Machine Learning for Signal

Processing
Detecting faces (& other objects) in
images
Class 7. 22 Sep 2015

11755/18979

. MLSP
Last Lecture: How to describe a face

The typical face
: ...!

* A “typical face” that captures the essence of
“facehood”..

* The principal Eigen face..

11755/18979 2

A collection of least squares typical faces

* Extension: Many Eigenfaces

* Approximate every face fas t = w;; V,+ we, V, +.. + w V,
— V,is used to “correct” errors resulting from using only V,
— V; corrects errors remaining after correction with V,
— And soon..

e V=[V,V,V;] can be computed through Eigen analysis

11755/18979

Detecting Faces in Images

11755/18979

Detectlng Faces in Images

* Finding face like patterns
— How do we find if a picture has faces in it
— Where are the faces?

* Asimple solution:
— Define a “typical face”
— Find the “typical face” in the image

11755/18979

Given an image and a ‘typical’ facé™
how do | find the faces?

100X 100

(RGB)

11755/18979 6

Finding faces in an image

* Picture is larger than the “typical face”
— E.g. typical face is 100x100, picture is 600x800

* First convert to greyscale
—R+G+8B
— Not very useful to work in color

11755/18979

Finding faces in an image

* Goal .. To fmd out |f and where images that

look like the “typica

III

face occur in the picture

11755/18979 8

Finding faces in an image

L

 Try to “match” the typical face to each

location in the picture

11755/18979

Finding faces in an image

 Try to “match” the typical face to each

location in the picture

L

11755/18979

10

Finding faces in an image

 Try to “match” the typical face to each

location in the picture

L

11755/18979

11

Finding faces in an image

 Try to “match” the typical face to each

location in the picture

L

11755/18979

12

Finding faces in an image

 Try to “match” the typical face to each

location in the picture

L

11755/18979

13

Finding faces in an image

* Tryto match” the typical face to each

location in the picture

11755/18979

14

Finding faces in an image

L

 Try to “match” the typical face to each

location in the picture

11755/18979

15

Finding faces in an image

* Tryto match” the typical face to each

location in the picture

11755/18979

16

Finding faces in an image

* Tryto match” the typical face to each

location in the picture

11755/18979

17

Finding faces in an image

A -l [
Vo o

e typical face to each location in

* Try to “match” th
the picture

 The “typical face” will explain some spots on the
image much better than others

— These are the spots at which we probably have a face!

11755/18979 18

How to “match”

What exactly is the “match”

)

— What is the match “score’

11755/18979

19

How to “match”

What exactly is the “match”
— What is the match “score”

The DOT Product
— Express the typical face as a vector
— Express the region of the image being evaluated as a vector
— Compute the dot product of the typical face vector and the “region”
vector

11755/18979

20

* The right panel shows the dot product at
various locations

— Redder is higher

* The locations of peaks indicate locations of faces!

11755/18979 21

* The right panel shows the dot product at various
locations
— Redder is higher
* The locations of peaks indicate locations of faces!
* Correctly detects all three faces
— Likes George’s face most
* He looks most like the typical face
* Also finds a face where there is none!

— A false alarm
11755/18979 22

* The right panel shows the dot product at various
locations
— Redder is higher
* The locations of peaks indicate locations of faces!
* Correctly detects all three faces
— Likes George’s face most
* He looks most like the typical face

 Also finds a face where there is none!

— Afalse alarm e AR EE oo
11755/18979 \ »?'h ug& 23

Sliding windows solves only the
issue of location — what about
scale?

Not all faces are the same size

JUDYBATS

P

Some people have bigger faces

The size of the face on the image
changes with perspective

Our “typical face” only represents
one of these sizes

11755/18979 24

Scale-Space Pyramid

Figure 1.4: The Scale-Space Pyramid. The detector is run using the sliding windows approach
over the input image at various scales. When the scale of the person matches the detector scale
the classifier will (hopefully) fire yielding an accurate detection.

11755/18979

25

MLSP

wrhmrir |1 Py e

Speed concerns

* Sliding windows AND Scale-space pyramid
may yield million’s of ‘windows’ to investigate!

* Especially for small objects in large images

11755/18979 26

Location — Scale — What about Rotation?

e The head need not
always be upright!

* Our typical face
image was upright

11755/18979 27

Solution

* Create many “typical faces”
— One for each scaling factor

— One for each rotation
* How will we do this?

 Match them all
e Does this work
— Kind of .. Not well enough at all

— We need more sophisticated models

11755/18979

28

MLSE

Face Detection: A Quick Historical Perspectivé |

Input image pyramid ~ Extracted window Corrected lighting Histogram equalized
(20 by 20 pixels)

Input

Network

Receptive fields) .
Hidden units

Preprocessing

Neural network

Figure 1: The basic algorithm used for face detection.

