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Recap: MAP Estimators

* MAP (Maximum A Posteriori): Find most

probable value of y given x
y = argmax y P(Y|x)

520-412/520-612
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MAP estimation

* x and y are jointly Gaussian

| Ay
z L} E[Z]—ﬂZ—LJ

c. C
Var(z)=C_=| = " C, =E[(x—pu)y- ,Uy)T]
ny ny

P(z)=N(u.,C..) = 0.5(z—p,)" C2(z—11.))

Lol
Jzic, ) ¢

e 7 is Gaussian
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~ MAP estimation: Gaussian PDF

520-412/520-612 4
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“MAP estimation: The Gaussian at a

particular value of X

520-412/520-612 5



R JOH\s HOI K}Ns MLSP

" "Conditional Probability of y|x

P(y|x)=N(u, +C,C;(x—p,),C,, ~C clc>

yx o xx

Ey|x[y]:1uy|x :luy +nyCxx (x lux)

Var(y|x)=C,, -C ClC

yx o xx

* The conditional probability of y given x is also Gaussian

— The slice in the figure is Gaussian
e The mean of this Gaussian is a function of x

 The variance of y reduces if x is known
— Uncertainty is reduced

520-412/520-612
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“MHAP estimation: The Gaussian at a
particular value of X

DB ™8

O™

:’?D.*IEE.--""". '
Most likely <
value
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VWS also a minimum-mean-squared "

error estimate

* Minimize error:
Err =

y=9) (y-9)Ix]

Err=Ely'y+y'y-2y'y|x]=E[y'y|x]+¥ -2y E[y|x]

* Differentiating and equating to O:
d.Err=2y"dy-2E[y|x] dy =0

The MMSE estimate is the

[y | X] mean of the distribution

520-412/520-612 8
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“For the Gaussian: MAP = MIMSE

of |

DS ™

02 e

?D.15,‘,.---""' :
Most likely <
value

is also

The MEAN
value

= Would be true of any symmetric distribution
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“Gaussians and more Gaussians..

e Linear Gaussian Models..

 PCA to develop the idea of LGM

10
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A Brief Recap

B D~ BC

Principal component analysis: Find the K bases that
best explain the given data

Find B and C such that the difference between D and
BCis minimum

MLSEP

— While constraining that the columns of B are orthonormal

11
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Learning PCA

* For the given data: find the K-dimensional
subspace such that it captures most of the
variance in the data

— Variance in remaining subspace is minimal

MLSEP
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“A Statistical Formulation of PCA
o sgentace \/ x = VW + e
w ~ N(0, B)
e~ N(O,E)

* xisarandom variable generated according to a linear relation

Vi

* wisdrawn from an K-dimensional Gaussian with diagonal
covariance

e eisdrawn from a 0-mean (D-K)-rank D-dimensional Gaussian

* Estimate V (and B) given examples of x

13
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- Linear Gaussian Models!!

X=Vw+e
w ~ N(0, B)
| e~ N(0,F)

* xisarandom variable generated according to a linear relation

e wisdrawn from a Gaussian
e eisdrawn from a O-mean Gaussian

* Estimate V given examples of x

— In the process also estimate B and E »



venEStimating the variables of the "™

model LD
W~ )
X=Vw+e e~ N(0,E)
X~ N(0,VV’ + E)

* Estimating the variables of the LGM is
equivalent to estimating P(x)

— The variables are V, and E

— Assuming “centered” (0-mean) data

15
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LGM: The complete EM algorithm

Initialize V and £
E step:

E, [W]=V (VV' +E)x,

MLSP

Ew|x [ ] [ - VT(VVT +E) 1\/+E:w|x [ ]Ew|xi [W]T

M step:

V= (Z x.E,. [w' ]j(z E,\ [ww'

)i

| |
E = ﬁzilxixf —WVZEWm [W]xiT

16
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~ So what have we achieved

* Employed a complicated EM algorithm to learn a
Gaussian PDF for a variable x

* What have we gained???

