Machine Learning for Signal Processing Independent Component Analysis Class 8. 24 Sep 2015

Instructor: Bhiksha Raj

Revisiting the Covariance Matrix

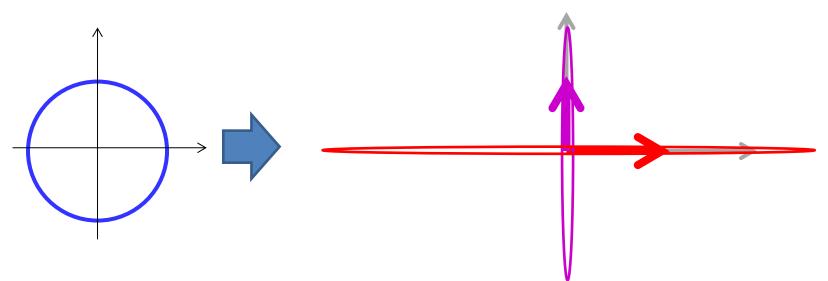
Assuming centered data

- $\mathbf{C} = \Sigma_{\mathbf{X}} \mathbf{X} \mathbf{X}^{\mathsf{T}}$
- = $X_1 X_1^{\mathsf{T}} + X_2 X_2^{\mathsf{T}} + \dots$
- Let us view C as a transform..

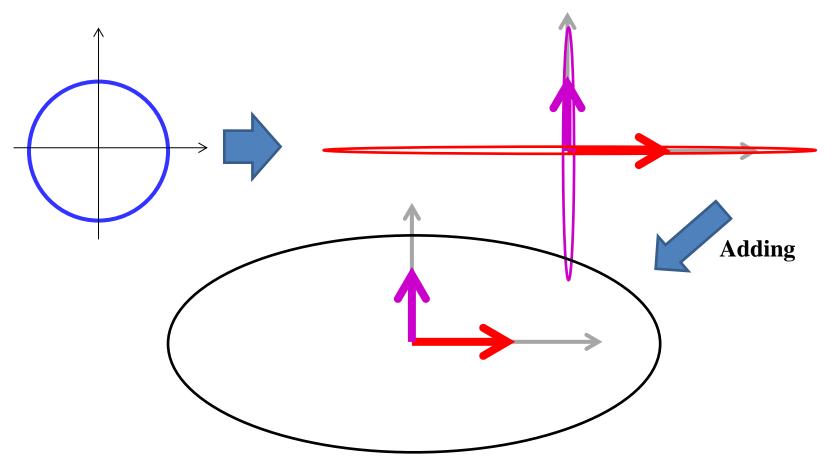


- $(X_1X_1^{\top} + X_2X_2^{\top} + \dots) V = X_1X_1^{\top}V + X_2X_2^{\top}V + \dots$
- Consider a 2-vector example

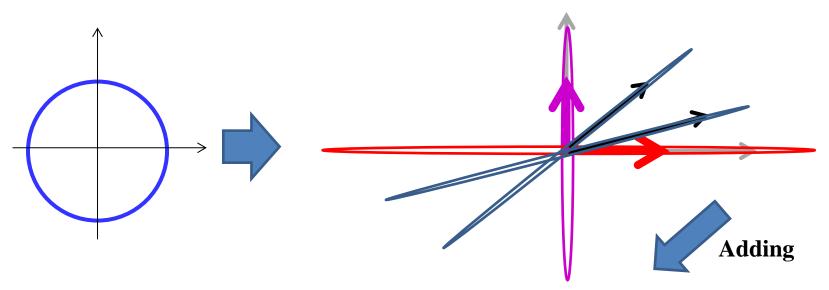
In two dimensions for illustration



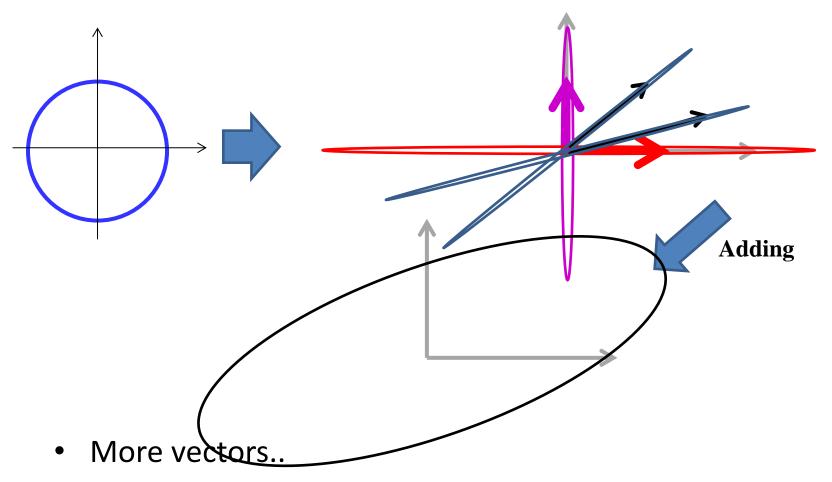
- Data comprises only 2 vectors..
- Major axis of component ellipses proportional to twice the length of the corresponding vector



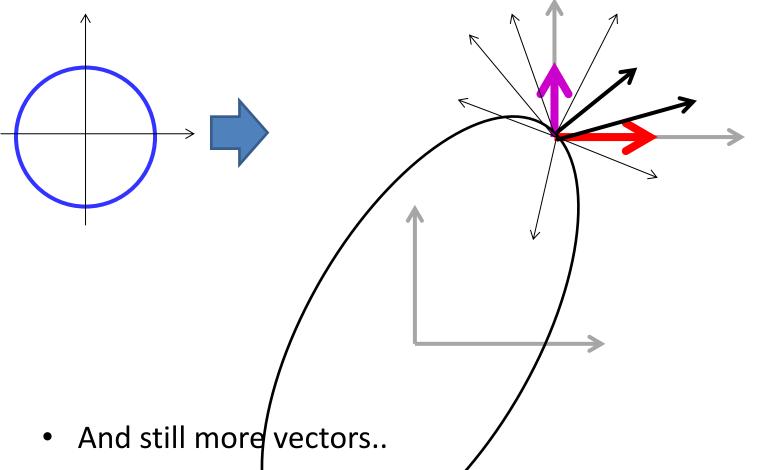
- Data comprises only 2 vectors..
- Major axis of component ellipses proportional to twice the length of the corresponding vector



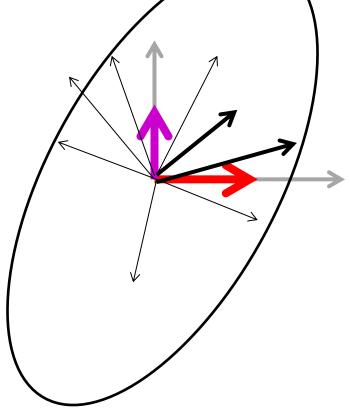
- More vectors..
- Major axis of component ellipses proportional to twice the length of the corresponding vector



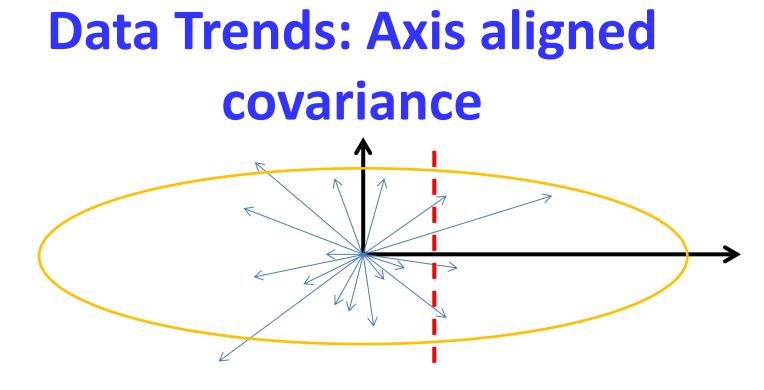
• Major axis of component ellipses proportional to twice the length of the corresponding vector



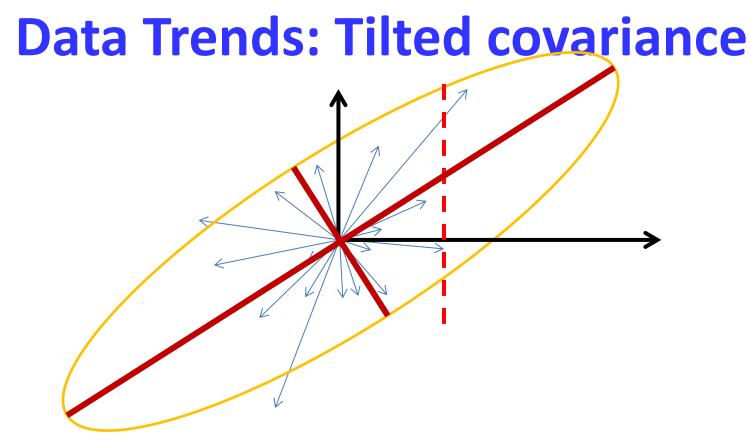
 Major axis of component ellipses proportional to twice the length of the corresponding vector



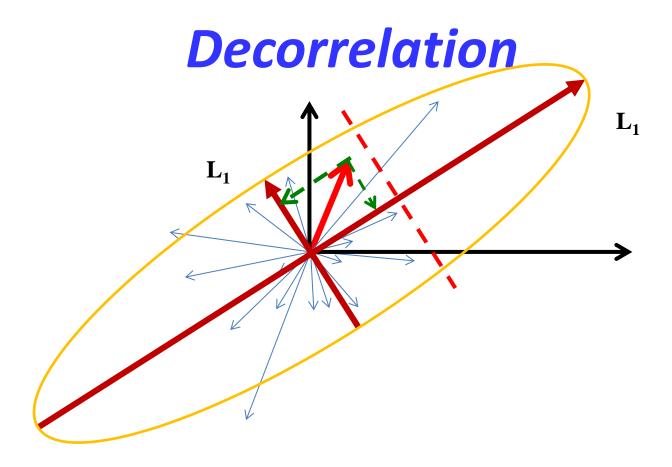
- The covariance matrix captures the directions of maximum variance
- What does it tell us about trends?



