
Homework 1
Linear Algebra

CMU 11-755/18-797: Machine Learning for Signal Processing (Fall 2019)

OUT: September 5th, 2018
DUE: September 19th, 11:59 PM

START HERE: Instructions

• Collaboration policy: Collaboration on solving the homework is allowed, after you have thought
about the problems on your own. It is also OK to get clarification (but not solutions) from books
or online resources, again after you have thought about the problems on your own. There are two
requirements: first, cite your collaborators fully and completely (e.g., “Jane explained to me what is
asked in Question 3.4”). Second, write your solution independently: close the book and all of your
notes, and send collaborators out of the room, so that the solution comes from you only.

• Submitting your work: Assignments should be submitted as PDFs using Canvas unless explicitly
stated otherwise. Please submit all results as report {YourAndrewID}.pdf in you submission. Each
derivation/proof should be completed on a separate page. Submissions can be handwritten,
but should be labeled and clearly legible. Else, submissions can be written in LaTeX. Upon submis-
sion, label each question using the template provided by Canvas. Please refer to Piazza for detailed
instruction for joining Canvas and submitting your homework.

• Programming: All programming portions of the assignments should be submitted to Canvas as well.
Please zip or tar all the code and output files together, and submit the compressed file together with
the pdf report. We will not be using this for autograding, meaning you may use any language which
you like to submit.

1

1 Linear Algebra

1.1 Rotational Matrices

1. A rotation in 3-D space (whose coordinates we will call X, Y, Z) is characterized by three angles. We
will characterize them as a rotation around the x-axis, a rotation around the y-axis, and a rotation
around the z-axis.
Derive the rotation matrix R1 that transforms a vector [x, y, z]T to a new vector [x̂, ŷ, ẑ]T by rotating
it counterclockwise by angle θ around the x-axis, then an angle δ around the y-axis, and finally an
angle φ around the z-axis.
Derive the rotation matrix R2 that transforms a vector [x, y, z]T to a new vector [x̂, ŷ, ẑ]T by rotating
it counterclockwise by an angle δ around the y-axis, then an angle θ around the x-axis, and finally an
angle φ around the z-axis.

2. Confirm that R1R
T
1 = R2R

T
2 = I

1.2 Lengths of vectors

Suppose we have three matrices, A, B and C. A is a square 5 × 5 matrix, B is a 4 × 5 matrix which
can transform 5-dimensional vectors into 4-dimensional ones, C is a 6 × 5 matrix which can transform
5-dimensional vectors into 6-dimensional ones.

A =


4 −8 1 −6 −7
−6 −10 −4 2 8
1 −2 −2 −7 5
1 6 −8 −3 1
6 5 4 −7 −3

 B =


9 −5 2 10 4
−7 −1 −3 −10 10
−4 3 −5 −5 4
−6 2 −1 −5 −2

 C =


−6 −4 −5 −9 −4
−3 −7 −5 −8 −10
−8 −8 5 7 −9
−2 −1 4 −4 −6
7 −10 −6 9 −7
−2 8 −6 6 6


1. A 5× 1 vector v of length 1 (‖v‖ = 1) is transformed by A as u1 = Av, by B as u2 = Bv and by C

as u3 = Cv. What is the longest length that u1, u2, and u3 can be?

2. What is the shortest possible length of u1, u2, and u3?

1.3 Inverse through Singular Value Decomposition (SVD)

Consider the matrix A as follows:

A =

 1 5 7
2 −1 3
0 1 −5


1. Compute the SVD of the matrix A, i.e., find the values σ1, σ2 and σ3 (with σ1 ≥ σ2 ≥ σ3) and the

vectors u1, u2, u3, v1, v2 and v3 such that ‖ui‖ = ‖vi‖ = 1 for all i, and

A =

3∑
i=1

σiuiv
>
i

2. Compute the matrix B defined by the following equation,

B =

3∑
i=1

1

σi
viu

>
i

3. Confirm and demonstrate that AB = I.

2

2 Music Transcription

2.1 Projection

The song “Polyushka Poly” is played on the harmonica, the file name of the audio recording is polyushka.wav,
which can be found in the folder hw1materials. It has been downloaded from YouTube with permission
from the artist.

