
Machine Learning for Signal
Processing

Detecting faces (& other objects) in
images

Class 7. 22 Sep 2015

11755/18979 1

Last Lecture: How to describe a face

• A “typical face” that captures the essence of
“facehood”..

• The principal Eigen face..

11755/18979 2

The typical face

A collection of least squares typical faces

• Extension: Many Eigenfaces

• Approximate every face f as f = wf,1 V1+ wf,2 V2 +.. + wf,k Vk
– V2 is used to “correct” errors resulting from using only V1

– V3 corrects errors remaining after correction with V2

– And so on..

• V = [V1 V2 V3] can be computed through Eigen analysis

11755/18979 3

Detecting Faces in Images

11755/18979 4

Detecting Faces in Images

• Finding face like patterns
– How do we find if a picture has faces in it

– Where are the faces?

• A simple solution:
– Define a “typical face”

– Find the “typical face” in the image
11755/18979 5

Given an image and a ‘typical’ face
how do I find the faces?

11755/18979 6

+

100×100

400×200

(RGB)

+

Finding faces in an image

• Picture is larger than the “typical face”

– E.g. typical face is 100x100, picture is 600x800

• First convert to greyscale

– R + G + B

– Not very useful to work in color

11755/18979 7

Finding faces in an image

• Goal .. To find out if and where images that
look like the “typical” face occur in the picture

11755/18979 8

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 9

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 10

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 11

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 12

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 13

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 14

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 15

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 16

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 17

Finding faces in an image

• Try to “match” the typical face to each location in
the picture

• The “typical face” will explain some spots on the
image much better than others

– These are the spots at which we probably have a face!

11755/18979 18

How to “match”

• What exactly is the “match”

– What is the match “score”

11755/18979 19

How to “match”

• What exactly is the “match”

– What is the match “score”

• The DOT Product

– Express the typical face as a vector

– Express the region of the image being evaluated as a vector

– Compute the dot product of the typical face vector and the “region”
vector

11755/18979 20

What do we get

• The right panel shows the dot product at
various locations

– Redder is higher

• The locations of peaks indicate locations of faces!

11755/18979 21

What do we get

• The right panel shows the dot product at various
locations
– Redder is higher

• The locations of peaks indicate locations of faces!

• Correctly detects all three faces
– Likes George’s face most

• He looks most like the typical face

• Also finds a face where there is none!
– A false alarm

11755/18979 22

What do we get

• The right panel shows the dot product at various
locations
– Redder is higher

• The locations of peaks indicate locations of faces!

• Correctly detects all three faces
– Likes George’s face most

• He looks most like the typical face

• Also finds a face where there is none!
– A false alarm

11755/18979 23

Sliding windows solves only the
issue of location – what about

scale?

11755/18979 24

• Not all faces are the same size

• Some people have bigger faces

• The size of the face on the image
changes with perspective

• Our “typical face” only represents
one of these sizes

Scale-Space Pyramid

11755/18979 25

Speed concerns

• Sliding windows AND Scale-space pyramid
may yield million’s of ‘windows’ to investigate!

• Especially for small objects in large images

11755/18979 26

Location – Scale – What about Rotation?

• The head need not
always be upright!

• Our typical face
image was upright

11755/18979 27

Solution

• Create many “typical faces”
– One for each scaling factor
– One for each rotation

• How will we do this?

• Match them all

• Does this work
– Kind of .. Not well enough at all
– We need more sophisticated models

11755/18979 28

Face Detection: A Quick Historical Perspective

• Many more complex methods
– Use edge detectors and search for face like patterns

– Find “feature” detectors (noses, ears..) and employ them in complex
neural networks..

• The Viola Jones method
– Boosted cascaded classifiers

11755/18979 29

Face Detection: A Quick Historical Perspective

• Many more complex methods
– Use edge detectors and search for face like patterns

– Find “feature” detectors (noses, ears..) and employ them in complex
neural networks..