 Many more complex methods

— Use edge detectors and search for face like patterns
— Find “feature” detectors (noses, ears..) and employ them in complex

neural networks..

e The Viola Jones method
— Boosted cascaded classifiers

11755/18979

29

Face Detection: A Quick Historical Perspective

Input image pyramid ~ Extracted window Corrected lighting Histogram equalized Receptive fields

(20 by 20 pixels) Hidden units

o ul
°503
C 504 =)
.0
&0
— e e o
o
= ¢
ﬁo
/ o
o
o
= e ® ®

Preprocessing Neural network

Figure 1: The basic algorithm used for face detection.

Many more complex methods
— Use edge detectors and search for face like patterns

— Find “feature” detectors (noses, ears..) and employ them in complex
neural networks..

 The Viola Jones method (20K+ Citations!)
— Boosted cascaded classifiers

11755/18979 30

MLSP

wrhmrir |1 Py e

And even before that — what is classification?

* Given “features” describing an entity, determine the
category it belongs to

— Walks on two legs, has no hair. Is this
* A Chimpanizee
* A Human

— Has long hair, is 5’6" tall, is this
* Aman
* Awoman

— Matches “eye” pattern with score 0.5, “mouth pattern” with
score 0.25, “nose” pattern with score 0.1. Are we looking at

A face
* Not a face?

11755/18979 31

Classification

e Multi-class classification

— Many possible categories
* E.g.Sounds “AH, IY, UW, EY..”
* E.g. Images “Tree, dog, house, person..”

* Binary classification

— Only two categories
* Man vs. Woman
* Face vs. not a face...

11755/18979

32

Detection vs Classification

 Detection: Find an X
e Classification: Find the correct label X,Y,Z etc.

11755/18979

33

Detection vs Classification

 Detection: Find an X
e Classification: Find the correct label X,Y,Z etc.

* Binary Classification as Detection: Find the
correct label X or not-X

11755/18979

34

Face DEtECtIOﬂ dS CIaSS|f|cat|on

For each square, run a
classifier to find out if it
Is a face or not

Faces can be many sizes
They can happen anywhere in the image

For each face size

— For each location

» Classify a rectangular region of the face size, at that location, as a face or
not a face

This is a series of binary classification problems

11755/18979 35

Binary classification

Classification can be abstracted as follows
H: X 2 (+1,-1)
A function H that takes as input some X and outputs a +1 or -1

— Xis the set of “features”
— +1/-1 represent the two classes

Many mechanisms (may types of “H”)
— Any many ways of characterizing “X”

We’ Il look at a specific method based on voting with simple rules
— A“META” method

11755/18979 36

Introduction to Boosting

An ensemble method that sequentially combines many simple
BINARY classifiers to construct a final complex classifier

— Simple classifiers are often called “weak” learners

— The complex classifiers are called “strong” learners

Each weak learner focuses on instances where the previous
classifier failed

— Give greater weight to instances that have been incorrectly classified
by previous learners

Restrictions for weak learners
— Better than 50% correct

Final classifier is weighted sum of weak classifiers

11755/18979

37

Boosting: A very simple idea

 One can come up with many rules to classify
— E.g. Chimpanzee vs. Human classifier:
— If arms == long, entity is chimpanzee
— If height > 5’6" entity is human
— If lives in house == entity is human
— If lives in zoo == entity is chimpanzee

 Each of them is a reasonable rule, but makes many mistakes

— Each rule has an intrinsic error rate

 Combine the predictions of these rules
— But not equally
— Rules that are less accurate should be given lesser weight

11755/18979

Boosting and the Chimpanzee Problem™ ™

Arm length? Height? Lives in house? Lives in zoo?
armlength ahelght Ohouse Oz00

ﬁ ﬁ Chi%np ChiJ;np

The total confidence in all classifiers that classify the entity as a
chimpanzee is SCOr&himp = Zaclassifier
classifier favors chimpanzee

The total confidence in all classifiers that classify it as a human is

SCOréyman= Zaclassiﬁer

classifier favors human

If Score pimpanzee > SCOr€4,mqn then the our belief that we have a chimpanzee
is greater than the belief that we have a human

11755/18979 39

MLSP

Howrbamrir | ¢ oy Perveie ey

Boosting

* The basic idea: Can a “weak” learning algorithm
that performs just slightly better than a random
guess be boosted into an arbitrarily accurate
“strong” learner

* Thisis a “meta” algorithm, that poses no
constraints on the form of the weak learners
themselves

Boosting: A Voting Perspective

* Boosting is a form of voting
— Let a number of different classifiers classify the data
— Go with the majority

— Intuition says that as the number of classifiers increases,
the dependability of the majority vote increases
* Boosting by majority

* Boosting by weighted majority
— A (weighted) majority vote taken over all the classifiers
— How do we compute weights for the classifiers?
— How do we actually train the classifiers

11755/18979

41

MLSP

Howrbamrir | ¢ oy Perveie ey

ADA Boost

* Challenge: how to optimize the classifiers and
their weights?
— Trivial solution: Train all classifiers independently
— Optimal: Each classifier focuses on what others missed
— But joint optimization becomes impossible