A set of notes from a harmonica can be found in folder hw1materials/note15. You are required to tran-
scribe the music. For transcription you must determine how each of the notes is played to compose the music.

You need to compute the spectrogram of the music file using your language/toolbox of choice, such as
python (Librosa) or Matlab. First, read and load the audio file at 16000 Hz sample rate.

If you are using Python, you can use Librosa to load the wav file as follows (we also recommend using the
numpy package for matrix operations below if you use python):

import librosa
audio, sr = librosa.load(filename, sr = 16000)

Next, we can compute the complex Short-Time Fourier Transform (STFT) of the signal s and its magnitude
spectrogram. Use 2048 sample windows, which correspond to 64 ms analysis windows; overlap/hop length
of 256 samples to 64 frames by second of signal. Different toolboxes should provide similar spectrograms. If
you are using the provided Matlab script, you can use the following command (eps = 2.2204e-16):

spectrogram = librosa.stft(audio, n fft=2048, hop length=256, center=False, win length=2048)
M = abs(spectrogram)
phase = spectrogram/(M + 2.2204e-16)

In this case, M represents the music file and should be a matrix of 1025×8869, where the rows correspond to
the frequencies and the columns to time. A visualization (Librosa - specshow) of this matrix (spectrogram)
should look like the following figure.

To represent notes, you also need to compute the spectrogram of each note file. However, unlike the music
file, we need to represent the matrix just as a one column vector. Hence, we can choose only one vector, or
compute the mean of the matrix across time, etc. In this example, we select the middle column:

n is the spectrogram of the note
import math
middle = n[:, int(math.ceil(n.shape[1]/2))]

To focus on the most relevant frequencies, we can clean up and normalize the note as follows:

middle[middle < (max(middle)/100)] = 0

3

Finally, you need to normalize this vector as follows,

middle = middle/np.linalg.norm(middle) # import numpy as np

1. Compute the joint contribution of all notes to the entire music.
Mathematically, if N = [N1, N2, ...] is the note matrix where the individual columns are the notes, find
the matrix W such that NW ≈M, or that produce a small error ||M −NW||2F . The ith row of W
is the transcription of the ith note. Submit the matrix W as problem1.csv together with your code.

2. Recompose the music by “playing” each note according to the transcription you found in last question.
Set all negative elements in W to zero and compute M̂ = NW . Report the value of ||M − M̂||2F =∑

i,j(Mi,j − M̂i,j)
2 and submit the recomposed music named as resythensized proj.wav file.

To recover the signal from the reconstructed spectrogram M̂ we need to use the phase matrix we
computed earlier from the original signal. Combine both and compute the Inverse-STFT to obtain a
vector and then write them into a wav file. To compute the STFT and then write the wav file you can
use the following python command:

signal hat = librosa.istft(M hat*phase, hop length=256, center=False, win length=2048)
librosa.output.write wav("resynthensized proj.wav", signal hat, sr=16000)

2.2 Optimization and non-negative decomposition

A projection of the music magnitude spectrogram (which are non-negative) onto a set of notes will result in
negative weights for some notes. To explain this, let M be the (magnitude) spectrogram of the music, which
is a matrix of size D × T , where D is the size of the Fourier Transform and T is the number of spectral
vectors in the signal. Let N be a matrix of notes of size D ×K, where K is the number of notes and each
column D is the magnitude spectral vector of one note.

Conventional projection of M onto the notes N computes the following approximation:

M̂ = NW

where ||M− M̂||2F =
∑

i,j(Mi,j − M̂i,j)
2 is minimized. Here, ||M− M̂||F is known as the Frobenius norm

of M − M̂, where Mi,j is the (i, j)th entry of M and M̂i,j is similarly the (i, j)th entry of M̂. We will use
later the definition of the Frobenius norm.

