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Recap: KNN

• A very effective and simple way of performing 
classification

• Simple model:  For any instance, select the 
class from the instances close to it in feature 
space
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Multi-class Image Classification
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k-Nearest Neighbors
Given a query item:

Find k closest matches
in a labeled dataset ↓
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k-Nearest Neighbors
Given a query item:                               Return the most
Find k closest matches                          Frequent label
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k-Nearest Neighbors
k = 3 votes for “cat”
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k-Nearest Neighbors
2 votes for cat,
1 each for Buffalo,                                           Cat wins…
Deer, Lion
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Nearest neighbor method
• Weighted majority vote within the k nearest neighbors

೔∈ಿೖ ೣ , ೔

K= 1:  blue
K= 3:  green

new
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But what happens if..
• You have many training instances at exactly 

that value of ?
• Majority vote on nearest neighbors:

new
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Bayes Classification Rule

• For any observed feature , select the class 
value that is most frequent
– Also applies to continuous valued predicted 

variables
• I.e. regression

• Select to maximize the a posteriori 
probability 
– Bayes classification is an instance of maximum a 

posteriori estimation
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Bayes classification

• What happens if there are no exact neighbors
– No training instances with exactly the same 

value? new
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Bayes Classification Rule
• Given 

– a set of classes 

– Conditional probability distributions 

– Classification performed as

• Problem:  How do you characterize 
– Require a function that, given an , computes 

for every class 
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Modelling P(C|X)

• Assumption: there’s a continuous function that, at every , produces a 
vector of outputs for every class 
– The “decision boundary” for any class is the boundary within which its own 

posterior has the highest value

• This function accurately represents the actual a posteriori probabilities for 
the classes

• Objective: Estimate this function
11755/18797 16

Blue: Class 1
Red: Class 2
Green: Class 3

Each pixel is a combination
of red green and blue
weighted by the a posteriori
probability of the classes



Modelling the posterior

• To model the posterior, we need a functional 
form for which can be learned

• Typically this functional form is expressed in 
terms of distance from a decision boundary

• The simplest decision boundary is the linear 
boundary
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Bayesian Linear Classification: 
Two class case

• First: Two-class classification
• Assumption: the decision boundary between the classes is a simple 

hyperplane
• As you go away from the hyperplane, the fraction of data from one class 

increases, while that from the other decreases
– Will also hold for any sample of data
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1-D binary class example

• One-dimensional example for visualization
• Only two classes (represented by y=0 and y=1)

– All (red) dots at Y=1 represent instances of class Y=1
– All (blue) dots at Y=0 are from class Y=0
– The data are not linearly separable

• In this 1-D example, a linear separator is a threshold
• No threshold will cleanly separate red and blue dots
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The probability of y=1

• Consider this differently: at each point look at a small 
window around that point

• Plot the average value within the window
– This is an approximation of the probability of Y=1 at that point
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• Consider this differently: at each point look at a small 
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point
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The probability of y=1
Need a function to model
the shape of this curve.

A good choice that works under
many conditions: Logistic function



The logistic regression model

34

y=0

y=1

x

• Class 1 becomes increasingly probable going left to right
– Very typical in many problems
– The logistic is a function of the distance from the boundary
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For two-dimensional input

• The decision boundary for P(Y|X)=0.5 is a hyperplane
– It is a linear model
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When X is a 2-D variable

x1

x2

Decision: y > 0.5?

)( 0

1

1
)( xw

e
xyP


 w



The logistic regression model

• Note how it varies with 
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Estimating the model

• Given the training data (many pairs 
represented by the dots), estimate and 
for the curve
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Estimating the model
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• Easier to represent using a y = +1/-1 notation



Estimating the model

• Given: Training data

• s are vectors, s are binary (0/1) class values
• Total probability of data

೔ బ
೅

೔
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Estimating the model

• Likelihood

೔ బ
೅

೔

• Log likelihood
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Maximum Likelihood Estimate

బ భ

• Equals (note argmin rather than argmax)

• Minimizing the KL divergence between the 
desired output and actual output 

• Cannot be solved directly, needs gradient descent
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Model learned by logistic 
regression

• The figure shows the class probability over a two-
dimensional feature space

• Any decision threshold is a hyperplane
– Diagonal line in this case
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Pure Red: 0
Pure Green: 1



Multi-class logistic regression
• The simple logistic regression model can be extended to multiple 

classes:

஼
்

஼ᇱ
் 

஼ᇱ

– ஼
் is, in fact, the discriminant function of the classes

• We’ve encountered discriminant functions earlier

• Also called a softmax
• Each class ௜ has a probability that is exponentially related to the 

closeness of the vector to a “representative” vector ௜ for the 
class

• This too can be learned from training data via maximum likelihood 
estimation
– Just like the two-class case
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Multi-class logistic regression

• The boundary between adjacent classes is a hyperplane (line)
• The decision boundary for any class is convex polytope with 

hyperplane segments
– I.e. still a linear classifier
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Multi-class Bayes