* Adaptive Boosting: Greedy incremental
optimization of classifiers

— Keep adding classifiers incrementally, to fix what
others missed

AdaBoost

ILLUSTRATIVE
EXAMPLE

11755/18979

43

AdaBoost

First WEAK Learner

I
|
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
|
I

hy

11755/18979 44

AdaBoost

The First Weak
Learner makes
Errors

SR

O
O

11755/18979 45

AdaBoost

Reweighted data

I
|
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
|
I

hy

11755/18979 46

AdaBoost

SECOND Weak Learner

FOCUSES ON DATA
“MISSED” BY FIRST
LEARNER

hy

11755/18979

47

AdaBoost

|
1

SECOND STRONG Learner Combines both Weak Learners

11/700/10373

48

AdaBoost

1

RETURNING TO THE SECOND WEAK LEARNER

11/050/10373

49

AdaBoost

o

The SECOND Weak
Learner makes
Errors

11755/18979 50

AdaBoost

Reweighting data

——— e @ Saas e s | B s e 2 e 2SS 02 SEae 020 SEae Saae 020 Smas 00 S

|
I
I
I
I
I
I

hi

11755/18979

51

Loarmer o AdaBoost

FOCUSES ON DATA
“MISSED” BY FIRST
AND SECOND
LEARNERS

hy hs

11755/18979 52

AdaBoost -

hi

11755/18979

Boosting: An Example ans

4

-6

-8 ,) | . |
-8 -6 -4 -2 0 5 p

* Red dots represent training data from Red class
* Blue dots represent training data from Blue class

11755/18979 -

Boosting: An Example

4

-8
8 -6 -4 -2 0 2 4

* The final strong learner has learnt a complicated decision
boundary

11755/18979

55

Boosting: An Example ans

* The final strong learner has learnt a complicated decision boundary

e Decision boundaries in areas with low density of training
points assumed inconsequential

11755/18979 56

Overall Learning Pattern

= Strong learner increasingly accurate with increasing
number of weak learners

= Residual errors increasingly difficult to correct
— Additional weak learners less and less effective

Q.5 T T T
w-x._/vx-ﬂ——' B ey R s e i Riamasi
LAY T
0.45 - l.l'h
f
,/ Error of nt weak learner
0.4
ﬁ ’
0.35
l% |
0.31\}/}
Ve ety en e L ’
%) 100 120 200 250

pumber of weak lea
11755/18979 57

= Note: Can
EVEN afte

Overfitting

continue to add weak learners
r strong learner error goes to 0!

= Shown to IMPROVE generalization!

Q.5

= {(¢]
o
Eﬁ
e

T T
VO o O e e e e e

!

Error of nt" weak learner

Thismaygoto0 |

58

AdaBoost: Summary

No relation to Ada Lovelace

Adaptive Boosting

Adaptively Selects Weak Learners

MLSP

wrhmrir |1 Py e

~8K citations for just one paper for Freund and

Schapire

11755/18979

59

The ADABoost Algorithm

* Initialize D,(x;) = 1/N
*fFort=1, .. T
— Train a weak classifier h, using distribution D,
— Compute total error on training data
* & =Sum {D, (x;) 72(1 -y, hi(x)))}
—Seta,=%In((1-¢,) /¢,
—Fori=1... N
* set D,,,(x;) = D,(x;) exp(- a, y; h(x;))
— Normalize D,,, to make it a distribution
* The final classifier is
— H(x) = sign(X, o, h,(x))

11755/18979

60

First, some example data

' = 0.3E1-0.6 E2 i:o.z E1+04E2

—05E1-05E? W:-o.s E1-0.1 E2
=] —07E1-0.1E2 —0.4E1-09E2
H — 0.6 E1- 0.4 E2 —02EL+05E?

Image = a*E1 + b*E2 - a = Image.E1

e Face detection with multiple Eigen faces
e Step 0: Derived top 2 Eigen faces from Eigen face training data

e Step 1: On a (different) set of examples, express each image
as a linear combination of Eigen faces
— Examples include both faces and non faces
— Even the non-face images are explained in terms of the Eigen faces

11755/18979 61

Training Data

A' =03E1-06E2

D E: 0.2 E1+ 0.4 E2

E %W: -0.8E1-0.1 E2

CRY/ =07E1-01E2
DM—OGEl 0.4 E2 G =0.2E1+05E2
ID E1 E2. Class
A 0.3 -0.6 +1 Face = +1
B 0.5 -0.5 +1
C 0.7 0.1) Non-face = -1
D 0.6 -0.4 +1
mulanlin e o e v pr e T
F -0.8 -0.1 -1
G 0.4 -0.9 -1
H 0.2 05 -1

11755/18979

62

The ADABoost Algorithm

* Initialize D,(x;) = 1/N

*fFort=1, .. T
— Train a weak classifier h, using distribution D,
— Compute total error on training data
* & =5Sum {D, (x;) %2(1 -y, hi(x)))}
—Setao,=%In((1-¢,) /¢,
—Fori=1...N
* set D,,,(x;) = D,(x;) exp(- a, y; h(x;))
— Normalize D,,, to make it a distribution
* The final classifier is
— H(x) = sign(XZ, o, h,(x))