 Example uses:

— PCA
* Sensible PCA
 EM algorithms for PCA

— Factor Analysis
e FA for feature extraction

MLSP

17



vre™  LGMs @ Application 1 M
Learnmg prmmpal components

X=Vw+e
w~ N(0,[1)
e~ N(O,E)

* Find directions that capture most of the
variation in the data

* Erroris orthogonal to principal directions
—Vie=0; elV=0

18
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Some Observations: 1
X=Vw+e e~ N(0,F)
E =FE[ee’ ]

V'E=E[V'ee' ]=E[0e' ]=0

 The covariance E of e is orthogonal to V

— Vs in the null space of E

19
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Observation 2

V'E=0

VIVV +E)Y =(V'V)'V!
* Proof
VIV +E)Y (VW +E)=(V'V)'V(VV' +E)
Vi=(V'V)'VIVV +(VIV)'V'E
Vi=IV' +(V'V)'0
vi=v’ 0
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Observation 3

V'E=0

VIVV +E)Y =(V'V)'V!

= pinv(V)

MLSP
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LGM: The complete EM algorithm

X=Vw+e

e |nitialize V and £

* Estep: |E,, [W]=V (VV' +E) x,

X~ VW

Ly [WwW "1=1-V'(VV' +E) V+Ew|x [WIE [w]'

* M step:

)i

V= (Z x.E,. [w' ]j(z E,\ [ww'

| |
E = ﬁzilxixf —WVZEWm [W]xiT

22
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LGM: The complete EM algorithm

X=Vw+e

e |nitialize V and £

* E step: (W]l=V(VV' +E)'x.

w|x

X~ VW

Ly [WwW "1=1-V'(VV' +E) V+Ew|x [WIE [w]'

* M step:

)i

V= (Z x.E,. [w' ]j(z E,\ [ww'

| |
E = ﬁzilxixf —WVZEWm [W]xiT
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EM for PCA

X=Vw+e

e |nitialize V and £

X

22

MLSEP

Ly [WwW "1=1-V'(VV' +E) V+Ew|x [WIE [w]'

* M step:

)i

(le wix LW ]j(Zwai [ww'

Ezﬁzi:xi ——VZ W|X W]XZ.T

24
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EM for PCA

X=Vw+e

e |nitialize V and £

* E step:

X

"~/
N/

MLSP

VW

Ly [WwW "1=1-V'(VV' +E) V+Ew|x [WIE [w]'

* M step:

)i

(le wix LW ]j(Zwai [ww'

Ezﬁzi:xi ——VZ W|X W]XZ.T
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EM for PCA

e |nitialize V and £

* E step:

MLSP

X~ VW

W = pinv(V)X

Ly [WwW "1=1-V'(VV' +E) V+Ew|x [WIE [w]'

* M step:

)i

(le wix LW ]j(Zwai [ww'

Ezﬁzi:xi ——VZ W|X W]XZ.T
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EM for PCA

e |nitialize V and £

* E step:

MLSEP

X~ VW

W pmv(V)X

Ew|xi[WW 1=1-V'(VV' +E) 1V+EW|X[ 1E5s, [w]'

* M step:

)i

(le wix LW ]j(Zwai [ww'

Ezﬁzi:xi ——VZ W|X W]XZ.T

27
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EM for PCA

e |nitialize V and £

* E step:

MLSEP

W pmv(V)X

Ew|xi[WW 1=1-V'(VV' +E) 1V+EW|X[ 1E5s, [w]'

* M step:

)i

(le wix (W ]j(Zwai [ww'

Ezﬁzi:xi ——VZ W|X W]XZ.T

28



EM for PCA

e |nitialize V and £

MLSP

B

WX,

[ww']=1-V'(VV' +E) ' V+E_ [W]E, [w]

* M step:
V= (Z X, E, [wT]](Z E,. [wa]j = XW' (WW")™

=—Zxx ——VZ W|X W]XZ.T

29
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EM for PCA

e |nitialize V and £

Ew|xi[WW 1=1-V'(VV' +E)" V+E WIE,, [w]'

* M step:

xl wix, [w'] E_ [ww'] _ = XW' (WW")™" = Xpinv(W)
| _ Pwix,

E=%in ——VZ W|X W]XZ.T

30
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EM for PCA

e |nitialize V and £

MLSP

E,[Ww' ]=1-V'(VV' +E)'V+E_ [W]E

WX,

[w]'

* M step:
1 T
Ezﬁzi:xi ——VZ wix, LW X

31
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EM for PCA

e |nitialize V and £

W = pinv(V)X

* E step:

B

WX,

[ww'1=1-V'(VV' +E)'V+E

W|X;

[w]E

WX,

[w]'

* M step:

V =X pinv(W)

E:%in

B VZ w|x W]XzT

MLSP
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EM for PCA

e |nitialize V and £

T T T ) T
° M . .
step: irrelevant
V =X pinv(W)
1 T 1 T

MLSP
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EM for PCA

e |nitialize V

* [terate
W = pinv(V)X

V =X pinv(W)

* Note: V will not be actual eigenvectors, but a set of
bases in space spanned by principal eigenvectors

— Additional decorrelation within PC space may be needed

MLSEP
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Why EM PCA?

