

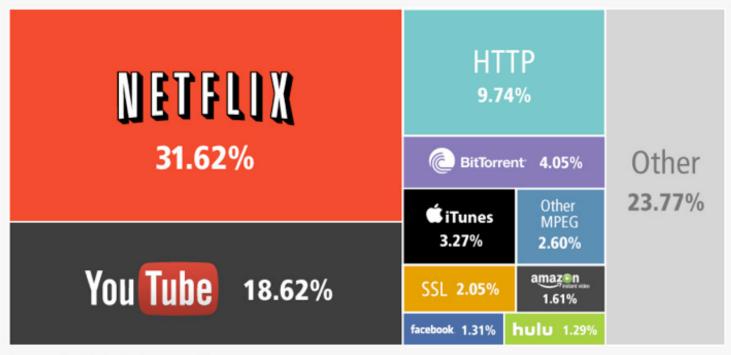
Deriving Knowledge from Audio and Multimedia Data

Dr. Gerald Friedland Director Audio and Multimedia Lab International Computer Science Institute Berkeley, CA <u>fractor@icsi.berkeley.edu</u>

Multimedia in the Internet is Growing

Netflix and YouTube Are America's Biggest Traffic Hogs

Share of peak period downstream traffic in North America, by application*



* September 2013. Fixed access only.

Multimedia People at ICSI

INTERNATIONAL COMPUTER SCIENCE INSTITUTE Research Staff

- Jaeyoung Choi
- Adam Janin

Research Assistants

- Julia Bernd
- Bryan Morgan

Graduate Students

- Khalid Ashraf
- (T.J. Tsai)

Current Visitors

Liping Jing

Affiliated Researchers

- Dan Garcia, Kurt Keutzer (UCB)
- Howard Lei (Cal State Hayward)
- Karl Ni (Lawrence Livermore Lab)

Undergraduates

 Itzel Martinez, Jessica Larson, Marissa Pita, Florin Langer, Justin Kim, Regina Ongawarsito, Megan Carey

Three main themes:

- Audio Analytics
- Video Retrieval
- Privacy (Education)

Ten Principles for Online Privacy

You're Leaving Footprints

Sharing Releases Contro

There's No Anonymity

Search Is Improving

Information Is Valuable

Online Is Real

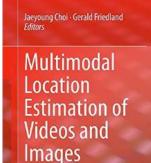
Someone Could Listen

Identity Isn't Guaranteed

You Can't Escar

http://teachingprivacy.org

Multimodal Location Estimation



http://mmle.icsi.berkeley.edu

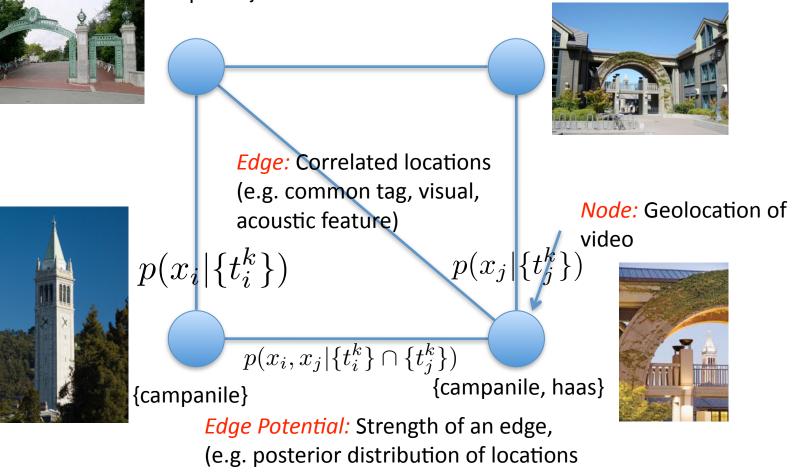
Intuition for the Approach

TERNATIONAL

{berkeley, sathergate, campanile}

given common tags)