• In many classification problems, linear boundaries are not 
sufficient

• We need to be able to model more complex boundaries
• This too can be supported by the logistic regression classifier
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Logistic regression with non-linear 
boundaries

• The logistic regression can be modified to have non-linear 
discriminants:

– ஼ is the discriminant for class C, and has parameter ஼

– The discriminants determine the shape of the decision 
boundary

• Non-linear discriminants result in non-linear decision 
boundaries
– The parameters ஼ for all classes can be learned by maximum 

likelihood (or MAP) estimation as before
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Quadratic discriminant

• With quadratic discriminants:

• Note that decision boundaries are quadratic
• The probability of a class increases (or decreases) as 

we go away from a boundary
11755/18797 47
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Logistic regression with non-linear 
boundaries

• For complex decision boundaries, the function ஼ must be 
correspondingly complex

• Currently the most successful approach in these cases is to model 
஼ᇱ by a neural network

– In fact neural networks with soft-max decision layers may be seen as an 
instance of a logistic regression with a non-linear discriminant

• Topic for another class
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Logistic regression with non-linear 
boundaries

• The logistic regression can be modified to have non-
linear discriminants:

• Note: This can also be viewed as non-linearly 
transforming the data X into a space where a simple 
linear logistic regression models posteriors well

•
– I.e. into a space where the data are most linearly separable
– We will discuss this in a later lecture on neural networks
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Problem with modelling P(C|X)
• We have considered modelling the a posteriori probability of the 

classes directly
• This implicitly assumes that

– The characteristics of the data for any class remain the same between 
train and test

– The relative proportions of the classes too remain the same

• Often the second assumption will not hold
– The data characteristics remain, but the relative proportions change
– E.g. the shapes of the differently colored coins don’t 

change, but the relative proportions of the colors changes
between train and test

• We must then modify our approach to Bayes classification to a 
generative framework
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The Bayesian Classifier..

•

– Choose the class that is most frequent for the given 

•

– Choose the class that is most likely to have 
produced

• While accounting for the relative frequency of C
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Bayes Classification Rule

• Given a set of classes 

஼∈𝒞
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P
(X

) ଵ

P(X|Ci) measures the probability that a random instance of class Ci will take the value X



Bayes Classification Rule
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• Given a set of classes 

஼∈𝒞

P(X|Ci) measures the probability that a random instance of class Ci will take the value X



Bayes Classification Rule
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• Given a set of classes 

஼∈𝒞

P(Ci) scales them up to match the expected relative proportions of the classes



Bayes Classification Rule
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• Given a set of classes 

஼∈𝒞

P(Ci) scales them up to match the expected relative proportions of the classes

Decision boundary



Bayes Classification Rule
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• Given a set of classes 

஼∈𝒞

P(Ci) scales them up to match the expected relative proportions of the classes

Decision boundary
Fraction of all instances that
belong to C1 and fall on the wrong
side of the boundary and are
misclassified



Bayes Classification Rule
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• Given a set of classes 

஼∈𝒞

P(Ci) scales them up to match the expected relative proportions of the classes

Decision boundary
Fraction of all instances that
belong to C2 and fall on the wrong
side of the boundary and are
misclassified



Bayes Classification Rule
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• Given a set of classes 

஼∈𝒞

P(Ci) scales them up to match the expected relative proportions of the classes

Decision boundary

Total misclassification probability



Bayes Classification Rule
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• The Bayes classification rule is the statistically optimal classification 
rule
– Moving the boundary in either direction will always increase the 

classification error
Excess classification error with
shifted boundary



The Bayesian Classifier..

•

• We can now directly learn the class-specific statistical 
characteristics from the training data

• The relative frequency of , , can be 
independently adjusted to our expectations of these 
frequencies in the test data
– These need not match the training data
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Modeling 

• Challenge:  How to learn 
– This will not be known beforehand and must be 

learned from examples of that belong to class 

• Will generally have unknown and unknowable 
shape
– We only observe samples of 

• Must make some assumptions about the form of 
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The problem of dependent 
variables

• must be 
defined for every combination of 
– Too many parameters to describe explicitly

– Most combinations unseen in training data

• may have an arbitrary scatter/shape
– Hard to characterize mathematically

– Typically do so by assigning a functional form to it
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The problem of dependent 
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The Naïve Bayes assumption

• Assume all the components are independent of one another
– The joint probability is the product of the marginal

ଵ ଶ ஽ ௜

 

௜

• Sufficient to learn marginal distributions 
– The problem of having to observe all combinations of ଵ ଶ ஽

never arises
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Naïve Bayes – estimating 

• may be estimated using conventional 
maximum likelihood estimation
– Given a number of training instances belonging to 

class 
• Select the i-th component of all instances
• Estimate ௜

– For discrete-valued this will be a multinomial 
distribution

– For continuous valued a form must be assumed
• E.g Gaussian, Laplacian etc
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Naïve Bayes – Binary Case
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The problem of dependent 
variables