- Axis aligned covariance
- At any X value, the average Y value of vectors is 0
 - X cannot predict Y
- At any Y, the average X of vectors is 0
 - Y cannot predict X
- The X and Y components are *uncorrelated*



- Tilted covariance
- The average Y value of vectors at any X varies with X
 - X predicts Y
- Average X varies with Y
- The X and Y components are *correlated*



- Shifting to using the major axes as the coordinate system
 - L_1 does not predict L_2 and vice versa
 - In this coordinate system the data are uncorrelated
- We have *decorrelated* the data by rotating the axes

The statistical concept of correlatedness

 Two variables X and Y are correlated if If knowing X gives you an *expected* value of Y

- X and Y are uncorrelated if knowing X tells you nothing about the *expected* value of Y
 - Although it could give you other information

- How?

Correlation vs. Causation

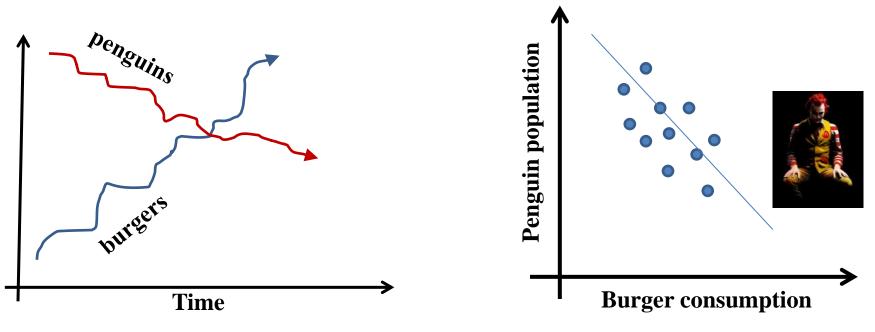
• The consumption of burgers has gone up steadily in the past decade

 In the same period, the penguin population of Antarctica has gone down

Correlation, not Causation (unless McDonalds has a top-secret Antarctica division)

The concept of correlation

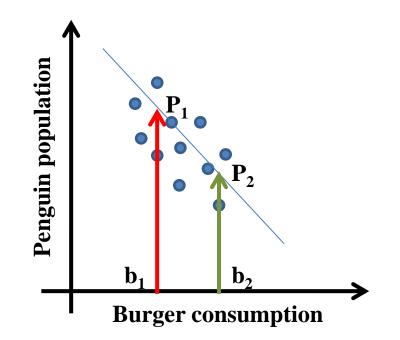
 Two variables are correlated if knowing the value of one gives you information about the *expected value* of the other



A brief review of basic probability

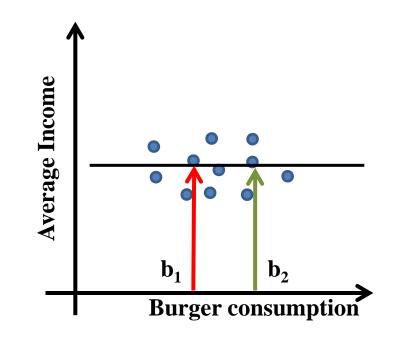
- Uncorrelated: Two random variables X and Y are uncorrelated iff:
 - The *average* value of the product of the variables equals the product of their individual averages
- Setup: Each draw produces one instance of X and one instance of Y
 - I.e one instance of (X,Y)
- E[XY] = E[X]E[Y]
- The average value of Y is the same regardless of the value of X

Correlated Variables



- Expected value of Y given X:
 - Find average of Y values of all samples at (or close) to the given X
 - If this is a function of X, X and Y are correlated

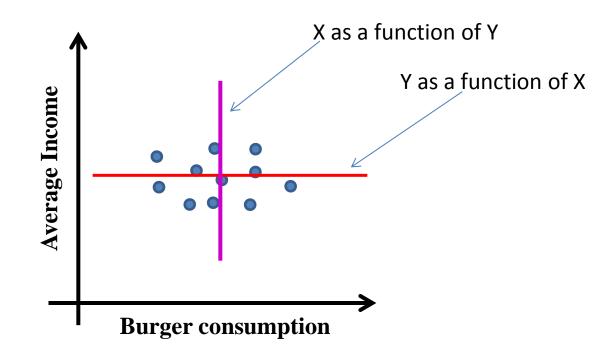
Uncorrelatedness



Knowing X does not tell you what the *average* value of Y is

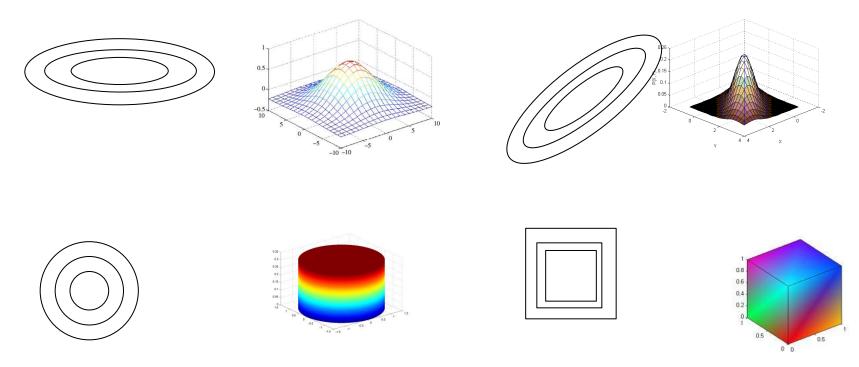
- And vice versa

Uncorrelated Variables



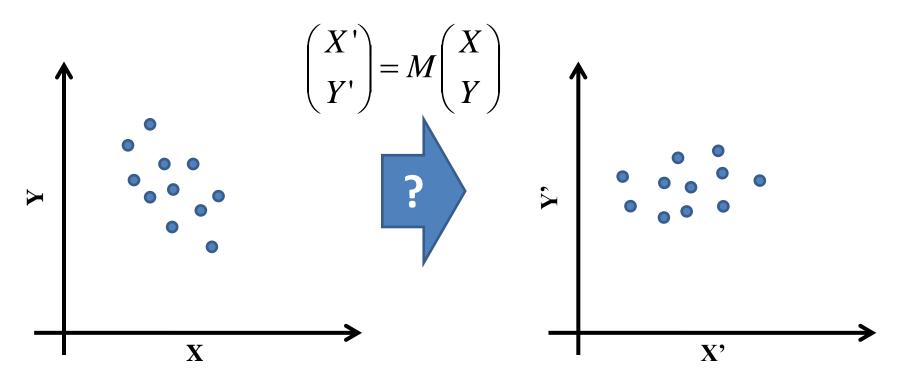
• The average value of Y is the same regardless of the value of X and vice versa

Uncorrelatedness in Random Variables



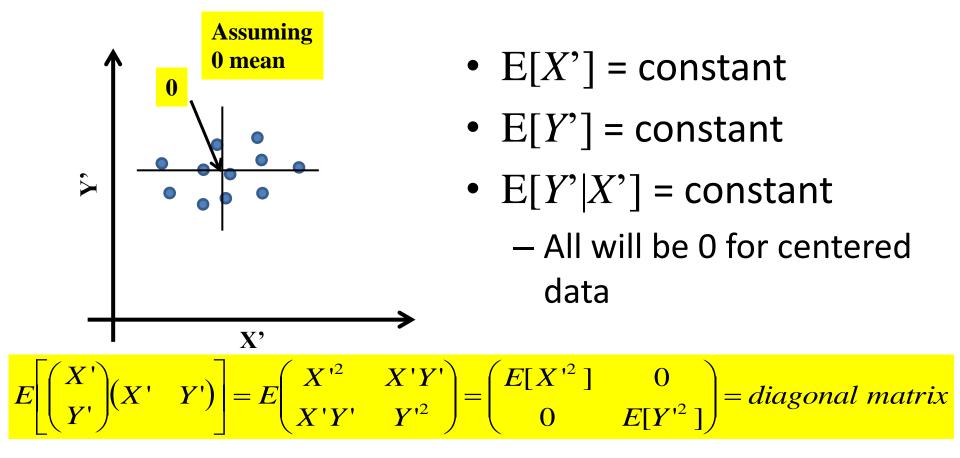
• Which of the above represent uncorrelated RVs?

