Machine Learning for Signal
Processing
Independent Component Analysis

Class 8. 24 Sep 2015

Instructor: Bhiksha Raj
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Revisiting the Covariance Matrix

Assuming centered data

C=2, XX
= X X"+ XX+

Let us view C as a transform..
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Covariance matrix as a transform

o (X X{T+X,XT+ . ) V=XXTV+X,XTV+..
* Consider a 2-vector example

— In two dimensions for illustration
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Covariance Matrix as a transform
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®

» Data comprises only 2 vectors..

* Major axis of component ellipses proportional to twice the
length of the corresponding vector
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Covariance Matrix as a transform
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* Major axis of component ellipses proportional to twice the
length of the corresponding vector
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Covariance Matrix as a transform
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* More ve S..

* Major axis of component ellipses proportional to twice the
length of the corresponding vector
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Covariance Matrix as a transform

~
N

e And still morg vectors..

* Major axis of romponent eJipses proportional to twice the
length of the cQrresponding vector
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Covariance Matrix transform

 The covariance matrix captures the directions of
maximum variance

e What does it tell us about trends?
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Data Trends: Axis aligned

covariance
A

v I

Axis aligned covariance
At any X value, the average Y value of vectors is 0
— X cannot predict Y

At any Y, the average X of vectors is O

— Y cannot predict X

The X and Y components are uncorrelated
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Data Trends: Tilted covariance

A |

Tilted covariance

The average Y value of vectors at any X varies with X
— X predicts Y

Average X varies with Y
The X and Y components are correlated
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Decorrelation

‘A\ ‘\ L—l

. \l.~""\

/

e Shifting to using the major axes as the coordinate system
— L, does not predict L, and vice versa
— In this coordinate system the data are uncorrelated

 We have decorrelated the data by rotating the axes
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The statistical concept of
correlatedness

 Two variables X and Y are correlated if If
knowing X gives you an expected value of Y

« XandY are uncorrelated if knowing X tells you
nothing about the expected value of Y

— Although it could give you other information
— How?
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Correlation vs. Causation

* The consumption of burgers has gone up
steadily in the past decade

Antarctica has gone down

Correlation, not Causation
(unless McDonalds has a
6 Ga ‘- top-secret Antarctica division)
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The concept of correlation

* Two variables are correlated if knowing the
value of one gives you information about the
expected value of the other

Le
"y,

Penguin population

- > :
Time Burger consumption
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A brief review of basic probability

Uncorrelated: Two random variables X and Y are
uncorrelated iff:

— The average value of the product of the variables equals the
product of their individual averages

Setup: Each draw produces one instance of X and one
instance of Y

— |l.e one instance of (X,Y)
E[XY] = E[X]E[Y]

The average value of Y is the same regardless of the value
of X
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Correlated Variables

Penguin population

b, b,
Burger consumption

e Expected value of Y given X:

>

— Find average of Y values of all samples at (or close)

to the given X
— If this is a function of X, X and Y are correlated

11755/18797
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Uncorrelatedness

A

<B)
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¢
b, b,
Burger consumption

* Knowing X does not tell you what the average
value of Y is

— And vice versa
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Uncorrelated Variables

A X as a function of Y
o Y as a function of X
S
o
c
= ) ®
> ° °
< o9 o
>
<

>
Burger consumption

 The average value of Y is the same regardless
of the value of X and vice versa
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Uncorrelatedness in Random
Variables

 Which of the above represent uncorrelated RVs?
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>

The notion of decorrelation

{

Y

e So how does one transform the correlated
variables (X,Y) to the uncorrelated (X', Y’)
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What does “uncorrelated” mean

Assuming

t o Omean * E[X’] = constant

o * E[Y’] = constant

| e p e * E[Y’|X’] = constant
— All will be 0 for centered
data
>
X’

EKXJ(X' Y)} = E( X" X'Z'jz[E[X'Z] 0 , jzdiagonal matrix
Y XYy 0  E[Y?]