• The Viola Jones method (20K+ Citations!)
– Boosted cascaded classifiers

11755/18979 30

And even before that – what is classification?

• Given “features” describing an entity, determine the
category it belongs to

– Walks on two legs, has no hair. Is this

• A Chimpanizee

• A Human

– Has long hair, is 5’6” tall, is this

• A man

• A woman

– Matches “eye” pattern with score 0.5, “mouth pattern” with
score 0.25, “nose” pattern with score 0.1. Are we looking at

• A face

• Not a face?

11755/18979 31

Classification

• Multi-class classification
– Many possible categories

• E.g. Sounds “AH, IY, UW, EY..”

• E.g. Images “Tree, dog, house, person..”

• Binary classification
– Only two categories

• Man vs. Woman

• Face vs. not a face…

11755/18979 32

Detection vs Classification

• Detection: Find an X

• Classification: Find the correct label X,Y,Z etc.

11755/18979 33

Detection vs Classification

• Detection: Find an X

• Classification: Find the correct label X,Y,Z etc.

• Binary Classification as Detection: Find the
correct label X or not-X

11755/18979 34

Face Detection as Classification

• Faces can be many sizes

• They can happen anywhere in the image

• For each face size
– For each location

• Classify a rectangular region of the face size, at that location, as a face or
not a face

• This is a series of binary classification problems

11755/18979 35

For each square, run a

classifier to find out if it

is a face or not

Binary classification

• Classification can be abstracted as follows

• H: X (+1,-1)

• A function H that takes as input some X and outputs a +1 or -1

– X is the set of “features”

– +1/-1 represent the two classes

• Many mechanisms (may types of “H”)

– Any many ways of characterizing “X”

• We’ll look at a specific method based on voting with simple rules

– A “META” method

11755/18979 36

Introduction to Boosting
• An ensemble method that sequentially combines many simple

BINARY classifiers to construct a final complex classifier
– Simple classifiers are often called “weak” learners

– The complex classifiers are called “strong” learners

• Each weak learner focuses on instances where the previous
classifier failed
– Give greater weight to instances that have been incorrectly classified

by previous learners

• Restrictions for weak learners
– Better than 50% correct

• Final classifier is weighted sum of weak classifiers

11755/18979 37

Boosting: A very simple idea

• One can come up with many rules to classify
– E.g. Chimpanzee vs. Human classifier:

– If arms == long, entity is chimpanzee

– If height > 5’6” entity is human

– If lives in house == entity is human

– If lives in zoo == entity is chimpanzee

• Each of them is a reasonable rule, but makes many mistakes
– Each rule has an intrinsic error rate

• Combine the predictions of these rules
– But not equally

– Rules that are less accurate should be given lesser weight

11755/18979 38

Boosting and the Chimpanzee Problem

• The total confidence in all classifiers that classify the entity as a
chimpanzee is

• The total confidence in all classifiers that classify it as a human is

• If Scorechimpanzee > Scorehuman then the our belief that we have a chimpanzee
is greater than the belief that we have a human

11755/18979 39

chimpanzeefavorsclassifier

chimpScore

classifier

humanfavorsclassifier

humanScore

classifier

Arm length?

armlength

Height?

height

Lives in house?

house

Lives in zoo?

zoo

human human chimp chimp

Boosting

• The basic idea: Can a “weak” learning algorithm
that performs just slightly better than a random
guess be boosted into an arbitrarily accurate
“strong” learner

• This is a “meta” algorithm, that poses no
constraints on the form of the weak learners
themselves

11755/18979 40

Boosting: A Voting Perspective

• Boosting is a form of voting

– Let a number of different classifiers classify the data

– Go with the majority

– Intuition says that as the number of classifiers increases,
the dependability of the majority vote increases
• Boosting by majority

• Boosting by weighted majority

– A (weighted) majority vote taken over all the classifiers

– How do we compute weights for the classifiers?

