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Last Lecture: How to describe a face 

• A “typical face” that captures the essence of 
“facehood”.. 

• The principal Eigen face.. 
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The typical face 



A collection of least squares typical faces 

• Extension:  Many Eigenfaces 

• Approximate every face f as f  = wf,1 V1+ wf,2 V2 +.. + wf,k Vk  
– V2 is used to “correct” errors resulting from using only V1 

– V3 corrects errors remaining after correction with V2 

– And so on.. 

 

• V = [V1 V2 V3] can be computed through Eigen analysis 

11755/18979 3 



Detecting Faces in Images 

11755/18979 4 



Detecting Faces in Images 

• Finding face like patterns 
– How do we find if a picture has faces in it 

– Where are the faces? 
 

• A simple solution: 
– Define a “typical face” 

– Find the “typical face” in the image 
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Given an image and a ‘typical’ face 
how do I find the faces? 

11755/18979 6 
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100×100 

400×200 
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Finding faces in an image 

• Picture is larger than the “typical face” 

– E.g. typical face is 100x100, picture is 600x800 

• First convert to greyscale 

– R + G + B 

– Not very useful to work in color 
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Finding faces in an image 

• Goal .. To find out if and where images that 
look like the “typical” face occur in the picture 
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Finding faces in an image 

• Try to “match” the typical face to each 
location in the picture 
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Finding faces in an image 
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Finding faces in an image 

• Try to “match” the typical face to each location in 
the picture 

 

• The “typical face” will explain some spots on the 
image much better than others 

– These are the spots at which we probably have a face! 
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How to “match” 

• What exactly is the “match” 

– What is the match “score” 

11755/18979 19 



How to “match” 

• What exactly is the “match” 

– What is the match “score” 

 

• The DOT Product 

– Express the typical face as a vector 

– Express the region of the image being evaluated as a vector 

– Compute the dot product of the typical face vector and the “region” 
vector 
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What do we get 

• The right panel shows the dot product at 
various locations 

– Redder is higher 

• The locations of peaks indicate locations of faces! 
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What do we get 

• The right panel shows the dot product at various 
locations 
– Redder is higher 

• The locations of peaks indicate locations of faces! 

• Correctly detects all three faces 
– Likes George’s face most 

• He looks most like the typical face 

• Also finds a face where there is none! 
– A false alarm 

11755/18979 22 



What do we get 

• The right panel shows the dot product at various 
locations 
– Redder is higher 

• The locations of peaks indicate locations of faces! 

• Correctly detects all three faces 
– Likes George’s face most 

• He looks most like the typical face 

• Also finds a face where there is none! 
– A false alarm 

11755/18979 23 



Sliding windows solves only the 
issue of location – what about 

scale? 
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• Not all faces are the same size 

• Some people have bigger faces 

• The size of the face on the image 
changes with perspective 

• Our “typical face” only represents 
one of these sizes 

 



Scale-Space Pyramid 
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Speed concerns 

• Sliding windows AND Scale-space pyramid 
may yield million’s of ‘windows’ to investigate! 

• Especially for small objects in large images 
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Location – Scale – What about Rotation? 

 

• The head need not 
always be upright! 

• Our typical face 
image was upright 
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Solution 

• Create many “typical faces” 
– One for each scaling factor 
– One for each rotation 

• How will we do this? 

• Match them all 
 

• Does this work 
– Kind of .. Not well enough at all 
– We need more sophisticated models 
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Face Detection: A Quick Historical Perspective 

• Many more complex methods 
– Use edge detectors and search for face like patterns 

– Find “feature” detectors (noses, ears..) and employ them in complex 
neural networks.. 

 

• The Viola Jones method 
– Boosted cascaded classifiers 
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Face Detection: A Quick Historical Perspective 

• Many more complex methods 
– Use edge detectors and search for face like patterns 

– Find “feature” detectors (noses, ears..) and employ them in complex 
neural networks.. 

 

• The Viola Jones method (20K+ Citations!) 
– Boosted cascaded classifiers 
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And even before that – what is classification? 

• Given “features” describing an entity, determine the 
category it belongs to 

– Walks on two legs, has no hair. Is this 

• A Chimpanizee 

• A Human 

– Has long hair, is 5’6” tall, is this 

• A man 

• A woman 

– Matches “eye” pattern with score 0.5, “mouth pattern” with 
score 0.25, “nose” pattern with score 0.1. Are we looking at 

• A face 

• Not a face? 
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Classification 

• Multi-class classification 
– Many possible categories 

• E.g. Sounds “AH, IY, UW, EY..” 

• E.g. Images “Tree, dog, house, person..” 

 
 

• Binary classification 
– Only two categories 

• Man vs. Woman 

• Face vs. not a face… 
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Detection vs Classification 

• Detection: Find an X 

• Classification: Find the correct label X,Y,Z etc. 
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Detection vs Classification 

• Detection: Find an X 

• Classification: Find the correct label X,Y,Z etc. 

