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A Quick Recap

X B W

N K

X = Bwi :> X = WllBl + -4 WlKBK

* Problem: Given a collection of data X, find a
set of “bases” B, such that each vector X; can
be expressed as a weighted combination of

the bases
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A Quick Recap: Subproblem 1

- B

B

* Problem 1: Finding bases
— Finding typical faces
— Finding “notes” like structures
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A Quick Recap: Subproblem 2

b .

 Problem 2: Expressing instances in terms of
these bases

— Finding weights of typical faces
— Finding weights of notes
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A Quick Recap: WHY? 1.

* Better Representation: The weights {w;}
represent the vectors in a meaningful way

— Better suited to semantically motivated operation
— Better suited for specific statistical models
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. |

the dimensions of the vectors

— Represent each Vector using fewer numbers
— Expresses each vector within a subspace

* Loses information / energy
* Objective: Lose least energy
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A Quick Recap: WHY? 3.
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ch“

160
150
140
130
120
110
, 100 %
3 w0
B o @m%
: Yy *gé
)
50
%
. |

xxxx

1500

Y-Axis

NOISE

* Denoising: Reduced dimensional representation

eliminates dimensions

e Can often eliminate noise dimensions

— Signal-to-Noise ratio worst in dimensions where the signal

has least energy/information

— Removing them eliminates noise
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A Quilck Recap HOW? PCA

Error = Z 11X, — Z wi;B; |2 Average(w;jwy, ) = Average(w;;) Average(wy)

K LVLV W " WWT=D
1" 2 N

* Requirements:

— Projected signal must retain most of the energy / variance in the
signal
— Projection weights must be decorrelated

* |dentical to requiring that bases must be orthogonal
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A Quick Recap: PCA solution

Error = z ||X; — ZWUB]- 11> + AWWT — D) Error = Z ||X; — Z w;;B; || + A(BB" —I)
[ j [ j

C = xxT CB = BA w; = BTX;

* Solving error minimization with decorrelation
constraint

* Eigendecomposition
— “Bases” are Eigenvectors of correlation matrix

— Weights are projection of vector on Eigenvector
matrix
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A Quick Recap: PCA

 Main objectives:

— Reduced dimensional representation

* Use weights to represent data

* Fewer weights than dimensions of data

— Decorrelation

* Weights are not correlated

— Denoising

* Extremely effective at above objectives

11755/18797
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Where it doesn’t work
A “simple” audio problem

2



Formalizing the problem

........ . —)
e Each mic will receive a mix of Q >>> ’ .
2/ -

both sounds =) a\
— Sound waves superimpose linearly :" . :
* The simplified mixing model is: (((
x(1)=A-s(?)
* We know X(t), but nothing else X,(1) = ay,5,(t) + a5, (2)

— How do we solve this system and
find S(t)? X, (1) = a,;8,(¢) + ay,5,(2)
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A simple example
X(t) A s(t)

UG- A4l
Iy :{ } A A oA

= A simple invertible problem

—_— NI
[URE N W

= 5(t) contains two structured waveforms
= Ais invertible (but we don’t know it)
= X(t) looks messy, doesn'’t reveal s(t) clearly

= How to recover s(t) from x(t)
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What to look for
x(1)=A-s(?)

* We can only use X(t)
* |sthere a property we can take advantage of?

* Yes! We know that different sounds are
“statistically unrelated”

* The plan: Find a solution that enforces this
“unrelatedness”
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A first try: PCA

* Find s(t) by minimizing cross-correlation
(5,(6)-5,())=0,Vi#

— Assuming zero-mean signals

e PCA Solution
S=BTXx
$(t) = BTx(t)

e Solution: B = Eigenvector matrix of C = XXT

11755/18797
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So how well does this work?
s(t)
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What PCA does

= The result Is not what we want

= We are off by a rotation

a) Find the eigenvectors

11755/18797

b) Rotate and scale so that covariance is |
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A chk Recap HOW? ICA

P(Wij, Wik) — P(WL]) P(Wik)

i

Average(f(wi)g(wu)) = Average(f (wy))) Average(g(wuy)

* Requirements:

— Projection weights must be statistically independent

11755/18797
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A Quick Recap: ICA solution

