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Definitions: Variance and
Covariance
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* Variance: Xyy = E[(X-pu)(X-p)T]
— Estimated as Xy = (1/N) (X-avg(X)) (X-avg(X))T
— How “spread” is the data in the direction of X (assuming 0 mean)

— Scalar version: 62 = E((x — u)?)

* Covariance: Xyy = E [(X-py)(X-py) ']
— Estimated as Xy = (1/N) (X-avg(X)) (Y-avg(Y))'
— How much does X predict Y (assuming 0 mean)

— Scalar version: gy, = E((x — ux) (Y — Uy))
11-755/18-797 2



Definition: Whitening Matrix

original data X — g X: whitened data
- l

. If X is already centered
P(X) 7 = 3x9°X P(2)

* Whitening matrix: Zy g~
* Transforms the variable to unit variance

e Scalar version: o 1
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Definition: Correlation Coefficient

» Normalized Correlation: 22> Syy Sy

* Scalar version: py,, = —
x0y

— Explains how Y varies with X, after normalizing
out innate variation of Xand Y
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* Application of Machine Learning techniques to the
analysis of signals

External
Knowledge / \
sensor
= vignal Channel Feature ) Madeling/
&3 Capture || Extraction | Regression

N

* Feature Extraction:

— Supervised (Guided) representation
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Bases to represent data

e Basic: The bases we considered first were data agnostic

— Fourier / Wavelet type bases, which did not consider the
characteristics of the data

 Improvement |l: The bases we saw next were data specific
— PCA, NMF, ICA, ...

» Different techniques emphasize different aspects of the data
— The bases changed depending on the data characteristics
— But do not consider what the data are used for
* |.e.they are data dependent, but independent of the task
* Improvement ll: What if bases are both data specific and
task specific?
— Basis depends on both the data and the task being performed

11-755/18-797 6
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Bases to represent data

e Basic: The bases we considered first were data agnostic
— Fourier / Wavelet type bases, which did not consider the
characteristics of the data
 Improvement |l: The bases we saw next were data specific

— PCA, NMF, ICA, ...

» Different techniques emphasize different aspects of the data
— The bases changed depending on the data characteristics

— But do not consider what the data are used for
* |.e. they are data dependent, but independent of the task

 Improvement Ill: What if bases are both data specific and
task specific?

— Basis depends on both the data and the task being performed

11-755/18-797 7



JOHNS HOPKINS MLSP
WHITING SCHOOL

~ Recall: Data-dependent bases

* What is a good basis?
— Energy Compaction 2 Karkhonen-Loéve

— Retain maximum variance - PCA

* Also uncorrelatedness of representation
— Sparsity =2 Overcomplete bases
— Constructive composability 2> NMF
— Statistical Independence = ICA

e We create a narrative about how the data are
created

11-755/18-797 8
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Task-dependent bases?

e Task: Regression
— We attempt to predict some variable Y using a variable X
* Vialinear regression
e Standard data-driven bases:

— Find a representation of X that best captures the characteristics of X
e Without considering Y

— Find a representation of Y that best captures the characteristics of Y
* Without considering X

— The two representations are independently learned
— Try to predict (learned representation of) Y from the (learned representation of) X

* Can we do better if the bases used to represent X and Y are jointly
learned?

— Such that the learned representation of X is now better able to predict the learned
representation of Y

11-755/18-797 9
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e Task: Classification

— We attempt to assign a class Y to input data X

 Standard data-driven bases:

— Find a representation of X that best captures the characteristics of X
* Without considering Y

— Try to predict Y from the (learned representation of) X

e Can we do better if the bases used to represent X
considering the classes Y?

— Such that the learned representation of X are more useful for
classification of X into Y

11-755/18-797 10
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 Supervised learning of bases

* Problems are instances of supervised learning of bases

— Supervision provided by variable Y

 What is a good basis?
— Basis that gives best classification performance
— Basis that results in best regression performance

* Here bases can be jointly learned for both independent variable X
and dependent variable Y

— In general: Basis that maximizes shared information with
another ‘view’

* The second “view” is the task

11-755/18-797 11
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Regression

e Simplest case

— Given a bunch of scalar data points predict some

value

— Years are independent

— Temperature
is dependent
Y =pBTX
— Y =temperature

v [Year]

—
J

Temperature Anomaly |

1.0

0.5

0.0

-0.5

1880 18900 1920 1840 1860 1980 2000 2020
YEAR

Source: climate.nasa.gov
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Regression

* Formulation of problem
argmin||Y — ST X||?