• Binary Classification as Detection: Find the 
correct label X or not-X 
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Face Detection as Classification 

• Faces can be many sizes 

• They can happen anywhere in the image 

• For each face size 
– For each location 

• Classify a rectangular region of the face size, at that location, as a face or 
not a face 

• This is a series of binary classification problems 
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For each square, run a 

classifier to find out if it 

is a face or not 



Binary classification 

• Classification can be abstracted as follows 

• H:  X     (+1,-1)  

• A function H that takes as input some X and outputs a +1 or -1 

– X is the set of “features” 

– +1/-1 represent the two classes 

• Many mechanisms (may types of “H”) 

– Any many ways of characterizing “X” 
 

• We’ll look at a specific method based on voting with simple rules 

– A “META”  method 

 

11755/18979 36 



Introduction to Boosting 
• An ensemble method that sequentially combines many simple 

BINARY classifiers to construct a final complex classifier 
– Simple classifiers are often called “weak” learners 

– The complex classifiers are called “strong” learners 
 

• Each weak learner focuses on instances where the previous 
classifier failed 
– Give greater weight to instances that have been incorrectly classified 

by previous learners 

• Restrictions for weak learners 
– Better than 50% correct 

• Final classifier is weighted sum of weak classifiers 
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Boosting: A very simple idea 

• One can come up with many rules to classify 
– E.g. Chimpanzee vs. Human classifier: 

– If arms == long, entity is chimpanzee 

– If height > 5’6” entity is human 

– If lives in house == entity is human 

– If lives in zoo == entity is chimpanzee 
 

• Each of them is a reasonable rule, but makes many mistakes 
– Each rule has an intrinsic error rate 

 

• Combine the predictions of these rules 
– But not equally 

– Rules that are less accurate should be given lesser weight 
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Boosting and the Chimpanzee Problem 

• The total confidence in all classifiers that classify the entity as a 
chimpanzee is 

 

• The total confidence in all classifiers that classify it as a human is  
 

 

 

• If Scorechimpanzee > Scorehuman then the our belief that we have a chimpanzee 
is greater than the belief that we have a human 
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chimpanzeefavorsclassifier

chimpScore

   

classifier



humanfavorsclassifier

humanScore

   

classifier

Arm length? 

armlength 

Height? 

height 

Lives in house? 

house 

Lives in zoo? 

zoo 

human human chimp chimp 



Boosting 

• The basic idea: Can a “weak” learning algorithm 
that performs just slightly better than a random 
guess be boosted into an arbitrarily accurate 
“strong” learner 

 

 

• This is  a “meta” algorithm, that poses no 
constraints on the form of the weak learners 
themselves 
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Boosting: A Voting Perspective 

• Boosting is a form of voting 

– Let a number of different classifiers classify the data 

– Go with the majority 

– Intuition says that as the number of classifiers increases, 
the dependability of the majority vote increases 
• Boosting by majority 

 
 

• Boosting by weighted majority 

– A (weighted) majority vote taken over all the classifiers 

– How do we compute weights for the classifiers? 

– How do we actually train the classifiers 
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ADA Boost 

• Challenge: how to optimize the classifiers and 
their weights? 

– Trivial solution: Train all classifiers independently 

– Optimal: Each classifier focuses on what others missed 

– But joint optimization becomes impossible 
 

• Adaptive Boosting:  Greedy incremental 
optimization of classifiers 

– Keep adding classifiers incrementally, to fix what 
others missed 
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AdaBoost 
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ILLUSTRATIVE  

EXAMPLE 



AdaBoost 
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First WEAK Learner 



AdaBoost 
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The First Weak 

Learner makes 

Errors 



AdaBoost 
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Reweighted data 



AdaBoost 
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SECOND Weak Learner 

FOCUSES ON DATA 

“MISSED” BY FIRST 

LEARNER 



AdaBoost 
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SECOND STRONG Learner Combines both Weak Learners 



AdaBoost 
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RETURNING TO THE SECOND WEAK LEARNER 



AdaBoost 
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The SECOND Weak 

Learner makes 

Errors 



AdaBoost 

11755/18979 51 

Reweighting data 



AdaBoost 
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FOCUSES ON DATA 

“MISSED” BY FIRST 

AND SECOND 

LEARNERs 

THIRD Weak 

Learner 



AdaBoost 
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THIRD STRONG 

Learner 



Boosting: An Example 

• Red dots represent training data from Red class 

• Blue dots represent training data from Blue class 
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• The final strong learner has learnt a complicated decision 
boundary 
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Boosting: An Example 



• The final strong learner has learnt a complicated decision boundary 

• Decision boundaries in areas with low density of training 

points assumed inconsequential 
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Boosting: An Example 



Overall Learning Pattern 
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 Strong learner increasingly accurate with increasing 

number of weak learners 

 Residual errors increasingly difficult to correct 

‒ Additional weak learners less and less effective 

Error of nth weak learner 

Error of nth strong learner 

number of weak learners 



Overfitting 
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Note: Can continue to add weak learners 

EVEN after strong learner error goes to 0! 

 Shown to IMPROVE generalization! 

Error of nth weak learner 

Error of nth strong learner 

number of weak learners 

This may go to 0 



AdaBoost: Summary 
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• No relation to Ada Lovelace 

• Adaptive Boosting 

• Adaptively Selects Weak Learners 

• ~8K citations for just one paper for Freund and 
Schapire 



The ADABoost Algorithm 

• Initialize D1(xi) = 1/N 

• For t = 1, …, T 
– Train a weak classifier ht using distribution Dt 

– Compute total error on training data 
• et = Sum {Dt (xi) ½(1 – yi ht(xi))} 

– Set t = ½ ln ((1 – et) / et) 

– For i = 1… N  
• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi)) 

– Normalize Dt+1 to make it a distribution 

• The final classifier is 
– H(x) = sign(St t ht(x)) 
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First, some example data 

• Face detection with multiple Eigen faces 

• Step 0: Derived top 2 Eigen faces from Eigen face training data 

• Step 1: On a (different) set of examples, express each image 
as a linear combination of Eigen faces 
– Examples include both faces and non faces 

– Even the non-face images are explained in terms of the Eigen faces 
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E1 