The notion of decorrelation



• So how does one transform the correlated variables (X,Y) to the uncorrelated (X', Y')

What does "uncorrelated" mean



• If **Y** is a matrix of vectors, **YY**^T = diagonal

Decorrelation

- Let \mathbf{X} be the matrix of correlated data vectors
 - Each component of ${\bf X}$ informs us of the mean trend of other components
- Need a transform M such that if $\mathbf{Y} = M\mathbf{X}$ such that the covariance of \mathbf{Y} is diagonal
 - $\mathbf{Y}\mathbf{Y}^{\mathrm{T}}$ is the covariance if \mathbf{Y} is zero mean
 - $\mathbf{Y}\mathbf{Y}^{\mathrm{T}} = \mathbf{Diagonal}$
 - \Rightarrow **MXX**^T**M**^T = **Diagonal**
 - \Rightarrow **M.**Cov(**X**).**M**^T = **Diagonal**

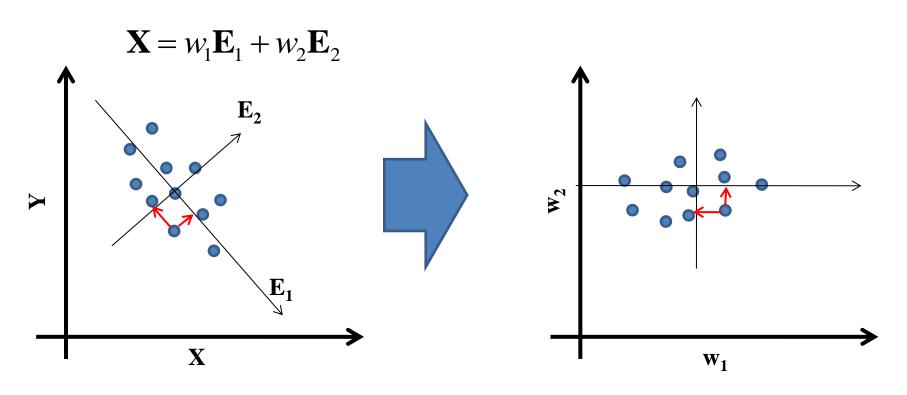
Decorrelation

- Easy solution:
 - Eigen decomposition of Cov(X):

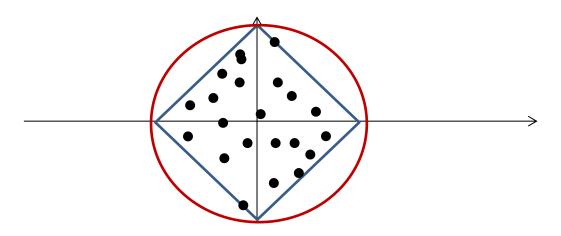
 $\operatorname{Cov}(\mathbf{X}) = \mathbf{E} \Lambda \mathbf{E}^{\mathrm{T}}$

 $-\mathbf{E}\mathbf{E}^{\mathrm{T}}=\mathbf{I}$

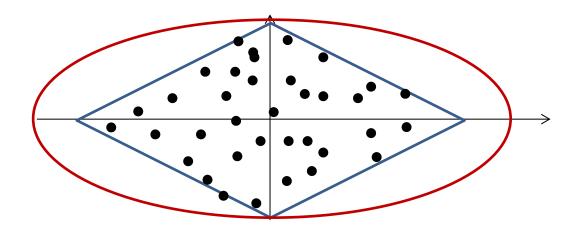
- Let $\mathbf{M} = \mathbf{E}^{\mathrm{T}}$
- $\mathbf{M}\mathbf{C}\mathbf{ov}(\mathbf{X})\mathbf{M}^{\mathrm{T}} = \mathbf{E}^{\mathrm{T}}\mathbf{E}\mathbf{\Lambda}\mathbf{E}^{\mathrm{T}}\mathbf{E} = \mathbf{\Lambda} = \text{diagonal}$
- PCA: $\mathbf{Y} = \mathbf{M}^{\mathrm{T}}\mathbf{X}$
- *Diagonalizes* the covariance matrix
 - "Decorrelates" the data



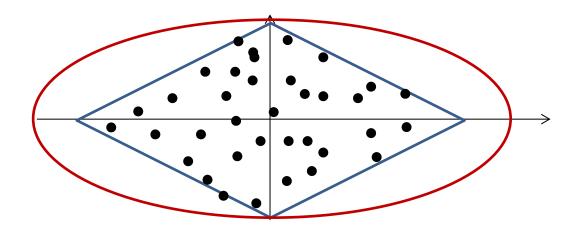
- PCA: $\mathbf{Y} = \mathbf{M}^{\mathrm{T}}\mathbf{X}$
- *Diagonalizes* the covariance matrix
 - "Decorrelates" the data



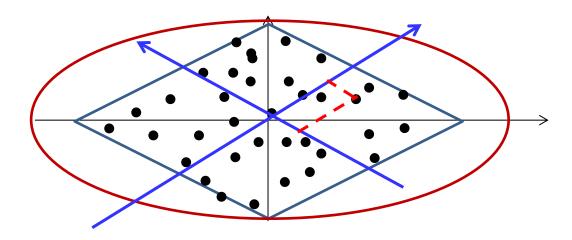
• Are there other decorrelating axes?



• Are there other decorrelating axes?



- Are there other decorrelating axes?
- What about if we don't require them to be orthogonal?



- Are there other decorrelating axes?
- What about if we don't require them to be orthogonal?
- What is special about these axes?

The statistical concept of Independence

 Two variables X and Y are *dependent* if If knowing X gives you *any information about* Y

• X and Y are *independent* if knowing X tells you nothing at all of Y

A brief review of basic probability

- *Independence:* Two random variables X and Y are independent iff:
 - Their joint probability equals the product of their individual probabilities
- P(X,Y) = P(X)P(Y)
- Independence implies uncorrelatedness
 - The average value of \boldsymbol{X} is the same regardless of the value of \boldsymbol{Y}
 - E[X|Y] = E[X]
 - But not the other way

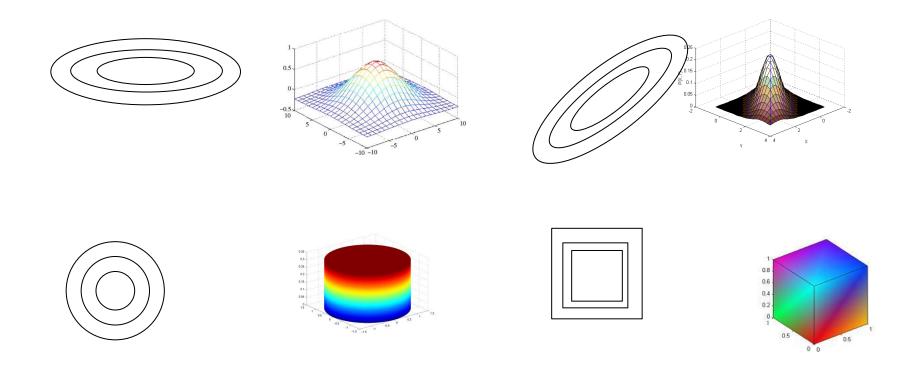
A brief review of basic probability

- *Independence:* Two random variables X and Y are independent iff:
- The average value of *any function* of X is the same regardless of the value of Y

– Or any function of \boldsymbol{Y}

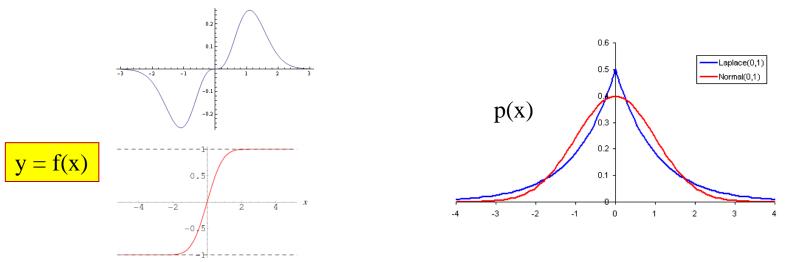
• E[f(X)g(Y)] = E[f(X)] E[g(Y)] for all f(), g()

Independence



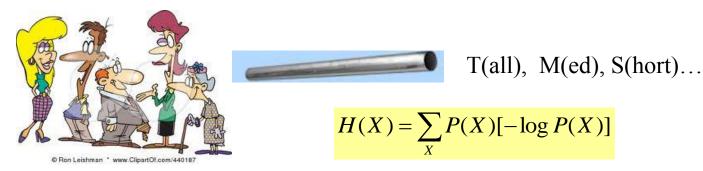
- Which of the above represent independent RVs?
- Which represent uncorrelated RVs?

A brief review of basic probability

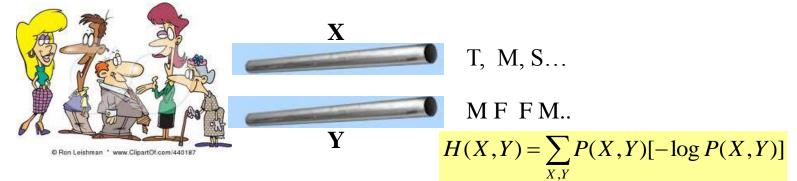


- The expected value of an odd function of an RV is 0 if
 - The RV is 0 mean
 - The PDF is of the RV is symmetric around 0
- E[f(X)] = 0 if f(X) is odd symmetric

A brief review of basic info. theory

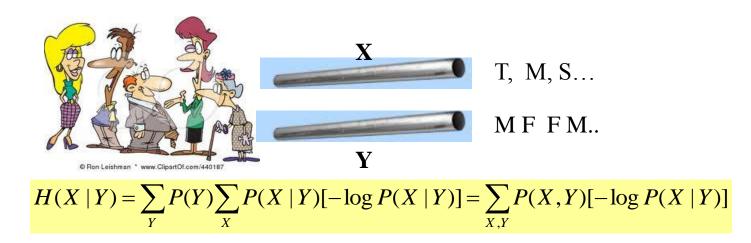


• Entropy: The *minimum average* number of bits to transmit to convey a symbol



 Joint entropy: The *minimum average* number of bits to convey sets (pairs here) of symbols

A brief review of basic info. theory



- Conditional Entropy: The *minimum average* number of bits to transmit to convey a symbol
 X, after symbol Y has already been conveyed
 - Averaged over all values of X and Y