{berkeley, haas}

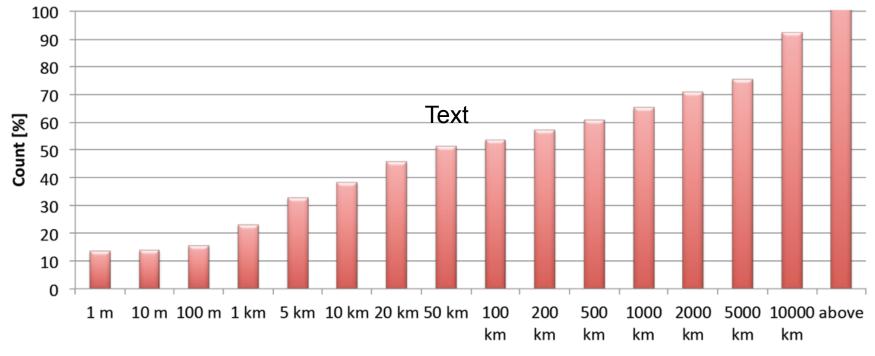


5

MediaEval Benchmarking Initiative for Multimedia Evaluation

The "multi" in multimedia: speech, audio, visual content, tags, users, context

ICSI/UCB Estimation System at Placing Task 2012 (Cumulative)



Distance between estimation and ground truth

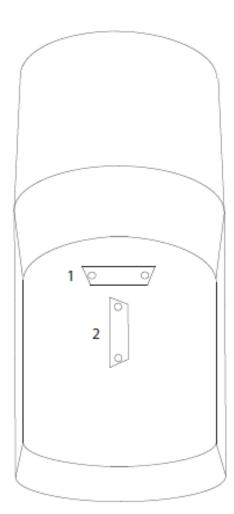
J. Choi, G. Friedland, V. Ekambaram, K. Ramchandran: "Multimodal Location Estimation of Consumer Media: Dealing with Sparse Training Data," in Proceedings of IEEE ICME 2012, Melbourne, Australia, July 2012.

An Experiment

Listen!

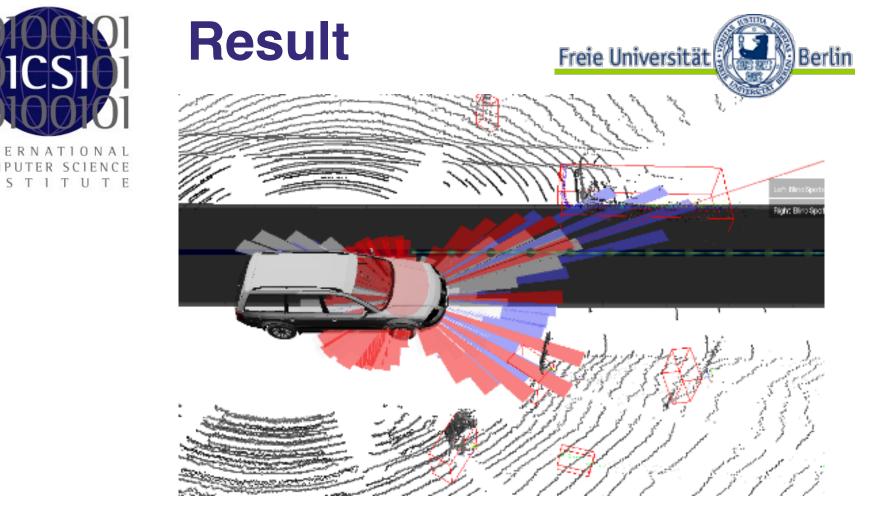
- Which city was this recorded in? Pick one of: Amsterdam, Bangkok, Barcelona, Beijing, Berlin, Cairo, CapeTown, Chicago, Dallas, Denver, Duesseldorf, Fukuoka, Houston, London, Los Angeles, Lower Hutt, Melbourne, Moscow, New Delhi, New York, Orlando, Paris, Phoenix, Prague, Puerto Rico, Rio de Janeiro, Rome, San Francisco, Seattle, Seoul, Siem Reap, Sydney, Taipei, Tel Aviv, Tokyo, Washington DC, Zuerich
- Solution: Tokyo, highest confidence score!