X(£)=A-s(?) s(t) = Bx(t)

* Solve it as “unmixing”

— “Find me a B such that the rows of Bx(t) are independent”

 Define a “Contrast” function

— Which is maximized if the weights are independent
1(S) =2 H(s(®))-H(S) =) H(s(t)) - log(det(B))

* Decorrelate non-linear functions of the weights
— diagonalize P = g(S)f(S)T

11755/18797
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A Quick Recap: ICA solution

e The Contrast Function: Find a matrix B such that

1(S) =D H (Bx(1) - log(det(B))

is maximized

* Decorrelating non-linear functions of B: Find a
matrix B such that

P =g(BX)f(BX)'
is diagonalized
* Our estimated S =BX (s(t) = Bx(t)

11755/18797
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Other popular approaches

Infomax

— Maximize the entropy of the output or Mutual Information of
input/output

Non-Gaussianity

— Adding signals tends towards Gaussianity (Central Limit
Theorem)

— Find the maximally non-Gaussian outputs undoes the mixing

Maximum Likelihood

— Less straightforward at first, but elegant nevertheless

Geometric methods

— Trying to “eyeball” the proper way to rotate
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Solution Using ICA

X(t) A s(t)
Ay L AMAMAY M
$(t) B X(t)

VY 1y o 1 AT
POO4 " it

 We actually separated the mixture!
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Solution with ICA
B X(t)

:{ ~139 278 } N\h“ﬁﬂh/ M’MM”“
25 258 ﬂ\&rwm@ﬂw

— —
Z L
—
c
—




This works really well for audio
mixtures!

Input Mix Output
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What do we miss

Scale S(t) s(t)
— Statistical independence is
invariant of scale (and sign) AI\/Y\%W/\MM Wh MMWWWW
Order of inputs VWW M/\%\M/M
— Order of inputs is irrelevant /\
when talking about
independence — —
— Cannot perform HE N
dimensionality reduction H /‘? :
: ;': N .
ICA will actually recover: xij \\\ 17 (e
A \ i\ BN
$(t1)=D-P-s(7) i v \// AR N
Where D is diagonaland Pis .. : \\ \" N 1_% Ra\
a permutation matrix BT A\ VI | el =
. .
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A Quick Recap: PCA

* Main objectives: Statistical independence!

— Secondary objective: Semantic meaningfulness

* Dimensionality reduction not permitted
— Number of bases = no. of dimensions

— Number of weights = No. of dimensions

11755/18797
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What else do we miss?

N

x; = Bw; —

B W

I

K

X = VV11131 4-°°°-+-bvll<l1K

* No other constraints on B or W
 Sometimes, we do have constraints

— E.g. ONLY constructive

composition allowed

— B or W cannot be negative

e E.g. the music example.
* W is the transcription

e Cannot be negative: no such thing as negatively playing a note

11755/18797
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Summary

* Decorrelation and Independence are
statistically meaningful operations

* But may not be physically meaningful

* Next: A physically meaningful constraint
— Non-negativity



The Engineer and the Musician

Once upon a time a rich potentate
discovered a previously unknown
recording of a beautiful piece of

music. Unfortunately it was badly
damaged.

He greatly wanted to find out what it would sound
like If it were not.

¢§%‘

20
N

So he hired an engineer and a -
musician to solve the
problem..




The Engineer and the Musician

The engineer worked for many
years. He spent much money and
published many papers.

Finally he had a somewhat scratchy #4W,.
restoration of the music..

The musician listened to the musicige
carefully for a day, transcribed lIt,
broke out his trusty keyboard and
replicated the music.



The Prize

Who do you think won the princess?