* If Y is a matrix of vectors, YYT = diagonal
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Decorrelation

e Let X be the matrix of correlated data vectors

— Each component of X informs us of the mean trend of
other components

* Need a transform M such that if Y = MX such
that the covariance of Y is diagonal
— YYTis the covariance if Y is zero mean
— YYT = Diagonal
—MXXTMT = Diagonal
—M.Cov(X).MT = Diagonal



Decorrelation

Easy solution:

— Eigen decomposition of Cov(X):
Cov(X) = EAET

— EET =1

letM=ET

MCov(X)MT = ETEAETE = A = diagonal

PCA: Y = MTX
Diagonalizes the covariance matrix
— “Decorrelates” the data

11755/18797
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A A
- S S5
" >
e PCA:Y =MT"X

* Diagonalizes the covariance matrix

— “Decorrelates” the data
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Decorrelating the data

NEZ

* Are there other decorrelating axes?

11755/18797
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Decorrelating the data

* Are there other decorrelating axes?
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Decorrelating the data

o

* Are there other decorrelating axes?

 What about if we don’t require them to be
orthogonal?
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Decorrelating the data

. ,\.

2

* Are there other decorrelating axes?

 What about if we don’t require them to be
orthogonal?

 What is special about these axes?
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The statistical concept of
Independence

 Two variables X and Y are dependent if If
knowing X gives you any information about Y

« XandY are independent if knowing X tells you
nothing at all of Y
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A brief review of basic probability

* Independence: Two random variables X and Y
are independent iff:

— Their joint probability equals the product of their
individual probabilities

* P(X,Y) = P(X)P(Y)
* |Independence implies uncorrelatedness

— The average value of X is the same regardless of the
value of Y
* E[X[Y] = E[X]
— But not the other way
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A brief review of basic probability

* Independence: Two random variables X and
Y are independent iff:

 The average value of any function of X is the
same regardless of the value of Y

— Or any function of Y

 E[f(X)g(Y)] = E[f(X)] E[g(Y)] for all f(), g()
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Independence

 Which of the above represent independent RVs?

* Which represent uncorrelated RVs?
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A brief review of basic probability

y =1(x)

J— N

* The expected value of an odd function of an
RV is O if
— The RV is 0 mean
— The PDF is of the RV is symmetric around O

 E[f(X)] = Oif f(X) is odd symmetric
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A brief review of basic info. theory

ee®  T(all), M(ed), S(hort)...
H(X)=> P(X)[-log P(X)]

 Entropy: The minimum average number of bits
to transmit to convey a symbol

MF F M.
H(X,Y)=Y P(X,Y)[-log P(X,Y)]

* Joint entropy: The minimum averagé number of
bits to convey sets (pairs here) of symbols
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A brief review of basic info. theory

e Conditional Entropy: The minimum average
number of bits to transmit to convey a symbol
X, after symbol Y has already been conveyed

— Averaged over all values of X and Y
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A brief review of basic info. theory
H(X[Y) =Z,P(Y); P(X |Y)[-log P(X IY)]=;P(Y)§,P(X)[—|09 P(X)]=H(X)

* Conditional entropy of X = H(X) if X is
independent of Y

H(X,Y)=XZY:P(X,Y)[—Iog P(X,Y)]:XZY:P(X,Y)[—Iog P(X)P(Y)]
=—XZY:I;>(X,Y)Iog P(X)—XZY:P(X,Y')Iog P(Y)=H(X)+H(Y)
* Joint entropy of X and Y is the sum of the
entropies of X and Y if they are independent
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Onward..

11755/18797
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Projection: multiple notes

2000
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- - -
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4 = o —=

m P=W (WTW)'1 wWT
= Projected Spectrogram = PM
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We're actually

computing a score
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When both parameters are unknown

H="?