11755/18979

63

Initialize D,(x;) = 1/N

Training Data

' - 0.3E1-0.6E2 _02E1+04E2
—05EL-05E2 %’z-O.SEl-O.lEZ
=) —07E1-0.1E2 —0.4E1-09E2
M:o.ﬁEl-OAEz —02EL+05E?
ID El E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 04 -1 1/8

F 0.8 0.1 1 18

G 04 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

11755/18979

65

The ADABoost Algorithm

* Initialize D,(x;) = 1/N
*fFort=1, .. T
— Train a weak classifier h, using distribution D,
— Compute total error on training data
* & =5Sum {D, (x;) %2(1 -y, hi(x)))}
—Seta,=%In(g,/(1—-¢,)
—Fori=1...N
* set D,,,(x;) = D,(x;) exp(- a, y; h(x;))
— Normalize D,,, to make it a distribution
* The final classifier is
— H(x) = sign(XZ, o, h,(x))

11755/18979

66

The E1 “Stump”

EHAGBCD

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

Sign = +1, error = 3/8
Sign = -1, error =5/8

Classifier based on E1:

if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

ID El E2. Class Weight
A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/18979

67

The E1 “Stump” e

Classifier based on E1:
FE H A G B C D lit(signwtEl) > thresh) > 0)

0. face = tfrue

1/8|1/8 1/8 1/8 1/8 1/8 1/8 1/8

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error =5/8

ID El E2. Class Weight
A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/18979 68

The E1 “Stump”

1/8|1/8 1/8 1/8 1/8 1/8 1/8 1/8

Sign = +1, error = 3/8
Sign = -1, error =5/8

Classifier based on E1:

if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

ID El E2. Class Weight
A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/18979

69

The E1 “Stump”

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Sign = +1, error = 3/8
Sign = -1, error =5/8

Classifier based on E1:

if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

ID El E2. Class Weight
A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/18979

70

The E1 “Stump”

EHAGBCD

1/8‘1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

Sign = +1, error = 3/8
Sign = -1, error =5/8

Classifier based on E1:

if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

ID El E2. Class Weight
A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/18979

71

EHAGBCD

1/8 1/811/8 1/8 1/8 1/8 1/8 1/8

threshold

The E1 “Stump”

Sign = +1, error = 2/8
Sign = -1, error = 6/8

Classifier based on E1:

if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

ID El E2. Class Weight
A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/18979

72

The E1 “Stump”

EHAGBCD

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
face = tfrue

sign = +1 or -1

1/8 1/8 1/8‘1/8 1/8 1/8 1/8 1/8

threshold

Sign = +1, error=1/8
Sign =-1, error =7/8

ID El E2. Class Weight
A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/18979

73

The E1 “Stump”

EHAGBCD

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
face = tfrue

sign = +1 or -1

1/8 1/8 1/8 1/811/8 1/8 1/8 1/8

threshold

Sign = +1, error = 2/8
Sign = -1, error = 6/8

ID El E2. Class Weight
A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/18979

74

The E1 “Stump”

EHAGBCD

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
face = tfrue

sign = +1 or -1

1/8 1/8 1/8 1/8 1/8r/8 1/8 1/8

threshold

Sign = +1, error=1/8
Sign =-1, error=7/8

ID El E2. Class Weight
A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/18979

75

The E1 “Stump”

EHAGBCD

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
face = tfrue

sign = +1 or -1

1/8 1/8 1/8 1/8 1/8 1/811/8 1/8

threshold

Sign = +1, error = 2/8
Sign = -1, error = 6/8

ID El E2. Class Weight
A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 1 1/8

11755/18979

76

EHAGBCD

1/8 1/8 1/8 1/8 1/8r/8 1/8 1/8

The Best E1 “Stump”

threshold

Sign = +1, error =1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

Sign = +1
Threshold = 0.45

ID El E2. Class Weight
A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/18979

77

Note order

The E2“Stump”

rGABDCF

1/811/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)

face = true

sign = +1 or -1

threshold | = — — — = —>

Sign = +1, error = 3/8

Sign = -1, error =5/8
ID El E2. Class Weight
A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/18979

78

The Best E2“Stump”

GABDCF

1/8 1/8 1/8 1/8 1/8 1/811/8 1/8

threshold

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)

face = true

sign = -1
Threshold = 0.15

Sign = -1, error = 2/8

ID El E2. Class Weight
A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/18979

79

The Best “Stump”

EHAGBCD

1/8 1/8 1/8 1/8 1/8r/8 1/8 1/8

threshold

The Best overall classifier

based on a single feature is
based on E1

If (wt(E1) > 0.45) > Face

Sign = +1, error=1/8

ID El E2. Class Weight
A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/18979

80

The Best “Stump”

|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I

hy

11755/18979

81

The ADABoost Algorithm

* Initialize D,(x;) = 1/N
*fFort=1, .. T
— Train a weak classifier h, using distribution D,
— Compute total error on training data
* & =Sum {D, (x;) %2(1 -y, hi(x;))}
—Seta,=%In(g,/(1—-¢,)
—Fori=1...N