M̂ is the projection of M onto N. Moreover, W is given by W = pinv(N)M and W can be viewed as
the transcription of M in terms of the notes in N. So, the jth column of M, which we represent as Mj is
the spectrum in the jth frame of the music, which are approximated by the notes in N as follows:

Mj =
∑
i

NiWi,j

where Ni, the ith column of N represents the ith note and Wi,j is the (contribution) weight assigned to the
ith note in composing the jth frame of the music.

The problem is that in this computation, we will frequently find Wi,j values to be negative. In other
words, this model requires you to subtract some notes, since Wi,jNi will have negative entries. Clearly,
this is an unreasonable operation intuitively; when we actually play music, we never unplay a note (which is
what playing a negative note would be).

Also, M̂ may have negative entries due to the values in W. In other words, our projection of M onto
the notes in N can result in negative spectral magnitudes in some frequencies at certain times. Again, this

4

is meaningless physically – spectral magnitudes cannot, by definition, be negative.

Hence, we will compute the approximation M̂ = NW with the constraint that the entities of W must
always be greater than or equal to 0, i.e. they must be non-negative. To do so we will use a simple gradient
descent algorithm which minimizes the error ||M−NW||2F , subject to the constraint that all entries in W
are non-negative.

1. Computing a Derivative

We define the following error function:

E =
1

DT
||M−NW||2F ,

where D is the number of dimensions (rows) in M, and T is the number of vectors (frames) in M.

Derive and write down the formula for dE
dW .

2. A Non-Negative Projection

We define the following gradient descent rule to estimate W. It is an iterative estimate. Let W0

be the initial estimate of W and Wn the estimate after n iterations.
We use the following project gradient update rule

Ŵn+1 = Wn − η dE
dW
|Wn

Wn+1 = max(Ŵn+1, 0)

where dE
dW |Wn is the derivative of E with respect to W computed at W = Wn, and max(Ŵn+1, 0) is

a component-wise flooring operation that sets all negative entries in Ŵn+1 to 0.

In effect, our feasible set for values of W are W � 0, where the symbol � indicates that every
element of W must be greater than or equal to 0. The algorithm performs a conventional gradient
descent update, and projects any solutions that fall outside the feasible set back onto the feasible set,
through the max operation.

Implement the above algorithm. Initialize W to a matrix of all 0s. Run the algorithm for η values
(100, 1000, 10000, 100000). Run 1000 iterations in each case. Plot E as a function of iteration number
n for all ηs in a figure. Show this plot with some analysis in the separate page, and submit the best
final matrix W (which resulted in the lowest error) named as problem2W.csv with the code.

3. Recreating the music

For the best η (which resulted in the lowest error) recreate the music using this transcription as
M̂ = NW. Resynthesize the music from M̂ . What does it sound like? Submit the resynthesized music
named as resynthesized nnproj.wav with the code.

5

3 Style transfer using a Linear Transformation

Here we have two audios of a simple rhythm of song “silent night” played by piano (audio A) and classical
guitar (audio B), and one audio of a simple rhythm of song “little star” played by piano (audio C).

All audios are given in hw1materials/Audio.

From these files, you can obtain the spectrogram MA, MB and MC . Your objective is to find the spectrogram
of the classical guitar version of the song “little star” (MD).

You may find all given audios have two channels. To compute the spectrogram from the given files just work
with the first channel and use the same instructions of the previous problem, but considering 1024 as sample
window, instead of 2048.

In this problem, we assume that style can be transferred using a linear transformation. Formally, we need
to find the matrix T such that

TMA ≈MB

1. Write a code to determine matrix T and report the value of ‖TMA −MB‖2F .
Submit the matrix T as problem3t.csv and your code

2. Our model considers that T can transfer style from piano music to classical guitar music. Applying T
on audio C should give us a estimation of “little star” played by guitar, getting an estimation of MD.
Using this matrix and phase matrix of C, synthesize an audio signal.
Submit your code, your estimation of the matrix MD as problem3md.csv and the sythensized audio
named as problem3.wav

6

	Linear Algebra
	Rotational Matrices
	Lengths of vectors
	Inverse through Singular Value Decomposition (SVD)

	Music Transcription
	Projection
	Optimization and non-negative decomposition

	Style transfer using a Linear Transformation