Autonomous Vehicles



Freie Universität

Berlin

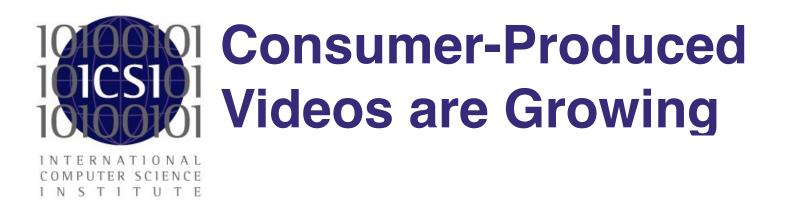


- Blue histogram shows combined likelihoods, example – sound source vehicle in red box
- Most likely direction shown as a red line

Sound Recognition

- Car honk
- Glass break
- Fire alarm
- Person yelling
- etc...

Multimedia Retrieval



- YouTube claims 65k 100k video uploads per day or 48 72 hours every minute
- Youku (Chinese YouTube) claims 80k video uploads per day
- Facebook claims 415k video uploads per day!

Consumer-Produced Multimedia allows empirical studies at never-before seen scale.

Google

Web Videos More * Search tools Images Maps News

3 results (0.13 seconds)

Ad related to "giving directions to a location" (1)

Maps & Driving Directions driving-directions.easymaps.co/ * Enter Address Or Location. Free Maps & Directions w/Toolbar!

Key considerations for all maps from the Course Creating a Map with Illu...

www.lynda.com > ... > Creating a Map with Illustrator * Are you giving directions to a location, or general information about the area. How much of the area should ...

Community Helpers - SlideServe

www.slideserve.com/kagami/community-helpers * Aug 3, 2012 This will help with giving directions to a location. Materials: Our maps A step by step direction route on chart ...

Ads 🛈

Driving Directions & Maps www.maps-directions.org/Directions * Enter Starting Point & Destination. Get Directions. Quick & Easy.

YP.com Maps and Directions

www.yellowpages.com/ * Find & Discover Local Businesses on YP.COM

Directions To And From

www.getdrivingdirections.co/Directions * Enter Address or Driving Location. Driving Directions & Maps w/Toolbar

Accept Online Donations www.securegive.com/OnlineGiving *

PPT - A Study on Wearable Computing PowerPoint presentation | free to downloadmb@owerShow.cotware into your

www.powershow.com/.../A Study on Wearable Computing powerpoi... - website to grow your giving today! Technology which allows for the human and ... The concept of wearable computers attempts to bridge the 'interaction gap' ... Sprout. Spot. 17 /18. Conclusion . Location Maps

> www.myhomemsn.com/ -Get Access To Maps & Directions. Make MSN Your Homepage Today.

Map Quest Directions

shopping.yahoo.com/Books * Great Deals on Map Quest Directions Shop Now and Save. Yahoo Shopping

Stay up to date on these results:

Create an email alert for "giving directions to a location"

See your ad here »

User-provided tags are:

- sparse
- any language
- imply random context

Solution: Use the actual audio and video content for search

The Multimedia Commons Project

A research community around the YFCC100M dataset and the YLI corpus

- 100M images, 1M videos
- Hosted on Amazon
- CFT with SEJITs-based content analysis tools
- Annotations: YLI corpus

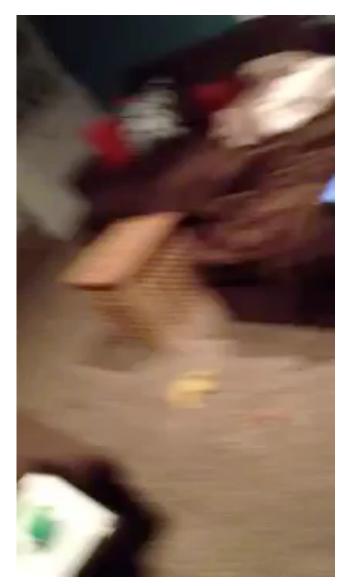
http://multimediacommons.org/

B. Thomee, D. A. Shamma, B. Elizalde, G. Friedland, K. Ni, D. Poland, D. Borth, L. Li: *The New Data in Multimedia Research*, Communications of the ACM (to appear).

- Where we have experience
- Lower dimensionality
- Underexplored Area
- Useful data source for other audio tasks

- No constraints in angle, number of cameras, cutting
- 70% heavy noise
- 50% speech, any language
- 40% dubbed
- 3% professional content

Example Video





Challenges

Audio signal is composed of the

- actual signal,
- the microphone,
- the environment,
- noise,
- other audio
- compression,
- etc...