—Y=1[Y,Y,,..
—X =Xy, Xy, ..

e Solving:
_IBT — YX+

B

— B = (XXT)~1xy"

] E 0.5
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| | ] E
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YERR
i re 1

11-755/18-797 13



JOHNS HOPKINS
]
Regression

* Formulation of problem
argmin||Y — B7X]|?
B

* Solving:
- B = XXT)TIXY" M

* Note that this looks a lot like x5 2 xy

— In the 1-d case where x predicts y this is just ...

Cov(x,y) oy

ox Ox

11-755/18-797
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* Robot Archer Example
— A robot fires defective arrows at a target

* We don’t know how wind might affect their movement,
but we’d like to correct for it if possible.

— Predict the distance from the center of a target of
a fired arrow
* Measure wind speed in
3 directions

11-755/18-797 15
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Multiple Regression
-
* Wind speed X, = | W

0
e Offset from centerin 2 directions Yi= [0
* Model

11-755/18-797
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Multiple Regression

* Answer
= {Xx Xyt

— Here Y contains measurements of the distance of
the arrow from the center

~Y, =p"X; >
We are fitting a plane
— Correlation is basically

just the gradient of the
plane

11-755/18-797
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Focusing on what’s important

* Do all wind factors affect the position

— Or just some low-dimensional combinations X = AX

* Do they affect both coordinates individually
— Or just some of combination j = BY

11-755/18-797 18
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" Canonical Correlation Analysis

* Find a projection of wind vector X, and a projection of
arrow location vector Y such that the projection of X
best predicts the projection of Y

— The projection of the vectors for Y and X respectively that
are most correlated

Best X projection plane |:> Predicts best Y projection

11-755/18-797 19
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" Canonical Correlation Analysis

* What do these vectors represent?

— Direction of max correlation ignores parts of wind
and location data that do not affect each other

* Only information about the defective arrow remains!

Best X projection plane |:> Predicts best Y projection

11-755/18-797 20
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~ CCA Motivation and History

* Proposed by Hotelling (1936)
* Many real world problems involve 2 ‘views’ of data

e Economics

— Consumption of wheat is related to the price of
potatoes, rice and barley ... and wheat

— Random vector of prices X

— Random vector of consumption Y

X = Prices Y = Consumption

11-755/18-797 21
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~ CCA Motivation and History

 Magnus Borga, David Hardoon popularized
CCA as a technique in signal processing and
machine learning

* Better for dimensionality reduction in many
cases

| 1 | |
2 2 4 5 6

11-755/18-797 22
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~ CCA Dimensionality Reduction

* We keep only the correlated subspace
* |s this always good?

— If we have measured things we care about then
we have removed useless information

2
777777777

| 1 | |
22222
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 CCA Dimensionality Reduction

* |In this case:

— CCA found a basis component that preserved
class distinctions while reducing dimensionality

— Able to preserve class in both views

0z
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11-755/18-797
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Comparison to PCA

* PCA fails to preserve class distinctions as well
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o Failure of PCA

 PCA is unsupervised

— Captures the direction of greatest variance

(Energy)

— No notion of task or hence what is good or bad
information

— The direction of greatest variance can sometimes
be noise

— Ok for reconstruction of signal

— Catastrophic for preserving class information in
some cases

11-755/18-797 26
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Benefits of CCA

* Why did CCA work?
— Supervision
e External Knowledge

— The 2 views track each other in a direction that
does not correspond to noise

— Noise suppression (sometimes)

e Preview

— If one of the sets of signals are true labels, CCA is
equivalent to Linear Discriminant Analysis

— Hard Supervision

11-755/18-797 27
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Multiview Assumption

e CCA models both variables as different views of a
common reality
— X and Y are obtained from different views of the same
common space

* The two views are correlated
* But each of the views also loses some information

— E.g the total dimensions of the views of X and Y may be fewer than the
total dimensions of the space

— Each view locally perturbed by noise

* Challenge: Extract the correlated subspaces of X and Y
from their noise

11-755/18-797 28
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Multiview Examples

Here the total dimensionality of the fwo views is greater than the
dimensions of the original data

http://mlg.postech.ac.kr/static/research/multiview_overview.png 11-755/18-797
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Multiview Assumption

e \We can sort of think of a model for how our
data might be generated

 We want View 1 independent of View 2
conditioned on knowledge of the source

— All correlation is due to source

11-755/18-797
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Multiview Examples

* Look at many stocks from different sectors of
the economy
— Conditioned on the fact that they are part of the

same economy they might be independent of one
another

* Multiple Speakers saying the same sentence

* The sentence generates signals from many speakers.
Each speaker might be independent of each other
conditioned on the sentence

11-755/18-797 31
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~ Multiview Assumption

e When does CCA work?