E2 

= 0.3 E1 - 0.6 E2 

= 0.5 E1 - 0.5 E2 

= 0.7 E1 - 0.1 E2 

= 0.6 E1 - 0.4 E2 

= 0.2 E1 + 0.4 E2 

= -0.8 E1 - 0.1 E2 

= 0.4 E1 - 0.9 E2 

= 0.2 E1 + 0.5 E2 

Image = a*E1 + b*E2  a = Image.E1 



Training Data 
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ID E1 E2. Class 

A 0.3 -0.6 +1 

B 0.5 -0.5 +1 

C 0.7 -0.1 +1 

D 0.6 -0.4 +1 

E 0.2 0.4 -1 

F -0.8 -0.1 -1 

G 0.4 -0.9 -1 

H 0.2 0.5 -1 

= 0.3 E1 - 0.6 E2 

= 0.5 E1 - 0.5 E2 

= 0.7 E1 - 0.1 E2 

= 0.6 E1 - 0.4 E2 

= 0.2 E1 + 0.4 E2 

= -0.8 E1 - 0.1 E2 

= 0.4 E1 - 0.9 E2 

= 0.2 E1 + 0.5 E2 

Face = +1 

Non-face = -1 

A 
B 
C 
D 

D 
E 
F 
G 



The ADABoost Algorithm 

• Initialize D1(xi) = 1/N 

• For t = 1, …, T 
– Train a weak classifier ht using distribution Dt 

– Compute total error on training data 
• et = Sum {Dt (xi) ½(1 – yi ht(xi))} 

– Set t = ½ ln ((1 – et) / et) 

– For i = 1… N  
• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi)) 

– Normalize Dt+1 to make it a distribution 

• The final classifier is 
– H(x) = sign(St t ht(x)) 
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Initialize D1(xi) = 1/N 
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Training Data 
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ID E1 E2. Class Weight 

A 0.3 -0.6 +1 1/8 

B 0.5 -0.5 +1 1/8 

C 0.7 -0.1 +1 1/8 

D 0.6 -0.4 +1 1/8 

E 0.2 0.4 -1 1/8 

F -0.8 -0.1 -1 1/8 

G 0.4 -0.9 -1 1/8 

H 0.2 0.5 -1 1/8 

= 0.3 E1 - 0.6 E2 

= 0.5 E1 - 0.5 E2 

= 0.7 E1 - 0.1 E2 

= 0.6 E1 - 0.4 E2 

= 0.2 E1 + 0.4 E2 

= -0.8 E1 - 0.1 E2 

= 0.4 E1 - 0.9 E2 

= 0.2 E1 + 0.5 E2 



• Initialize D1(xi) = 1/N 

• For t = 1, …, T 
– Train a weak classifier ht using distribution Dt 

– Compute total error on training data 
• et = Sum {Dt (xi) ½(1 – yi ht(xi))} 

– Set t = ½ ln (et /(1 – et)) 

– For i = 1… N  
• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi)) 

– Normalize Dt+1 to make it a distribution 

• The final classifier is 
– H(x) = sign(St t ht(x)) 

 

 

The ADABoost Algorithm 
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The E1 “Stump” 
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0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

Classifier based on E1: 
if ( sign*wt(E1) > thresh) > 0)  
    face = true 
 
sign = +1 or -1 

Sign = +1, error = 3/8 
Sign = -1, error = 5/8 

ID E1 E2. Class Weight 

A 0.3 -0.6 +1 1/8 

B 0.5 -0.5 +1 1/8 

C 0.7 -0.1 +1 1/8 

D 0.6 -0.4 +1 1/8 

E 0.2 0.4 -1 1/8 

F -0.8 -0.1 -1 1/8 

G 0.4 -0.9 -1 1/8 

H 0.2 0.5 -1 1/8 

threshold 



The E1 “Stump” 
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The E1 “Stump” 
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0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

Classifier based on E1: 
if ( sign*wt(E1) > thresh) > 0)  
    face = true 
 
sign = +1 or -1 

Sign = +1, error = 3/8 
Sign = -1, error = 5/8 

ID E1 E2. Class Weight 

A 0.3 -0.6 +1 1/8 

B 0.5 -0.5 +1 1/8 

C 0.7 -0.1 +1 1/8 

D 0.6 -0.4 +1 1/8 

E 0.2 0.4 -1 1/8 

F -0.8 -0.1 -1 1/8 

G 0.4 -0.9 -1 1/8 

H 0.2 0.5 -1 1/8 

threshold 



The E1 “Stump” 

11755/18979 70 
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Classifier based on E1: 
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sign = +1 or -1 
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Sign = -1, error = 5/8 
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B 0.5 -0.5 +1 1/8 

C 0.7 -0.1 +1 1/8 
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0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

Classifier based on E1: 
if ( sign*wt(E1) > thresh) > 0)  
    face = true 
 
sign = +1 or -1 

threshold 

ID E1 E2. Class Weight 

A 0.3 -0.6 +1 1/8 

B 0.5 -0.5 +1 1/8 

C 0.7 -0.1 +1 1/8 

D 0.6 -0.4 +1 1/8 

E 0.2 0.4 -1 1/8 

F -0.8 -0.1 -1 1/8 

G 0.4 -0.9 -1 1/8 

H 0.2 0.5 -1 1/8 

The E1 “Stump” 

Sign = +1, error = 3/8 
Sign = -1, error = 5/8 
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0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

Classifier based on E1: 
if ( sign*wt(E1) > thresh) > 0)  
    face = true 
 
sign = +1 or -1 

Sign = +1, error = 2/8 
Sign = -1, error = 6/8 

threshold 

ID E1 E2. Class Weight 

A 0.3 -0.6 +1 1/8 

B 0.5 -0.5 +1 1/8 

C 0.7 -0.1 +1 1/8 

D 0.6 -0.4 +1 1/8 

E 0.2 0.4 -1 1/8 

F -0.8 -0.1 -1 1/8 

G 0.4 -0.9 -1 1/8 

H 0.2 0.5 -1 1/8 

The E1 “Stump” 
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0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 
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C 0.7 -0.1 +1 1/8 

