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A Quick Recap 

• Problem:  Given a collection of data X, find a 
set of “bases” B, such that each vector xi can 
be expressed as a weighted combination of 
the bases 
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A Quick Recap: Subproblem 1 

• Problem 1:  Finding bases 

– Finding typical faces 

– Finding “notes” like structures 
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A Quick Recap: Subproblem 2 

• Problem 2:  Expressing instances in terms of 
these bases 
– Finding weights of typical faces 

– Finding weights of notes 
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A Quick Recap: WHY? 1. 

• Better Representation: The weights {wij} 
represent the vectors in a meaningful way 

– Better suited to semantically motivated operation 

– Better suited for specific statistical models 
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A Quick Recap: WHY? 2. 

• Dimensionality Reduction: The number of Bases may be fewer than 
the dimensions of the vectors 

– Represent each Vector using fewer numbers 

– Expresses each vector within a subspace 

• Loses information / energy 

• Objective: Lose least energy 
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A Quick Recap: WHY? 3. 

• Denoising: Reduced dimensional representation 
eliminates dimensions 

• Can often eliminate noise dimensions 

– Signal-to-Noise ratio worst in dimensions where the signal 
has least energy/information 

– Removing them eliminates noise 
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A Quick Recap: HOW? PCA 

• Requirements:  

– Projected signal must retain most of the energy / variance in the 
signal 

– Projection weights must be decorrelated 

• Identical to requiring that bases must be orthogonal 
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A Quick Recap: PCA solution 

• Solving error minimization with decorrelation 
constraint 

• Eigendecomposition 

– “Bases” are Eigenvectors of correlation matrix 

– Weights are projection of vector on Eigenvector 
matrix 
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A Quick Recap: PCA 

• Main objectives: 

– Reduced dimensional representation 

• Use weights to represent data 

• Fewer weights than dimensions of data 

– Decorrelation 

• Weights are not correlated 

– Denoising 

• Extremely effective at above objectives 
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Where it doesn’t work 
A “simple” audio problem 

foo! 

bar! 
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Formalizing the problem 

• Each mic will receive a mix of 

both sounds 

– Sound waves superimpose linearly 

• The simplified mixing model is: 

 

• We know x(t), but nothing else 

– How do we solve this system and 

find s(t)? 

s1 

s2 

x1(t)  a11s1(t) a21s2(t)

x2(t)  a21s1(t) a22s2(t)

x(t)  A  s(t)
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A simple example 


2 1

1 1









 

s(t) x(t) A 

 A simple invertible problem 

 s(t) contains two structured waveforms 

 A is invertible (but we don’t know it) 

 x(t) looks messy, doesn’t reveal s(t) clearly 

 How to recover s(t) from x(t)  
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What to look for 

 

 

• We can only use x(t) 

• Is there a property we can take advantage of? 
 

• Yes!  We know that different sounds are 
“statistically unrelated” 

 

• The plan: Find a solution that enforces this 
“unrelatedness” 

x(t)  A  s(t)
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A first try: PCA 

• Find s(t) by minimizing cross-correlation 

 

– Assuming zero-mean signals 
 

• PCA Solution 

 

 
• Solution: B = Eigenvector matrix of C = XXT 

ŝi (t)  ŝ j (t)  0,i  j
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So how well does this work? 


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 Well, that was a waste of time … 
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What PCA does 

a) Find the eigenvectors b) Rotate and scale so that covariance is I 

 The result is not what we want 

 We are off by a rotation 
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A Quick Recap: HOW? ICA 

• Requirements:  

– Projection weights must be statistically independent 
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A Quick Recap: ICA solution 

• Solve it as “unmixing” 

– “Find me a B such that the rows of Bx(t) are independent” 

• Define a “Contrast” function 

– Which is maximized if the weights are independent 

 

 

• Decorrelate non-linear functions of the weights 

– diagonalize 
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A Quick Recap: ICA solution 

• The Contrast Function: Find a matrix B such that 

 

      is maximized 
 

• Decorrelating non-linear functions of B: Find a 
matrix B such that 

     

     is diagonalized 

• Our estimated S = BX  (s(t)  =  Bx(t) 
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Other popular approaches 