A brief review of basic info. theory

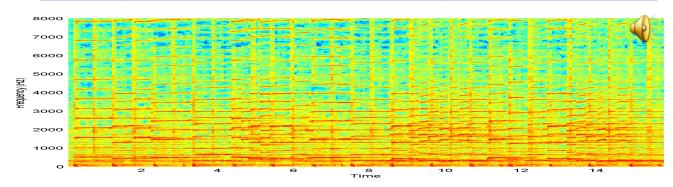
 $H(X | Y) = \sum_{Y} P(Y) \sum_{X} P(X | Y) [-\log P(X | Y)] = \sum_{Y} P(Y) \sum_{X} P(X) [-\log P(X)] = H(X)$

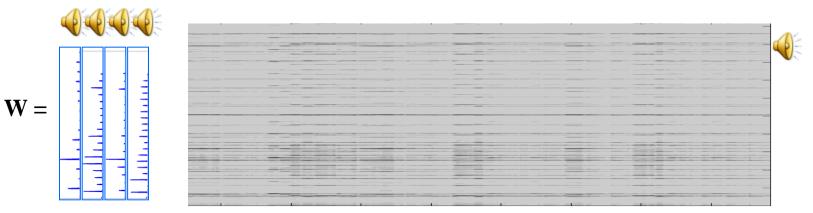
 Conditional entropy of X = H(X) if X is independent of Y

$$H(X,Y) = \sum_{X,Y} P(X,Y)[-\log P(X,Y)] = \sum_{X,Y} P(X,Y)[-\log P(X)P(Y)]$$
$$= -\sum_{X,Y} P(X,Y)\log P(X) - \sum_{X,Y} P(X,Y)\log P(Y) = H(X) + H(Y)$$

 Joint entropy of X and Y is the sum of the entropies of X and Y if they are independent

Projection: multiple notes



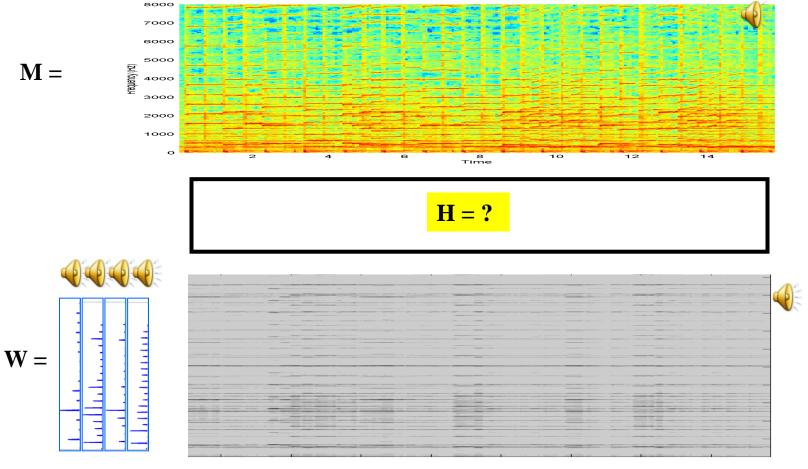


• $\mathbf{P} = \mathbf{W} (\mathbf{W}^{\mathrm{T}} \mathbf{W})^{-1} \mathbf{W}^{\mathrm{T}}$

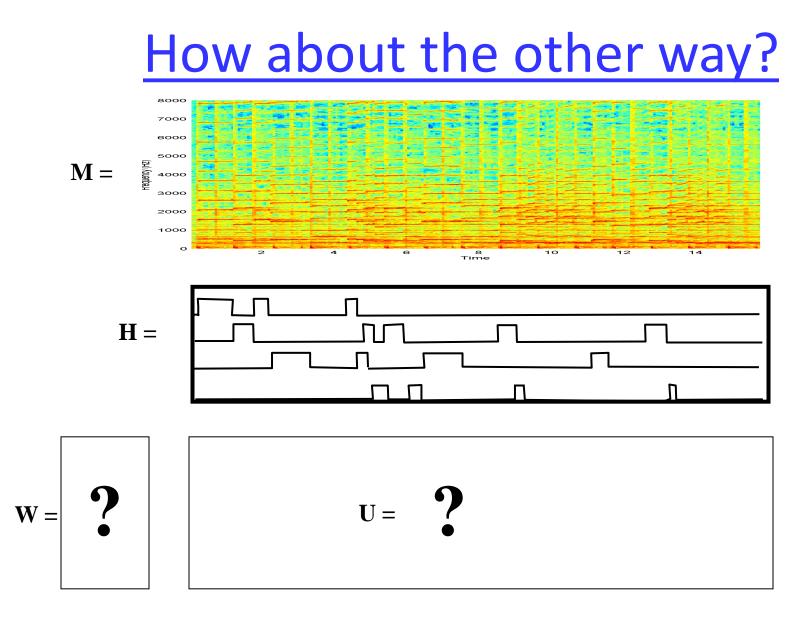
 $\mathbf{M} =$

Projected Spectrogram = PM

We're actually computing a score



- M ~ WH
- $\mathbf{H} = \operatorname{pinv}(\mathbf{W})\mathbf{M}$



• $M \sim WH$ W = Mpinv(H) U = WH

W =? approx(M) = ?

- Must estimate both H and W to best approximate M
- Ideally, must learn both the notes and their transcription!

A least squares solution

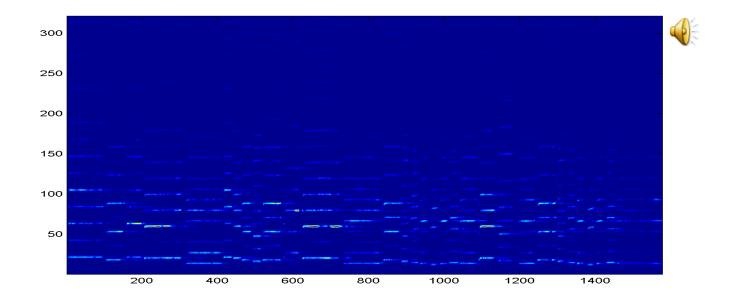
 $\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} \| \mathbf{M} - \overline{\mathbf{W}}\overline{\mathbf{H}} \|_{F}^{2} + \Lambda(\overline{\mathbf{W}}^{T}\overline{\mathbf{W}} - \mathbf{I})$

- Constraint: W is orthogonal $-\mathbf{W}^{\mathrm{T}}\mathbf{W} = \mathbf{I}$
- The solution: W are the Eigen vectors of MM^T
 - PCA!!
- M ~ WH is an approximation
- Also, the rows of **H** are *decorrelated*

$\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} || \mathbf{M} - \overline{\mathbf{W}}\overline{\mathbf{H}} ||_F^2$ $\mathbf{M} \approx \mathbf{W}\mathbf{H}$

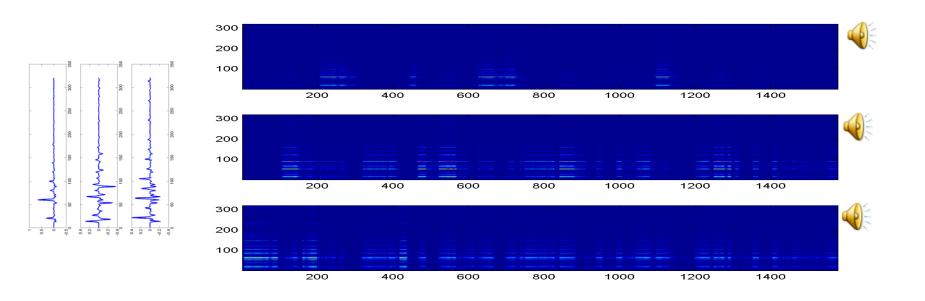
- The columns of W are the bases we have learned
 - The linear "building blocks" that compose the music
- They represent "learned" notes

So how does that work?



• There are 12 notes in the segment, hence we try to estimate 12 notes..

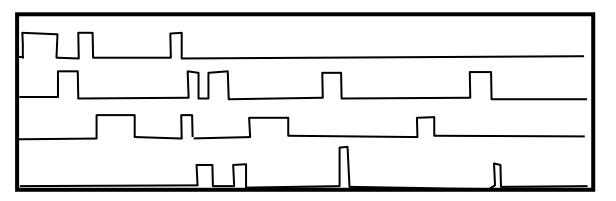
So how does that work?



- There are 12 notes in the segment, hence we try to estimate 12 notes..
- Results are not good

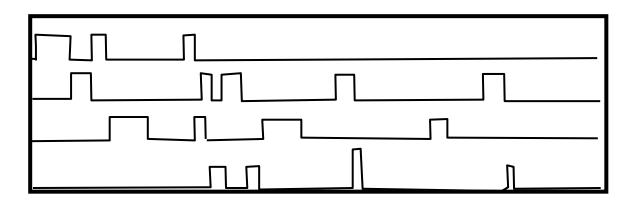
PCA through decorrelation of notes

 $\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} \|\mathbf{M} - \overline{\mathbf{H}}\|_{F}^{2} + \Lambda(\overline{\mathbf{H}}\overline{\mathbf{H}}^{T} - \mathbf{D})$



- Different constraint: Constraint H to be decorrelated
 HH^T = D
- This will result exactly in PCA too
- Decorrelation of H Interpretation: What does this mean?

What else can we look for?