ТІТИТ

E

S

Analyzing the Audio Track

Cameron learns to catch (http://www.youtube.com/watch?v=o6QXcP3Xvus)



Ball sound Male voice (near) Child's voice (distant) Child's whoop (distant) Room tone

- Get into signal processing
- Ignore the issue and just have the machine figure it out
- Do both.

Ignore the Signal Properties, build a Classifier

Event	Category	Train	DevTest
E001	Board Tricks	160	111
E002	Feeding Animal	160	111
E003	Landing a Fish	122	86
E004	Wedding	128	88
E005	Woodworking	142	100
E006	Birthday Party	173	0
E007	Changing Tire	110	0
E008	Flash Mob	173	0
E009	Vehicle Unstuck	131	0
E010	Grooming animal	136	0
E011	Make a Sandwich	124	0
E012	Parade	134	0
E013	Parkour	108	0
E014	Repairing Appliance	123	0
E015	Sewing	116	0
Other	Random other	N/A	3755

Build a Classifier...

hidden laver 1 hidden laver 2 hidden laver 3 input layer a12 a23 output layer ХЗ X1 X2 a21 b22 b32 b12 b31 b33 b34 b11 b21 b14 b24 b13 y1

Benjamin Elizalde, Howard Lei, Gerald Friedland, "An i-vector Representation of Acoustic Environments for Audio-based Video Event Detection on User Generated Content" IEEE International Symposium on Multimedia ISM2013. (Anaheim, CA, USA)

Mirco Ravanelli, Benjamin Elizalde, Karl Ni, Gerald Friedland, "Audio Concept Classification with Hierarchical Deep Neur Networks EUSIPCO 2014. (Lisbon, Portugal)

Benjamin Elizalde, Mirco Ravanelli, Karl Ni, Damian Borth, Gerald Friedland. "Audio-Concept Features and Hidden Marko Models for Multimedia Event Detection" Interspeech Workshop on Speech, Language and Audio in Multimedia SLAM 201 (Penang, Malaysia)

Classifier problems:

- Too much noise
- If it works: Why does it work?
- Idea doesn't scale to text search

Other Work: TRECVID MED 2010

STITUTE N

Making a cake

Batting a run in

Assembling a shelter

TrecVid MED 2010: Classifier Ensembles

Human Action Concepts	Scene Concepts	Audio Concepts	
 Person walking 	 Indoor kitchen 	 Outdoor rural 	
 Person running 	 Outdoor with grass/trees visible 	 Outdoor urban 	
 Person squatting 	 Baseball field 	 Indoor quiet 	
 Person standing up 	 Crowd (a group of 3+ people) 	 Indoor noisy 	
 Person making/assembling stuffs 	 Cakes (close-up view) 	 Original audio 	
with hands (hands visible)	-	 Dubbed audio 	
 Person batting baseball 		 Speech comprehensible 	
		 Music 	
		 Cheering 	
		 Clapping 	

Yu-Gang Jiang, Xiaohong Zeng, Guangnan Ye, Subhabrata Bhattacharya, Dan Ellis, Mubarak Shah, Shih-Fu Chang: *Columbia-UCF TRECVID2010 Multimedia Event Detection: Combining Multiple Modalities, Contextual Concepts, and Temporal Matching*, Proceedings of TrecVid 2010, Gaithersburg, MD, December 2010.

General Observations

- Classifier Ensembles problematic:
 - Which classifiers to build?
 - Training data?
 - Annotation?
 - Idea doesn't scale... or does it?

Alexander Hauptmann, Rong Yan, and Wei-Hao Lin: "**How many highlevel concepts will fill the semantic gap in news video retrieval?**", in Proceedings of the 6th ACM international conference on Image and Video retrieval, CIVR '07, pages 627–634, New York, NY, USA, 2007. ACM.