• Infomax 

– Maximize the entropy of the output or Mutual Information of 
input/output 

• Non-Gaussianity 

– Adding signals tends towards Gaussianity (Central Limit 
Theorem) 

– Find the maximally non-Gaussian outputs undoes the mixing 

• Maximum Likelihood 

– Less straightforward at first, but elegant nevertheless 

• Geometric methods 

– Trying to “eyeball” the proper way to rotate 
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Solution Using ICA 


2 1

1 1









 

s(t) x(t) A 

x(t) 


1.39 2.78

2.5 2.58









 

B ŝ(t) 

• We actually separated the mixture! 
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Solution with ICA 
x(t) B ŝ(t) 


1.39 2.78

2.5 2.58









 
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This works really well for audio 
mixtures! 

Input Mix Output 
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What do we miss 
• Scale 

– Statistical independence is 
invariant of scale (and sign) 
 

• Order of inputs 

– Order of inputs is irrelevant 
when talking about 
independence 

– Cannot perform 
dimensionality reduction 

 

• ICA will actually recover: 
 

• Where D is diagonal and P is 
a permutation matrix 

ŝ(t) s(t) 

ŝ(t)  D P  s(t)
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A Quick Recap: PCA 

• Main objectives: Statistical independence! 

– Secondary objective: Semantic meaningfulness 

• Dimensionality reduction not permitted 

– Number of bases = no. of dimensions 

– Number of weights = No. of dimensions 
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What else do we miss? 

• No other constraints on B or W 

• Sometimes, we do have constraints 
– E.g.  ONLY constructive composition allowed 

– B or W cannot be negative 
• E.g. the music example. 

• W is the transcription 

• Cannot be negative: no such thing as negatively playing a note 
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Summary 

• Decorrelation and Independence are 
statistically meaningful operations 

• But may not be physically meaningful 

 

• Next: A physically meaningful constraint 

– Non-negativity 
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The Engineer and the Musician 

    Once upon a time a rich potentate  

discovered a previously unknown  

recording of a beautiful piece of  

music. Unfortunately it was badly  

damaged.   

   He greatly wanted to find out what it would sound 

like if it were not. 

    So he hired an engineer and a 
musician to solve the 
problem.. 

30 



The Engineer and the Musician 

    The engineer worked for many 

years. He spent much money and 

published many papers. 

Finally he had a somewhat scratchy 

restoration of the music.. 

    The musician listened to the music 

carefully for a day, transcribed it,  

broke out his trusty keyboard and 

replicated the music. 
31 



The Prize 

    Who do you think won the princess? 
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The search for building blocks 

 What composes an audio signal? 

 E.g. notes compose music 
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The properties of building blocks 

 Constructive composition 

 A second note does not diminish a first note 

 

 

 

 

 Linearity of composition 

 Notes do not distort one another 
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Looking for building blocks in sound 

 Can we compute the building blocks from sound 
itself 

35 
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A property of spectrograms 

+ 

+ 

= 

= 

 The spectrogram of the sum of two signals is the sum of their spectrograms 

 This is a property of the Fourier transform that is used to compute the columns of the 
spectrogram 

  The individual spectral vectors of the spectrograms add up 

 Each column of the first spectrogram is added to the same column of the second 

 Building blocks can be learned by using this property 
 Learn the building blocks of the “composed” signal by finding what vectors were added 

to produce it 
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Another property of spectrograms 

+ 

+ 

= 

= 

 We deal with the power in the signal 

 The power in the sum of two signals is the sum of the powers in the 
individual signals 

 The power of any frequency component in the sum at any time is the 
sum of the powers in the individual signals at that frequency and time 

 The power is strictly non-negative (real) 
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Building Blocks of Sound 

 The building blocks of sound are (power) spectral structures 
 E.g. notes build music 

 The spectra are entirely non-negative 

 The complete sound is composed by constructive combination of the 
building blocks scaled to different non-negative gains 
 E.g. notes are played with varying energies through the music 

 The sound from the individual notes combines to form the final spectrogram 

 The final spectrogram is also non-negative 38 



Building Blocks of Sound 

 Each frame of sound is composed by activating each 
spectral building block by a frame-specific amount 

 Individual frames are composed by activating the 
building blocks to different degrees 

