
Machine Learning for Signal Processing
Applications of 

Linear Gaussian Models
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Recap: MAP Estimators

• MAP (Maximum A Posteriori): Find most 
probable value of y given x

y = argmax Y P(Y|x)
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MAP estimation

• x and y are jointly Gaussian
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MAP estimation: Gaussian PDF
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MAP estimation: The Gaussian at a 
particular value of X
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Conditional Probability of y|x

• The conditional probability of y given x is also Gaussian
– The slice in the figure is Gaussian

• The mean of this Gaussian is a function of x

• The variance of y reduces if x is known
– Uncertainty is reduced
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F1

MAP estimation: The Gaussian at a 
particular value of X
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Its also a minimum-mean-squared 
error estimate

• Minimize error:

• Differentiating and equating to 0:
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For the Gaussian: MAP = MMSE
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 Would be true of any symmetric distribution



Gaussians and more Gaussians..

• Linear Gaussian Models..

• PCA to develop the idea of LGM
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A Brief Recap

• Principal component analysis:  Find the K bases that 
best explain the given data

• Find B and C such that the difference between D and 
BC is minimum
– While constraining that the columns of  B are orthonormal
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Learning PCA

• For the given data: find the K-dimensional 
subspace such that it captures most of the 
variance in the data
– Variance in remaining subspace is minimal
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A Statistical Formulation of PCA

• x is a random variable generated according to a linear relation

• w is drawn from an K-dimensional Gaussian with diagonal 
covariance

• e is drawn from a 0-mean (D-K)-rank D-dimensional Gaussian

• Estimate V (and B) given examples of x 13
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Linear Gaussian Models!!

• x is a random variable generated according to a linear relation

• w is drawn from a Gaussian

• e is drawn from a 0-mean Gaussian

• Estimate V given examples of x
– In the process also estimate B and E 14
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Estimating the variables of the 
model

• Estimating the variables of the LGM is 
equivalent to estimating P(x)
– The variables are V, and E
– Assuming “centered” (0-mean) data
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LGM: The complete EM algorithm

• Initialize V and E
• E step:

• M step:

•
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So what have we achieved

• Employed a complicated EM algorithm to learn a 
Gaussian PDF for a variable x

• What have we gained???

• Example uses:
– PCA

• Sensible PCA
• EM algorithms for PCA

– Factor Analysis
• FA for feature extraction
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• Find directions that capture most of the 
variation in the data

• Error is orthogonal to principal directions
– VTe = 0;  eTV = 0
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Some Observations: 1

• The covariance E of e is orthogonal to V
– V is in the null space of E
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Observation 2
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Observation 3
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LGM: The complete EM algorithm

• Initialize V and E
• E step:

• M step:
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LGM: The complete EM algorithm

• Initialize V and E
• E step:

• M step:
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EM for PCA

• Initialize V and E
• E step:

• M step:
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EM for PCA

• Initialize V and E
• E step:

• M step:
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EM for PCA

• Initialize V and E
• E step:

• M step:
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EM for PCA

• Initialize V and E
• E step:

• M step:
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EM for PCA

• Initialize V and E
• E step:

• M step:
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EM for PCA

• Initialize V and E
• E step:

• M step:
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EM for PCA

• Initialize V and E
• E step:

• M step:
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EM for PCA

• Initialize V and E
• E step:

• M step:
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EM for PCA

• Initialize V and E
• E step:

• M step:
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EM for PCA

• Initialize V and E
• E step:

• M step:
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EM for PCA

• Initialize V

• Iterate

• Note: V will not be actual eigenvectors, but a set of 
bases in space spanned by principal eigenvectors
– Additional decorrelation within PC space may be needed
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Why EM PCA?

• Example:  Computing eigenfaces
• Each face is 100x100 : 10000 dimensional
• But only 300 examples

– X is 10000 x 300

• What is the size of the covariance matrix?
• What is its rank?

35
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PCA on illconditioned data

• Few instances of high-dimensional data
– No. instances < dimensionality

• Covariance matrix is very large
– Eigen decomposition is expensive
– E.g. 1000000-dimensional data:  Covariance has 

1012 elements

• But the rank of the covariance is low
– Only the no. of instances of data
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Why EM PCA?

• Consequence of low rank X
– The actual number of bases is limited to the rank of X

• Note actual size of V
– Max number of columns = min(dimension, no. data points)
– No. of columns = rank of (XXT)

• Note size of W
– Max number of rows = min(dimension, no. of data points)

37
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Why EM PCA?