– How do we actually train the classifiers

11755/18979 41

ADA Boost

• Challenge: how to optimize the classifiers and
their weights?

– Trivial solution: Train all classifiers independently

– Optimal: Each classifier focuses on what others missed

– But joint optimization becomes impossible

• Adaptive Boosting: Greedy incremental
optimization of classifiers

– Keep adding classifiers incrementally, to fix what
others missed

11755/18979 42

AdaBoost

11755/18979 43

ILLUSTRATIVE

EXAMPLE

AdaBoost

11755/18979 44

First WEAK Learner

AdaBoost

11755/18979 45

The First Weak

Learner makes

Errors

AdaBoost

11755/18979 46

Reweighted data

AdaBoost

11755/18979 47

SECOND Weak Learner

FOCUSES ON DATA

“MISSED” BY FIRST

LEARNER

AdaBoost

11755/18979 48
SECOND STRONG Learner Combines both Weak Learners

AdaBoost

11755/18979 49
RETURNING TO THE SECOND WEAK LEARNER

AdaBoost

11755/18979 50

The SECOND Weak

Learner makes

Errors

AdaBoost

11755/18979 51

Reweighting data

AdaBoost

11755/18979 52

FOCUSES ON DATA

“MISSED” BY FIRST

AND SECOND

LEARNERs

THIRD Weak

Learner

AdaBoost

11755/18979 53

THIRD STRONG

Learner

Boosting: An Example

• Red dots represent training data from Red class

• Blue dots represent training data from Blue class
11755/18979 54

• The final strong learner has learnt a complicated decision
boundary

11755/18979 55

Boosting: An Example

• The final strong learner has learnt a complicated decision boundary

• Decision boundaries in areas with low density of training

points assumed inconsequential

11755/18979 56

Boosting: An Example

Overall Learning Pattern

11755/18979 57

 Strong learner increasingly accurate with increasing

number of weak learners

 Residual errors increasingly difficult to correct

‒ Additional weak learners less and less effective

Error of nth weak learner

Error of nth strong learner

number of weak learners

Overfitting

11755/18979 58

Note: Can continue to add weak learners

EVEN after strong learner error goes to 0!

 Shown to IMPROVE generalization!

Error of nth weak learner

Error of nth strong learner

number of weak learners

This may go to 0

AdaBoost: Summary

11755/18979 59

• No relation to Ada Lovelace

• Adaptive Boosting

• Adaptively Selects Weak Learners

• ~8K citations for just one paper for Freund and
Schapire

The ADABoost Algorithm

• Initialize D1(xi) = 1/N

• For t = 1, …, T
– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set t = ½ ln ((1 – et) / et)

– For i = 1… N
• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St t ht(x))

11755/18979 60

First, some example data

• Face detection with multiple Eigen faces

• Step 0: Derived top 2 Eigen faces from Eigen face training data

• Step 1: On a (different) set of examples, express each image
as a linear combination of Eigen faces
– Examples include both faces and non faces

– Even the non-face images are explained in terms of the Eigen faces

11755/18979 61

E1

E2

= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

Image = a*E1 + b*E2 a = Image.E1

Training Data

11755/18979 62

ID E1 E2. Class

A 0.3 -0.6 +1

B 0.5 -0.5 +1

C 0.7 -0.1 +1

D 0.6 -0.4 +1

E 0.2 0.4 -1

F -0.8 -0.1 -1

G 0.4 -0.9 -1

H 0.2 0.5 -1

= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

Face = +1

Non-face = -1

A
B
C
D

D
E
F
G

The ADABoost Algorithm

• Initialize D1(xi) = 1/N

• For t = 1, …, T
– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set t = ½ ln ((1 – et) / et)

– For i = 1… N
• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St t ht(x))

11755/18979 63

Initialize D1(xi) = 1/N

11755/18979 64

Training Data

11755/18979 65

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

• Initialize D1(xi) = 1/N

• For t = 1, …, T
– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set t = ½ ln (et /(1 – et))