 E.g. notes are strummed with different energies to compose 
the frame 

39 
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Composing the Sound 

40 

w21 

w22 

w23 

w24 

 Each frame of sound is composed by activating each 
spectral building block by a frame-specific amount 

 Individual frames are composed by activating the 
building blocks to different degrees 

 E.g. notes are strummed with different energies to compose 
the frame 



Building Blocks of Sound 
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 Each frame of sound is composed by activating each 
spectral building block by a frame-specific amount 

 Individual frames are composed by activating the 
building blocks to different degrees 

 E.g. notes are strummed with different energies to compose 
the frame 



Building Blocks of Sound 
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 Each frame of sound is composed by activating each 
spectral building block by a frame-specific amount 

 Individual frames are composed by activating the 
building blocks to different degrees 

 E.g. notes are strummed with different energies to compose 
the frame 



Building Blocks of Sound 

43 

 Each frame of sound is composed by activating each 
spectral building block by a frame-specific amount 

 Individual frames are composed by activating the 
building blocks to different degrees 

 E.g. notes are strummed with different energies to compose 
the frame 



The Problem of Learning 

44 

 Given only the final sound, determine its building 

blocks 

 From only listening to music, learn all about musical 

notes! 



In Math 

45 

 Each frame is a non-negative power spectral vector 

 Each note is a non-negative power spectral vector 

 Each frame is a non-negative combination of the notes 

...3312211111  BwBwBwV
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Expressing a vector in terms of other vectors 

V 

B1 

B2 
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Expressing a vector in terms of other vectors 

V 

B1 

B2 

b.B2 

a.B1 
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Expressing a vector in terms of other vectors 

2.a + 5.b  =  4  

3.a + -3.b =  2 
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 V has only non-negative 
components 

 Is a power spectrum 

 B1 and B2 have only non-
negative components 

 Power spectra of building blocks of 
audio 

 E.g. power spectra of notes 

 a and b are strictly non-
negative 

 Building blocks don’t subtract from 
one another  

49 

Power spectral vectors:  Requirements 
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 Given a collection of spectral vectors (from 

the composed sound) … 

 Find a set of “basic” sound spectral vectors 

such that … 

 All of the spectral vectors can be 

composed through constructive addition 

of the bases 

 We never have to flip the direction of any basis 

50 

Learning building blocks: Restating the 
problem 



 Each column of V is one “composed” 
spectral vector 

 Each column of B is one building block 

 One spectral basis 

 Each column of W has the scaling factors 
for the building blocks to compose the 
corresponding column of V 

 All columns of V are non-negative 

 All entries of B and W must also be non-
negative 

51 

Learning building blocks: Restating the 
problem 
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Non-negative matrix factorization: Basics 

 NMF is used in a compositional model 

 Data are assumed to be non-negative 

 E.g. power spectra 

 Every data vector is explained as a purely constructive 

linear composition of a set of bases 

 V = Si wi Bi 

 The bases Bi are in the same domain as the data 

 I.e. they are power spectra 

 Constructive composition: no subtraction allowed 
 Weights wi must all be non-negative 

 All components of bases Bi  must also be non-negative 
52 



Interpreting non-negative factorization 

 Bases are non-negative, lie in the positive quadrant 

 Blue lines represent bases, blue dots represent vectors 

 Any vector that lies between the bases (highlighted region) can 
be expressed as a non-negative combination of bases 

 E.g. the black dot 53 
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Interpreting non-negative factorization 

 Vectors outside the shaded enclosed area can only be expressed 
as a linear combination of the bases by reversing a basis 

 I.e. assigning a negative weight to the basis 

 E.g. the red dot 

 Alpha and beta are scaling factors for bases 

 Beta weighting is negative 

aB1 

bB2 
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Interpreting non-negative factorization 

 If we approximate the red dot as a non-negative 
combination of the bases, the approximation will lie in 
the shaded region 

 On or close to the boundary 

 The approximation has error 

aB1 

bB2 
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The NMF representation 

 The representation characterizes all data as lying within 

a compact convex region 

 “Compact”  enclosing only a small fraction of the entire space 

 The more compact the enclosed region, the more it localizes the 

data within it 

 Represents the boundaries of the distribution of the data better 

 Conventional statistical models represent the mode of the distribution 

 

 The bases must be chosen to  

 Enclose the data as compactly as possible 

 And also enclose as much of the data as possible 

 Data that are not enclosed are not represented correctly 
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Data need not be non-negative 

 The general principle of enclosing data applies to any one-sided data 

 Whose distribution does not cross the origin. 