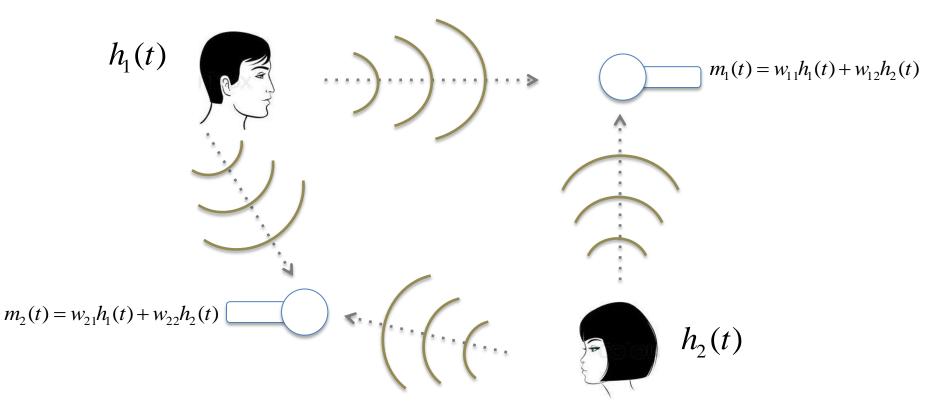
- Assume: The "transcription" of one note does not depend on what else is playing
 - Or, in a multi-instrument piece, instruments are playing independently of one another
- Not strictly true, but still..

Formulating it with Independence

 $\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}},\overline{\mathbf{H}}} \| \mathbf{M} - \overline{\mathbf{W}}\overline{\mathbf{H}} \|_{F}^{2} + \Lambda(rows.of.H.are.independent)$

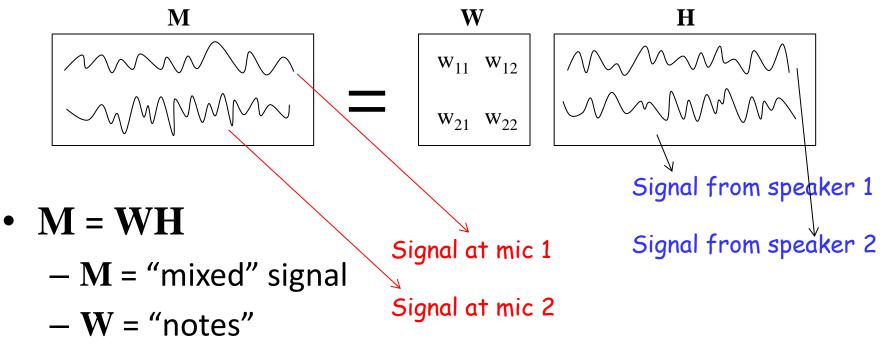
 Impose statistical independence constraints on decomposition

Changing problems for a bit



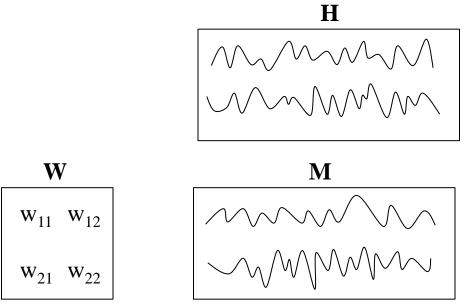
- Two people speak simultaneously
- Recorded by two microphones
- Each recorded signal is a mixture of both signals

A Separation Problem



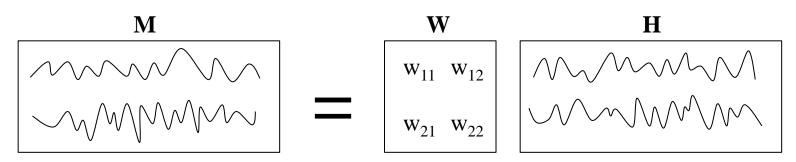
- H = "transcription"
- Separation challenge: Given only ${\bf M}$ estimate ${\bf H}$
- Identical to the problem of "finding notes"

A Separation Problem



- Separation challenge: Given only ${\bf M}$ estimate ${\bf H}$
- Identical to the problem of "finding notes"

Imposing Statistical Constraints



- **M** = **WH**
- Given only **M** estimate **H**
- $\mathbf{H} = \mathbf{W}^{-1}\mathbf{M} = \mathbf{A}\mathbf{M}$
- Only known constraint: The rows of **H** are independent
- Estimate A such that the components of AM are statistically independent
 - \mathbf{A} is the *unmixing* matrix

Statistical Independence

An ugly algebraic solution $M = WH \dots H = AM$

- We could *decorrelate* signals by algebraic manipulation
 - We know uncorrelated signals have diagonal correlation matrix
 - So we transformed the signal so that it has a diagonal correlation matrix (HH^T)
- Can we do the same for independence
 - Is there a linear transform that will enforce independence?

Emulating Independence

H

- The rows of **H** are uncorrelated
 - $E[\mathbf{h}_{i}\mathbf{h}_{j}] = E[\mathbf{h}_{i}]E[\mathbf{h}_{j}]$
 - \mathbf{h}_i and \mathbf{h}_j are the ith and jth components of any vector in \mathbf{H}
- The fourth order moments are independent
 - $E[\mathbf{h}_i \mathbf{h}_j \mathbf{h}_k \mathbf{h}_l] = E[\mathbf{h}_i]E[\mathbf{h}_j]E[\mathbf{h}_k]E[\mathbf{h}_l]$
 - $E[\mathbf{h}_i^2 \mathbf{h}_j \mathbf{h}_k] = E[\mathbf{h}_i^2] E[\mathbf{h}_j] E[\mathbf{h}_k]$
 - $E[\mathbf{h}_i^2 \mathbf{h}_j^2] = E[\mathbf{h}_i^2]E[\mathbf{h}_j^2]$
 - Etc.

Zero Mean

- Usual to assume zero mean processes
 Otherwise, some of the math doesn't work well
- $\mathbf{M} = \mathbf{W}\mathbf{H}$ $\mathbf{H} = \mathbf{A}\mathbf{M}$
- If mean(**M**) = 0 => mean(**H**) = 0

 $- E[H] = A \cdot E[M] = A0 = 0$

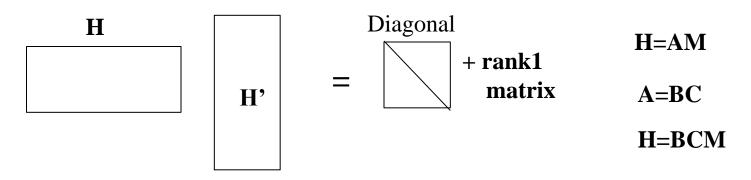
– First step of ICA: Set the mean of ${\bf M}$ to 0

$$\mu_{\mathbf{m}} = \frac{1}{cols(\mathbf{M})} \sum_{i} \mathbf{m}_{i}$$

$$\mathbf{m}_i = \mathbf{m}_i - \boldsymbol{\mu}_{\mathbf{m}} \qquad \forall i$$

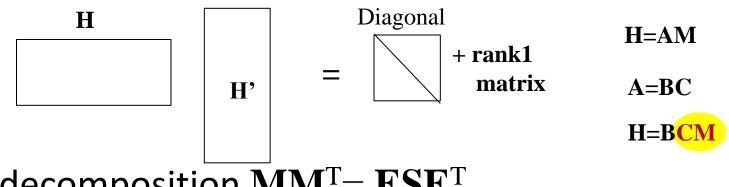
– \mathbf{m}_{i} are the columns of \mathbf{M}

Emulating Independence..



- Independence → Uncorrelatedness
- Estimate a C such that CM is decorrelated
- A little more than PCA

Decorrelating



- Eigen decomposition MM^T = ESE^T
- $\mathbf{C} = \mathbf{S}^{-1/2} \mathbf{E}^{\mathrm{T}}$
- $\mathbf{X} = \mathbf{C}\mathbf{M}$
- Not merely decorrelated but *whitened* - $\mathbf{X}\mathbf{X}^{\mathrm{T}} = \mathbf{C}\mathbf{M}\mathbf{M}^{\mathrm{T}}\mathbf{C}^{\mathrm{T}} = \mathbf{S}^{-1/2}\mathbf{E}^{\mathrm{T}}\mathbf{E}\mathbf{S}\mathbf{E}^{\mathrm{T}}\mathbf{E}\mathbf{S}^{-1/2} = \mathbf{I}$
- C is the *whitening matrix*

Uncorrelated != Independent

• Whitening merely ensures that the resulting signals are uncorrelated, i.e.

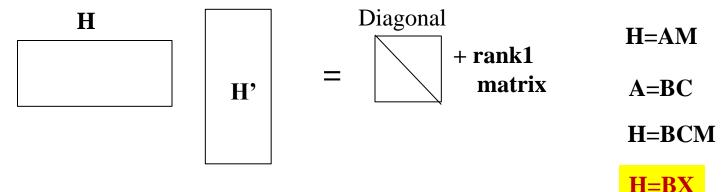
 $E[\mathbf{x}_i \mathbf{x}_j] = 0 \text{ if } i != j$

• This does not ensure higher order moments are also decoupled, e.g. it does not ensure that

$$E[\mathbf{x}_{i}^{2}\mathbf{x}_{j}^{2}] = E[\mathbf{x}_{i}^{2}]E[\mathbf{x}_{j}^{2}]$$

- This is *one* of the signatures of independent RVs
- Lets explicitly decouple the fourth order moments

Decorrelating



- **X** = **CM**
- $\mathbf{X}\mathbf{X}^{\mathrm{T}} = \mathbf{I}$
- Will multiplying ${f X}$ by ${f B}$ *re-correlate* the components?
- Not if **B** is *unitary*
 - $\mathbf{B}\mathbf{B}^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{B} = \mathbf{I}$
- $\mathbf{H}\mathbf{H}^{\mathrm{T}} = \mathbf{B}\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{B}^{\mathrm{T}} = \mathbf{B}\mathbf{B}^{\mathrm{T}} = \mathbf{I}$
- So we want to find a *unitary* matrix
 - Since the rows of H are uncorrelated
 - Because they are independent