32



The search for building blocks

= What composes an audio signal?
o E.g. notes compose music

33



The properties of building blocks

= Constructive composition
o A second note does not diminish a first note

= Linearity of composition
o Notes do not distort one another

34



Looking for building blocks in sound

scoo
rooco
cooco
scoco
acoo
=ooo
=coo

ER=T=T<)

>

= Can we compute the building blocks from sound
itself
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A property of spectrograms

= The spectrogram of the sum of two signals is the sum of their spectrograms

o Thisis a property of the Fourier transform that is used to compute the columns of the
spectrogram

= The individual spectral vectors of the spectrograms add up
o Each column of the first spectrogram is added to the same column of the second
o Building blocks can be learned by using this property

0 Learn the building blocks of the “composed” signal by finding what vectors were added
to produce it
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Another property of spectrograms

= We deal with the power in the signal

= The power in the sum of two signals is the sum of the powers in the
individual signals

= The power of any frequency component in the sum at any time is the
sum of the powers in the individual signals at that frequency and time

=  The power is strictly non-negative (real)

37



Building Blocks of Sound

)
N —

The building blocks of sound are (power) spectral structures

E.g. notes build music

The spectra are entirely non-negative
The complete sound is composed by constructive combination of the
building blocks scaled to different non-negative gains

E.g. notes are played with varying energies through the music

The sound from the individual notes combines to form the final spectrogram

The final spectrogram is also non-negative 38



Building Blocks of Sound

J I
| W12

Each frame of sound is composed by activating each
spectral building block by a frame-specific amount

Individual frames are composed by activating the
building blocks to different degrees

E.g. notes are strummed with different energies to compose
the frame 2



Composing the Sound

J I
| W22

Each frame of sound is composed by activating each
spectral building block by a frame-specific amount

Individual frames are composed by activating the
building blocks to different degrees

E.g. notes are strummed with different energies to compose
the frame 40



Building Blocks of Sound
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Each frame of sound is composed by activating each
spectral building block by a frame-specific amount

Individual frames are composed by activating the
building blocks to different degrees

E.g. notes are strummed with different energies to compose
the frame "



Building Blocks of Sound
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Each frame of sound is composed by activating each
spectral building block by a frame-specific amount

Individual frames are composed by activating the
building blocks to different degrees

E.g. notes are strummed with different energies to compose

the frame 1



Building Blocks of Sound

)

Each frame of sound is composed by activating each
spectral building block by a frame-specific amount

Individual frames are composed by activating the
building blocks to different degrees

E.g. notes are strummed with different energies to compose
the frame

43



The Problem of Learning

J
i ﬂ

Given only the final sound, determine its building
blocks

From only listening to music, learn all about musical

notes!



In Math

J
—_—
| Wo,

V,=w,B +w,,B, +w,, B, +...

Each frame is a non-negative power spectral vector
Each note is a non-negative power spectral vector

Each frame is a non-negative combination of the notes
45



Expressing a vector in terms of other vectors

46



Expressing a vector in terms of other vectors
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Expressing a vector in terms of other vectors

2a+5b =4
3.a+-3.b=2
3
By 2 5 ]al [4
[‘2‘} 3 3(p|7|2
V

a]l [2 51714
b|=|3 -3 |2
a.B, Fd L

~_/ a’|_[1.04761905]
b.B; b |=| 0.38095238

B, V =1.048B, +0.381B,
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Power spectral vectors: Requirements

V =aB, +DB, V has only non-negative
components

o Is a power spectrum

B, and B, have only non-
negative components

{5 0 Power spectra of building blocks of
: audio

o E.g. power spectra of notes

a and b are strictly non-

negative

0 Building blocks don’t subtract from
one another

11755/18797 49



Learning building blocks: Restating the

problem

Given a collection of spectral vectors (from
the composed sound) ...

Find a set of “basic” sound spectral vectors
such that ...

All of the spectral vectors can be
composed through constructive addition
of the bases

o We never have to flip the direction of any basis

50



Learning building blocks: Restating the
problem

V =BW

Each column of V is one “composed”

spectral vector
Each column of B is one building block

0 One spectral basis
Each column of W has the scaling factors

for the building blocks to compose the
corresponding column of V

All columns of V are non-negative

All entries of B and W must also be non-
negative

51




Non-negative matrix factorization: Basics

NMF is used in a compositional model

Data are assumed to be non-negative

o E.g. power spectra

Every data vector is explained as a purely constructive
linear composition of a set of bases

a V=% wB,

a The bases B. are in the same domain as the data

l.e. they are power spectra

Constructive composition: no subtraction allowed

Weights w; must all be non-negative

All components of bases B, must also be non-negative
52



Interpreting non-negative factorization

Bases are non-negative, lie in the positive quadrant
Blue lines represent bases, blue dots represent vectors