— The correlated subspace must actually have
interesting signal

* |f two views have correlated noise then we will learn a
bad representation

* Sometimes the correlated subspace can be
noise

— Correlated noise in both sets of views

11-755/18-797 32
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*  Why not just concatenate both views?
— E.g.create Z = [XT YT]T and just perform PCA on Z

* |t does not exploit the extra structure of the signal (more on this shortly)
— PCA on joint data will decorrelate all variables

* Also mixes X and Y, whereas we want to predict Y from X

— We want to decorrelate X and Y, but maximize cross-correlation between X
andY

11-755/18-797 33



Recall: Least squares formulae

F=) (-1

X = [Xl,Xz,...,XN] Y = [Yl,Yz,...,YN]

E=|X-Y|%

* Expressing total error as a matrix operation

11-755/18-797
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~ Recall: Objective Functions

* Least Squares
argmin | X — UY||r st. U e€R% rank(U) =k

Y eRkzN

* Older theories of “good” bases

— Energy Compaction = Karhonen-Loéve

argmin | X —UY|r st. UTU =1,
YeRkwN,UeRdwk

— Positive Sparse > NMF

argmin || X —UY||r st. U Y >0
YekaN’UeRdmk

— Regression
argmin ||Y — ,BTXHi
8

11-755/18-797
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A Quick Review

e The effect of a transform on the covariance of
an RV
/ =UX

CXX — E[XXT]

CZZ — E[ZZT] — UCXxUT

11-755/18-797
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~ Recall: Objective Functions

e So far our objective needs no external data

— No knowledge of task

dxk
argmin||X — UY]||% s.t. UeR
YERKXN rank(U) = k

* CCA requires an extra view

— We force both views to look like each other

min kllUTX - VTY||4

UeRdxxk yeR4y>
S. t. UTCXxU — Ik' VTCYYV — Ik

11-755/18-797
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_Interpreting the CCA Objective

* Minimize the reconstruction error between
the projections of both views of data

* Find the subspaces U, IV onto which we
project views X and Y such that their
correlation is maximized

* Find combinations of both views that best
predict each other
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A Quick Review

e Cross Covariance

[y~ BRT

_ [Cxx CXY]
Cyx Cyy

11-755/18-797
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A Quick Review

* Matrix representation

X = [XllXZJ"'lXN] Y = [Yl,Yz,...

1 1
Cyy = Nz XX = NXXT
l
1 1
Cyy = Nz YiYiT — NYYT
l

1 1
Cxy = Nz XiYiT — NXYT
l

11-755/18-797
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Interpreting the CCA Objective
e CCA maximizes correlation between two views

* While keeping individual views uncorrelated

— Uncorrelated measurements are easy to model

min |lUTX — VY|4

UeRdxxk yeRray<k
s.t. UTXX'"U =1, VTYY'V = NI,
S. T. UTCX)(U - Ik' VTnyV - Ik

11-755/18-797 41
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- CCA Derivation

min IUTX — VTY||%

UeRdxxk yeRray>xk
s.t. UTXX'U =1, VTYY'V = NI,

S. t. UTCXXU=IR, VTCYYV=Ik

* Assume Cyy, Cyyare invertible

* Create the Lagrangian and differentiate

11-755/18-797 42
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CCA Derivation

|lUTX — VTY||2 = trace(UTX = VIY)(UTX - VIY)T
= trace(UTXXTU + VTYYTV — UTXYTV — VTYXTD)
= 2Nk — 2trace(UTXY'V)

* So we can solve the equivalent problem below

max trace(U CyvV
nax trace(U” CxyV)

S.t. UTCXxU = Iki VTnyV = Ik

11-755/18-797 43
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CCA Derivation

* Incorporating Lagrangian, maximize
L(Ax,Ay) = tr(U" CxyV)
—tr (((UTCXXU) -~ NIk)AX)
— tr(((VTCyyV) — NI ) Ay

* Remember that the constraints matrices are symmetric
 Alsoforany A, B,
V,tr(AB) = BT
V,tr(ABAY) = A(B + B")

11-755/18-797 44
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CCA Derivation

* Taking derivatives and after a few
manipulations

NAX — NAY — A
 We arrive at the following system of equation

nyU nyVD
OxyV OxxUD

11-755/18-797
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CCA Derivation

'

e Weisolate V
V =CyyCyxUD™!