W=7 approx(M) = ?

e Must estimate both H and W to best
approximate M

* |deally, must learn both the notes and their
transcription!
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A least squares solution

W,H =argming ; [|M-WH [}z +A(W'W —1)

Constraint: W is orthogonal

-~ WTW = |

The solution: W are the Eigen vectors of
MMT

— PCA!l

M ~ WH is an approximation
Also, the rows of H are decorrelated

— Trivial to prove that HHT is diagonal



PCA

W, H =argming 5 |M-WH |2
M=~ WH

e The columns of W are the bases we have
learned

— The linear “building blocks” that compose the
music

* They represent “learned” notes



So how does that work?

 There are 12 notes in the segment, hence we
try to estimate 12 notes..

11755/18797
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So how does that work?

-4 2 2
8 8 8

 There are 12 notes in the segment, hence we
try to estimate 12 notes..

* Results are not good
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PCA through decorrelation of

notes
W,H =argming 5 |[M-H|z +A(HH' —D)

[
] 1 [ []
n_ 1 gl

 Different constraint: Constraint H to be decorrelated
— HHT=D
e This will result exactly in PCA too

* Decorrelation of H Interpretation: What does this
mean?

11755/18797
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What else can we look for?

[ —
] [ [ []
1 g

* Assume: The “transcription” of one note does
not depend on what else is playing

— Or, in a multi-instrument piece, instruments are
playing independently of one another

* Not strictly true, but still..
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Formulating it with Independence

W,H=argmin_. . | M—WH ||2 +A(rows.of .H.areindependent)
W,H F

* Impose statistical independence constraints
on decomposition
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Changing problems for a bit

hl(t) ﬁ . > > ....... > Q:] m, (t) = w,hy (t) +w;,h, (1)
S !
=

=/ R

h, (1)

 Two people speak simultaneously
* Recorded by two microphones

* Each recorded signal is a mixture of both signals
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A Separation Problem

M W H
ANASANY AN Wy Wi | | AP AVAN
A NWIMAINT | gy, wy, \/W\J\/\/\N\N\\
\
Signal from speaker 1
+ M=WH |
Signal at mic 1 Signal from speaker 2
— M = “mixed” signal
Signal at mic 2

— W = “notes”

— H = “transcription”

e Separation challenge: Given only M estimate H
* |dentical to the problem of “finding notes”
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A Separation Problem

Wy Wy /VV\/\/\/\/\/w
VV21 VV22 \\J/\J\/\A/\J\ﬁ\ﬂ/\PJ@/\U

e Separation challenge: Given only M estimate H

* Identical to the problem of “finding notes”
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Imposing Statistical Constraints

M W H
/W\/\f\/\/\/\ﬂ Wy Wy /\A/\/\/\/\/\A’\M
AN =y s, || VN

M=WH

Given only M estimate H

H=W1M = AM

Only known constraint: The rows of H are
independent

Estimate A such that the components of AM are
statistically independent

— Ais the unmixing matrix
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Statistical Independence

. M =WH
\ Remember this form

11755/18797
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An ugly algebraic solution

M=WH ........ H=AM

 We could decorrelate signals by algebraic manipulation

— We know uncorrelated signals have diagonal correlation
matrix

— So we transformed the signal so that it has a diagonal
correlation matrix (HHT)

 Can we do the same for independence
— |Is there a linear transform that will enforce independence?
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Emulating Independence

H

AN AN NN
NIAVA N N AVAVAYA AN

 The rows of H are uncorrelated
- E[hihj] = E[hi]E[hj]
— h; and h; are the i*" and j*" components of any vector in H

 The fourth order moments are independent
— E[h;hjhh] = E[N]E[N]E[h]JE[N]
— E[h 2h ihd = E[hZE[N]E[h,]
~ E[h? hi?] = E[h#]E[h, 2]
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Zero Mean

e Usual to assume zero mean Processes
— Otherwise, some of the math doesn’t work well

c M=WH H=AM

* Ifmean(M)=0 => mean(H)=0
— E[H]=AE[M]=A0=0
— First step of ICA: Set the meanof Mto 0

1
Hm = cols (M) 2.m,

m; =M, — 44, Vi

— m, are the columns of M



Emulating Independence..