Any vector that lies between the bases (highlighted region) can
be expressed as a non-negative combination of bases

o E.g. the black dot 53



Interpreting non-negative factorization

-
-
-
-
-
-
-
-

-
-
-
-

Vectors outside the shaded enclosed area can only be expressed
as a linear combination of the bases by reversing a basis

0 l.e. assigning a negative weight to the basis
o E.g.thered dot

Alpha and beta are scaling factors for bases

Beta weighting is negative 54



Interpreting non-negative factorization

-
-
-
-
-
-
-
-

If we approximate the red dot as a non-negative
combination of the bases, the approximation will lie in
the shaded region

o On or close to the boundary

0 The approximation has error s



The NMF representation

The representation characterizes all data as lying within
a compact convex region

o “Compact” = enclosing only a small fraction of the entire space

o The more compact the enclosed region, the more it localizes the
data within it

Represents the boundaries of the distribution of the data better

0 Conventional statistical models represent the mode of the distribution

The bases must be chosen to

0 Enclose the data as compactly as possible

o And also enclose as much of the data as possible

Data that are not enclosed are not represented correctly

56



Data need not be non-negative

The general principle of enclosing data applies to any one-sided data
0 Whose distribution does not cross the origin.

The only part of the model that must be non-negative are the weights.
Examples
0 Blue bases enclose blue region in negative quadrant

0 Red bases enclose red region in positive-negative quadrant

Notions of compactness and enclosure still apply
o Thisis a generalization of NMF
o We wont discuss it further
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NMF: Learning Bases

Given a collection of data vectors (blue dots)

Goal: find a set of bases (blue arrows) such that they enclose the
data.
|deally, they must simultaneously enclose the smallest volume

o This “enclosure” constraint is usually not explicitly imposed in the
standard NMF formulation

58



NMF: Learning Bases

Express every training vector as non-negative combination of bases

In linear algebraic notation, represent:

o Set of all training vectors as a data matrix V

A DxN matrix, D = dimensionality of vectors, N = No. of vectors

o All basis vectors as a matrix B

A DxK matrix , K is the number of bases

o The K weights for any vector V as a Kx1 column vector W
o The weight vectors for all N training data vectors as a matrix W

KxN matrix

Ideally V = BW

59



NMF: Learning Bases

V = BW will only hold true if all training vectors in V lie
inside the region enclosed by the bases

Learning bases is an iterative algorithm
Intermediate estimates of B do not satisfy V=BW

Algorithm updates B until V = BW is satisfied as closely
as possible

60



NMF: Minimizing Divergence

Define a Divergence between data V and approximation BW
o Divergence(V, BW) is the total error in approximating all vectors in V as BW
0 Must estimate B and W so that this error is minimized

Divergence(V, BW) can be defined in different ways
o L2: Divergence = %2, (Vij - (BW)ij)2

Minimizing the L2 divergence gives us an algorithm to learn B and W

o KL: Divergence(V,BW) = X%, V;; log(V; / (BW))+ Z%; V;; — %, (BW);

This is a generalized KL divergence that is minimum when V= BW
Minimizing the KL divergence gives us another algorithm to learn Band W

Other divergence forms can also be used

61



NMF: Minimizing Divergence

Define a Divergence between data V and approximation BW

o Divergence(V, BW) is the total error in approximating all vectors in V as BW
0 Must estimate B and W so that this error is minimized

rgence(V, BW) can be defined in different ways
o L2: Divergence = %2, (Vij - (BW)ij)2

Minimizing the L2 divergence gives us an algorithm to learn B and W

o KL: Divergence(V,BW) = %3, V;; log(Vy; / (BW))+ X% V;; — %, (BW);

This is a generalized KL divergence that is minimum when V= BW
Minimizing the KL divergence gives us another algorithm to learn Band W

Other divergence forms can also be used
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NMF: Minimizing L, Divergence