 The only part of the model that must be non-negative are the weights. 

 Examples 

 Blue bases enclose blue region in negative quadrant 

 Red bases enclose red region in positive-negative quadrant 

 Notions of compactness and enclosure still apply 

 This is a generalization of NMF 

 We wont discuss it further 
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NMF: Learning Bases 

 Given a collection of data vectors (blue dots) 

 Goal: find a set of bases (blue arrows) such that they enclose the 
data. 

 Ideally, they must simultaneously enclose the smallest volume 

 This “enclosure” constraint is usually not explicitly imposed in the 
standard NMF formulation 
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NMF: Learning Bases 

 Express every training vector as non-negative combination of bases 

 V = Si  wi  Bi 

 

 In linear algebraic notation,  represent: 

 Set of all training vectors as a data matrix V 

 A DxN matrix, D = dimensionality of vectors,  N = No. of vectors 

 

 All basis vectors as a matrix B 

 A DxK matrix , K is the number of bases 

 

 The K weights for any vector V as a Kx1 column vector W 

 The weight vectors for all N training data vectors as a  matrix W 

 KxN matrix 

 

 Ideally V = BW 
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NMF: Learning Bases 

 V = BW will only hold true if all training vectors in V lie 

inside the region enclosed by the bases 
 

 Learning bases is an iterative algorithm 

 Intermediate estimates of B do not satisfy V = BW 

 Algorithm updates B until V = BW is satisfied as closely 

as possible 
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NMF: Minimizing Divergence 

 Define a Divergence between data V and approximation BW 
 Divergence(V, BW) is the total error in approximating all vectors in V as BW 

 Must estimate B and W so that this error is minimized 
 

 Divergence(V, BW) can be defined in different ways 

 L2:    Divergence =  SiSj (Vij – (BW)ij)
2 

 Minimizing the L2 divergence gives us an algorithm to learn B and W 
 

 KL:   Divergence(V,BW) =  SiSj Vij log(Vij / (BW)ij)+ SiSj Vij   SiSj (BW)ij 
 

 This is a generalized KL divergence that is minimum when V =  BW 

 Minimizing the KL divergence gives us another algorithm to learn B and W 
 

 Other divergence forms can also be used 
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NMF: Minimizing Divergence 

 Define a Divergence between data V and approximation BW 
 Divergence(V, BW) is the total error in approximating all vectors in V as BW 

 Must estimate B and W so that this error is minimized 
 

 Divergence(V, BW) can be defined in different ways 

 L2:    Divergence =  SiSj (Vij – (BW)ij)
2 

 Minimizing the L2 divergence gives us an algorithm to learn B and W 
 

 KL:   Divergence(V,BW) =  SiSj Vij log(Vij / (BW)ij)+ SiSj Vij   SiSj (BW)ij 
 

 This is a generalized KL divergence that is minimum when V =  BW 

 Minimizing the KL divergence gives us another algorithm to learn B and W 
 

 Other divergence forms can also be used 

62 



NMF: Minimizing L2 Divergence 

 Divergence(V, BW) is defined as 

 E = ||V – BW||F
2

 

 E =  SiSj (Vij – (BW)ij)
2 

 

 Iterative solution: Minimize E such that B and 

W are strictly non-negative 
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NMF: Minimizing L2 Divergence 

 Learning both B and W with non-negativity 

 Divergence(V, BW) is defined as 

 E = ||V – BW||F
2

 

𝑽 ≈ 𝑩𝑾 

 Iterative solution: 

 B = [V Pinv(W)]+ 

 W = [Pinv(B) V]+ 

 Subscript + indicates thresholding –ve values to 0 

64 



NMF: Minimizing Divergence 

 Define a Divergence between data V and approximation BW 

 Divergence(V, BW) is the total error in approximating all vectors in V as BW 

 Must estimate B and W so that this error is minimized 
 

 Divergence(V, BW) can be defined in different ways 

 L2:    Divergence =  SiSj (Vij – (BW)ij)
2 

 Minimizing the L2 divergence gives us an algorithm to learn B and W 

 