• If X is high dimensional
– Particularly if the number of vectors in X is smaller 

than the dimensionality

• Pinv(V) and pinv(W) are efficient to compute
– V will have a max of 300 columns in the example
– W will have a max of 300 rows

38
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PCA as an instance of LGM

• Viewing PCA as an instance of linear Gaussian 
models leads to EM solution

• Very effective in dealing with high-
dimensional and/or data poor situations

• An aside: Another simpler solution for the 
same situation..
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An Aside: The GRAM trick

• The number of non-zero Eigen values is no more than the 
length of the smallest “edge” of X
– 300 in this case

• This leads to the “gram” trick..

• Assumption XTX is invertible: the instances are linearly 
independent

40

X

10000 x 300
10000 x 10000

TXX



An Aside: The GRAM trick

• XXT is large but XTX is not

If X is 10000 x 300,
XXT = 10000 x 10000

X

TX

TX
X

If X is 10000 x 300,
XTX = 300 x 300

• Difficult to compute Eigen vectors of XXT

• But easy to compute Eigen vectors of XTX
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The Gram Trick
• To compute principal vectors we 

Eigendecompose XXT

42

   EEXXT

• Let us find the Eigen vectors of XTX instead
   ˆˆˆ EEXXT

• Manipulating it slightly

  ˆˆˆˆˆ 5.05.0 EEXXTNote that for a diagonal matrix:
-0.5 = -0.5



The Gram Trick
• Eigendecompose XTX instead of XXT

43

   ˆˆˆ EEXXT

• Letting: 

  ˆˆˆˆˆ 5.05.0 EEXXT

      ˆˆˆˆˆ 5.05.0 EXEXXXT

• E is the matrix of Eigenvectors of XXT!!!

   ˆEEXXT

EEX  5.0ˆˆ



The Gram Trick

• When X is low rank or XXT is too large:

• Compute XTX instead
– Will be manageable size

• Perform Eigen Decomposition of XTX

• Compute Eigenvectors of XXT as

• These are the principal components of X
44
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Why EM PCA

• Dimensionality / Rank has alternate potential 
solution
– Gram Trick

• Other uses?
– Noise
– Incomplete data

45



• Error is orthogonal to principal directions
– VTe = 0;  eTV = 0

• Noise is isotropic
– B is diagonal
– Noise is not orthogonal to either V or e

46
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LGM: The complete EM algorithm

• Initialize V and E
• E step:

• M step:
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PCA with Noisy Data

• Initialize V and B
• E step:

• M step:
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PCA with Incomplete Data

• How to compute principal directions when 
some components in your training data are 
missing?

• Eigen decomposition is not possible
– Cannot compute correlation matrix with missing 

data

49



PCA with missing data
• How it goes
• Given  :  X =  {Xc, Xm}

– Xm are missing components

1. Initialize:  Initialize Xm

2. Build “complete” data X = {Xc, Xm}

3. PCA  (X = VW):   Estimate V
– V must have fewer bases than dimensions of X

4. W = VTX

5. = VW

6. Select Xm from
7. Return to 2

50
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Data imputation example

• Filling in holes in facial images
• Using a large number of face images, all of which have holes
• PCA will simultaneously “fix” all of them
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LGM for PCA

• Obviously many uses:
– Ill-conditioned data
– Noise
– Missing data

– Any combination of the above..
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• The full covariance matrix of a Gaussian has D2 terms

• Fully captures the relationships between variables
• Problem: Needs a lot of data to estimate robustly

53

LGMs  :  Application 2
Learning with insufficient data



• Assume the covariance is diagonal
– Gaussian is aligned to axes : no correlation between dimensions
– Covariance has only D terms

• Needs less data
• Problem : Model loses all information about correlation 

between dimensions
54

An Approximation



Is There an Intermediate

• Capture the most important correlations
• But require less data

• Solution:  Find the key subspaces in the data
– Capture the complete correlations in these 

subspaces
– Assume data is otherwise uncorrelated
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Factor Analysis

• E is a full rank diagonal matrix
• V has K columns:  K-dimensional subspace

– We will capture all the correlations in the 
subspace represented by V

• Estimated covariance:  Diagonal covariance E
plus the covariance between dimensions in V

56
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Factor Analysis

• Initialize V and E
• E step:

• M step:
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• Will get a full covariance matrix

• But only estimate  DK terms
• Data insufficiency less of a problem

58
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The Factor Analysis Model

• Often used to learn distribution of data when 
we have insufficient data

• Often used in psychometrics
– Underlying model:  The actual systematic 

variations in the data are totally explained by a 
small number of “factors”

– FA uncovers these factors
59
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FA, PCA etc.