Divergence(V, BW) is defined as
2 E=||V-BW||2
0 BE= 22 (Vij — (BW)ij)2

Iterative solution: Minimize E such that B and

W are strictly non-negative

063



NMF: Minimizing L, Divergence

Learning both B and W with non-negativity

Divergence(V, BW) is defined as
2 E=||V-BW||2
V ~ BW

Iterative solution:
1 B = [V Pinv(W)],
o W = [Pinv(B) V1],

0 Subscript + indicates thresholding —ve values to O

64



NMF: Minimizing Divergence

Define a Divergence between data V and approximation BW
o Divergence(V, BW) is the total error in approximating all vectors in V as BW
o Must estimate B and W so that this error is minimized

Divergence(V, BW) can be defined in different ways
o L2: Divergence = X% (V; — (BW))?
Minimizing the L2 divergence givesiisanalgarithm to learn B and W

o KL: Divergence(V,BW) = %3 V; log(V; / (BW)y)+ ZX; V; — % (BW);

This is a generalized KL divergence that is minimum when V= BW
Minimizing the KL divergence gives us another algorithm to learn B and W

For many kinds of signals, e.g. sound, NMF-based representations work
best when we minimize the KL divergence

65



NMF: Minimizing KL Divergence

Divergence(V, BW) defined as

Iterative update rules

Number of iterative update rules have been
proposed

The most popular one is the multiplicative update
rule..

066



NMF Estimation: Learning bases

The algorithm to estimate B and W to minimize the
KL divergence between V and BW:

Initialize B and W (randomly)

Iteratively update B and W using the following
formulae

(V)\NT BT(Vj
B-p@ W W =W ®_ W

W' B'1
Iterations continue until divergence converges

0 In practice, continue for a fixed no. of iterations

67



Reiterating

~ V=) w B
Voun = B Wi L Zk: Lk =k

NMF learns the optimal set of basis vectors B, to approximate the data
in terms of the bases

It also learns how to compose the data in terms of these bases

o Compositions can be inexact

The columns of B are the
B, bases

The columns of V are the

data

68




Learning building blocks of sound

From Bach’s Fugue in Gm

..... ==

e e = :E

Frequency —

V =BW

Each column of V is one spectral vector

Each column of B is one building
block/basis

Each column of W has the scaling
factors for the bases to compose the
corresponding column of V

All terms are non-negative
Learn B (and W) by applying NMF to V

69



Learning Building Blocks

Speech Signal

T = =
= < = = 5 -
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Basis-specific spectrograms
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What about other data

R o e
{O e o
g o B R

Faces

o Trained 49 multinomial components on 2500 faces
Each face unwrapped into a 361-dimensional vector

o Discovers parts of faces
71



There is no “compactness” constraint

e No explicit “compactness” constraint on
bases

e The red lines would be perfect bases:
N

e Enclose all training data without B
error

1

e Algorithm can end up with these
bases

e If no. of bases K >= dimensionality

A 4

D, can get uninformative bases B,

e |[fK< D, we usually learn compact representations
e NMF becomes a dimensionality reducing representation

e Representing D-dimensional data in terms of K weights,

where K< D
72



Representing Data using Known Bases

If we already have bases B, and are given a vector
that must be expressed in terms of the bases: V ~) W.B,
k

Estimate weights as:
0 Initialize weights

BT L
0 Iteratively update them using W W ® BW
B B'1

73



What can we do knowing the building blocks

Signal Representation
Signal Separation
Signal Completion
Denoising

Signal recovery

Music Transcription
Etc.

74



Signal Separation

IVOUTTRIIGRU TIGUNEIIGY | R eI

= Can we separate mixed signals?
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Undoing a Jigsaw Puzzle

Composition

From green
blocks

B From red

blocks

Building
blocks

Given two distinct sets of building blocks, can we
find which parts of a composition were
composed from which blocks 76



Separating Sounds

@): @Nl estimate

given estimate

From example of A, learn blocks A (NMF)

77



Separating Sounds

VW

given estilnate

From example of A, learn blocks A (NMF)
From example of B, learn B (NMF)

