribute very little

— The average value of a, is proportional to the square root of the
Eigenvalue

— lIgnoring these will not affect the composition of the spectrogram
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An audio examele

reduced_[vl - V25]

MLSP

Vichiedzaming for SaraProcessing G

M lowdim — PinV (Vreduced) M

| | | B [ I158 § B E N LI | e | |m im EIEEN | 1l i) ey (= | i B |
100 200 300 400 S00 S00 TOO S00 D00

The same spectrogram projected down to the 25 eigen
vectors with the highest eigen values

— Only the 25-dimensional weights are shown

* The weights with which the 25 eigen vectors must be added to
compose a least squares approximation to the spectrogram

11-755/18-797
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MLSP

An audio example

&
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-l =8 2 = = E= ] - —— | 3 - A=3 = == - ol e = = - -
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== - »n = _— - iy = T - _i— _— — = =]
acof— — — ° e =TS — s Slases_— = = __—Slam =
zoofiEEE=g=— = =—"—— -—— = e ———— == _——— e
= —-— _— = e — =
100 | — == = = =93> = -:_7 e —
i—' 5 = 1 = — e —
[ela] =200 pcials) als) 500 S00 Fgsls) t=ials) D00

M V M

reconstruded — reduced lowdim

* The same spectrogram constructed from only the 25
Eigen vectors with the highest Eigen values
— Looks similar
* With 100 Eigenvectors, it would be indistinguishable from the original
— Sounds pretty close

— But now sufficient to store 25 numbers per vector (instead of
1024)
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SVD instead of Eigen

S=300x300| [V=300x300
U=10000x300

eigenfacel
eigenface2
.
o

Do we need to compute a 10000 x 10000 correlation matrix and
then perform Eigen analysis?
— Will take a very long time on your laptop

* SVD

— Only need to perform “Thin” SVD. Very fast

* U =10000 x 300

— The columns of U are the eigen faces!
— The Us corresponding to the “zero” eigen values are not computed

* S=300x300
* V=300x300
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Using SVD to compute Eigenbases

[U, S, V] = SVD(X)

* U will have the Eigenvectors

e Thin SVD for 100 bases:
[U,S,V] = svds(X, 100)
e Much more efficient
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Eigen Decomposition of data

* Nothing magical about faces or sound — can
be applied to any data.

— Eigen analysis is one of the key components of
data compression and representation

— Represent N-dimensional data by the weights of
the K leading Eigen vectors
* Reduces effective dimension of the data from N to K
* But requires knowledge of Eigen vectors
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Eigen decomposition of what?

* Eigen decomposition of the correlation matrix

* |s there an alternate way?

11-755/18-797 83



MLSP

Linear vs. Affine

e The model we saw

— Approximate every face f as
t =we Vi+we, V, +o+we Vi

— Linear combination of bases

* |f you add a constant
f — Wf,l V1+ Wf}z VZ —l_ + Wf,k Vk + m
— Affine combination of bases
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Estimation with the constant

e Estimate
f = Wiy V,+ Wy V, +.. + Wi V., +m

* Lets do this incrementally first:
. fx~m
— For every face
— Find m to optimize the approximation
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Estimation with the constant

Estimate
f ~m
— for every f!

Error over all faces E = Y ¢||f —m||?

Minimizing the error with respect to m, we
simply get

-m= 3 f

The mean of the data
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Estimation the remaining

Same procedure as before:

— Remaining “typical faces” must model what the constant m
could not

Subtract the constant from every data point
—f=f-m

Now apply the model:

- f= Wy Vit Wiy Vo Fo +we Vy

This is just Eigen analysis of the “mean-normalized”
data

— Also called the “centered” data
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Estimating the Affine model

f — Wf,1 V1+ Wf,Z V2 + + Wf,k Vk -+ m
e First estimate the mean m
¥
m= —
N
f

* Compute the correlation matrix of the “centered”
dataf =f —m

— C=3 TS (F —m)(f —m)"

— This is the covariance matrix of the set of f
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Estimating the Affine model

f — Wf’1 V1+ Wf,Z VZ +... + Wf,k Vk + m
First estimate the mean m
N
m= —
N
f
Compute the covariance matrix
~ C=X,(f —m)(f —m)T

Eigen decompose!