D 0.6 -0.4 +1 1/8 

E 0.2 0.4 -1 1/8 

F -0.8 -0.1 -1 1/8 

G 0.4 -0.9 -1 1/8 

H 0.2 0.5 -1 1/8 
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F E H A G B C D 

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

Classifier based on E1: 
if ( sign*wt(E1) > thresh) > 0)  
    face = true 
 
sign = +1 or -1 

Sign = +1, error = 2/8 
Sign = -1, error = 6/8 

threshold 

ID E1 E2. Class Weight 

A 0.3 -0.6 +1 1/8 

B 0.5 -0.5 +1 1/8 

C 0.7 -0.1 +1 1/8 

D 0.6 -0.4 +1 1/8 

E 0.2 0.4 -1 1/8 

F -0.8 -0.1 -1 1/8 

G 0.4 -0.9 -1 1/8 

H 0.2 0.5 -1 1/8 
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0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

Classifier based on E1: 
if ( sign*wt(E1) > thresh) > 0)  
    face = true 
 
sign = +1 or -1 

Sign = +1, error = 1/8 
Sign = -1, error = 7/8 

threshold 

ID E1 E2. Class Weight 

A 0.3 -0.6 +1 1/8 

B 0.5 -0.5 +1 1/8 

C 0.7 -0.1 +1 1/8 

D 0.6 -0.4 +1 1/8 

E 0.2 0.4 -1 1/8 

F -0.8 -0.1 -1 1/8 

G 0.4 -0.9 -1 1/8 

H 0.2 0.5 -1 1/8 

The E1 “Stump” 
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0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

Classifier based on E1: 
if ( sign*wt(E1) > thresh) > 0)  
    face = true 
 
sign = +1 or -1 

Sign = +1, error = 2/8 
Sign = -1, error = 6/8 

threshold 

ID E1 E2. Class Weight 

A 0.3 -0.6 +1 1/8 

B 0.5 -0.5 +1 1/8 

C 0.7 -0.1 +1 1/8 

D 0.6 -0.4 +1 1/8 

E 0.2 0.4 -1 1/8 

F -0.8 -0.1 -1 1/8 

G 0.4 -0.9 -1 1/8 

H 0.2 0.5 -1 1/8 

The E1 “Stump” 



The Best E1 “Stump” 
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0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

Classifier based on E1: 
if ( sign*wt(E1) > thresh) > 0)  
    face = true 
 
Sign = +1 
Threshold = 0.45 Sign = +1, error = 1/8 

threshold 

ID E1 E2. Class Weight 

A 0.3 -0.6 +1 1/8 

B 0.5 -0.5 +1 1/8 

C 0.7 -0.1 +1 1/8 

D 0.6 -0.4 +1 1/8 

E 0.2 0.4 -1 1/8 

F -0.8 -0.1 -1 1/8 

G 0.4 -0.9 -1 1/8 

H 0.2 0.5 -1 1/8 



The E2“Stump” 
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-0.4 -0.1 0.4 0.5 -0.6 -0.9 -0.1 -0.5 

G A B D C F E H 

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

Classifier based on E2: 
if ( sign*wt(E2) > thresh) > 0)  
    face = true 
 
sign = +1 or -1 

Sign = +1, error = 3/8 
Sign = -1, error = 5/8 

threshold 

Note order 

ID E1 E2. Class Weight 

A 0.3 -0.6 +1 1/8 

B 0.5 -0.5 +1 1/8 

C 0.7 -0.1 +1 1/8 

D 0.6 -0.4 +1 1/8 

E 0.2 0.4 -1 1/8 

F -0.8 -0.1 -1 1/8 

G 0.4 -0.9 -1 1/8 

H 0.2 0.5 -1 1/8 



The Best E2“Stump” 
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-0.4 -0.1 0.4 0.5 -0.6 -0.9 -0.1 -0.5 

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

Classifier based on E2: 
if ( sign*wt(E2) > thresh) > 0)  
    face = true 
 
sign = -1 
Threshold = 0.15 

Sign = -1, error = 2/8 

threshold 

G A B D C F E H 

ID E1 E2. Class Weight 

A 0.3 -0.6 +1 1/8 

B 0.5 -0.5 +1 1/8 

C 0.7 -0.1 +1 1/8 

D 0.6 -0.4 +1 1/8 

E 0.2 0.4 -1 1/8 

F -0.8 -0.1 -1 1/8 

G 0.4 -0.9 -1 1/8 

H 0.2 0.5 -1 1/8 



The Best “Stump” 
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0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

The Best overall classifier 
based on a single feature is 
based on E1 
 
If (wt(E1) > 0.45)  Face 

Sign = +1, error = 1/8 

threshold 

ID E1 E2. Class Weight 

A 0.3 -0.6 +1 1/8 

B 0.5 -0.5 +1 1/8 

C 0.7 -0.1 +1 1/8 

D 0.6 -0.4 +1 1/8 

E 0.2 0.4 -1 1/8 

F -0.8 -0.1 -1 1/8 

G 0.4 -0.9 -1 1/8 

H 0.2 0.5 -1 1/8 



The Best “Stump” 
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The ADABoost Algorithm 