78



Separating Sounds

= From mixture, separate out (NMF)
o Use known “bases” of both sources

o Estimate the weights with which they combine in the
mixed signal 7



Separating Sounds

= Vo
estimate B]_W]_ B ]
B, B.] |y

—~“' oo e e e oo g|ven e —
estimate

estimate B , W2

Separated signals are estimated as the
contributions of the source-specific bases to the

mixed signal
80



Separating Sounds

= Vo
estimate B]_W]_ B ]
B, B, |y

e o — given estimate L .
estimate

estimate B , W2

It is sometimes sufficient to know the bases for
only one source

o The bases for the other can be estimated from the
mixed signal itself 81



Separating Sounds

“Raise my rent” by David Gilmour

Background music “bases” learnt
from 5-seconds of music-only
segments within the song

Lead guitar “bases” bases learnt
from the rest of the song

Norah Jones singing “Sunrise”

Background music bases learnt
from 5 seconds of music-only
segments

82



Predicting Missing Data

= Use the building blocks to fill in “holes”

83



Filling in

<

Some frequency components are missing (left panel)
We know the bases
o But not the mixture weights for any particular spectral frame

We must *fill in” the holes in the spectrogram

o To obtain the one to the right
84



Learn building blocks

/,@_ W sttt

given Tnate

Learn the building blocks from other examples of
similar sounds

o E.g. music by same singer

o E.g. from undamaged regions of same recording

85



Predict data

\7 — %W estimate ::;S{r;ﬂe: B\W

Modified bases (given) Full bases

“Modify” bases to look like damaged spectra
0 Remove appropriate spectral components

Learn how to compose damaged data with modified
bases

Reconstruct missing regions with complete bases
86



Filling in : An example

Madonna...

Bases learned from other Madonna songs

87



A more fun example

Reduced BW data

*Bases learned from this

*Bandwidth expanded version

88



A Natural Restriction

N

BZ

For K-dimensional data, can learn no more than
K-1 bases meaningufully

o At K bases, simply select the axes as bases

o The bases will represent all data exactly

89



Its an unnatural restriction

For K-dimensional spectra, can learn no more than K-1 bases
Nature does not respect the dimensionality of your spectrogram

E.g. Music: There are tens of instruments

o Each can produce dozens of unique notes

o Amounting to a total of many thousands of notes

o Many more than the dimensionality of the spectrum

E.g. images: a 1024 pixel image can show millions of
recognizable pictures!

o Many more than the number of pixels in the image
90



Fixing the restriction: Updated model

-—

Can have a very large number of building blocks (bases)
o E.g. notes

But any particular frame is composed of only a small
subset of bases

o E.g. any single frame only has a small set of notes
91



The Modified Model

V — BW V — BW For one vector

Modification 1: \

0 Inany column of W, only a small number of entries have non-
zero value

0 l.e. the columns of W are sparse
0 These are sparse representations

Modification 2:

o B may have more columns than rows
0 These are called overcomplete representations

Sparse representations need not be overcomplete, but
the reverse will generally not provide useful
decompositions 92



Imposing Sparsity

V =BW
E = Div(V,BW)

Q = Div(V,BW)+ 1| W],

Minimize a modified objective function

Combines divergence and ell-0 norm of W
2 The number of non-zero elements in W

Minimize Q instead of E

0 Simultaneously minimizes both divergence and

number of active bases at any time
93



Imposing Sparsity

V =BW

Q = Div(V, BW)+M
Q = Div(V,BW)+ 4| W|,

Minimize the ell-O0 norm is hard
o Combinatorial optimization
Minimize ell-1 norm instead

o The sum of all the entries in W

0 Relaxation

Is equivalent to minimize ell-0

o  We cover this equivalence later

Will also result in sparse solutions

94



Update Rules

Modified Iterative solutions

0 In gradient based solutions, gradient w.r.t any W term now
includes A

o lLe.if dQ/dW =dE/dW + A

For KL Divergence, results in following modified
update rules

(VJWT BT(V)
B=B® BW W=W® =

W B'"1+ 4

Increasing A makes the weights increasingly sparse -



Update Rules

Modified Iterative solutions

0 In gradient based solutions, gradient w.r.t any W term
now includes A

o Le. if dQ/AW = dE/AW + A

Both B and W can be made sparse

(V}NT BT(V j
3_Be bW W =W ®_BW

W'+ A, B'1+ 4,
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What about Overcompleteness?

Use the same solutions
Simply make B wide!