* set D,,,(x;) = D,(x;) exp(- a, y; h,(x;))
— Normalize D,,, to make it a distribution
 The final classifier is

— H‘X’ - Slg“<2t (X.t llt‘Xih)55/18979

82

The Best “Stump”

11111111111

MLSP

wrlair |1y ey ey

The Best Error

E H A GB C D

The Error of the classifier
------ -- is the sum of the weights of

1/8 1/8 1/8 1/8 1/811/8 1/8 1/8 | the misclassified instances

threshold
Sign = +1, error =

ID El E2. Class Weight
A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

NOTE: THE ERROR IS THE SUM OF THE WEIGHTS OF MISCLASSIFIED
INSTANCES

11755/18979

The ADABoost Algorithm

* Initialize D,(x;) = 1/N
*fFort=1, .. T
— Train a weak classifier h, using distribution D,
— Compute total error on training data
* & =Sum {D, (x;) %2(1 -y, h,(x;))}
—Seto,=%In((1-¢,)/¢)
—Fori=1...N
* set D,,,(x;) = D,(x;) exp(- a, y; h(x;))
— Normalize D,,, to make it a distribution
* The final classifier is
— H(x) = sign(XZ, o, h,(x))

11755/18979

85

Computing Alpha
E H A G B C D
Alpha = 0.5In((1-1/8) / (1/8))
IIIIIIII
1/8 1/8 1/8 1/8 1/811/8 1/8 1/8 = 0.5In(7) = 0.97

threshold
Sign = +1, error =

11755/18979 86

The Boosted Classifier Thus Far

E H A G B C D
Alpha = 0.5In((1-1/8) / (1/8))

1/8 1/8 1/8 1/8 1/811/8 1/8 1/8 = 0.5In(7) = 0.97

threshold
Sign = +1, error =

hi(X) = wt(E1l) > 0.45 ? +1 : -1

H(X) = sign(0.97 * h1(X))

It's the same as h1(x)

11755/18979 87

The ADABoost Algorithm

* Initialize D,(x;) = 1/N
*fFort=1, .. T
— Train a weak classifier h, using distribution D,

— Compute total error on training data

* g, = Average {%: (1 -y, h,(x))}
—Setao,=%In((1-¢,) /¢,
—Fori=1...N

* set D,,,(x;) = D,(x;) exp(- a, y; h(x;))
— Normalize D,,, to make it a distribution

* The final classifier is
— H(x) = sign(X; o, hy(x))

11755/18979

88

EHAGBCD

1/8 1/8 1/8 1/8 1/8r/8 1/8 1/8

The Best Error

Dy (X;) = D(X;) exp(- a, y; hy (x;))

exp(o,) = exp(0.97) = 2.63

threshold exp(-a,) = exp(-0.97) = 0.38
ID El E2. Class Weight Weight
A 0.3 -0.6 +1 1/8 *2.63 0.33
B 0.5 -0.5 +1 1/8 * 0.38 0.05
[0.7 -0.1 +1 1/8 * 0.38 0.05
D 0.6 -0.4 +1 1/8 * 0.38 0.05
E 0.2 0.4 1 1/8 * 0.38 0.05
F -0.8 0.1 -1 1/8 * 0.38 | 0.05
G 0.4 -0.9 1 1/8 * 0.38 0.05
H 0.2 0.5 1 1/8 * 0.38 0.05

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63

11755/18979

89

AdaBoost
%
OONG
Co -

11111111111

MLSP

wrlair |1y ey ey

AdaBoost

I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I

hy

11755/18979

91

The ADABoost Algorithm

* Initialize D,(x;) = 1/N
*fFort=1, .. T
— Train a weak classifier h, using distribution D,

— Compute total error on training data

* g, = Average {%: (1 -y, h,(x))}
—Setao,=%In((1-¢,) /¢,
—Fori=1...N

* set D,,,(x;) = D,(x;) exp(- a, y; h,(x;))
— Normalize D,,, to make it a distribution

* The final classifier is
— H(x) = sign(X; o, hy(x))

11755/18979

92

The Best Error

E H A GB C D

D’=D /sum(D)

1/8 1/8 1/8 1/8 1/8r/8 1/8 1/8

threshold

ID El E2. Class Weight Weight Weight
A 0.3 -0.6 +1 1/8 *2.63 0.33 0.48

B 0.5 -0.5 +1 1/8 *0.38 0.05 0.074
C 0.7 -0.1 +1 1/8*0.38 0.05 0.074
D 0.6 -0.4 +1 1/8 *0.38 0.05 0.074
E 0.2 0.4 1 1/8 * 0.38 0.05 0.074
F -0.8 0.1 -1 1/8 * 0.38 0.05 '| 0.074
G 0.4 -0.9 1 1/8 * 0.38 0.05 0.074
H 0.2 0.5 1 1/8 * 0.38 0.05 0.074

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0

11755/18979

EHAGBCD

1/8 1/8 1/8 1/8 1/8r/8 1/8 1/8

The Best Error

D’=D /sum(D)

threshold

ID E1l E2. Class Weight
A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 1 0.074
H 0.2 0.5 1 0.074