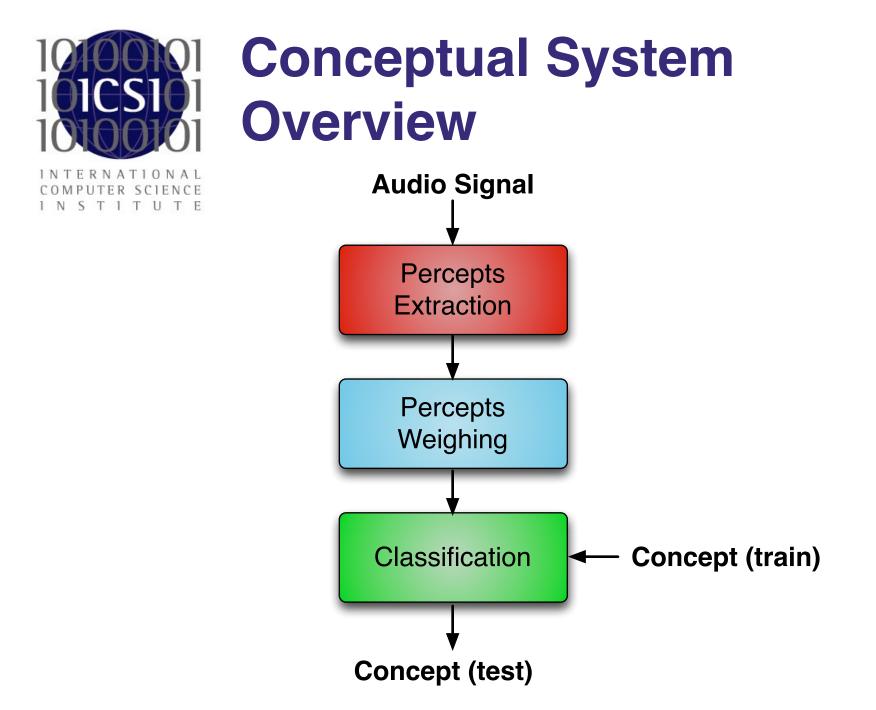
Definition: *an impression of an object obtained by use of the senses*. (Merriam Webster's)

• Well re-discovered in robotics btw...

• Extract "audible units" aka percepts.

 Determine which percepts are common across a set of videos we are looking for but uncommon to others.

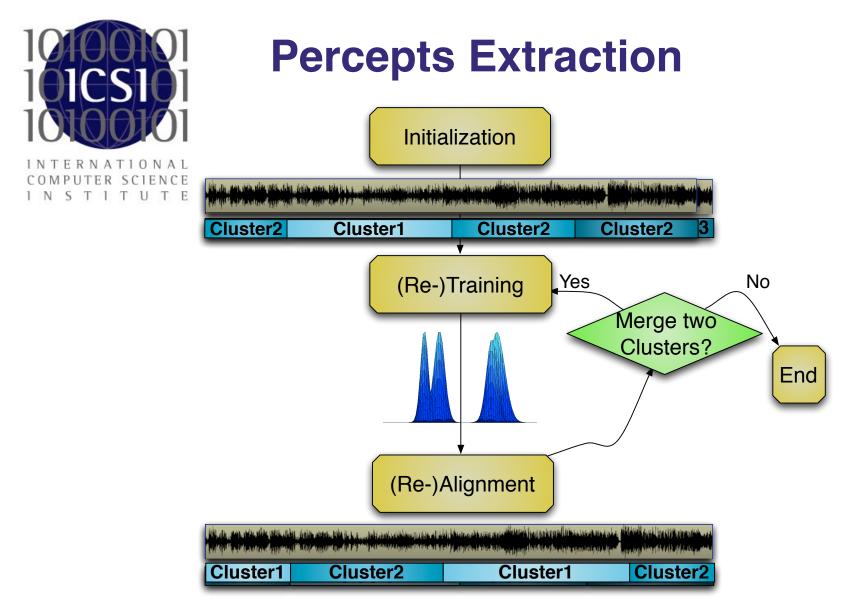
• Similar to text document search.



- "Edge detection" like in Image Processing doesn't work
- Building a classifier for similar audio requires too many parameters
- What's a similarity metric?