• Initialize D1(xi) = 1/N 

• For t = 1, …, T 
– Train a weak classifier ht using distribution Dt 

– Compute total error on training data 
• et = Sum {Dt (xi) ½(1 – yi ht(xi))} 

– Set t = ½ ln (et /(1 – et)) 

– For i = 1… N    

–     
• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi)) 

– Normalize Dt+1 to make it a distribution 

• The final classifier is 
– H(x) = sign(St t ht(x)) 
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The Best “Stump” 
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The Best Error 
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0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

The Error of the classifier 
is the sum of the weights of 
the misclassified instances 

Sign = +1, error = 1/8 

threshold 

NOTE: THE ERROR IS THE SUM OF THE WEIGHTS OF MISCLASSIFIED 

INSTANCES 

ID E1 E2. Class Weight 

A 0.3 -0.6 +1 1/8 

B 0.5 -0.5 +1 1/8 

C 0.7 -0.1 +1 1/8 

D 0.6 -0.4 +1 1/8 

E 0.2 0.4 -1 1/8 

F -0.8 -0.1 -1 1/8 

G 0.4 -0.9 -1 1/8 

H 0.2 0.5 -1 1/8 



The ADABoost Algorithm 

• Initialize D1(xi) = 1/N 

• For t = 1, …, T 
– Train a weak classifier ht using distribution Dt 

– Compute total error on training data 
• et = Sum {Dt (xi) ½(1 – yi ht(xi))} 

– Set t = ½ ln ((1 – et) / et) 

– For i = 1… N  
• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi)) 

– Normalize Dt+1 to make it a distribution 

• The final classifier is 
– H(x) = sign(St t ht(x)) 
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Computing Alpha 
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0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

Alpha = 0.5ln((1-1/8) / (1/8)) 
 
        = 0.5 ln(7) = 0.97  

Sign = +1, error = 1/8 

threshold 



The Boosted Classifier Thus Far 
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0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

Alpha = 0.5ln((1-1/8) / (1/8)) 
 
        = 0.5 ln(7) = 0.97  

Sign = +1, error = 1/8 

threshold 

h1(X) = wt(E1) > 0.45 ? +1 : -1 
 
H(X) = sign(0.97 * h1(X)) 
 
It’s the same as h1(x) 



The ADABoost Algorithm 

• Initialize D1(xi) = 1/N 

• For t = 1, …, T 
– Train a weak classifier ht using distribution Dt 

– Compute total error on training data 
• et = Average {½ (1 – yi ht(xi))} 

– Set t = ½ ln ((1 – et) / et) 

– For i = 1… N  
• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi)) 

– Normalize Dt+1 to make it a distribution 

• The final classifier is 
– H(x) = sign(St t ht(x)) 
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The Best Error 
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ID E1 E2. Class Weight Weight 

A 0.3 -0.6 +1 1/8  * 2.63 0.33 

B 0.5 -0.5 +1 1/8 * 0.38 0.05 

C 0.7 -0.1 +1 1/8 * 0.38 0.05 

D 0.6 -0.4 +1 1/8 * 0.38 0.05 

E 0.2 0.4 -1 1/8 * 0.38 0.05 

F -0.8 0.1 -1 1/8 * 0.38 0.05 

G 0.4 -0.9 -1 1/8 * 0.38 0.05 

H 0.2 0.5 -1 1/8 * 0.38 0.05 

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

threshold 

Dt+1(xi) = Dt(xi) exp(- t yi ht (xi)) 

 

exp(t) = exp(0.97) = 2.63 

exp(-t) = exp(-0.97) = 0.38 

Multiply the correctly classified instances by 0.38 
Multiply incorrectly classified instances by 2.63 



AdaBoost 
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AdaBoost 
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The ADABoost Algorithm 

• Initialize D1(xi) = 1/N 

• For t = 1, …, T 
– Train a weak classifier ht using distribution Dt 

– Compute total error on training data 
• et = Average {½ (1 – yi ht(xi))} 

– Set t = ½ ln ((1 – et) / et) 

– For i = 1… N  
• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi)) 

– Normalize Dt+1 to make it a distribution 

• The final classifier is 
– H(x) = sign(St t ht(x)) 
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The Best Error 
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ID E1 E2. Class Weight Weight Weight 

A 0.3 -0.6 +1 1/8  * 2.63 0.33 0.48 

B 0.5 -0.5 +1 1/8 * 0.38 0.05 0.074 

C 0.7 -0.1 +1 1/8 * 0.38 0.05 0.074 

D 0.6 -0.4 +1 1/8 * 0.38 0.05 0.074 

E 0.2 0.4 -1 1/8 * 0.38 0.05 0.074 

F -0.8 0.1 -1 1/8 * 0.38 0.05 0.074 

G 0.4 -0.9 -1 1/8 * 0.38 0.05 0.074 

H 0.2 0.5 -1 1/8 * 0.38 0.05 0.074 

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

threshold 

D’ = D / sum(D) 

Multiply the correctly classified instances by 0.38 
Multiply incorrectly classified instances by 2.63 
Normalize to sum to 1.0 



The Best Error 
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ID E1 E2. Class Weight 

A 0.3 -0.6 +1 0.48 

B 0.5 -0.5 +1 0.074 

C 0.7 -0.1 +1 0.074 

D 0.6 -0.4 +1 0.074 

E 0.2 0.4 -1 0.074 

F -0.8 0.1 -1 0.074 

G 0.4 -0.9 -1 0.074 

H 0.2 0.5 -1 0.074 

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

threshold 

D’ = D / sum(D) 

Multiply the correctly classified instances by 0.38 
Multiply incorrectly classified instances by 2.63 
Normalize to sum to 1.0 