X XX’

10000 x 10000

10000 x 300

 Example: Computing eigenfaces
e Each faceis 100x100 : 10000 dimensional

But only 300 examples
— X is 10000 x 300

What is the size of the covariance matrix?
What is its rank?

MLSP
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" PCA on illconditioned data

* Few instances of high-dimensional data

— No. instances < dimensionality
* Covariance matrix is very large
— Eigen decomposition is expensive

— E.g. 1000000-dimensional data: Covariance has
102 elements

e But the rank of the covariance is low

— Only the no. of instances of data

MLSEP
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Why EM PCA?

U

V 300 x 300

X

10000 x 300,

VW

 Consequence of low rank X

10000 x 300 X

R

— The actual number of bases is limited to the rank of X

* Note actual size of V
— Max number of columns = min(dimension, no. data points)
— No. of columns = rank of (XXT)

* Notesize of W
— Max number of rows = min(dimension, no. of data points)

MLSP

37



JOHNS HOPKINS MLSP
\X’}‘l[:['}]\l't;_.‘i.ﬁlli)}:“!..

e If X is high dimensional

U

V 300 x 300

X

10000 x 300 X

10000 x 300,

VW

R

— Particularly if the number of vectors in X is smaller
than the dimensionality

* Pinv(V) and pinv(W) are efficient to compute
— V will have a max of 300 columns in the example
— W will have a max of 300 rows

38
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- PCA as an instance of LGM

* Viewing PCA as an instance of linear Gaussian
models leads to EM solution

* Very effective in dealing with high-
dimensional and/or data poor situations

* An aside: Another simpler solution for the
same situation..

39
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~ An Aside: The GRAM trick

* The number of non-zero Eigen values is no more than the

length of the smallest “edge” of X
— 300 in this case

* This leads to the “gram” trick..

X XX’

10000 x 10000

10000 x 300

e Assumption X™X is invertible: the instances are linearly
independent

40
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X

XT

XX is large but XX is not

)

XT

X

“ An Aside: The GRAM trick

If Xis 10000 x 300,
XXT=10000 x 10000

)

If X'is 10000 x 300,
XTX =300 x 300

Difficult to compute Eigen vectors of XXT

But easy to compute Eigen vectors of XX

41
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The Gram Trick

* To compute principal vectors we
Eigendecompose XXT

(XX” JE =EA

* Let us find the Eigen vectors of X"™X instead
(X"X)E = EA

* Manipulating it slightly

Note that for a diagonal matrix:

AA-0S = A-0SA XTXEA_O'S = E/A\_O'SZA\

MLSEP
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The Gram Trick

* Eigendecompose X"™X instead of XXT
(X"X)E = EA
X"XEA " =EA A
(XX XEA®? )= (XEA* A
* Letting: XEA™’ =E
(XX JE =EA

* Eis the matrix of Eigenvectors of XXT1!!

MLSEP
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The Gram Trick

When X is low rank or XX' is too large:

Compute X"™X instead

— Will be manageable size
Perform Eigen Decomposition of X™X
(X"X )k = EA
Compute Eigenvectors of XX as
XEA* =E
These are the principal components of X

MLSP
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Why EM PCA

* Dimensionality / Rank has alternate potential
solution

— Gram Trick

e Other uses?
— Noise
— Incomplete data

MLSEP
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PCA with noisy data

0
05| '

1
1.5~ ) ]

0
2 .
3 -2
2
1 0 r
2 3 4

X=Vw+e+n
w~ N(0,1)
e~ N(0,F)
n~ N(0,B)

* Erroris orthogonal to principal directions

—Vie=0; elV=0
* Noise is isotropic

— B is diagonal

— Noise is not orthogonal to either V or e

MLSP
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LGM: The complete EM algorithm

e |nitialize Vand E
* E step:

E, [W]=V (VV' +E)x,

MLSP

Ew|x [ ] [ - VT(VVT +E) 1\/+E:w|x [ ]Ew|xi [W]T

* M step:

V= (Z x.E,. [w' ]j(z E,\ [ww'

)i

| |
E = ﬁzilxixf —WVZEWm [W]xiT
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PCA with Noisy Data

e |nitialize V and B

* E step:

* M step:

A=V (VV' +B)"

W= X

C = NI - NSV + WW/'

V=XW'C'

1

B= ﬁdiag(XXT VWX’ )

MLSP

Xx=Vw+e+n
w~ N(0,1)
e~ N(0,F)
n~ N(0,B)

48
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How to compute principal directions when
some components in your training data are
missing?