• Note: distinction between PCA and FA is only 
in the assumptions about e

• FA looks a lot like PCA with noise
• FA can also be performed with incomplete 

data

60
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FA, PCA etc.

• PCA:  Error is always at 90 degrees to the bases in V

• FA:  Error may be at any angle
• PCA used mainly to find principal directions that 

capture most of the variance
– Bases in V will be orthogonal to one another

• FA tries to capture most of the covariance

61



FA: A very successful use

• Voice biometrics:    Speaker recognition

• Given:  Only a small amount of training data 
from a speaker to learn its model 
– Use to verify speaker later

• Problem: Immense variation in ways people 
can speak
– Less than 1 minute of training data; totally 

insufficient!
62



Speaker Recognition

63

Speaker B

Speaker A
Which segments are from 
the same speaker?

Where are speaker 
changes?

?
?

?

Whose voice is 
this? ?

Is this Bob’s 
voice?

Speaker Identification Speaker Verification

Speaker Diarization : Segmentation and clustering



Modeling Sequence of Features
Gaussian Mixture Models

• For most recognition tasks, we need to model the distribution 
of feature vector sequences

3.4
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100 vec/sec

• In practice, we often use Gaussian Mixture Models (GMMs)

GMM

Signal Space

F
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q
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y 

(H
z)

Time (sec)

Feature Space

MANY 
Training
Utterances



Why GMMs

• Vowel Classification

65

PCA



Speaker Verification

• A model represents distribution of cepstral vectors for the 
speaker

• A second model represents everyone else (potential 
imposters)

• The cepstra computed from a test recording are “scored”
against both models
– Accept the speaker if the speaker model scores higher
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GMM for speaker verification

67

• We enroll a given speaker by adapting the UBM 
using the speaker’s input speech. [Reynolds 2000]

UBM

Speaker Jim

Test Utterance

Yes / No ?



Speaker Verification

• Problem:  One typically has only a few seconds or 
minutes of training data from the speaker

• Hard to estimate speaker model
• Test data may be spoken differently, or come over a 

different channel, or in noise
– Wont really match
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Modeling Sequence of Features
Gaussian Mixture Models

• For most recognition tasks, we need to model the distribution 
of feature vector sequences

3.4
3.6
2.1
0.0
-0.9
0.3
.1

3.4
3.6
2.1
0.0
-0.9
0.3
.1

3.4
3.6
2.1
0.0
-0.9
0.3
.1

100 vec/sec

• In practice, we often use Gaussian Mixture Models (GMMs)
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Training

• Supervectors are obtained for each training 
speaker by adapting a “Universal background 
model” trained from large amounts of data
– Few data by each speaker to train a GMM based 

on Maximum likelihood 70
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Training the Factor Analyzer

• The supervectors are assumed to be the 
output of a linear Gaussian process

• Use FA to estimate V
– V are the directions of main variations
– The real information is in the factor w
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Identification

• Enrollment:  Derive one or more ௦௣௞௥ vectors from speaker 
recordings
– Using and learned during the “training phase”
– Also use ௜௠௣௢௦௧௘௥ from recordings from other speakers to train a 

binary classifier, e.g. an SVM

• Verification:  Derive ௩௘௥௜௙ from test recording
– Classify using SVM
– Alternately, compare to ௦௣௞௥vectors from enrollment recordings
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I-vector : Total variability space



I-Vector

• Factor analysis as feature extractor
• Speaker and channel dependent supervector

M = m + Tw
– T is rectangular, low rank (total variability matrix)
– w  standard Normal random (total factors – intermediate 

vector or i-vector)
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Training models for a speaker

• Use Linear Discriminant Analysis to maximize 
the discrimination between the speakers
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Data Visualization based on Graph

• Nice performance of the cosine similarity for speaker recognition 
• Data visualization using the Graph Exploration System (GUESS)
• Represent segment as a node with connections (edges) to nearest neighbors (3 NN 

used)
– NN computed using blind TV system (with and without channel normalization)

• Applied to 5438 utterances from the NIST SRE10 core
– Multiple telephone and microphone channels

• Absolute locations of nodes not important
• Relative locations of nodes to one another is important:

– The visualization clusters nodes that are highly connected together

• Meta data (speaker ID, channel info) not used in layout
• Colors and shapes of nodes used to highlight interesting phenomena
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Colors represent speakers
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Colors represent speakers
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Speaker representation 

Clustering
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Speaker clustering 
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PCA Visualization
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