Multiply the correctly classified instances by 0.38

Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0

11755/18979

94

The ADABoost Algorithm

* Initialize D,(x;) = 1/N
*fFort=1, .. T
— Train a weak classifier h, using distribution D,

— Compute total error on training data
* &, = Average {2 (1 -y, h(x))}
—Seta,=%In(g,/(1—-¢,)
—Fori=1...N
* set D,,,(x;) = D,(x;) exp(- a, y; h,(x;))
— Normalize D,,, to make it a distribution

* The final classifier is
— H(x) = sign(X; o, hy(x))

11755/18979

95

E1 classifier

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

H A G B face = true

.O74$074 .074 .48 .074 .074 .074 .074 sign = +1 or -1

threshold

Sign = +1, error = 0.222
Sign =-1, error = 0.778

ID El E2. Class Weight
A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074

11755/18979 96

H

E1 classifier

AGB

.074 .0741.074 .48 .074 .074 .074 .074

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

threshold | = = = = = = >

Sign = +1, error = 0.148

Sign = -1, error = 0.852
ID El E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074

11755/18979

97

The Best E1 classifier

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

H A G B face = true

.074 .074 .0741.48 .074 .074 .074 .074 sign = +1 or -1

threshold

Sign = +1, error = 0.074

ID El E2. Class Weight
A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074

11755/18979 98

The Best E2 classifier

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)

G A B D C F face = true

.074 .48 .074 .074 .074 .0741.074 .074 sign = +1 or -1

threshold

Sign = -1, error = 0.148

ID El E2. Class Weight
A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074

11755/18979 99

The Best Classifier

Classifier based on E1:
if (Wt(E1) > 0.45) face = true

HAGB

.074 .074 .0741.48 .074 .074 .074 .074

Alpha = 0.5In((1-0.074) / 0.074)
threshold = 1.26
Sign = +1, error = 0.074
ID El E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074

11755/18979 100

The Boosted Classifier Thus Far

H A G B
.074 .074 .074‘.48 .074 .074 .074 .074
threshold h1(X) = wt(E1) > 0.45 ? +1 : -1
threshold
h2(X) = wt(E1) > 0.25 ? +1 : -1

H(X) = sign(0.97 * h1(X) + 1.26 * h2(X))

11755/18979

101

Reweighting the Data

HAGB

.074 .074 .0741.48 .074 .074 .074 .074

threshold

Sign = +1, error = 0.074

Exp(alpha) = exp(1.26) = 3.5
Exp(-alpha) = exp(-1.26) = 0.28

11755/18979

ID El E2. Class Weight

A 0.3 -0.6 +1 0.48*0.28 0.32
B 0.5 -0.5 +1 0.074*0.28 0.05
C 0.7 -0.1 +1 0.074*0.28 0.05
D 0.6 -0.4 +1 0.074*0.28 0.05
E 0.2 0.4 -1 0.074*0.28 0.05
F -0.8 0.1 -1 0.074*0.28 0.05
G 0.4 -0.9 -1 0.074*3.5 0.38
H 0.2 0.5 -1 0.074*0.28 0.05

L)
RENORMALIZE

102

Reweighting the Data

H A G B NOTE: THE WEIGHT OF “G”

- ----- -- WHICH WAS MISCLASSIFIED

074 074 .0741.48 074 074 074 074 oY THESECOND CLASSIFIER

IS NOW SUDDENLY HIGH
threshold
Sign = +1, error = 0.074

ID El E2. Class Weight

A 0.3 0.6 +1 0.480.28 0.32
B 0.5 -0.5 +1 0.074*0.28 0.05
C 0.7 -0.1 +1 0.074*0.28 0.05
D 0.6 -0.4 +1 0.074*0.28 0.05
E 0.2 0.4 -1 0.074*0.28 0.05
F -0.8 0.1 -1 0.074*0.28 0.05
G 0.4 0.9 1 0.074*35 0.38
H 0.2 0.5 -1 0.074*0.28 0.05

RENORMALIZE

11755/18979 103

AdaBoost

* In this example both of our first two classifiers were

based on E1
— Additional classifiers may switch to E2

* In general, the reweighting of the data will result in a
different feature being picked for each classifier

* This also automatically gives us a feature selection
strategy
— In this data the wt(E1) is the most important feature

AdaBoost

 NOT required to go with the best classifier so far

* For instance, for our second classifier, we might use the
best E2 classifier, even though its worse than the E1
classifier

— So long as its right more than 50% of the time

 We can continue to add classifiers even after we get 100%
classification of the training data

— Because the weights of the data keep changing

— Adding new classifiers beyond this point is often a good
thing to do

ADA Boost

“: 0.4E1-0.4E2 ;: ; |
i : - §
=5 . E, ‘

 The final classifier is
— H(x) = sign(Z, a, h,(x))

* The outputis 1 if the total weight of all weak
learners that classify x as 1 is greater than the

total weight of all weak learners that classify it as
-1

11755/18979 106

MLSP

wrhmrir |1 Py e

Boosting and Face Detection

* Boosting is the basis of one of the most
popular methods for face detection: The
Viola-Jones algorithm

— Current methods use other classifiers like SVMs,
but adaboost classifiers remain easy to implement
and popular

— OpenCV implements Viola Jones..