The ADABoost Algorithm 

• Initialize D1(xi) = 1/N 

• For t = 1, …, T 
– Train a weak classifier ht using distribution Dt 

– Compute total error on training data 
• et = Average {½ (1 – yi ht(xi))} 

– Set t = ½ ln (et /(1 – et)) 

– For i = 1… N  
• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi)) 

– Normalize Dt+1 to make it a distribution 

• The final classifier is 
– H(x) = sign(St t ht(x)) 
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E1 classifier 
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ID E1 E2. Class Weight 

A 0.3 -0.6 +1 0.48 

B 0.5 -0.5 +1 0.074 

C 0.7 -0.1 +1 0.074 

D 0.6 -0.4 +1 0.074 

E 0.2 0.4 -1 0.074 

F -0.8 0.1 -1 0.074 

G 0.4 -0.9 -1 0.074 

H 0.2 0.5 -1 0.074 

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

.074 .074 .074 .48 .074 .074 .074 .074 

threshold 

Classifier based on E1: 
if ( sign*wt(E1) > thresh) > 0)  
    face = true 
 
sign = +1 or -1 

Sign = +1, error = 0.222 
Sign = -1, error = 0.778 



E1 classifier 

11755/18979 97 

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

.074 .074 .074 .074 .074 .074 

threshold 

Classifier based on E1: 
if ( sign*wt(E1) > thresh) > 0)  
    face = true 
 
sign = +1 or -1 

Sign = +1, error = 0.148 
Sign = -1, error = 0.852 

.48 .074 

ID E1 E2. Class Weight 

A 0.3 -0.6 +1 0.48 

B 0.5 -0.5 +1 0.074 

C 0.7 -0.1 +1 0.074 

D 0.6 -0.4 +1 0.074 

E 0.2 0.4 -1 0.074 

F -0.8 0.1 -1 0.074 

G 0.4 -0.9 -1 0.074 

H 0.2 0.5 -1 0.074 



The Best E1 classifier 
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0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

.074 .074 .074 .074 .074 .074 

threshold 

Classifier based on E1: 
if ( sign*wt(E1) > thresh) > 0)  
    face = true 
 
sign = +1 or -1 

Sign = +1, error = 0.074 

.48 .074 

ID E1 E2. Class Weight 

A 0.3 -0.6 +1 0.48 

B 0.5 -0.5 +1 0.074 

C 0.7 -0.1 +1 0.074 

D 0.6 -0.4 +1 0.074 

E 0.2 0.4 -1 0.074 

F -0.8 0.1 -1 0.074 

G 0.4 -0.9 -1 0.074 

H 0.2 0.5 -1 0.074 



The Best E2 classifier 
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-0.4 -0.1 0.4 0.5 -0.6 -0.9 -0.1 -0.5 

G A B D C F E H 

.074 .48 .074 .074 .074 .074 .074 .074 

threshold 

Classifier based on E2: 
if ( sign*wt(E2) > thresh) > 0)  
    face = true 
 
sign = +1 or -1 

Sign = -1, error = 0.148 

ID E1 E2. Class Weight 

A 0.3 -0.6 +1 0.48 

B 0.5 -0.5 +1 0.074 

C 0.7 -0.1 +1 0.074 

D 0.6 -0.4 +1 0.074 

E 0.2 0.4 -1 0.074 

F -0.8 0.1 -1 0.074 

G 0.4 -0.9 -1 0.074 

H 0.2 0.5 -1 0.074 



The Best Classifier 

11755/18979 100 

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

.074 .074 .074 .074 .074 .074 

threshold 

Classifier based on E1: 
if (wt(E1) > 0.45) face = true 

Sign = +1, error = 0.074 

.48 .074 

Alpha = 0.5ln((1-0.074) / 0.074) 
       = 1.26  

ID E1 E2. Class Weight 

A 0.3 -0.6 +1 0.48 

B 0.5 -0.5 +1 0.074 

C 0.7 -0.1 +1 0.074 

D 0.6 -0.4 +1 0.074 

E 0.2 0.4 -1 0.074 

F -0.8 0.1 -1 0.074 

G 0.4 -0.9 -1 0.074 

H 0.2 0.5 -1 0.074 



The Boosted Classifier Thus Far 
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h1(X) = wt(E1) > 0.45 ? +1 : -1 

h2(X) = wt(E1) > 0.25 ? +1 : -1 

H(X) = sign(0.97 * h1(X) + 1.26 * h2(X)) 

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

.074 .074 .074 .074 .074 .074 

threshold 

.48 .074 

threshold 



Reweighting the Data 

11755/18979 102 

ID E1 E2. Class Weight 

A 0.3 -0.6 +1 0.48*0.28 0.32 

B 0.5 -0.5 +1 0.074*0.28 0.05 

C 0.7 -0.1 +1 0.074*0.28 0.05 

D 0.6 -0.4 +1 0.074*0.28 0.05 

E 0.2 0.4 -1 0.074*0.28 0.05 

F -0.8 0.1 -1 0.074*0.28 0.05 

G 0.4 -0.9 -1 0.074*3.5 0.38 

H 0.2 0.5 -1 0.074*0.28 0.05 

0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

.074 .074 .074 .074 .074 .074 

threshold 

Sign = +1, error = 0.074 

.48 .074 

Exp(alpha) = exp(1.26) = 3.5 
Exp(-alpha) = exp(-1.26) = 0.28 

RENORMALIZE 



Reweighting the Data 
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0.3 0.5 0.6 0.7 0.2 -0.8 0.4 0.2 

F E H A G B C D 

.074 .074 .074 .074 .074 .074 

threshold 

Sign = +1, error = 0.074 

.48 .074 

RENORMALIZE 

NOTE: THE WEIGHT OF “G” 