 We arrive at the following system of equation

CxxCxyCyyCyxU =UD?

CyyCyxCxxCxyV =VD’

11-755/18-797
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) CCA Derivation

 For U we just have to find eigenvectors for

CXX Cxy CYY Cyx
— Basically, the Eigen vectors for the correlation of the vector obtained
by transforming X to Y and back to X

— After normalizing out the local variance

 We then solve for the other view using the expression for I/ on the
previous slide.

* In PCA the eigenvalues were the variances in the PCA bases
directions

* In CCA the eigenvalues are the squared correlations in the canonical
correlation directions

11-755/18-797 47
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Problem

* Combine the system of eigenvalue eigenvector
equations

v =[5 ol 7
Cyx O V 0 Cyy| |V
* Generalized eigenvalue problem
AU = BUA
* We assumed invertible Cxx,Cyy =3B!

* Solve a single eigenvalue/vector equation

B AU =UD

11-755/18-797 48



]OH\IS HOPKINS MLSP
¥ wECCA as Generalized Eigenvalue

Problem
* Rayleigh Quotient
i
Y B A
dmaal B —A) = max Ty
0 1 Ax 4]

T T =
57 2T Br Eﬂ: Az(z" Bz)~ =0

= 2Az(z! Bz) ! — 2 Az(z' Bx)™*2Bz =0

i !l Ax
= Ax — Bx)=20
:L'TBm( * !l Bx %)
' A

1 Bxy

11-755/18-797 49
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Problem

e So the solutions to CCA are the same as those
to the Rayleigh quotient

* PCA is actually also this problem with
A=Cxx, B=1

* We will see that Linear Discriminant Analysis
also takes this form, but first we need to fix a
few CCA things

11-755/18-797 50
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CCA Fixes

 We assumed invertibility of covariance
matrices.

— Sometimes they are close to singular and we
would like stable matrix inverses

— |f we added a small positive diagonal element to
the covariances then we could guarantee
invertibility.

* |t turns out this is equivalent to regularization



JOHNS HOPKINS MLSP
¥ ENGINEERING

CCA Fixes

* The following problems are equivalent

— They have the same gradients

min [|UTX - VIYIZ + 2, UNE + A, IVIIE

max trace(UTXYTV)

S.t. UT (CX)(‘l‘/lxI)U — Ik, VT (ny+/1yI)V — Ik

* The previous solution still applies but with slightly
different autocovariance matrices

— “Diagonal load” the autocovariances

11-755/18-797 52
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CCA Fixes

* Since we now have strictly positive
autocovariance matrices, we know they have
Cholesky decompositions.

(Cxx +Acl) =Lyx Ly
* This results in the following problem

_1 .
Ly%Cxy(Cyy + M) Cyx(Lx%)'U=UD

* We note that the matrix is symmetric and
* So the problem is solved by SVD on the matrix M
L;{%‘{CXY(CYY + 2, I) " Cyx (L;L%‘{)T = MM" with M = L;C.%?{CXY(CYY i )‘yf)_é

11-755/18-797 53
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'What to do with the CCA Bases?

 The CCA Bases are important in their own
right.
— Allow us a generalized measure of correlation

— Compressing data into a compact correlative basis
* For machine learning we generally ...

— Learn a CCA basis for a class of data

— Project new instances of data from that class onto
the learned basis

— This is called multi-view learning

11-755/18-797 54



JOHNS HOPKINS MLSP
WH]TiNG‘SCHOOL

of ENGINEERING

Multiview Setup

it

i Projected
Test View 1

11-755/18-797 55
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e Often one view consists of measurements that
are very hard to collect
— Speakers all saying the same sentence
— Articulatory measurements along with speech
— Odd camera angles
— Etc.