2 W must be made sparse

(Yo BT(V)
B-B®-oW W=we 20"

W B'1+ A,
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Sparsity: What do we learn

Without Sparsity With Sparsity

B,

~
7

BZ
Without sparsity: The model has an implicit limit: can learn
no more than D-1 useful bases

o If K>=D, we can get uninformative bases

Sparsity: The bases are “pulled towards” the data
o Representing the distribution of the data much more effectively
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Sparsity: What do we learn

2 Basis Vactors (010} 3 Basis Vactors (010)
11001, g (100}, . -
N // \\ ///
. sy R / N eay, SR /
by M N S
™, L -:f+‘ s \\ -3' + .
N, * - - b
A  af gy A wrooaf "l
\‘\ -+ s%’#? ot s g N P o 4
5 *
/! by g ,
* AT - h fL A
/" |—Simplex Boundary \\ p // —Simplex Boundary
+ Data Points “, LI + Data Points
“, y = Basis Victors ™, V4 o Basis Vectors
001) S —Approximation (001) \\/ —Canvax Hull
Bmua o
) "eT

Each dot represents a
location where a vector
"pierces"” the simplex

T b Vo i
T - i
T e ==
Oy Fum 00 --'\&.;1,
o T
o)

Top and middle panel: Compact (non-sparse) estimator

o Asthe number of bases increases, bases migrate towards corners of the
orthant

Bottom panel: Sparse estimator

o Cone formed by bases shrinks to fit the data
99



The Vowels and Music Examples

200 =5
—=1: I .7 TF\; g
zo00

Bin | bl

Left panel, Compact learning: most bases have significant energy in all frames

Right panel, Sparse learning: Fewer bases active within any frame

o Decomposition into basic sounds is cleaner
11755/18797 100




Sparse Overcomplete Bases: Separation

= 3000 bases for each of the speakers
0 The speaker-to-speaker ratio typically doubles (in dB) w.r.t compact bases

N @

0 a
8 <

Regular bases

W

= N

nalized Frequency ( =zmmWFrequency ( xxtacifseimée) Frequency (xzrad

2
i
1
o
Sparse bases “ooo
sooo
coo
ocoo
o
ielele]
SOO0oO e -
aocoo |- - S & . E@]E
=000 [ = : N _— = = =4 — — -
- - — = — —
o . S— — — e
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Sparseness: what do we learn

As solutions get more sparse, bases become more
informative

o In the limit, each basis is a complete face by itself.
o Mixture weights simply select face

Sparse bases “Dense” weights

e oA )'

53, % e e
Dense bases Sparse weights 10



Filling in missing information

A Qccludad Facas B Reacorstuctons

C.Cngnal Teal Images

A. Reconstruction Experiment

Mean SNR
SR > @

= 19x19 pixel images (361 pixels)

= 1000 bases trained from 2000 faces

= SNR of reconstruction from overcomplete basis set more than 10dB

better than reconstruction from corresponding “compact” (regular) basis
set
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Extending the model

= In reality our building blocks are not spectra

= They are spectral patterns!
o Which change with time

105



Convolutive NMF

The building blocks of sound are spectral
patches!
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Convolutive NMF

I Wiq
L., =
é W21 e
% niso!
] W3,
I
g Wy

The building blocks of sound are spectral
patches!

At each time, they combine to compose a patch
starting from that time

Overlapping patches add
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Convolutive NMF

J W12
L., T =
‘£ W22
% 150
“/Wz/
D
: 3 Wy

The building blocks of sound are spectral
patches!

At each time, they combine to compose a patch
starting from that time

Overlapping patches add
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Convolutive NMF

J; W5
L., T =
ég Was
% 150
,, A
I
E E | W43

The building blocks of sound are spectral
patches!

At each time, they combine to compose a patch
starting from that time

Overlapping patches add
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Convolutive NMF

J Wi,

L., T =

ég W4 -

% 150
T 3 Waq

The building blocks of sound are spectral
patches!

At each time, they combine to compose a patch
starting from that time

Overlapping patches add

110



Convolutive NMF

J

é =l B TR SR e -::; oaE VSR = ek
S i = e e
- - ey e P e o —
e —— — = —_—— =
== e bt R sebedee S
o 300 600 700

The building blocks of sound are spectral
patches!