ICA: Freeing Fourth Moments

- H=AM, A=BC, X = CM, $\rightarrow H = BX$
- The fourth moments of **H** have the form: E[$\mathbf{h}_i \mathbf{h}_j \mathbf{h}_k \mathbf{h}_l$]
- If the rows of **H** were independent $E[\mathbf{h}_i \mathbf{h}_j \mathbf{h}_k \mathbf{h}_l] = E[\mathbf{h}_i] E[\mathbf{h}_j] E[\mathbf{h}_k] E[\mathbf{h}_l]$
- Solution: Compute B such that the fourth moments of $\mathbf{H}=B\mathbf{X}$ are decoupled
 - While ensuring that **B** is Unitary

ICA: Freeing Fourth Moments

- Create a matrix of fourth moment terms that would be diagonal were the rows of **H** independent and diagonalize it
- A good candidate
 - $-\,$ Good because it incorporates the energy in all rows of H

$$D = \begin{bmatrix} d_{11} & d_{12} & d_{13} & \dots \\ d_{21} & d_{22} & d_{23} & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix}$$

- Where

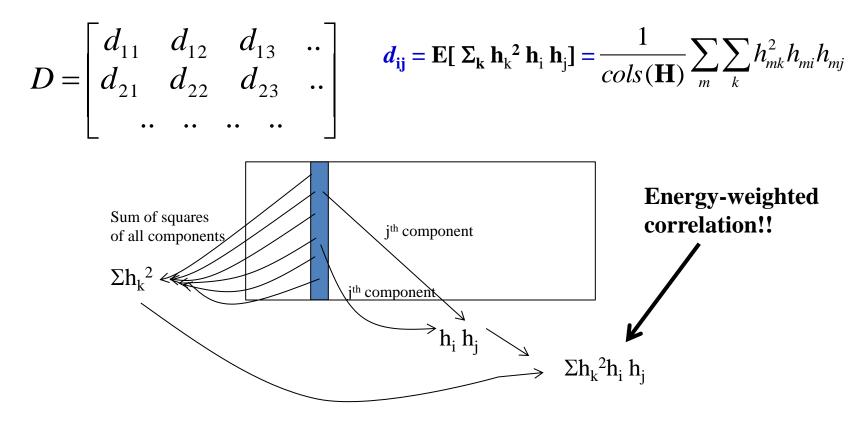
$$d_{ij} = \mathrm{E}[\Sigma_k \mathbf{h}_k^2 \mathbf{h}_i \mathbf{h}_j]$$

— i.e.

 $D = \mathrm{E}[\mathbf{h}^{\mathrm{T}}\mathbf{h} \ \mathbf{h} \ \mathbf{h}^{\mathrm{T}}]$

- **h** are the columns of **H**
- Assuming ${\bf h}$ is real, else replace transposition with Hermition

ICA: The D matrix



• Average above term across all columns of H

ICA: The D matrix

$$D = \begin{bmatrix} d_{11} & d_{12} & d_{13} & \dots \\ d_{21} & d_{22} & d_{23} & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix} \qquad d_{ij} = \mathbf{E}[\Sigma_k \mathbf{h}_k^2 \mathbf{h}_i \mathbf{h}_j] = \frac{1}{cols(\mathbf{H})} \sum_m \sum_k h_{mk}^2 h_{mi} h_{mj}$$

• If the \mathbf{h}_{i} terms were independent

— Fori!=j

$$E\left[\sum_{k}\mathbf{h}_{k}^{2}\mathbf{h}_{i}\mathbf{h}_{j}\right] = E\left[\mathbf{h}_{i}^{3}\right]E\left[\mathbf{h}_{j}\right] + E\left[\mathbf{h}_{j}^{3}\right]E\left[\mathbf{h}_{i}\right] + \sum_{k\neq i, k\neq j}E\left[\mathbf{h}_{k}^{2}\right]E\left[\mathbf{h}_{i}\right]E\left[\mathbf{h}_{j}\right]$$

- Centered: $E[\mathbf{h}_j] = 0 \Rightarrow E[\Sigma_k \mathbf{h}_k^2 \mathbf{h}_i \mathbf{h}_j] = 0$ for i != j

$$E\left[\sum_{k}\mathbf{h}_{k}^{2}\mathbf{h}_{i}\mathbf{h}_{j}\right] = E\left[\mathbf{h}_{i}^{4}\right] + E\left[\mathbf{h}_{i}^{2}\right]\sum_{k\neq i}E\left[\mathbf{h}_{k}^{2}\right] \neq 0$$

- Thus, if the \mathbf{h}_{i} terms were independent, $d_{ij} = 0$ if i != j
- i.e., if \mathbf{h}_{i} were independent, D would be a diagonal matrix
 - Let us diagonalize D

Diagonalizing D

- Compose a fourth order matrix from ${\bf X}$

- Recall: $\mathbf{X} = \mathbf{CM}, \mathbf{H} = \mathbf{BX} = \mathbf{BCM}$

- **B** is what we're trying to learn to make **H** independent
- Note: if $\mathbf{H} = \mathbf{B}\mathbf{X}$, then each $\mathbf{h} = \mathbf{B}\mathbf{X}$
- The fourth moment matrix of ${\bf H}$ is
- $\mathbf{D} = \mathbf{E}[\mathbf{h}^{\mathrm{T}} \mathbf{h} \mathbf{h} \mathbf{h}^{\mathrm{T}}] = \mathbf{E}[\mathbf{x}^{\mathrm{T}} \mathbf{B} \mathbf{B}^{\mathrm{T}} \mathbf{x} \mathbf{B}^{\mathrm{T}} \mathbf{x} \mathbf{x}^{\mathrm{T}} \mathbf{B}]$ = $\mathbf{E}[\mathbf{x}^{\mathrm{T}} \mathbf{x} \mathbf{B}^{\mathrm{T}} \mathbf{x} \mathbf{x}^{\mathrm{T}} \mathbf{B}]$ = $\mathbf{B}^{\mathrm{T}} \mathbf{E}[\mathbf{x}^{\mathrm{T}} \mathbf{x} \mathbf{x} \mathbf{x}^{\mathrm{T}}] \mathbf{B}$

Diagonalizing D

- Objective: Estimate **B** such that the fourth moment of $\mathbf{H} = \mathbf{B}\mathbf{X}$ is diagonal
- Compose $\mathbf{D}_{\mathbf{x}} = \mathbf{E}[\mathbf{x}^{\mathrm{T}} \mathbf{x} \mathbf{x} \mathbf{x}^{\mathrm{T}}]$
- Diagonalize $\mathbf{D}_{\mathbf{x}}$ via Eigen decomposition $\mathbf{D}_{\mathbf{x}} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathrm{T}}$
- $\mathbf{B} = \mathbf{U}^{\mathrm{T}}$

– That's it!!!!

B frees the fourth moment

 $\mathbf{D}_{\mathbf{x}} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathrm{T}}$; $\mathbf{B} = \mathbf{U}^{\mathrm{T}}$

- U is a unitary matrix, i.e. $U^T U = U U^T = I$ (identity)
- $\mathbf{H} = \mathbf{B}\mathbf{X} = \mathbf{U}^{\mathrm{T}}\mathbf{X}$
- $\mathbf{h} = \mathbf{U}^{\mathrm{T}}\mathbf{x}$
- The fourth moment matrix of H is $E[\mathbf{h}^{T} \mathbf{h} \mathbf{h} \mathbf{h}^{T}] = \mathbf{U}^{T} E[\mathbf{x}^{T} \mathbf{x} \mathbf{x} \mathbf{x}^{T}] \mathbf{U}$ $= \mathbf{U}^{T} \mathbf{D}_{\mathbf{x}} \mathbf{U}$ $= \mathbf{U}^{T} \mathbf{U} \Lambda \mathbf{U}^{T} \mathbf{U} = \Lambda$
- The fourth moment matrix of $\mathbf{H} = \mathbf{U}^{\mathrm{T}}\mathbf{X}$ is Diagonal!!

Overall Solution

• H = AM = BCM

– $\, C$ is the (transpose of the) matrix of Eigen vectors of $MM^{\rm T}$

- $\mathbf{X} = \mathbf{C}\mathbf{M}$
- $\mathbf{A} = \mathbf{B}\mathbf{C} = \mathbf{U}^{\mathrm{T}}\mathbf{C}$
 - B is the (transpose of the) matrix of Eigenvectors of X.diag(X^TX).X^T

ICA by diagonalizing moment matrices

- The procedure just outlined, while fully functional, has shortcomings
 - Only a subset of fourth order moments are considered
 - There are many other ways of constructing fourth-order moment matrices that would ideally be diagonal
 - Diagonalizing the particular fourth-order moment matrix we have chosen is not guaranteed to diagonalize every other fourth-order moment matrix
- JADE: (Joint Approximate Diagonalization of Eigenmatrices), J.F. Cardoso
 - Jointly diagonalizes several fourth-order moment matrices
 - More effective than the procedure shown, but computationally more expensive

Enforcing Independence

- Specifically ensure that the components of H are independent
 - $-\mathbf{H} = \mathbf{A}\mathbf{M}$
- *Contrast function*: A non-linear function that has a minimum value when the *output components* are independent
- Define and minimize a contrast function
 » F(AM)
- Contrast functions are often only *approximations* too..