11755/18979 107

The problem of face detection

* 1. Defining Features

— Should we be searching for noses, eyes, eyebrows etc.?

* Nice, but expensive

— Or something simpler

e 2.Selecting Features

— Of all the possible features we can think of, which ones make
sense

e 3. Classification: Combining evidence

— How does one combine the evidence from the different
features?

11755/18979

108

Features The Viola Jones Method

™ A

g “uigy

|mageleBl+szz +W3|33+... - ﬁ

* Integral Features!!
— Like the Checkerboard
 The same principle as we used to decompose images in terms of
checkerboards:
— The image of any object has changes at various scales
— These can be represented coarsely by a checkerboard pattern
* The checkerboard patterns must however now be localized

— Stay within the region of the face

11755/18979 109

Features

* Checkerboard Patterns to represent facial features
— The white areas are subtracted from the black ones.

— Each checkerboard explains a localized portion of the
Image
* Four types of checkerboard patterns (only)

11755/18979 110

Explaining a portion of the face with a

checker..

0115,

How much is the difference in average intensity of the image
in the black and white regions
— Sum(pixel values in white region) — Sum(pixel values in black region)

This is actually the dot product of the region of the face
covered by the rectangle and the checkered pattern itself
— White =1, Black=-1

11755/18979 111

“Integral” features

* Each checkerboard has the following characteristics
— Length
— Width
— Type
» Specifies the number and arrangement of bands

* The four checkerboards above are the four used by Viola and Jones

11755/18979

112

Integral images

Summed area tables

For each pixel store the sum of ALL pixels to the left of and above it.

11755/18979

113

Fast Computation of Pixel Sums

A B

C D

To compute the sum of the pixels within “D”:
— Pixelsum(1) = Area(A)

— Pixelsum(2) = Area(A) + Area(B)

— Pixelsum(3) = Area(A) + Area(C)

— Pixelsum(4) = Area(A)+Area(B)+Area(C) +Area(D)

Area(D) = Pixelsum(4) — Pixelsum(2) — Pixelsum(3) + Pixelsum(1)
11755/18979 114

A Fast Way to Compute the Feature

A B

e Store pixel table for every pixel in the image
— The sum of all pixel values to the left of and above the pixel
e LetA, B,C,D,E, Fbethe pixel table values at the locations shown
— Total pixel value of black area=D+A—-B—-C
— Total pixel value of whitearea=F+C—-D-E
— Featurevalue=(F+C-D-E)-(D+A-B-C)

11755/18979 115

How many features?

—

\
PxH

—

MxN

—

—

—

—

—

—

—

—

* Each checker board of width P and height H can start at any of
(N-P)(M-H) pixels

e (M-H)*(N-P) possible starting locations

— Each is a unique checker feature
e E.g. at one location it may measure the forehead, at another the chin

How many features
———

e Each feature can have many sizes

— Width from (min) to (max) pixels
— Height from (min ht) to (max ht) pixels
* Ateach size, there can be many starting locations

— Total number of possible checkerboards of one type:
No. of possible sizes x No. of possible locations

* There are four types of checkerboards
— Total no. of possible checkerboards: VERY VERY LARGE!

MLSP

wrhmrir |1 Py e

Learning: No. of features

* Analysis performed on images of 24x24 pixels
only

— Reduces the no. of possible features to about
180000

e Restrict checkerboard size
— Minimum of 8 pixels wide

— Minimum of 8 pixels high
e Other limits, e.g. 4 pixels may be used too

— Reduces no. of checkerboards to about 50000

11755/18979 118

No. of features

CIEIEIE K

F1 |[F2 |F3|F4]..... F180000
m 7 19 (2 |-11..... 12
Qj 11|13 [191(171..... 2

Each possible checkerboard gives us one feature
A total of up to 180000 features derived from a 24x24 image!

Every 24x24 image is now represented by a set of 180000
numbers
— This is the set of features we will use for classifying if it is a face or not!

11755/18979 119

The Classifier

* The Viola-Jones algorithm uses AdaBoost with “stumps”

* At each stage find the best feature to classify the data
with
— |.e the feature that gives us the best classification of all the
training data

* Training data includes many examples of faces and non-face
images

— The classification rule is of the kind
 If feature > threshold, face (or if feature < threshold, face)
* The optimal value of “threshold” must also be determined.