– For i = 1… N
• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St t ht(x))

The ADABoost Algorithm

11755/18979 66

The E1 “Stump”

11755/18979 67

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
 face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

threshold

The E1 “Stump”

11755/18979 68

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
 face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

threshold

The E1 “Stump”

11755/18979 69

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
 face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

threshold

The E1 “Stump”

11755/18979 70

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
 face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

threshold

11755/18979 71

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
 face = true

sign = +1 or -1

threshold

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The E1 “Stump”

Sign = +1, error = 3/8
Sign = -1, error = 5/8

11755/18979 72

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
 face = true

sign = +1 or -1

Sign = +1, error = 2/8
Sign = -1, error = 6/8

threshold

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The E1 “Stump”

11755/18979 73

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
 face = true

sign = +1 or -1

Sign = +1, error = 1/8
Sign = -1, error = 7/8

threshold

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The E1 “Stump”

11755/18979 74

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
 face = true

sign = +1 or -1

Sign = +1, error = 2/8
Sign = -1, error = 6/8

threshold

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The E1 “Stump”

11755/18979 75

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
 face = true

sign = +1 or -1

Sign = +1, error = 1/8
Sign = -1, error = 7/8

threshold

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The E1 “Stump”

11755/18979 76

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
 face = true

sign = +1 or -1

Sign = +1, error = 2/8
Sign = -1, error = 6/8

threshold

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The E1 “Stump”

The Best E1 “Stump”

11755/18979 77

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
 face = true

Sign = +1
Threshold = 0.45 Sign = +1, error = 1/8

threshold

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The E2“Stump”

11755/18979 78

-0.4 -0.1 0.4 0.5 -0.6 -0.9 -0.1 -0.5

G A B D C F E H

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)
 face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

threshold

Note order

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The Best E2“Stump”

11755/18979 79

-0.4 -0.1 0.4 0.5 -0.6 -0.9 -0.1 -0.5

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)
 face = true

sign = -1
Threshold = 0.15

Sign = -1, error = 2/8

threshold

G A B D C F E H

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The Best “Stump”

11755/18979 80

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The Best overall classifier
based on a single feature is
based on E1

If (wt(E1) > 0.45) Face

Sign = +1, error = 1/8

threshold

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The Best “Stump”

11755/18979 81

The ADABoost Algorithm

• Initialize D1(xi) = 1/N

• For t = 1, …, T
– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set t = ½ ln (et /(1 – et))

– For i = 1… N

–
• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St t ht(x))

11755/18979 82

The Best “Stump”

11755/18979 83

The Best Error

11755/18979 84

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The Error of the classifier
is the sum of the weights of
the misclassified instances

Sign = +1, error = 1/8

threshold

NOTE: THE ERROR IS THE SUM OF THE WEIGHTS OF MISCLASSIFIED

INSTANCES

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The ADABoost Algorithm

• Initialize D1(xi) = 1/N

• For t = 1, …, T
– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set t = ½ ln ((1 – et) / et)

– For i = 1… N
• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St t ht(x))

11755/18979 85

Computing Alpha

11755/18979 86

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Alpha = 0.5ln((1-1/8) / (1/8))

 = 0.5 ln(7) = 0.97

Sign = +1, error = 1/8

threshold

The Boosted Classifier Thus Far

11755/18979 87

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Alpha = 0.5ln((1-1/8) / (1/8))

 = 0.5 ln(7) = 0.97

Sign = +1, error = 1/8

threshold

h1(X) = wt(E1) > 0.45 ? +1 : -1

H(X) = sign(0.97 * h1(X))

It’s the same as h1(x)

The ADABoost Algorithm

• Initialize D1(xi) = 1/N

• For t = 1, …, T
– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Average {½ (1 – yi ht(xi))}

– Set t = ½ ln ((1 – et) / et)

– For i = 1… N
• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St t ht(x))