A note on pre-whitening

- The mixed signal is usually "prewhitened" for all ICA methods
 - Normalize variance along all directions
 - Eliminate second-order dependence
- Eigen decomposition $\mathbf{M}\mathbf{M}^{\mathrm{T}} = \mathbf{E}\mathbf{S}\mathbf{E}^{\mathrm{T}}$
- $\mathbf{C} = \mathbf{S}^{-1/2} \mathbf{E}^{\mathrm{T}}$
- Can use *first K* columns of **E** only if only K independent sources are expected
 - In microphone array setup only K < M sources
- $\mathbf{X} = \mathbf{C}\mathbf{M}$
 - $E[\mathbf{x}_i \mathbf{x}_j] = \delta_{ij}$ for centered signal

The contrast function

- Contrast function: A non-linear function that has a minimum value when the output components are independent
- An explicit contrast function

$$I(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - H(\overline{\mathbf{h}})$$

- With constraint : $\mathbf{H} = \mathbf{B}\mathbf{X}$
 - $-\mathbf{X}$ is "whitened" \mathbf{M}

Linear Functions

• $\mathbf{h} = \mathbf{B}\mathbf{x}, \quad \mathbf{x} = \mathbf{B}^{-1}\mathbf{h}$

– Individual columns of the ${\bf H}$ and ${\bf X}$ matrices

 $-\mathbf{x}$ is mixed signal, \mathbf{B} is the *unmixing* matrix

$$P_{\mathbf{h}}(\mathbf{h}) = P_{\mathbf{x}}(\mathbf{B}^{-1}\mathbf{h}) |\mathbf{B}|^{-1}$$

$$H(\mathbf{x}) = -\int P(\mathbf{x}) \log P(\mathbf{x}) d\mathbf{x}$$

 $\log P(\mathbf{x}) = \log P_{\mathbf{x}}(\mathbf{B}^{-1}\mathbf{h}) - \log(|\mathbf{B}|)$

 $H(\mathbf{h}) = H(\mathbf{x}) + \log |\mathbf{B}|$

The contrast function

$$I(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - H(\overline{\mathbf{H}})$$
$$I(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - H(\mathbf{x}) - \log |\mathbf{B}|$$

• Ignoring *H*(**x**) (Const)

$$J(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - \log |\mathbf{B}|$$

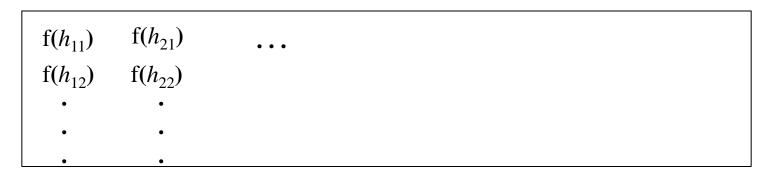
- Minimize the above to obtain ${\boldsymbol{B}}$

- Definition of Independence if x and y are independent:
 - $-\operatorname{E}[f(x)g(y)] = \operatorname{E}[f(x)]\operatorname{E}[g(y)]$
 - Must hold for every f() and g()!!

Define g(H) = g(BX) (component-wise function)

 $\begin{array}{ccc} g(h_{11}) & g(h_{21}) \\ g(h_{12}) & g(h_{22}) \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}$

• Define f(H) = f(BX)



$$\mathbf{P}_{ij} = \mathbf{E}[\mathbf{g}(h_i)\mathbf{f}(h_j)]$$

This is a square matrix

• Must ideally be

 $\mathbf{P} = \begin{bmatrix} P_{11} & P_{21} & \dots \\ P_{12} & P_{22} \\ \ddots & \ddots \\ \vdots & \ddots & \vdots \end{bmatrix}$

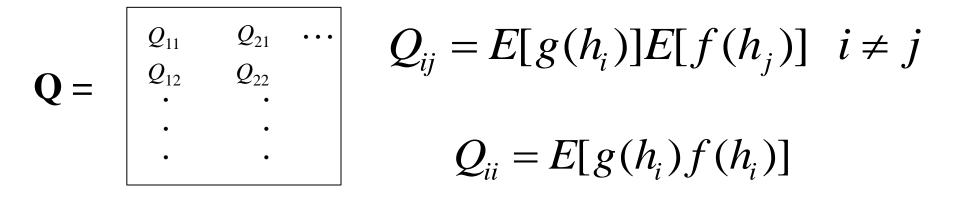
Q =

$$Q_{ij} = E[g(h_i)]E[f(h_j)] \quad i \neq j$$

$$Q_{ii} = E[g(h_i)f(h_i)]$$

• Error = $\|\mathbf{P} - \mathbf{Q}\|_{\mathrm{F}}^2$

- Ideal value for ${\boldsymbol{Q}}$



- If g() and h() are odd symmetric functions
 E[g(h_i)] = 0 for all i
 - Since = $E[h_i] = 0$ (**H** is centered)
 - $-\mathbf{Q}$ is a Diagonal Matrix!!!

• Minimize Error

 $\mathbf{P} = \mathbf{g}(\mathbf{B}\mathbf{X})\mathbf{f}(\mathbf{B}\mathbf{X})^{\mathrm{T}}$ $\mathbf{Q} = Diagonal$

$$error = \|\mathbf{P} - \mathbf{Q}\|_{F}^{2}$$

• Leads to trivial Widrow Hopf type iterative rule: $\mathbf{E} = Diag - \mathbf{g}(\mathbf{BX})\mathbf{f}(\mathbf{BX})^{\mathrm{T}}$

$$\mathbf{B} = \mathbf{B} + \eta \mathbf{E} \mathbf{B}^{\mathrm{T}}$$

Update Rules

- Multiple solutions under different assumptions for g() and f()
- H = BX
- $\mathbf{B} = \mathbf{B} + \eta \Delta \mathbf{B}$
- Jutten Herraut : Online update

– $\Delta B_{ij} = f(\mathbf{h}_i)g(\mathbf{h}_j)$; -- actually assumed a recursive neural network

• Bell Sejnowski

 $-\Delta \mathbf{B} = ([\mathbf{B}^{\mathrm{T}}]^{-1} - \mathbf{g}(\mathbf{H})\mathbf{X}^{\mathrm{T}})$

Update Rules

- Multiple solutions under different assumptions for g() and f()
- $\mathbf{H} = \mathbf{B}\mathbf{X}$
- $\mathbf{B} = \mathbf{B} + \eta \Delta \mathbf{B}$
- Natural gradient -- f() = identity function - $\Delta B = (I - g(H)H^T)W$
- Cichoki-Unbehaeven

 $-\Delta \mathbf{B} = (\mathbf{I} - \mathbf{g}(\mathbf{H})\mathbf{f}(\mathbf{H})^{\mathrm{T}})\mathbf{W}$

What are G() and H()

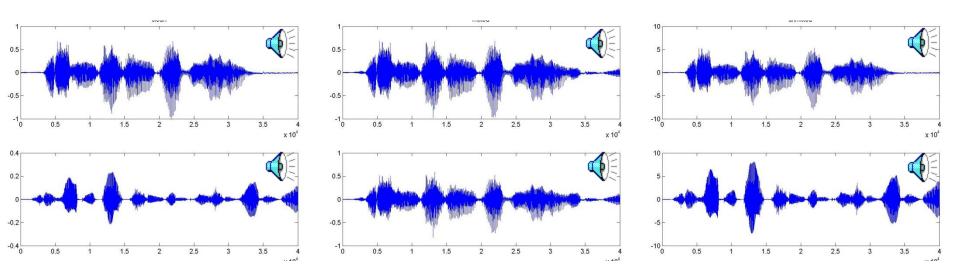
- Must be odd symmetric functions
- Multiple functions proposed

 $g(x) = \begin{cases} x + \tanh(x) & \text{x is super Gaussian} \\ x - \tanh(x) & \text{x is sub Gaussian} \end{cases}$

- Audio signals in general $-\Delta B = (I - HH^{T}-Ktanh(H)H^{T})W$
- Or simply

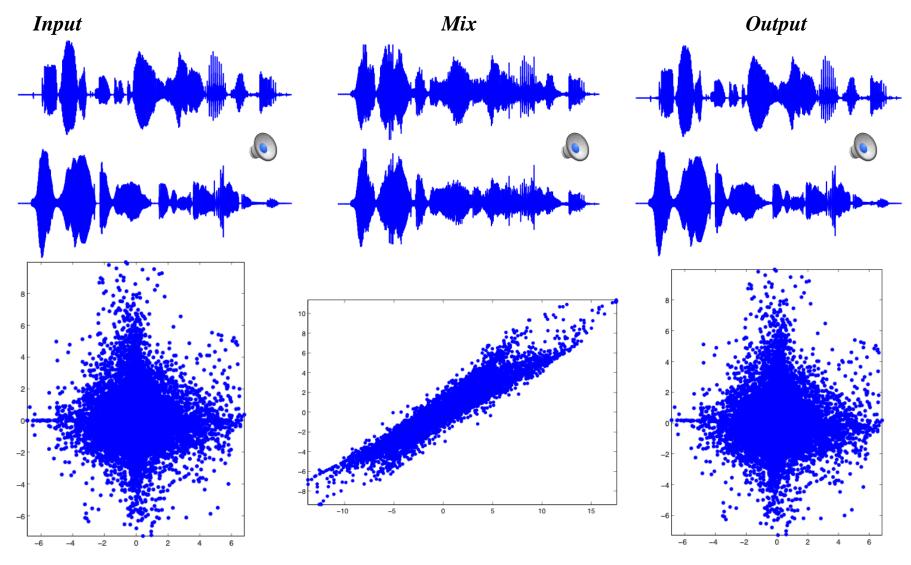
 $-\Delta \mathbf{B} = (\mathbf{I} - \mathbf{K} \mathbf{tanh}(\mathbf{H})\mathbf{H}^{\mathrm{T}})\mathbf{W}$

So how does it work?