11755/18979 120

MLSP

wrhmrir |1 Py e

To Train

* Collect a large number of facial images
— Resize all of them to 24x24
— These are our “face” training set

* Collect a much much much larger set of 24x24
non-face images of all kinds

— Each of them is
— These are our “non-face” training set

* Train a boosted classifier

The Viola Jones Classifier
JU,DYBATS

* During tests:

— Given any new 24x24 image
* R= Z;a;(f>p;0(f))
e Only a small number of features (f < 100) typically used

* Problems:

— Only classifies 24 x 24 images entirely as faces or non-faces
* Pictures are typically much larger
* They may contain many faces
e Faces in pictures can be much larger or smaller

— Not accurate enough

11755/18979 122

Scan the image
— Classify each 24x24 rectangle from the photo

— All rectangles that get classified as having a face indicate the location
of a face

For an NxM picture, we will perform (N-24)*(M-24) classifications
If overlapping 24x24 rectangles are found to have faces, merge them

11755/18979 123

Multiple faces in the picture

.‘
1)
= B
»
4
\

Scan the image
— Classify each 24x24 rectangle from the photo

— All rectangles that get classified as having a face indicate the location
of a face

For an NxM picture, we will perform (N-24)*(M-24) classifications
If overlapping 24x24 rectangles are found to have faces, merge them

11755/18979 124

Multiple faces in the picture

Scan the image
— Classify each 24x24 rectangle from the photo

— All rectangles that get classified as having a face indicate the location
of a face

For an NxM picture, we will perform (N-24)*(M-24) classifications
If overlapping 24x24 rectangles are found to have faces, merge them

11755/18979 125

Multiple faces in the picture

Scan the image
— Classify each 24x24 rectangle from the photo

— All rectangles that get classified as having a face indicate the location
of a face

For an NxM picture, we will perform (N-24)*(M-24) classifications
If overlapping 24x24 rectangles are found to have faces, merge them

11755/18979 126

Picture size solution

* We already have a
classifier JUnBATS
— That uses weak v -
learners okt

* Scale the Picture
— Scale the picture

down by a factor a
: JUDYBATS
— Keep decrementing =l

down to a minimum
reasonable size

11755/18979 127

False Rejection vs. False Detection

* False Rejection: There’s a face in the image, but the classifier misses it
— Rejects the hypothesis that there’s a face
* False detection: Recognizes a face when there is none.

* Classifier:
— Standard boosted classifier: H(x) = sign(X, a, h,(x))
— Modified classifier H(x) = sign(Z, o, h,(x) +Y)
e 2,0, h/(x)is a measure of certainty
— The higher it is, the more certain we are that we found a face

e IfYislarge, then we assume the presence of a face even when we are not
sure

— By increasing Y, we can reduce false rejection, while increasing false
detection

11755/18979 128

ROC

% False detection
0. 100

100

As Y Increases

%False Rejectin

o

* |deally false rejection will be 0%, false detection will also

be 0%
 AsY increaases, we reject faces less and less
— But accept increasing amounts of garbage as faces

 CansetY so that we rarely miss a face

11755/18979 129

MLSEP

.

Problem: Not accurate enough, too slow

» Classifier 1 Classifier 2
Not a face Not a face

* |f we setY high enough, we will never miss a
face
— But will classify a lot of junk as faces

e Solution: Classify the output of the first
classifier with a second classifier

— And so on.

11755/18979 130

Problem: Not accurate enough, too slow

' _ All Sub-windows

v . .
N T TN T N T “Further
I_\ 1 —l"' 2 ""-.\ 3 J . Processing’

PR

Reject Sub—window

* |f we setY high enough, we will never miss a
face
— But will classify a lot of junk as faces

e Solution: Classify the output of the first
classifier with a second classifier

— And so on.

11755/18979

131

Useful Features Learned by Boosting

EE
|5 1=

11755/18979 132

A Cascade of Classifiers

" All Sub-windows

N T N T N T / Further
)R 2 " 3)\ Processing/

FEF

Reject Sub—-window

AN

11755/18979

133

Detection in Real Images

Basic classifier operates on 24 x 24 subwindows

Scaling:
— Scale the detector (rather than the images)
— Features can easily be evaluated at any scale
— Scale by factors of 1.25

Location:
— Move detector around the image (e.g., 1 pixel increments)

Final Detections
— A real face may result in multiple nearby detections

— Postprocess detected subwindows to combine overlapping detections
into a single detection

11755/18979 134

ing

In paper, 24x24 images of faces and non faces (positive and negative

Train

examples).

135

11755/18979

Sample results using the Viola-Jones Detector

* Notice detection at multiple scales

11755/18979 136

More Detection Examples

11755/18979

137

Practical implementation

Details discussed in Viola-Jones paper
Training time = weeks (with 5k faces and 9.5k non-faces)
Final detector has 38 layers in the cascade, 6060 features

700 Mhz processor:

— Can process a 384 x 288 image in 0.067 seconds (in 2003 when
paper was written)

11755/18979 138

Best Window/Background Issues

g T

11755/18979 139

Best Window/Background Issues

11755/18979 140

MLSE
Best Window/Background Issues

Patch Height

Person Height

140
100

11755/18979 141

Key Ideas

EigenFace feature

Sliding windows & scale-space pyramid
Boosting an ensemble of weak classifiers
Integral Image / Haar Features

Cascaded Strong Classifiers

MLSP

wrhmrir |1 Py e