 KL:   Divergence(V,BW) =  SiSj Vij log(Vij / (BW)ij)+ SiSj Vij   SiSj (BW)ij 

 

 This is a generalized KL divergence that is minimum when V =  BW 

 Minimizing the KL divergence gives us another algorithm to learn B and W 

 

 For many kinds of signals, e.g. sound, NMF-based representations work 
best when we minimize the KL divergence 
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NMF: Minimizing KL Divergence 

 Divergence(V, BW)  defined as 

 E =  SiSj Vij log(Vij / (BW)ij)+ SiSj Vij   SiSj (BW)ij 

 

 Iterative update rules 

 Number of iterative update rules have been 

proposed 

 The most popular one is the multiplicative update 

rule.. 
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NMF Estimation: Learning bases  

 The algorithm to estimate B and W to minimize the 
KL divergence between V and BW: 

 

 Initialize B and W (randomly) 

 Iteratively update B and W using the following 
formulae 

 

 

 

 Iterations continue until divergence converges 

 In practice, continue for a fixed no. of iterations 
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Reiterating 

 NMF learns the optimal set of basis vectors Bk to approximate the data 
in terms of the bases 

 It also learns how to compose  the data in terms of these bases 

 Compositions can be inexact 

NKKDND WBV   k

k

kLL BwV  ,

The columns of B are the 
bases 
The columns of V are the  
data 
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 Each column of V is one spectral vector 

 Each column of B is one building 

block/basis 

 Each column of W has the scaling 

factors for the bases to compose the 

corresponding column of V 

 All terms are non-negative 

 Learn B (and W) by applying NMF to V 
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Learning building blocks of sound 

BWV 
From Bach’s Fugue in Gm 
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
 

bases 

Time  



Learning Building Blocks 
Speech Signal 

bases 

Basis-specific spectrograms 
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What about other data 

 Faces 
 Trained 49 multinomial components on 2500 faces 

 Each face unwrapped into a 361-dimensional vector 

 Discovers parts of faces 

71 



There is no “compactness”  constraint 

• If K < D, we usually learn compact representations 

• NMF becomes a dimensionality reducing representation 

• Representing D-dimensional data in terms of K weights, 
where K < D 

B1 

B2 

• No explicit “compactness” constraint on 
bases 

• The red lines would be perfect bases: 

• Enclose all training data without 
error 

• Algorithm can end up with these 
bases 

• If no. of bases K >= dimensionality 
D, can get uninformative bases 
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Representing Data using Known Bases 

 If we already have bases Bk and are given a vector 
that must be expressed in terms of the bases: 

 

 Estimate weights as: 

 Initialize weights 

 Iteratively update them using 
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What can we do knowing the building blocks 

 Signal Representation 

 Signal Separation 

 Signal Completion 

 Denoising 

 Signal recovery 

 Music Transcription 

 Etc. 
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Signal Separation 

 Can we separate mixed signals? 
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Undoing a Jigsaw Puzzle 

 Given two distinct sets of building blocks, can we 
find which parts of a composition were 
composed from which blocks 76 

Building 

blocks 

Composition 

From green 

blocks 

From red 

blocks 



Separating Sounds 

 From example of A, learn blocks A (NMF) 

77 

111 WBV 
given estimate 

estimate 



Separating Sounds 

 From example of A, learn blocks A (NMF) 

 From example of B, learn B (NMF) 
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222 WBV 
given estimate 

estimate 



Separating Sounds 

 

 

 From mixture, separate out (NMF) 

 Use known “bases” of both sources 

 Estimate the weights with which they combine in the 
mixed signal 79 
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Separating Sounds 

 

 

 Separated signals are estimated as the 
contributions of the source-specific bases to the 
mixed signal 
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Separating Sounds 

 

 

 It is sometimes sufficient to know the bases for 
only one source 

 The bases for the other can be estimated from the 
mixed signal itself 81 
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Separating Sounds 
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 “Raise my rent” by David Gilmour 

 Background music “bases” learnt 
from 5-seconds of music-only 
segments within the song 

 Lead guitar “bases” bases learnt 
from the rest of the song 

 Norah Jones singing “Sunrise” 