11755/18979 88

The Best Error

11755/18979 89

ID E1 E2. Class Weight Weight

A 0.3 -0.6 +1 1/8 * 2.63 0.33

B 0.5 -0.5 +1 1/8 * 0.38 0.05

C 0.7 -0.1 +1 1/8 * 0.38 0.05

D 0.6 -0.4 +1 1/8 * 0.38 0.05

E 0.2 0.4 -1 1/8 * 0.38 0.05

F -0.8 0.1 -1 1/8 * 0.38 0.05

G 0.4 -0.9 -1 1/8 * 0.38 0.05

H 0.2 0.5 -1 1/8 * 0.38 0.05

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

Dt+1(xi) = Dt(xi) exp(- t yi ht (xi))

exp(t) = exp(0.97) = 2.63

exp(-t) = exp(-0.97) = 0.38

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63

AdaBoost

11755/18979 90

AdaBoost

11755/18979 91

The ADABoost Algorithm

• Initialize D1(xi) = 1/N

• For t = 1, …, T
– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Average {½ (1 – yi ht(xi))}

– Set t = ½ ln ((1 – et) / et)

– For i = 1… N
• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St t ht(x))

11755/18979 92

The Best Error

11755/18979 93

ID E1 E2. Class Weight Weight Weight

A 0.3 -0.6 +1 1/8 * 2.63 0.33 0.48

B 0.5 -0.5 +1 1/8 * 0.38 0.05 0.074

C 0.7 -0.1 +1 1/8 * 0.38 0.05 0.074

D 0.6 -0.4 +1 1/8 * 0.38 0.05 0.074

E 0.2 0.4 -1 1/8 * 0.38 0.05 0.074

F -0.8 0.1 -1 1/8 * 0.38 0.05 0.074

G 0.4 -0.9 -1 1/8 * 0.38 0.05 0.074

H 0.2 0.5 -1 1/8 * 0.38 0.05 0.074

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

D’ = D / sum(D)

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0

The Best Error

11755/18979 94

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

D’ = D / sum(D)

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0

The ADABoost Algorithm

• Initialize D1(xi) = 1/N

• For t = 1, …, T
– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Average {½ (1 – yi ht(xi))}

– Set t = ½ ln (et /(1 – et))

– For i = 1… N
• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St t ht(x))

11755/18979 95

E1 classifier

11755/18979 96

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

.074 .074 .074 .48 .074 .074 .074 .074

threshold

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
 face = true

sign = +1 or -1

Sign = +1, error = 0.222
Sign = -1, error = 0.778

E1 classifier

11755/18979 97

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
 face = true

sign = +1 or -1

Sign = +1, error = 0.148
Sign = -1, error = 0.852

.48 .074

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074

The Best E1 classifier

11755/18979 98

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
 face = true

sign = +1 or -1

Sign = +1, error = 0.074

.48 .074

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074

The Best E2 classifier

11755/18979 99

-0.4 -0.1 0.4 0.5 -0.6 -0.9 -0.1 -0.5

G A B D C F E H

.074 .48 .074 .074 .074 .074 .074 .074

threshold

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)
 face = true

sign = +1 or -1

Sign = -1, error = 0.148

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074

The Best Classifier

11755/18979 100

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Classifier based on E1:
if (wt(E1) > 0.45) face = true

Sign = +1, error = 0.074

.48 .074

Alpha = 0.5ln((1-0.074) / 0.074)
 = 1.26

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074

The Boosted Classifier Thus Far

11755/18979 101

h1(X) = wt(E1) > 0.45 ? +1 : -1

h2(X) = wt(E1) > 0.25 ? +1 : -1

H(X) = sign(0.97 * h1(X) + 1.26 * h2(X))