At each time, they combine to compose a patch
starting from that time

Overlapping patches add 11



In Math

S(H) =Y w (0); )+ W (DB, (t-1)+D W (B, (t-2)+..= > Y W (r)B,(t-7)

S(t) = Z B; (t) ® w; (t)

Each spectral frame has contributions from

several previous shifts 112



An Alternate Repesentation

é D B s T B s S i T S B, Ly e — st By = WS ) Y = B
—e e ——— - =— ) =
£ —_— R e e e e S p |
i35 5 B i —p— e e e T

B -

= 150 = — e e -
— E oo il s it 7 oo R o e, L 2

e S — - PE [ —— = - —— H
= 100 e T S T S e e S
- so [t e S ,-:-—"f‘-;:w-'—'— — — f":r_.f_:i_:,;:,

o b —— S—E, ——— = ﬂ"‘; _——

: _—t S SEe S e

J’ . S(t) = ZZW(T)B(t r) ZZW(t 7)B.(7)
ol S(t)=ZZBi(r)wi(t—r)

S= Z B(T)TW

B(t) is a matrix composed of the t-th columns of all bases
The I-th column represents the I-th basis

W is a matrix whose I-th row is sequence of weights applied to the
I-th basis
The superscript t—=> represents a right shift by t 13



Convolutive NMF

S=>B(r)W
r t
SLr 7S
§W . B(t)[ﬂ
B(t) = B() ® > W==YWwe— L3
1.W T5 B(t) 1

Simple learning rules for B and W

Identical rules to estimate W given B
o Simply don’t update B
Sparsity can be imposed on W as before if desired
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The Convolutive Model

= An Example: Two distinct sounds occurring with
different repetition rates within a signal

o Each sound has a time-varying spectral structure
INPUT SPECTROGRAM

<=

< _ =
§ =
== o e

= oo.s=s

B oA |

.=

< _ =

iy -

bDiscovered “patch” Contribution of individual bases to the recording 115
ases




Example applications: Dereverberation

| Q

From “Adrak ke Panje” by Babban Khan

Treat the reverberated spectrogram as a composition of
many shifted copies of a “clean” spectrogram

o “Shift-invariant” analysis

NMF to estimate clean spectrogram
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Pitch Tracking

Kemnel distribution Input Kemel distribution

IIIII
N is U
— o— — =
———— - ==
= g s - S
£ ‘A_ﬁ:
-~ o - - S
e — g =
— p— PRy T i s s e e
- ‘-‘_’——‘.’ 2 —_— 5 = >
—— 43 e
s —————— "“‘:
Impulse distributon .~~~ mpise distribution
™l
/ —
Qr— — —
- T ]
—
- et

Left: A segment of a song

Right: Smoke on the water

0 “Impulse” distribution captures the “melody”!
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Pitch Tracking

Kemel 1 Kemel 2 Input

%I
L = ey -
- — L 5 -~
-~ - - - A
“~ S - -
- — = —
N e T
- — . —

Impulse distribution 2

S

Simultaneous pitch tracking on multiple instruments

Can be used to find the velocity of cars on the
highway!!

0 “Pitch track” of sound tracks Doppler shift (and velocity)

8



Example: 2-D shift invariance

Original Recons truction

50 100 150 200 250 300 380 400 450 500

Weights

I ! _ e
g 10 15 20

Sparse decomposition employed in this example

o Otherwise locations of faces (bottom right panel) are not precisely determined
11755/18797 119



Example: 2-D shift invarince

The original figure has multiple handwritten
renderings of three characters

o In different colours

The algorithm learns the three characters and
identifies their locations in the figure
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Example: Transform Invariance

Top left: Original figure
Bottom left — the two bases discovered
Bottom right —

0 Left panel, positions of “a”

o Right panel, positions of “|”

Top right: estimated distribution underlying original figure



Example: Higher dimensional data

Video example

Description of Input Kemesl 1

Kemsl 3
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Lessons learned

Linear decomposition when constrained with
semantic constraints e.g. non-negativity can
result in semantically meaningful bases

NMF: Useful compositional model of data

Really effective when the data obey
compositional rules..
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