 Background music bases learnt 
from 5 seconds of music-only 
segments 



Predicting Missing Data 

 Use the building blocks to fill in “holes” 
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Filling in  

 Some frequency components are missing (left panel) 

 We know the bases 

 But not the mixture weights for any particular spectral frame 

 We must “fill in” the holes in the spectrogram 

 To obtain the one to the right 
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Learn building blocks 

 Learn the building blocks from other examples of 
similar sounds 

 E.g. music by same singer 

 E.g. from undamaged regions of same recording 
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Predict data 

 “Modify” bases to look like damaged spectra 
 Remove appropriate spectral components 

 Learn how to compose damaged data with modified 
bases 

 Reconstruct missing regions with complete bases 
86 
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Filling in : An example 

 Madonna… 

 Bases learned from other Madonna songs 
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A more fun example 

•Bases learned from this 

•Bandwidth expanded version 

•Reduced BW data 



A Natural Restriction 

 For K-dimensional data, can learn no more than 
K-1 bases meaningufully 

 At K bases, simply select the axes as bases 

 The bases will represent all data exactly 
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Its an unnatural restriction 

 For K-dimensional spectra, can learn no more than K-1 bases 

 Nature does not respect the dimensionality of your spectrogram 

 E.g. Music: There are tens of instruments 

 Each can produce dozens of unique notes 

 Amounting to a total of many thousands of notes 

 Many more than the dimensionality of the spectrum 
 

 E.g. images: a 1024 pixel image can show millions of 
recognizable pictures! 

 Many more than the number of pixels in the image 
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Fixing the restriction: Updated model 

 Can have a very large number of building blocks (bases) 
 E.g. notes 

 But any particular frame is composed of only a small 
subset of bases 
 E.g. any single frame only has a small set of notes 
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The Modified Model 

 Modification 1: 

 In any column of W, only a small number of entries have non-
zero value 

 I.e. the columns of W are sparse 

 These are sparse representations 

 Modification 2: 

 B may have more columns than rows 

 These are called overcomplete representations 
 

 Sparse representations need not be overcomplete, but 
the reverse will generally not provide useful 
decompositions 92 

BWV  WV B For one vector 



Imposing Sparsity 

 Minimize a modified objective function 

 Combines divergence and ell-0 norm of W 

 The number of non-zero elements in W 

 Minimize Q instead of E 

 Simultaneously minimizes both divergence and 
number of active bases at any time 
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Imposing Sparsity 

 Minimize the ell-0 norm is hard 

 Combinatorial optimization 

 Minimize ell-1 norm instead 

 The sum of all the entries in W 

 Relaxation 

 Is equivalent to minimize ell-0 

 We cover this equivalence later 

 Will also result in sparse solutions 
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Update Rules 

 Modified Iterative solutions 

 In gradient based solutions, gradient w.r.t any W term now 

includes  

 I.e. if  dQ/dW = dE/dW +  

 

 For KL Divergence, results in following modified 

update rules 

 

 

 

 Increasing  makes the weights increasingly sparse 
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Update Rules 

 Modified Iterative solutions 

 In gradient based solutions, gradient w.r.t any W term 
now includes  

 I.e. if  dQ/dW = dE/dW +  

 

 Both B and W can be made sparse 
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What about Overcompleteness? 

 Use the same solutions 

 Simply make B wide! 

 W must be made sparse 
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Sparsity: What do we learn 

 Without sparsity: The model has an implicit limit: can learn 

no more than D-1 useful bases 

 If K >= D, we can get uninformative bases 

 

 Sparsity: The bases are “pulled towards” the data 

 Representing the distribution of the data much more effectively 
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Sparsity: What do we learn 

 Top and middle panel: Compact (non-sparse) estimator 
 As the number of bases increases, bases migrate towards corners of the 

orthant 

 Bottom panel: Sparse estimator 
 Cone formed by bases shrinks to fit the data 

Each dot represents a 
location where a vector 
“pierces” the simplex 
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The Vowels and Music Examples 

 Left panel, Compact learning: most bases have significant energy in all frames 
 Right panel, Sparse learning: Fewer bases active within any frame 

 Decomposition into basic sounds is cleaner 
11755/18797 



Sparse Overcomplete Bases: Separation 
 3000 bases for each of the speakers 

 The speaker-to-speaker ratio typically doubles (in dB) w.r.t compact bases 

Panels 2 and 3: Regular learning 

Panels 4 and 5: Sparse learning 

Regular bases 

Sparse bases 
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Sparseness: what do we learn 

 As solutions get more sparse, bases become more 
informative 
 In the limit, each basis is a complete face by itself. 