• must be 
defined for every combination of 
– Too many parameters

– Most combinations unseen in training data

• may have an arbitrary scatter/shape
– Hard to characterize mathematically

– Typically do so by assigning a functional form to it
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Assigning a functional form to 
P(X|C)

• Assign a functional form to P(X|C)

• Common assumptions:
– Unimodal forms: Gaussian, Laplacian
– Multimodal forms:  Gaussian mixtures
– Time series:  Hidden Markov models
– Multi-dimensional structures: Markov random 

fields
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Assigning a functional form to 
P(X|C)

• Assign a functional form to P(X|C)

• Common assumptions:
– Unimodal forms: Gaussian, Laplacian

• Most common of all

– Multimodal forms:  Gaussian mixtures
– Time series:  Hidden Markov models
– Multi-dimensional structures: Markov random 

fields
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Gaussian Distribution
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Mean Vector

Covariance Matrix - Symmetric
- Positive Definite 



Gaussian Distribution
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Parameter Estimation
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Gaussian classifier
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Different Classes, different Gaussians



Gaussian Classifier
• For each class we need:

– Mean Vector
– Covariance Matrix

• Training
– “Fit” a Gaussian to each class

• Find the best Gaussian to
explain the distribution for the class

• Classification:

௜
௜ ௜ ௜

• Problem: 
– Many parameters to train!
– Dominated by covariance: for -dimensional data the covariance 

matrices requires ଶ parameters each
– For ௖ classes, a total of ௖

ଶ parameters
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Homo-skedasticity assumption
• Assume all distributions

have the same covariance
–

– Assumption, may not be true
– But still works in many cases

• Fewer parameters to train
– One common covariance matrix for all classes
– Only ଶ total parameters

• As opposed to 𝑁௖𝐷ଶ if each class has its own covariance matrix
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Homo-skedastic Gaussians

• For the binary classification case ( )
Decision boundary:
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Homo-skedastic Gaussians
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Linear 
Boundary!!!



Homo-skedastic Gaussians
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Homo-skedastic Gaussians, K > 2
• Case K > 2 (more than two classes)
• Classification performed as: 

• Taking logs and ignoring the common constant

• Expanding out and ignoring common terms

• This is just a linear classifier
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Homo-skedastic Gaussians, K > 2

• Decision boundaries for

• Linear classifier: Decision boundaries are hyperplanes
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Homo-skedastic Gaussians, K > 2

• Case K > 2 (more than two classes)

• Classification performed as: 

• Taking logs and ignoring the common constant

• Changing the sign and rewriting it as argmin
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Homo-skedastic Gaussians
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Mahalanobis Distance

• A Gaussian Classifier with common Covariance Matrix is
similar to a Nearest Neighbor Classifier

• Classification corresponds to the nearest mean vector



How to estimate the Covariance 
Matrix?
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• Maximum likelihood estimate of 
covariances of individual classes:

಴

• Estimate of common covariance 
for all classes



Hetero skedastic Gaussians..

• Homoskedastic Gaussians do not capture non-
linear decision boundaries

• Also, the assumption that all Gaussians have 
the same covariance is questionable

• Permitting each Gaussian to have its own 
covariance results in non-linear decision 
boundaries
– “Hetero skedastic” Gaussians
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Hetero-skedastic Gaussians
Different Covariance Matrices
1D case. K = 2
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Decision Boundary

Quadratic 
Boundary!!!



Hetero-skedastic Gaussians
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Digit recognition

$ 2.56
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Gaussian Classifier for Digit 
recognition

· · ·· · ·
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Showing the average of each digit 

• Average digit
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Bayes classifcation

• Normalize the Posterior 
prior posterior

Bayes’ rule
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Inadequacy of Gaussian classifiers

• Gaussian classifiers can only capture simple linear or quadratic decision 
boundaries

• Often, the decision boundaries required are more complex
• In this case we must employ a Gaussian Mixture classifier

௜
௜ ௜

• ௜ is modelled by a Gaussian mixture
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GMM classifier
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- For each class, train a GMM 
(with EM)

- Classify according to



Bayesian Classification with 
Gaussian Mixtures

• Plotting for all classes
– Left: Two-class classification, Right: Three-class classification
– Each class modelled by a mixture of three Gaussians

• Note the complex decision boundary
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Estimating P(C)

• Have not explained where the class prior comes 
from

• This can be dependent on the test data
• Typical solutions:

– Estimate from training data
– Optimize on development or held-out test data
– Heuristic guess
– Conservative estimates

• Set the prior of classes that have high cost if incorrectly detected to 
be low

• Set prior of classes that have high cost if incorrectly missed to be 
low

• Etc..
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Topics not covered

• Maximum a posteriori estimation
– When we make assumptions about the parameters 

(means, covariances) themselves
• MAP regression with Gaussians

– Predicting continuous-valued RVs assuming Gaussian 
distributions

• MAP regression with Gaussian Mixtures
– Predicting continuous-valued RVs with Gaussian 

mixture distributions
• Time-series and other structured data

– Partially covered in a later lecture
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