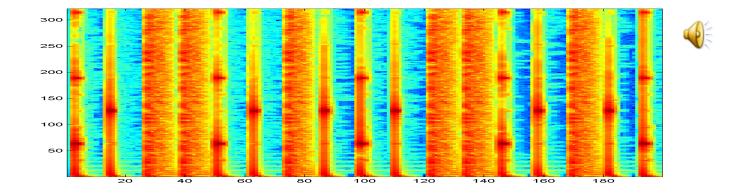
- Example with instantaneous mixture of two speakers
- Natural gradient update
- Works very well!

Another example!



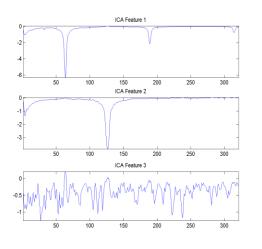
11755/18797

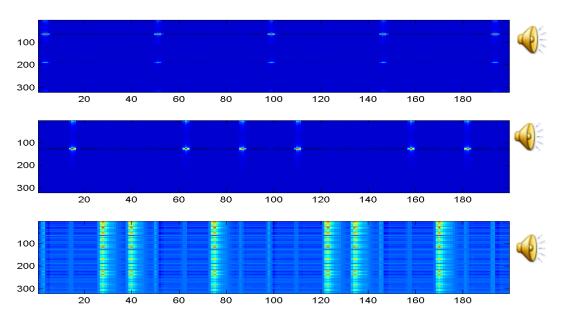
Another Example



• Three instruments..

The Notes





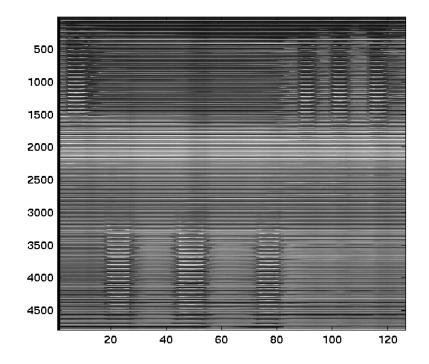
• Three instruments..

ICA for data exploration

 The "bases" in PCA represent the "building blocks"

- Ideally notes

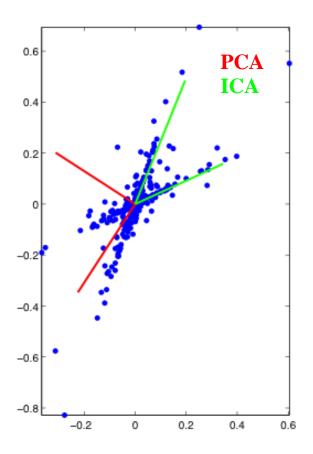
- Very successfully used
- So can ICA be used to do the same?



ICA vs PCA bases

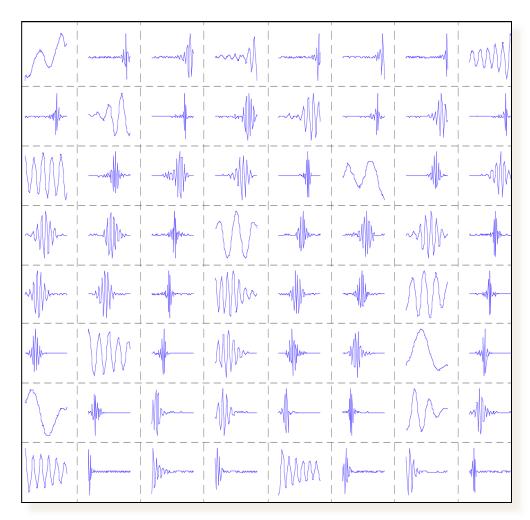
- Motivation for using ICA vs PCA
- PCA will indicate orthogonal directions of maximal variance
 - May not align with the data!
- ICA finds directions that are independent
 - More likely to "align" with the data

Non-Gaussian data



Finding useful transforms with ICA

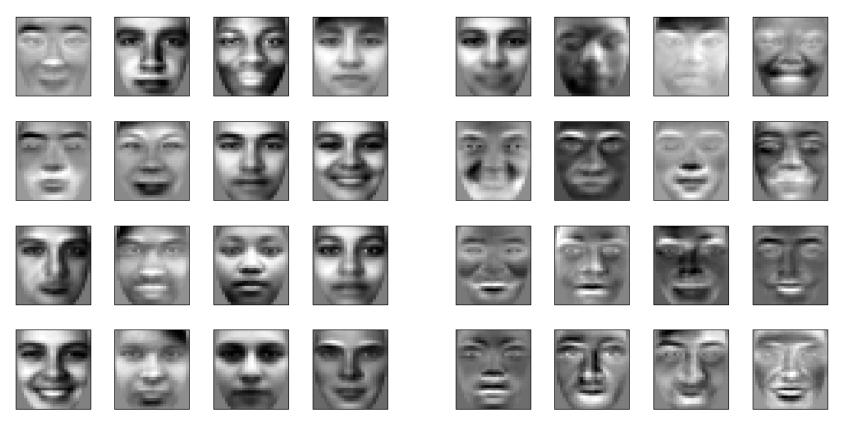
- Audio preprocessing example
- Take a lot of audio snippets and concatenate them in a big matrix, do component analysis
- PCA results in the DCT bases
- ICA returns time/freq localized sinusoids which is a better way to analyze sounds
- Ditto for images
 - ICA returns localizes edge filters



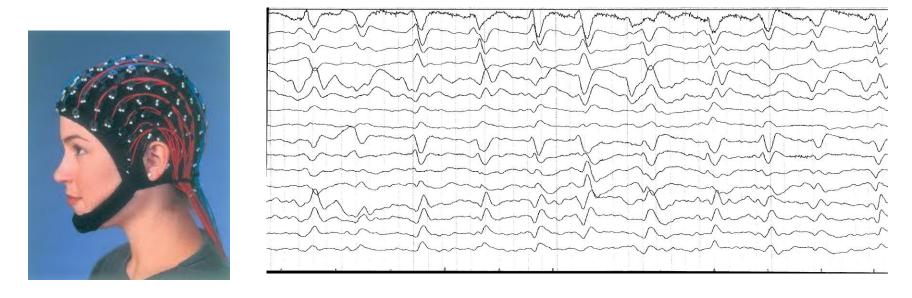
Example case: ICA-faces vs. Eigenfaces

Eigenfaces

ICA-faces

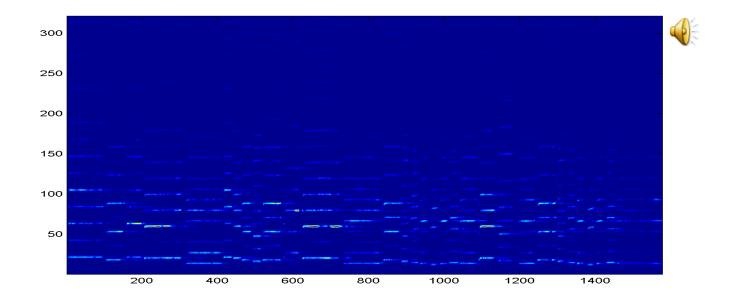


ICA for Signal Enhncement



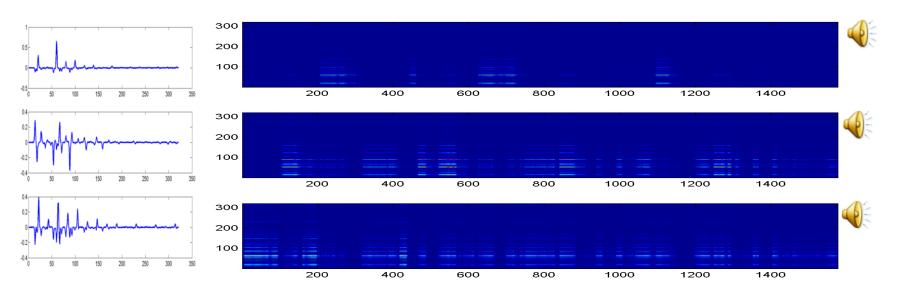
- Very commonly used to enhance EEG signals
- EEG signals are frequently corrupted by heartbeats and biorhythm signals
- ICA can be used to separate them out

So how does that work?



• There are 12 notes in the segment, hence we try to estimate 12 notes..

PCA solution



• There are 12 notes in the segment, hence we try to estimate 12 notes..

So how does this work: ICA solution

1200

1200

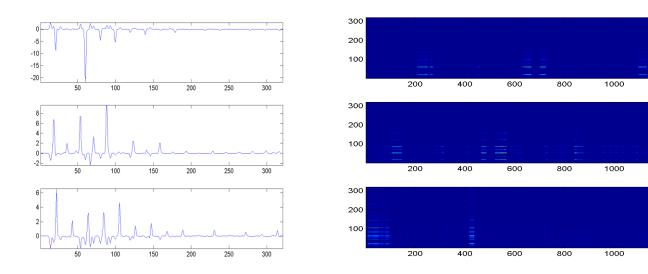
1200

1400

1400

1400

(P)



- Better..
 - But not much
- But the issues here?

ICA Issues

- No sense of *order*
 - Unlike PCA
- Get K independent directions, but does not have a notion of the "best" direction
 - So the sources can come in any order
 - Permutation invariance
- Does not have sense of *scaling*
 - Scaling the signal does not affect independence
- Outputs are scaled versions of desired signals in permuted order
 - In the best case
 - In worse case, output are not desired signals at all..

What else went wrong?

- Notes are not independent
 - Only one note plays at a time
 - If one note plays, other notes are *not* playing

• Will deal with these later in the course..