 Mixture weights simply select face 

Sparse bases 

Dense bases 

“Dense” weights 

Sparse weights 
102 
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Filling in missing information 

 19x19 pixel images (361 pixels) 

 1000 bases trained from 2000 faces 

 SNR of reconstruction from overcomplete basis set more than 10dB 
better than reconstruction from corresponding “compact” (regular) basis 
set 



Extending the model 

 In reality our building blocks are not spectra 

 They are spectral patterns! 

 Which change with time 
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Convolutive NMF 

 The building blocks of sound are spectral 

patches! 
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Convolutive NMF 

 The building blocks of sound are spectral 
patches! 

 At each time, they combine to compose a patch 
starting from that time 

 Overlapping patches add 107 
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Convolutive NMF 

 The building blocks of sound are spectral 
patches! 

 At each time, they combine to compose a patch 
starting from that time 

 Overlapping patches add 108 
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Convolutive NMF 

 The building blocks of sound are spectral 
patches! 

 At each time, they combine to compose a patch 
starting from that time 

 Overlapping patches add 109 
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Convolutive NMF 

 The building blocks of sound are spectral 
patches! 

 At each time, they combine to compose a patch 
starting from that time 

 Overlapping patches add 110 
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Convolutive NMF 

 The building blocks of sound are spectral 
patches! 

 At each time, they combine to compose a patch 
starting from that time 

 Overlapping patches add 111 



In Math 

 Each spectral frame has contributions from 
several previous shifts 112 

 
i

ii

i

ii

i

ii

i

ii tBwtBwtBwtBwtS


 )()(....)2()2()1()1()()0()(

 
i

ii twtBtS )()()(



An Alternate Repesentation 

 B(t) is a matrix composed of the t-th columns of all bases 

 The i-th column represents the i-th basis 

 W is a matrix whose i-th row is sequence of weights applied to the 
i-th basis 

 The superscript t represents a right shift by t 113 
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Convolutive NMF 

 Simple learning rules for B and W 

 Identical rules to estimate W given B 

 Simply don’t update B 

 Sparsity can be imposed on W as before if desired 
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The Convolutive Model 

 An Example: Two distinct sounds occurring with 
different repetition rates within a signal 

 Each sound has a time-varying spectral structure 
INPUT SPECTROGRAM 

Discovered “patch”  

bases 
Contribution of individual bases to the recording 115 



Example applications: Dereverberation 

 From “Adrak ke Panje” by Babban Khan 

 Treat the reverberated spectrogram as a composition of 

many shifted copies of a “clean” spectrogram 

 “Shift-invariant” analysis 

 NMF to estimate clean spectrogram 
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Pitch Tracking 

 Left: A segment of a song 

 Right: Smoke on the water 

 “Impulse” distribution captures the “melody”! 

117 



 Simultaneous pitch tracking on multiple instruments 

 Can be used to find the velocity of cars on the 

highway!! 

 “Pitch  track” of sound tracks Doppler shift (and velocity) 

Pitch Tracking 

118 
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Example: 2-D shift invariance 

 Sparse decomposition employed in this example 
 Otherwise locations of faces (bottom right panel) are not precisely determined 

11755/18797 
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Example: 2-D shift invarince 

 The original figure has multiple handwritten 

renderings of three characters 

 In different colours 

 The algorithm learns the three characters and 

identifies their locations in the figure 

Input data 
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Example: Transform Invariance 

 Top left: Original figure 

 Bottom left – the two bases discovered 

 Bottom right –  
 Left panel, positions of “a” 

 Right panel, positions of “l” 

 Top right: estimated distribution underlying original figure 
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Example: Higher dimensional data 

 Video example 

 



Lessons learned 

 Linear decomposition when constrained with 
semantic constraints e.g. non-negativity can 
result in semantically meaningful bases 

 

 NMF:  Useful compositional model of data 

 

 Really effective when the data obey 
compositional rules.. 
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