- High number of initial segments
- Features: MFCC19+D+DD+MSG
- Minimum segment length: 30ms
- Train Model(A,B) from Segments A,B belonging to Model(A) and Model(B) and compare using BIC:

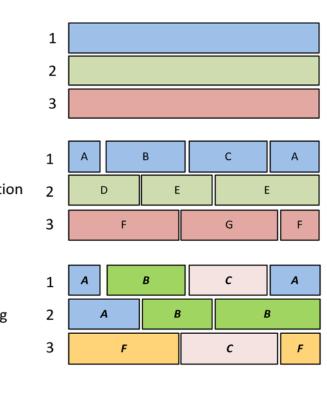
$$\log p(X|\Theta) - \frac{1}{2}\lambda K \log N$$



- Start with too many clusters (initialized randomly)
- Purify clusters by comparing and merging similar clusters
- •Resegment and repeat until no more merging needed

Percepts Dictionary

 Percepts extraction works on Audio Clips a per-video basis •Use k-means to unify percepts across videos in the ICSI speaker diarization same set and build "prototype percepts" Represent video sets by **Kmeans Clustering** supervectors of prototype percepts = "words"

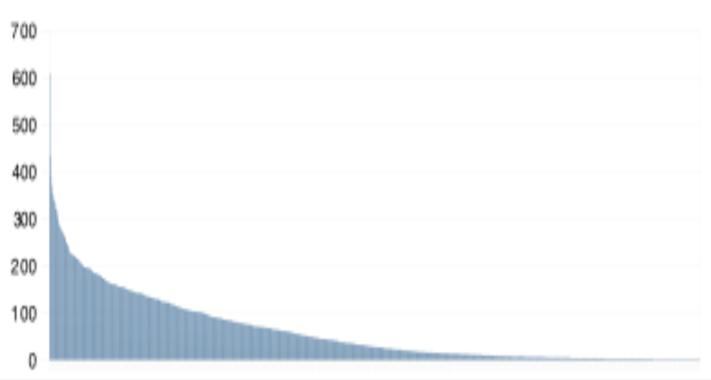


- How many unique "words" define a particular concept?
- What's the occurrence frequency of the ,,words" per set of video?
- What's the cross-class ambiguity of the ,,words"?
- How indicative are the highest frequent ,,words" of a set of videos?

Properties of "Words"

- Sometimes same "word" describes more percepts (homonym)
- Sometimes same percepts are described by the different "words" (synonym)
- Sometimes multiply "words" needed to describe one percepts
 - => Problem?

Distribution of "Words"



Histogram of top-300 "words".

Long-Tailed Distribution (~ Zipf)



TF/IDF on Supervectors

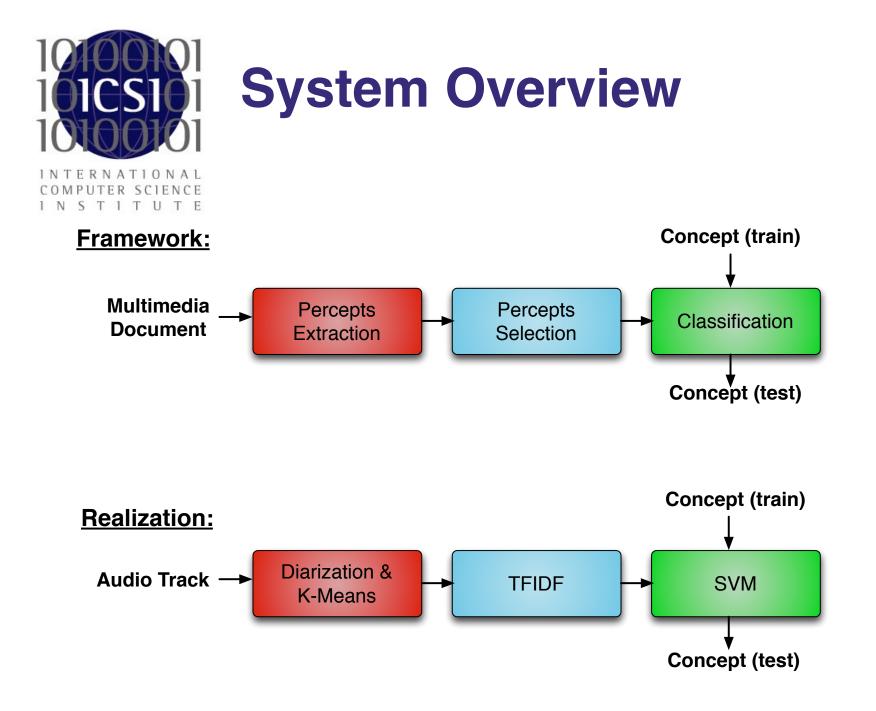
- Zipf distribution already observed by other researchers as well (Bhiksha Raj, Alex Hauptman, Sad Ali, etc)
- Zipf distribution allows to treat supervector representation of percepts as "words" in a document.
- Use TF/IDF for assigning weights