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

.48 .074

threshold

Reweighting the Data

11755/18979 102

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48*0.28 0.32

B 0.5 -0.5 +1 0.074*0.28 0.05

C 0.7 -0.1 +1 0.074*0.28 0.05

D 0.6 -0.4 +1 0.074*0.28 0.05

E 0.2 0.4 -1 0.074*0.28 0.05

F -0.8 0.1 -1 0.074*0.28 0.05

G 0.4 -0.9 -1 0.074*3.5 0.38

H 0.2 0.5 -1 0.074*0.28 0.05

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Sign = +1, error = 0.074

.48 .074

Exp(alpha) = exp(1.26) = 3.5
Exp(-alpha) = exp(-1.26) = 0.28

RENORMALIZE

Reweighting the Data

11755/18979 103

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Sign = +1, error = 0.074

.48 .074

RENORMALIZE

NOTE: THE WEIGHT OF “G”

WHICH WAS MISCLASSIFIED

BY THE SECOND CLASSIFIER

IS NOW SUDDENLY HIGH

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48*0.28 0.32

B 0.5 -0.5 +1 0.074*0.28 0.05

C 0.7 -0.1 +1 0.074*0.28 0.05

D 0.6 -0.4 +1 0.074*0.28 0.05

E 0.2 0.4 -1 0.074*0.28 0.05

F -0.8 0.1 -1 0.074*0.28 0.05

G 0.4 -0.9 -1 0.074*3.5 0.38

H 0.2 0.5 -1 0.074*0.28 0.05

AdaBoost

• In this example both of our first two classifiers were
based on E1

– Additional classifiers may switch to E2

• In general, the reweighting of the data will result in a
different feature being picked for each classifier

• This also automatically gives us a feature selection
strategy

– In this data the wt(E1) is the most important feature

11755/18979 104

AdaBoost

• NOT required to go with the best classifier so far

• For instance, for our second classifier, we might use the
best E2 classifier, even though its worse than the E1
classifier

– So long as its right more than 50% of the time

• We can continue to add classifiers even after we get 100%
classification of the training data

– Because the weights of the data keep changing

– Adding new classifiers beyond this point is often a good
thing to do

11755/18979 105

ADA Boost

• The final classifier is
– H(x) = sign(St t ht(x))

• The output is 1 if the total weight of all weak
learners that classify x as 1 is greater than the
total weight of all weak learners that classify it as
-1

11755/18979 106

E1 E2

= 0.4 E1 - 0.4 E2

Boosting and Face Detection

• Boosting is the basis of one of the most
popular methods for face detection: The
Viola-Jones algorithm

– Current methods use other classifiers like SVMs,
but adaboost classifiers remain easy to implement
and popular

– OpenCV implements Viola Jones..

11755/18979 107

The problem of face detection

• 1. Defining Features

– Should we be searching for noses, eyes, eyebrows etc.?

• Nice, but expensive

– Or something simpler

• 2. Selecting Features

– Of all the possible features we can think of, which ones make
sense

• 3. Classification: Combining evidence

– How does one combine the evidence from the different
features?

11755/18979 108

Features: The Viola Jones Method

• Integral Features!!

– Like the Checkerboard

• The same principle as we used to decompose images in terms of
checkerboards:

– The image of any object has changes at various scales

– These can be represented coarsely by a checkerboard pattern

• The checkerboard patterns must however now be localized

– Stay within the region of the face

11755/18979 109

B1 B2 B3 B4 B5 B6

...Im 332211 BwBwBwage

Features
• Checkerboard Patterns to represent facial features

– The white areas are subtracted from the black ones.

– Each checkerboard explains a localized portion of the
image

• Four types of checkerboard patterns (only)

11755/18979 110

Explaining a portion of the face with a
checker..

• How much is the difference in average intensity of the image
in the black and white regions
– Sum(pixel values in white region) – Sum(pixel values in black region)

• This is actually the dot product of the region of the face
covered by the rectangle and the checkered pattern itself
– White = 1, Black = -1

11755/18979 111

“Integral” features

• Each checkerboard has the following characteristics

– Length

– Width

– Type

• Specifies the number and arrangement of bands

• The four checkerboards above are the four used by Viola and Jones

11755/18979 112

Integral images
• Summed area tables

• For each pixel store the sum of ALL pixels to the left of and above it.