H Diagonal

H=AM

+ rankl
" matrix A=BC

H=BCM

* Independence =2 Uncorrelatedness
e Estimate a C such that CM is decorrelated
e A little more than PCA
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Decorrelating

H’

Diagonal

+ rankl
matrix

Eigen decomposition MMT= ESE"

C = S 12 T

X=CM

Not merely decorrelated but whitened
— XXT=CMMTCT = S12ETESETES 12 = |

C is the whitening matrix

11755/18797

H=AM

A=BC
H=BCM
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Uncorrelated != Independent

Whitening merely ensures that the resulting signals are
uncorrelated, i.e.

E[xx]=0ifi!=]

This does not ensure higher order moments are also
decoupled, e.g. it does not ensure that

E[xi*x;"] = EDX’]E [X7]

This is one of the signatures of independent RVs
Lets explicitly decouple the fourth order moments
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Decorrelating

Diagonal
H J H=AM
_ + rankl
H’ - matrix A=BC
H=BCM
X=CM H=BX

XXT =1

Will multiplying X by B re-correlate the components?
Not if B is unitary
— BB"=B™B=1
HHT = BXX'BT=BB' = |
So we want to find a unitary matrix

— Since the rows of H are uncorrelated
* Because they are independent
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ICA: Freeing Fourth Moments
H=AM, A=BC, X=CM, > H=BX

The fourth moments of H have the form:
E[h; h; hy h]

If the rows of H were independent
E[h; hj h.h] =E[h] E[hj] E[hJ E[h]

Solution: Compute B such that the fourth moments of H = BX
are decoupled
— While ensuring that B is Unitary
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ICA: Freeing Fourth Moments

* Create a matrix of fourth moment terms that would be
diagonal were the rows of H independent and diagonalize it

A good candidate

— Good because it incorporates the energy in all rows of H

d11 d12 d13
D = d21 d22 d23

— Where
d;=E[Z, hZh; h]
— l.e.
D=E[hTh h hT]
* hare the columns of H
* Assuming his real, else replace transposition with Hermition
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ICA: The D matrix

D=|d, d, d

dll d12 d13

23

dij =E[Z hZh hj] = : Zzhrikhmihmj
m k

cols(H)

Sum of squares

jt component

Energy-weighted
correlation!!

of all component
2
>h,

N

hi hy ™

J
heh; h

e Average above term across all columns of H

11755/18797
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ICA: The D matrix

d11 d12 d13 o d.=E[Z. h.2h hl= 1 h
D=|d, d, d, .| o ool (H) -4

If the h, terms were independent
— Foril=j

e/ shinn, |-l 1 ebilen e Sebiin b

k=i,k=#j
— Centered: E[h]=0 = E[Z, h?h; h]=0fori!=]
— Fori=j

E{Zk:hﬁhihj} —E|h! ]+ E[n2|> Elnz =0

ki

Thus, if the h; terms were independent, d; =0 ifi !=]j

mk

2.h_h

mi~ 'mj

i.e., if h, were independent, D would be a diagonal matrix
— Let us diagonalize D

T1755/18797

b5




Diagonalizing D

Compose a fourth order matrix from X

— Recall: X=CM, H=BX=BCM
* B is what we’re trying to learn to make H independent

Note: if H=BX, then each h =BxX
The fourth moment matrix of H is
D= E[h"Thhh']= E[x"BB"™XBT"x x"B]
= E[x'™X BT x x"B]
= BT E[x"™x xx"]B

11755/18797
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Diagonalizing D

* Objective: Estimate B such that the fourth
moment of H = BX is diagonal

* Compose D, = E[xT x x xT]

* Diagonalize D, via Eigen decomposition
D, = UAUT

e B=UT
— That’s it!!!!
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B frees the fourth moment

D, =UAUT ; B=UT'
U is a unitary matrix, i.e. UTU = UUT = | (identity)
H=BX=UTX

h=UTx

The fourth moment matrix of H is
E[hThhh'] = UTE[x™x xx"]U
=U'D, U
=UTUAUTU=A
The fourth moment matrix of H = U"X is Diagonal!!