Recap: TF/IDF

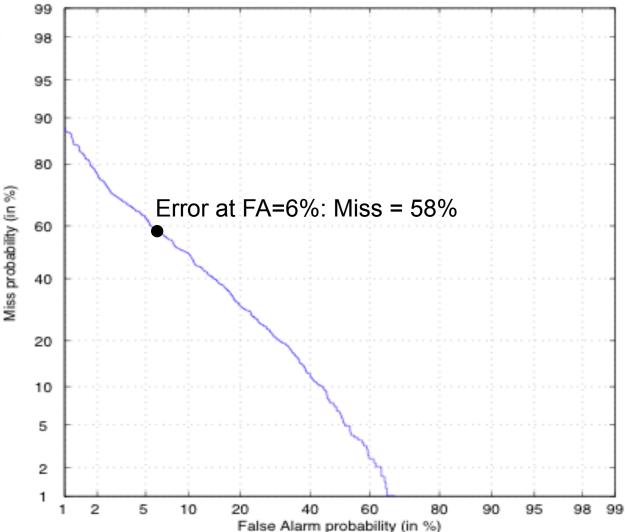
$$TF(c_i, D_k) = \frac{\sum_j n_j P(c_i = c_j \mid c_j \in D_k)}{\sum_j} \qquad IDF(c_i) = \log \frac{\mid D \mid}{\sum_k P(c_i \in D_k)}$$

- •TF(c_i , D_k) is the frequency of "word" c_i in concept D_k .
- $\bullet P(c_i = c_j | c_j \in D_k) \,$ is the probability that "word" $c_i \,$ equals c_j in concept D_k
- •IDI is the total number of concepts
- $P(c_i \in D_k)$ is the probability of "word" c_i in concept D_k

- Have: New input video and set of representative videos
- Need: Does this belong to the same set
- Classifier takes 300 tuples of ("words", TF-IDF values) as input
- Use SVM with Intersection Kernel (IKSVM) / Deep Learning



Audio-Only Detection on MED-DEV11



• Let's assume the distributions of Percepts per Concept follows a ranking function: $f(k, s, N) = \frac{1/k^s}{\sum_{n=1}^{N} (1/n^s)}$

with k rank (sorted by highest to lowest frequency), s=1, N number of Percepts.

• It follows the CDF is: $CDF(k, s, N) = \frac{H_{k,s}}{HN,s}$

with k rank (sorted by highest to lowest

frequency), s=1, N number of Percepts and $H_{n,m} = \sum_{k=1}^{n} \frac{1}{k^m}$

 Distribution allows to distinguish keypercepts from noise: A lot less data is better for training!

Error	Baseline	Top 20	Low 20
False Alarm	6%	6%	6%
Miss	72%	66%	79%
EER	31%	31%	35%

• Distribution allows prediction of "completeness" of training data

Top N	Actual Hits	Predicted Hits	Error	Ambiguity
1	17%	16%	1%	0%
3	35%	30%	5%	0 %
5	46%	36%	10%	20%
10	56%	46%	10%	24%
20	84%	57%	27%	27%
40	99%	68%	31%	31%

T 1

S

тит

Visualization of Zipfian Percepts

 Top-1 percepts very representative of concept.

STITUTE

N

Demo/Development Interface

https://www.youtube.com/watch?v=OxfLGikJSOQ

- Exploit multimodality early
- Reduce ambiguities in percepts extraction
- What's the optimal percept? How can we tune?
- Exploit temporal dimension better: ("sentences", "paragraphs"?)
- Is there are universal set of percepts?

- Can Big Data beat signal processing?
- Explore audio analysis methods for computing
- Create multimedia content analysis algorithms that are universal, i.e. work with any data

Thank You! Questions?