11755/18979 113

Fast Computation of Pixel Sums

• To compute the sum of the pixels within “D”:

– Pixelsum(1) = Area(A)

– Pixelsum(2) = Area(A) + Area(B)

– Pixelsum(3) = Area(A) + Area(C)

– Pixelsum(4) = Area(A)+Area(B)+Area(C) +Area(D)

• Area(D) = Pixelsum(4) – Pixelsum(2) – Pixelsum(3) + Pixelsum(1)
11755/18979 114

1 2

3 4

A B

C D

• Store pixel table for every pixel in the image

– The sum of all pixel values to the left of and above the pixel

• Let A, B, C, D, E, F be the pixel table values at the locations shown

– Total pixel value of black area = D + A – B – C

– Total pixel value of white area = F + C – D – E

– Feature value = (F + C – D – E) – (D + A – B – C)

11755/18979 115

A B

D

F

C

E

A Fast Way to Compute the Feature

How many features?

• Each checker board of width P and height H can start at any of
(N-P)(M-H) pixels

• (M-H)*(N-P) possible starting locations
– Each is a unique checker feature

• E.g. at one location it may measure the forehead, at another the chin

116

MxN
PxH

11755/18979

How many features

• Each feature can have many sizes

– Width from (min) to (max) pixels

– Height from (min ht) to (max ht) pixels

• At each size, there can be many starting locations

– Total number of possible checkerboards of one type:
 No. of possible sizes x No. of possible locations

• There are four types of checkerboards

– Total no. of possible checkerboards: VERY VERY LARGE!

11755/18979 117

Learning: No. of features

• Analysis performed on images of 24x24 pixels
only

– Reduces the no. of possible features to about
180000

• Restrict checkerboard size

– Minimum of 8 pixels wide

– Minimum of 8 pixels high

• Other limits, e.g. 4 pixels may be used too

– Reduces no. of checkerboards to about 50000

11755/18979 118

No. of features

• Each possible checkerboard gives us one feature

• A total of up to 180000 features derived from a 24x24 image!

• Every 24x24 image is now represented by a set of 180000
numbers
– This is the set of features we will use for classifying if it is a face or not!

11755/18979 119

F1 F2 F3 F4 ….. F180000

7 9 2 -1 ….. 12

-11 3 19 17 ….. 2

The Classifier

• The Viola-Jones algorithm uses AdaBoost with “stumps”

• At each stage find the best feature to classify the data
with

– I.e the feature that gives us the best classification of all the
training data

• Training data includes many examples of faces and non-face
images

– The classification rule is of the kind

• If feature > threshold, face (or if feature < threshold, face)

• The optimal value of “threshold” must also be determined.

11755/18979 120

To Train

• Collect a large number of facial images
– Resize all of them to 24x24
– These are our “face” training set

• Collect a much much much larger set of 24x24
non-face images of all kinds
– Each of them is
– These are our “non-face” training set

• Train a boosted classifier

11755/18979 121

The Viola Jones Classifier

• During tests:
– Given any new 24x24 image

• R = Sf f (f > pf q(f))
• Only a small number of features (f < 100) typically used

• Problems:
– Only classifies 24 x 24 images entirely as faces or non-faces

• Pictures are typically much larger
• They may contain many faces
• Faces in pictures can be much larger or smaller

– Not accurate enough

11755/18979 122

Multiple faces in the picture

• Scan the image

– Classify each 24x24 rectangle from the photo

– All rectangles that get classified as having a face indicate the location
of a face

• For an NxM picture, we will perform (N-24)*(M-24) classifications

• If overlapping 24x24 rectangles are found to have faces, merge them

11755/18979 123

Multiple faces in the picture

• Scan the image

– Classify each 24x24 rectangle from the photo

– All rectangles that get classified as having a face indicate the location
of a face