Eigen decomposition is not possible

— Cannot compute correlation matrix with missing
data

49
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PCA with missing data

How it goes
Given : X= {X_, X}

— X,, are missing components

1. Initialize: Initialize X,
2. Build “complete” data X = {X_, X, }
3. PCA (X=VW): EstimateV

N o U0k

— V must have fewer bases than dimensions of X
W=VIX
X=VW
Select X, from X
Return to 2

MLSEP
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Filling in holes in facial images
Using a large number of face images, all of which have holes
PCA will simultaneously “fix” all of them

51
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LGM for PCA

* Obviously many uses:
— lll-conditioned data
— Noise
— Missing data

— Any combination of the above..

MLSEP
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veE™  LGMs @ Application 2
Learning with insufficient data

00247 A
o) 0 P

e The full covariance matrix of a Gaussian has D? terms

* Fully captures the relationships between variables

* Problem: Needs a lot of data to estimate robustly

53
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An Approximation

003 4.

0.01 -7 i

* Assume the covariance is diagonal

— Gaussian is aligned to axes : no correlation between dimensions
— Covariance has only D terms

* Needs less data
* Problem : Model loses all information about correlation
between dimensions

54
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Is There an Intermediate

e Capture the most important correlations
* But require less data

e Solution: Find the key subspaces in the data

— Capture the complete correlations in these
subspaces

— Assume data is otherwise uncorrelated

MLSEP
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Factor Analysis -

w~N(0,7)
X=Vw-+e e~ N(0,E)

x~ N, VV' + E)

* Eis afull rank diagonal matrix

* V has K columns: K-dimensional subspace

— We will capture all the correlations in the
subspace represented by V

* Estimated covariance: Diagonal covariance E
plus the covariance between dimensions in V
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Factor Analysis

e |nitialize V and £

* E step:

E, W=V (VV' +E)x,

MLSEP

Ew|x [

"1=I-V'(VV' +E) V+Ew|x [WIE,, [w]'

* M step:

(le i wT]j(Zwai[wa]]

-1

1
N

E=—diag(2xi ——VZ wix, L

el

57
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FA Gaussian

III.|:|3___..;........f <
HR R M I

* Will get a full covariance matrix

* But only estimate DK terms

* Data insufficiency less of a problem

58
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“* The Eactor AnalySiS Model

w~N(0,7)
x=Vwre e~ N(0,E)

LOADINGS FACTORS

e Often used to learn distribution of data when
we have insufficient data

e Often used in psychometrics

— Underlying model: The actual systematic
variations in the data are totally explained by a
small number of “factors”

— FA uncovers these factors

59
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FA, PCA etc.

w~ N(0,7)
X=Vw-+e e~ N(0,E)

* Note: distinction between PCA and FA is only
in the assumptions about e

 FA looks a lot like PCA with noise

* FA can also be performed with incomplete
data

60
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FA, PCA etc.
/ =

 PCA: Erroris always at 90 degrees to the basesin V

 FA: Error may be at any angle

* PCA used mainly to find principal directions that
capture most of the variance

— Bases in V will be orthogonal to one another
* FA tries to capture most of the covariance

61
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FA: A very successful use

* Voice biometrics: Speaker recognition

e Given: Only a small amount of training data
from a speaker to learn its model

— Use to verify speaker later

* Problem: Immense variation in ways people
can speak

— Less than 1 minute of training data; totally
insufficient!

MLSP
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Speaker Recognition

Speaker Identification

Whose voice is
this?

Speaker Verification

Is this Bob’s
voice?

MW&LM':

Where are speaker
changes?