CV=AV

The Eigen vectors corresponding to the top k Eigen values give us
the bases V,
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Properties of the affine model

* ThebasesV,V,,..,V, are all orthogonal to one
another

— Eigen vectors of the symmetric Covariance matrix

* But they are not orthogonal to m

— Because m is an unscaled constant

* We could jointly estimate all V,, V, ...,V ,and m
by minimizing
Yellf — X pweiVi + m)||*+trace(A(VTV — I))
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Linear vs. Affine

* The model we saw

— Approximate every face f as
t =we Vi + W) V, ..+ Wil Vi

— The Karhunen Loeve Transform
— Retains maximum Energy for any order k

* |f you add a constant
f =wg Vit we Vo T+ we Vi +m
— Principal Component Analysis
— Retains maximum Variance for any order k
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How do they relate

Relationship between correlation matrix and

covariance matrix

R=C+mm'

Karhunen Loeve bases are Eigen vectors of R
PCA bases are Eigen vectors of C

How do they relate
— Not easy to say..
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The Eigen vectors

T R MM”‘*«H

* The Eigen vectors of C are the major axes of
the ellipsoid Cv, where v are the vectors on
the unit sphere
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The Eig%n vectors

...........
-----------------

* The Eigen vectors of R are the major axes of
the ellipsoid Cv+ mm'v

* Note that mm’ has rank 1 and mm'vis a line
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The Eig%n vectors

mmT

The principal Eigenvector of R lies between the principal Eigen vector of C
and m

m
eR:aeC_l_(l_a)— 0<a<l
Similarly the principal Eigen value
I =00 +(L=a) [ m]°

Similar logic is not easily extendable to the other Eigenvectors, however
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Eigenvectors

N

v

Pixel 1

Turns out: Eigenvectors of the correlation matrix represent the

major and minor axes of an ellipse centered at the origin which
encloses the data most compactly

The SVD of data matrix X uncovers these vectors
o KLT
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Eigenvectors

N

N

Pixel 2

v

Pixel 1

Turns out: Eigenvectors of the covariance represent the major and

minor axes of an ellipse centered at the mean which encloses the
data most compactly

PCA uncovers these vectors

In practice, “Eigen faces” refers to PCA faces, and not KLT faces

11-755/18-797 97



What about sound?

Finding Eigen bases for speech signa

Look like DFT/DCT
Or wavelets

0.2 0.2
0.1 ] 01
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0 4

0.1

-01 ] 0.2
-0.2 . - 0.3
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|s:

0 4
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0.2 - ‘
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DFTs are pretty good most of the time

11-755/18-797

MLSP

Vichielzaming for SaraProcessing Gt

98



Eigen Analysis

Can often find surprising features in your data
Trends, relationships, more

Commonly used in recommender systems

An interesting example..
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Eigen Analysis

Field Expenments on 08/31

Figurel. Experiment setup @Wean Hall mechanical
space. Pipe with arrow indicates a 10” diameter hot
water pipe carrying pressurized hot water flow, on
which piezoelectric sensors are installed every 10 ft.
A National instruments data acquisition system is
used to acquire and store the data for later

processing.
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Figure 2. Damage detection results compared with
conventional methods. Top: Ground truth of whether
the pipe is damaged or not. Middle: Conventional
method only captures temperature variations, and
shows no indication of the presence of damage.
Bottom: The SVD method clearly picks up the steps

where damage are introduced and removed.

* Cheng Liu’s research on pipes..
e SVD automatically separates useful and uninformative

features

11-755/18-797

100