• For an NxM picture, we will perform (N-24)*(M-24) classifications

• If overlapping 24x24 rectangles are found to have faces, merge them

11755/18979 124

Multiple faces in the picture

• Scan the image

– Classify each 24x24 rectangle from the photo

– All rectangles that get classified as having a face indicate the location
of a face

• For an NxM picture, we will perform (N-24)*(M-24) classifications

• If overlapping 24x24 rectangles are found to have faces, merge them

11755/18979 125

Multiple faces in the picture

• Scan the image

– Classify each 24x24 rectangle from the photo

– All rectangles that get classified as having a face indicate the location
of a face

• For an NxM picture, we will perform (N-24)*(M-24) classifications

• If overlapping 24x24 rectangles are found to have faces, merge them

11755/18979 126

Picture size solution

• We already have a
classifier
– That uses weak

learners

• Scale the Picture
– Scale the picture

down by a factor a

– Keep decrementing
down to a minimum
reasonable size

11755/18979 127

False Rejection vs. False Detection

• False Rejection: There’s a face in the image, but the classifier misses it

– Rejects the hypothesis that there’s a face

• False detection: Recognizes a face when there is none.

• Classifier:

– Standard boosted classifier: H(x) = sign(St t ht(x))

– Modified classifier H(x) = sign(St t ht(x) + Y)

• St t ht(x) is a measure of certainty

– The higher it is, the more certain we are that we found a face

• If Y is large, then we assume the presence of a face even when we are not
sure

– By increasing Y, we can reduce false rejection, while increasing false
detection

11755/18979 128

ROC

• Ideally false rejection will be 0%, false detection will also
be 0%

• As Y increaases, we reject faces less and less

– But accept increasing amounts of garbage as faces

• Can set Y so that we rarely miss a face

11755/18979 129

vs false neg determined by

% False detection

%
F

al
se

 R
ej

ec
ti

n

0 100

0

1
0
0

As Y increases

Problem: Not accurate enough, too slow

• If we set Y high enough, we will never miss a
face
– But will classify a lot of junk as faces

• Solution: Classify the output of the first
classifier with a second classifier
– And so on.

11755/18979 130

Classifier 1

Not a face

Classifier 2

Not a face

Problem: Not accurate enough, too slow

• If we set Y high enough, we will never miss a
face
– But will classify a lot of junk as faces

• Solution: Classify the output of the first
classifier with a second classifier
– And so on.

11755/18979 131

Useful Features Learned by Boosting

11755/18979 132

A Cascade of Classifiers

11755/18979 133

Detection in Real Images

• Basic classifier operates on 24 x 24 subwindows

• Scaling:
– Scale the detector (rather than the images)
– Features can easily be evaluated at any scale
– Scale by factors of 1.25

• Location:

– Move detector around the image (e.g., 1 pixel increments)

• Final Detections
– A real face may result in multiple nearby detections
– Postprocess detected subwindows to combine overlapping detections

into a single detection

11755/18979 134

Training
• In paper, 24x24 images of faces and non faces (positive and negative

examples).

11755/18979 135

Sample results using the Viola-Jones Detector

• Notice detection at multiple scales

11755/18979 136

More Detection Examples

11755/18979 137

Practical implementation

• Details discussed in Viola-Jones paper

• Training time = weeks (with 5k faces and 9.5k non-faces)

• Final detector has 38 layers in the cascade, 6060 features

• 700 Mhz processor:

– Can process a 384 x 288 image in 0.067 seconds (in 2003 when
paper was written)

11755/18979 138

Best Window/Background Issues

11755/18979 139

Best Window/Background Issues

11755/18979 140

Best Window/Background Issues

11755/18979 141

Key Ideas

• EigenFace feature

• Sliding windows & scale-space pyramid

• Boosting an ensemble of weak classifiers

• Integral Image / Haar Features

• Cascaded Strong Classifiers

11755/18979 142