Which segments are from
the same speaker?

nnnnnnn

:\ ~ {
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Gaussian Mixture Models

* For most recognition tasks, we need to model the distribution
of feature vector sequences

~~ —
N

J

coomuwuw |

Wwokr on

100 vec/sec

1
+ OO ONW
1
+ OO ONW

sl 1 i
T ‘wrn:liiumki' 2 v bl - 1
Time (sec)
® |n practice, we often use Gaussian Mixture Models (GMMs)

Signal Space

o

| | MANY
Training
Utterances
\\ \\\ /I II Il ,I /,
\ \\ II ! II II /I
b v ,I 1oy
1N VA
! 17 7 v
1 17 7
’ ! e rr o Feature Space

F gt
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Why GMMs

 VVowel Classification

PCA

VOWELS
Front Central Back
Close 1 Y e v We U
O
Close-mid 9 O—— Y e O
o

Open-mid CE"‘""B\G T RS O

* llAEl‘

* quu B\

lllYll

Open "OW" ae E Qep

Where symbols appear in pairs, the one to the right
represents a rounded vowel

65
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Speaker Verification

» [l

A model represents distribution of cepstral vectors for the
speaker

* A second model represents everyone else (potential
imposters)

* The cepstra computed from a test recording are “scored”
against both models

— Accept the speaker if the speaker model scores higher
66
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GMM for speaker verification

* We enroll a given speaker by adapting the UBM
using the speaker’s input speech.

Speaker Jim

e

[Reynolds 2000]

™

Yes / No ?

67
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~ Speaker Verification

» [l

* Problem: One typically has only a few seconds or
minutes of training data from the speaker

 Hard to estimate speaker model

e Test data may be spoken differently, or come over a
different channel, or in noise

— Wont really match

68
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Gaussian Mixture Models

* For most recognition tasks, we need to model the distribution
of feature vector sequences

z)
|
d

100 vec/sec

1
+ OO ONW
1
OOONwa

Wwokr on

o AT il
"!'"““!!!ﬂ?'.!fi!u‘ll il ‘““'“‘”'ftltwﬂm' S INLRS el - *

(L]

AR i

1
+ OO ONW

Time (sec)
® |n practice, we often use Gaussian Mixture Models (GMMs)

Signal Space
o A
= =)
|| MANY P, e L
Training ; 2
Utterances -ﬁ> .
\ \\\I/\I I/I I/II/I ,/I
III ;\. III,II ,I, _ﬂk |
Joe Sl Feature Space
S ¥ / his “supervector” is the

feature that represents the
recording
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* Supervectors are obtained for each training
speaker by adapting a “Universal background
model” trained from large amounts of data

— Few data by each speaker to train a GMM based
on Maximum likelihood &
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~ Training the Factor Analyzer

X=VW+e  w~N©O,I)e~N(0,E)

* The supervectors are assumed to be the
output of a linear Gaussian process

e Use FA to estimate V

— V are the directions of main variations
— The real information is in the factor w
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H Hy H
Hy Hy Hy
Hi Hi Hi

X=VW+e  w~N©O,I)e~N(0,E)

* Enrollment: Derive one or more Wgy,, vectors from speaker
recordings

— Using Vand E learned during the “training phase”

— Also use Wiypster from recordings from other speakers to train a
binary classifier, e.g. an SVM

* Verification: Derive Wy,,;r from test recording
— Classify using SVM

— Alternately, compare towg,,-vectors from enroliment recordings
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~ I-vector : Total variability space

A




MLSP

I-Vector

* Factor analysis as feature extractor
* Speaker and channel dependent supervector
M=m+ Tw
— T'1s rectangular, low rank (total variability matrix)

— w standard Normal random (total factors — intermediate
vector or 1-vector)

m Factor Analysis
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- Training models for a speaker

X=Vw+e WNN(O,[)ENN(O,E)
* Use Linear Discriminant Analysis to maximize
the discrimination between the speakers
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Data Visualization based on Graph

Nice performance of the cosine similarity for speaker recognition

Data visualization using the Graph Exploration System (GUESS)

* Represent segment as a node with connections (edges) to nearest neighbors (3 NN
used)
— NN computed using blind TV system (with and without channel normalization)

* Applied to 5438 utterances from the NIST SRE10 core

— Multiple telephone and microphone channels
e Absolute locations of nodes not important

* Relative locations of nodes to one another is important:
— The visualization clusters nodes that are highly connected together

 Meta data (speaker ID, channel info) not used in layout
* Colors and shapes of nodes used to highlight interesting phenomena



Females data with intersession compensation

Colors represent speakers
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Females data with no intersession compensation
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data with no Intersession
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data with no Intersession
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Males data with intersessian compensation
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Males data with no intersession
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Speaker representation

Clustering
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Speaker clustering




second Principal Component
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PCA Visualization

Three-speaker Conversation
(First Two Principal Components After i-vector Length-MNormalization)
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