11755/18797
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Overall Solution

H=AM=BCM
— Cis the (transpose of the) matrix of Eigen vectors of MMT

X=CM

A= BC=U'C
— B is the (transpose of the) matrix of Eigenvectors of
X.diag(XT"X).XT

11755/18797
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ICA by diagonalizing moment
matrices

The procedure just outlined, while fully functional, has
shortcomings
— Only a subset of fourth order moments are considered

— There are many other ways of constructing fourth-order moment
matrices that would ideally be diagonal

e Diagonalizing the particular fourth-order moment matrix we have chosen
is not guaranteed to diagonalize every other fourth-order moment matrix

JADE: (Joint Approximate Diagonalization of Eigenmatrices),
J.F. Cardoso
— Jointly diagonalizes several fourth-order moment matrices

— More effective than the procedure shown, but computationally more
expensive
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Enforcing Independence

Specifically ensure that the components of H are
independent

- H=AM

Contrast function: A non-linear function that has a
minimum value when the output components are
independent

Define and minimize a contrast function
» F(AM)

Contrast functions are often only approximations too..
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A note on pre-whitening

The mixed signal is usually “prewhitened” for all ICA methods
— Normalize variance along all directions
— Eliminate second-order dependence

Eigen decomposition MMT = ESET
C = Sl2ET

Can use first K columns of E only if only K independent sources are
expected

— In microphone array setup — only K < M sources

X=CM
— E[xjx;] = §;; for centered signal

11755/18797
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The contrast function

e Contrast function: A non-linear function that
has a minimum value when the output
components are independent

* An explicit contrast function

I(H) =Y H(R,)-H(R)

e With constraint: H=BX
— Xis “whitened” M

11755/18797
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Linear Functions

s h=Bx, x=B7lh
— Individual columns of the H and X matrices
— X is mixed signal, B is the unmixing matrix

R.(h) =R, (B"h)|B"

H (x) =—[ P(x) log P(x)dx

log P(x) =log P,(B™*h) —log(| B|)
H(h)=H(X)+log|B|

11755/18797
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The contrast function

|(H)= Y H (R,)—H (H)

I(H)= Y H(R,)-H(x)-log| B|

* Ignoring H(X) (Const)
‘J(H):ZH(Ei)_IOngl

e Minimize the above to obtain B
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An alternate approach

* Definition of Independence —if Xand y are
independent:

— E[f()a(y)] = E[f(X)]E[g(Y)]
— Must hold for every f() and g()!!

11755/18797
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An alternate approach

* Define g(H) = g(BX) (component-wise
function)

gthy)  d(hy)
a(hyp)  g(hyy)

. Define f(HI) = f(BX)

f(hy)  T(hy)
f(h)  T(hyp)

11755/18797
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An alternate approach
» P=g(H) f(H)" = g(BX) f(BX)"

Py Py

e P Py=E[g(h)f(h)]

P =

This is a square matrix

* Must ideally be
| Qy =Elg(h)IELf (h)] i= ]

Qii — E[g(hi) f (hi )]

Q:

» Error = ||P-Ql|¢?