WHICH WAS MISCLASSIFIED 

BY THE SECOND CLASSIFIER 

IS NOW SUDDENLY HIGH 

ID E1 E2. Class Weight 

A 0.3 -0.6 +1 0.48*0.28 0.32 

B 0.5 -0.5 +1 0.074*0.28 0.05 

C 0.7 -0.1 +1 0.074*0.28 0.05 

D 0.6 -0.4 +1 0.074*0.28 0.05 

E 0.2 0.4 -1 0.074*0.28 0.05 

F -0.8 0.1 -1 0.074*0.28 0.05 

G 0.4 -0.9 -1 0.074*3.5 0.38 

H 0.2 0.5 -1 0.074*0.28 0.05 



AdaBoost 

• In this example both of our first two classifiers were 
based on E1 

– Additional classifiers may switch to E2 

• In general, the reweighting of the data will result in a 
different feature being picked for each classifier 

 

• This also automatically gives us a feature selection 
strategy 

– In this data the wt(E1) is the most important feature 
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AdaBoost 

• NOT required to go with the best classifier so far 

• For instance, for our second classifier, we might use the 
best E2 classifier, even though its worse than the E1 
classifier 

– So long as its right more than 50% of the time 

 

• We can continue to add classifiers even after we get 100% 
classification of the training data 

– Because the weights of the data keep changing 

– Adding new classifiers beyond this point is often a good 
thing to do 
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ADA Boost 

• The final classifier is 
– H(x) = sign(St t ht(x)) 

 

• The output is 1 if the total weight of all weak 
learners that classify x as 1 is greater than the 
total weight of all weak learners that classify it as 
-1 

11755/18979 106 

E1 E2 

= 0.4 E1 - 0.4 E2 



Boosting and Face Detection 

• Boosting is the basis of one of the most 
popular methods for face detection:  The 
Viola-Jones algorithm 

– Current methods use other classifiers like SVMs, 
but adaboost classifiers remain easy to implement 
and popular 

– OpenCV implements Viola Jones.. 
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The problem of face detection 

• 1. Defining Features 

– Should we be searching for noses, eyes, eyebrows etc.? 

• Nice, but expensive 

– Or something simpler 
 

• 2. Selecting Features 

– Of all the possible features we can think of, which ones make 
sense 

 

• 3. Classification: Combining evidence 

– How does one combine the evidence from the different 
features? 
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Features: The Viola Jones Method 

• Integral Features!! 

– Like the Checkerboard 

• The same principle as we used to decompose images in terms of 
checkerboards: 

– The image of any object has changes at various scales 

– These can be represented coarsely by a checkerboard pattern 

• The checkerboard patterns must however now be localized 

– Stay within the region of the face 
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B1 B2 B3 B4 B5 B6 

...Im 332211  BwBwBwage



Features 
• Checkerboard Patterns to represent facial features 

– The white areas are subtracted from the black ones. 

– Each checkerboard explains a localized portion of the 
image  

• Four types of checkerboard patterns (only) 
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Explaining a portion of the face with a 
checker.. 

• How much is the difference in average intensity of the image 
in the black and white regions 
– Sum(pixel values in white region) – Sum(pixel values in black region) 

• This is actually the dot product of the region of the face 
covered by the rectangle and the checkered pattern itself 
– White = 1, Black = -1 
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“Integral” features 

• Each checkerboard has the following characteristics 

– Length 

– Width 

– Type 

• Specifies the number and arrangement of bands 

 

• The four checkerboards above are the four used by Viola and Jones 
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Integral images 
• Summed area tables 
 
 
 
 
 
 
 
 
• For each pixel store the sum of ALL pixels to the left of and above it. 
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Fast Computation of Pixel Sums 

• To compute the sum of the pixels within “D”: 

– Pixelsum(1) = Area(A) 

– Pixelsum(2) = Area(A) + Area(B) 

– Pixelsum(3) = Area(A) + Area(C) 

– Pixelsum(4) = Area(A)+Area(B)+Area(C) +Area(D) 

 

• Area(D) = Pixelsum(4) – Pixelsum(2) – Pixelsum(3) + Pixelsum(1) 
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1 2 

3 4 

A B 

C D 



• Store pixel table for every pixel in the image 

– The sum of all pixel values to the left of and above the pixel 

• Let A, B, C, D, E, F be the pixel table values at the locations shown 

– Total pixel value of black area = D + A – B – C 

– Total pixel value of white area = F + C – D – E 

– Feature value = (F + C – D – E) – (D + A – B – C)  
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A B 

D 

F 

C 

E 

A Fast Way to Compute the Feature 



How many features? 

• Each checker board of width P and height H can start at any of 
(N-P)(M-H) pixels 

 

• (M-H)*(N-P) possible starting locations 
– Each is a unique checker feature 

• E.g. at one location it may measure the forehead, at another the chin 

116 

MxN 
PxH 
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How many features 

• Each feature can have many sizes 

– Width from (min) to (max) pixels 

– Height from (min ht) to (max ht) pixels 

• At each size, there can be many starting locations 

– Total number of possible checkerboards of one type:   
 No. of possible sizes x No. of possible locations  

• There are four types of checkerboards 

– Total no. of possible checkerboards:   VERY VERY LARGE! 

11755/18979 117 



Learning:  No. of features 

• Analysis performed on images of 24x24 pixels 
only 

– Reduces the no. of possible features to about 
180000 

• Restrict checkerboard size 

– Minimum of 8 pixels wide 

– Minimum of 8 pixels high 

• Other limits, e.g. 4 pixels may be used too 

– Reduces no. of checkerboards to about 50000 
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No. of features 

• Each possible checkerboard gives us one feature 

• A total of up to 180000 features derived from a 24x24 image! 

• Every 24x24 image is now represented by a set of 180000 
numbers 
– This is the set of features we will use for classifying if it is a face or not! 
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F1 F2 F3 F4 ….. F180000 

7 9 2 -1 ….. 12 

-11 3 19 17 ….. 2 



The Classifier 

• The Viola-Jones algorithm uses AdaBoost with “stumps” 
 

• At each stage find the best feature to classify the data 
with 

– I.e the feature that gives us the best classification of all the 
training data 

• Training data includes many examples of faces and non-face 
images 

– The classification rule is of the kind 

• If feature > threshold, face  (or if feature < threshold, face) 

• The optimal value of “threshold” must also be determined. 
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To Train 

• Collect a large number of facial images 
– Resize all of them to 24x24 
– These are our “face” training set 

 

• Collect a much much much larger set of 24x24 
non-face images of all kinds 
– Each of them is 
– These are our “non-face” training set 

 

• Train a boosted classifier 
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The Viola Jones Classifier 

• During tests: 
– Given any new 24x24 image 

• R =  Sf f (f > pf q(f)) 
• Only a small number of features (f < 100) typically used 

 

• Problems: 
– Only classifies 24 x 24 images entirely as faces or non-faces 

• Pictures are typically much larger 
• They may contain many faces 
• Faces in pictures can be much larger or smaller 

– Not accurate enough 
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Multiple faces in the picture 

• Scan the image 

– Classify each 24x24 rectangle from the photo 

– All rectangles that get classified as having a face indicate the location 
of a face 

• For an NxM picture, we will perform (N-24)*(M-24) classifications 

• If overlapping 24x24 rectangles are found to have faces, merge them 
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Multiple faces in the picture 

• Scan the image 

– Classify each 24x24 rectangle from the photo 

– All rectangles that get classified as having a face indicate the location 
of a face 

• For an NxM picture, we will perform (N-24)*(M-24) classifications 

• If overlapping 24x24 rectangles are found to have faces, merge them 
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Multiple faces in the picture 

• Scan the image 

– Classify each 24x24 rectangle from the photo 

– All rectangles that get classified as having a face indicate the location 
of a face 

• For an NxM picture, we will perform (N-24)*(M-24) classifications 

• If overlapping 24x24 rectangles are found to have faces, merge them 
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Multiple faces in the picture 

• Scan the image 

– Classify each 24x24 rectangle from the photo 

– All rectangles that get classified as having a face indicate the location 
of a face 

• For an NxM picture, we will perform (N-24)*(M-24) classifications 

• If overlapping 24x24 rectangles are found to have faces, merge them 
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Picture size solution 

• We already have a 
classifier 
– That uses weak 

learners 

• Scale the Picture 
– Scale the picture 

down by a factor a 

– Keep decrementing 
down to a minimum 
reasonable size 
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False Rejection vs. False Detection 

• False Rejection: There’s a face in the image, but the classifier misses it 

– Rejects the hypothesis that there’s a face 

• False detection: Recognizes a face when there is none. 
 

• Classifier:  

– Standard boosted classifier: H(x) = sign(St t ht(x)) 

– Modified classifier H(x) = sign(St t ht(x) + Y) 

• St t ht(x) is a measure of certainty 

– The higher it is, the more certain we are that we found a face 

• If Y is large, then we assume the presence of a face even when we are not 
sure 

– By increasing Y, we can reduce false rejection, while increasing false 
detection 
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ROC 

• Ideally false rejection will be 0%, false detection will also 
be 0% 

• As Y increaases, we reject faces less and less 

– But accept increasing amounts of garbage as faces 

• Can set Y so that we rarely miss a face 
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Problem: Not accurate enough, too slow 

• If we set Y high enough, we will never miss a 
face 
– But will classify a lot of junk as faces 

• Solution:  Classify the output of the first 
classifier with a second classifier 
– And so on. 

11755/18979 130 

Classifier 1 

Not a face 

Classifier 2 

Not a face 



Problem: Not accurate enough, too slow 

• If we set Y high enough, we will never miss a 
face 
– But will classify a lot of junk as faces 

• Solution:  Classify the output of the first 
classifier with a second classifier 
– And so on. 
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Useful Features Learned by Boosting 
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A Cascade of Classifiers 
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Detection in Real Images 

• Basic classifier operates on 24 x 24 subwindows 
 

• Scaling: 
– Scale the detector (rather than the images) 
– Features can easily be evaluated at any scale 
– Scale by factors of 1.25 

 
• Location: 

– Move detector around the image (e.g., 1 pixel increments) 
 

• Final Detections 
– A real face may result in multiple nearby detections   
– Postprocess detected subwindows to combine overlapping detections 

into a single detection 
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Training 
• In paper, 24x24 images of faces and non faces (positive and negative 

examples). 
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Sample results using the Viola-Jones Detector 

• Notice detection at multiple scales  
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More Detection Examples 
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Practical implementation 

• Details discussed in Viola-Jones paper 

 

• Training time = weeks  (with 5k faces and 9.5k non-faces) 

 

• Final detector has 38 layers in the cascade, 6060 features 

 

• 700 Mhz processor: 

– Can process a 384 x 288 image in 0.067 seconds (in 2003 when 
paper was written) 
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Best Window/Background Issues 
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Best Window/Background Issues 
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Best Window/Background Issues 
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Key Ideas 

• EigenFace feature 

• Sliding windows & scale-space pyramid 

• Boosting an ensemble of weak classifiers 

• Integral Image / Haar Features 

• Cascaded Strong Classifiers 
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