An alternate approach

* |deal value for Q

Qu Qu - Q; =E[g(h)IELf(h;)] i+ ]

0= | %
Qii — E[g(hi) f (hi )]

* |f g() and h() are odd symmetric functions
E[g(h;)] = O for all i
— Since = E[h;] =0 (H is centered)
— Q is a Diagonal Matrix!!!
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An alternate approach
* Minimize Error

P =g(BX)f(BX)’
Q = Diagonal

error 5| P-Q||2

* Leads to trivial Widrow Hopf type iterative
le: .
e E = Diag —g(BX)f(BX)"
B=B+ 77EBT

11755/18797
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Update Rules

Multiple solutions under different
assumptions for g() and f()

H=BX
B=B+nAB
Jutten Herraut : Online update

— ABy; =1(hy)g(h;); -- actually assumed a recursive
neural network

Bell Sejnowski
—AB = ([B']"* - g(H)X")



Update Rules

Multiple solutions under different
assumptions for g() and f()

H = BX
B=B+nAB

Natural gradient -- f() = identity function
- AB=(1 -g(HH")W
Cichoki-Unbehaeven

—AB = (I - g(H)f(H)"W

11755/18797
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What are G() and H()

Must be odd symmetric functions
Multiple functions proposed

X +tanh(x) X issuperGaussian
X —tanh(x) XIssub Gaussian

g(x>={

Audio signals in general

— AB = (I — HHT-Ktanh(H)HT)W
Or simply

— AB = (I -Ktanh(H)H")W

11755/18797
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So how does it work?

ZZ' ' ¢
 Example with instantaneous mixture of two
speakers

* Natural gradient update
 Works very well!
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Another example!

Input Mix Output
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Another Example

e Three instruments..

11755/18797
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ICA Feature 1
= ——— ——
| ,"
|
|
| .
50 100 150
ICA Feature 2
e =
|
|
|
||
I
L L i L
50 100 150
ICA Feature 3

—— T
L L
200 250
S —
L L
200 250

The Notes

100

200

300

100

200

300

100

200

300

140 160 180

& R RERTI T

60 80 100 12

e Three instruments..
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ICA for data exploration

e The “bases” in PCA

represent the “building
blocks”

— |deally notes

i

M |

(!

' ‘

W ‘
il
IO e

* Very successfully used

L

 So can ICA be used to
do the same?

A
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ICA vs PCA bases

= Motivation for using ICA vs PCA

= PCA will indicate orthogonal directions
of maximal variance

= May not align with the data!

= |CA finds directions that are
iIndependent

= More likely to “align” with the data

11755/18797

Non-Gaussian data
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Finding useful transforms with ICA

Audio preprocessing
example

Take a lot of audio snippets
and concatenate themina
big matrix, do component
analysis

PCA results in the DCT bases

|ICA returns time/freq
localized sinusoids which is a
better way to analyze sounds

Ditto for images

— ICA returns localizes edge
filters

'@ /\[\ |%«J\\

i+ u 4

11755/18797 92



Example case: ICA-faces vs. Eigenfaces

ICA-faces Eigenfaces

=S SRS
SENS SEEN
ME=d SaEE
o= B EEE
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ICA for Signal Enhncement

' \/W“‘W\/

WM%

WMM”

WWWﬁJ\VﬂJ\»\~M i maath

s TAT T perpan
T A A Y

T\ T W\WJ\/\/\/‘/\\/_\’\&f"\/\-
F R Sy Shtey Sy g Gt Ty Ca e
Mf\mr \AWM/\WM

* Very commonly used to enhance EEG signals

 EEG signals are frequently corrupted by
heartbeats and biorhythm signals

* |CA can be used to separate them out
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So how does that work?

 There are 12 notes in the segment, hence we
try to estimate 12 notes..

11755/18797

95



PCA solution

 There are 12 notes in the segment, hence we
try to estimate 12 notes..



So how does this work: ICA solution

-201 C

 Better..

— But not much

e But the issues here?
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ICA Issues

No sense of order

— Unlike PCA

Get K independent directions, but does not have a notion
of the “best” direction

— So the sources can come in any order

— Permutation invariance

Does not have sense of scaling

— Scaling the signal does not affect independence

Outputs are scaled versions of desired signals in permuted
order

— In the best case
— In worse case, output are not desired signals at all..



What else went wrong?

* Notes are not independent
— Only one note plays at a time

— If one note plays, other notes are not playing

 Will deal with these later in the course..
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