11-755/18-797 56
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Multiview Setup

e We learn the correlated direction from data
during training

e Constrain the common view to lie in the
correlated subspace at test time
— Removes useless
information (Noise)

11-755/18-797 http://ema.umcs.pl/pl/laboratorium/
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Linear Discriminant Analysis

10

Given data from two classes
Find the projection U

11-755/18-797

Such that the separation between the classes is maximum
along U

— Y = U"X is the projection bases in U
— No other basis separates the classes as much as U

58
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" Linear Discriminant Analysis

e We have 2 views as in CCA

e One of the views is the class labels of the data

— Learn the direction that is maximally correlated
with the class labels!

* |t turns out that LDA and CCA are equivalent
when the situation above is true

11-755/18-797 59
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LDA Formulation

* LDA setup

— Assume classes are roughly Gaussian

* Still works if they are not, but not as well

— We know the class membership of our training
data

— Classes are distinguishable by ...
* Big gaps between classes with no data points
* Relatively compact clusters

11-755/18-797 60
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LDA Formulation

* LDA setup

®
"
!

| “--~I["' lo',l"
4,

i.‘

N
- -
.l-r
: :
F ik T

11-755/18-797
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LDA Formulation

e We define a few Quantities

— Within-class scatter

K
SW:ZSk N = Z(Xn_mk)(xn — mrig )"
=1

nelCy
* Minimize how far points can stray from the mean

* Compact classes

— Between-class scatter

* Maximize the variance of the class means (distance

between means)
K

Sp = E Ng(myp — m)(my — m}T
k=1
11-755/18-797 62
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LDA Formulation

e We want a small within-class variance

 We want a high between-class variance

e Let’s maximize the ratio of the two!!

* Remember we are looking for the basis W
onto which projections maximize this ratio

— Key concept: what is the covariance of Y = WTX
given Cy,?

11-755/18-797 63



Recall: Effect of projection on
scatter
let Y = WTX

Let S and Sy, be the between and within
class scatter of X

Within class scatter of Y: Sy, = WIS, W
Between class scatter of Y: Sg = WTSzW

Must maximize S§ while minimizing Sy,.

11-755/18-797
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LDA Formulation
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* We actually have too much freedom

— Without any constraints on W/

 Let’s fix the within-class variance to be 1.

argmaxTr (WLSgW) st. WiSyW =1
W eRdzk

— The Lagrangianiis ...

L(A) = argmaxTr (WLSgW) — Tr(WT Sy W — I)A)
WeRdzk

— So we see that we have a generalized eigenvalue solution
Sgw = AS,,w

 wisanycolumn of W and A is a diagonal entry of A

11-755/18-797 65
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e When does LDA fail?

* When classes do not fit into our model of a blob

 We assumed classes are separated by means

 They might be separated
by variance

* We can fix this using

heteroscedastic LDA

— Fixes the assumption of
shared covariance across
class.

https://www.Isv.uni-
saarland.de/fileadmin/teaching/dsp/ss15/DSP2016/matdid437773.pdf

11-755/18-797 66
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LDA for classification

 For each class assume a Gaussian Distribution

* Estimate parameters of the Gaussian

 We want argmax P(Y =K | X)

 We use Bayes rule
PlY=K | X)=P(X | Y=K)P(Y=K)
 We end up with linear decision surfaces between classes

Py = k|X)

log (

Py = I|X)

) =0& (uk— )T X =

11-755/18-797

(hZ ™ g — S )

[

For the best classification,
perform Bayes
classification on the LDA
projections
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“*Bakeoff — PCA, CCA, LDA on Vowel"
Classification

* Speech is produced by an excitation in the glottis (vocal

folds)
* Sound is then shaped with the tongue, teeth, soft palate ...
* This shaping is what

generates the

nosc

different vowels

upper hip

https://www.youtube.com/watch?v=58 AJVa ¥
JZOU#t=00m36s

11-755/18-797 68



¥"Bakeoff — PCA, CCA, LDA on Vowel
Classification

* To represent where in the mouth the vowels are being
shaped linguists have something called a vowel diagram

* |t classifies vowels as front-back, open-closed depending
on tongue position

VOWELS - wift F;h:-: |:'|.I|:'||.1III]-
Front Central Back
Close i y i:. H lu. u
1Y O
upper hp

Closemid C@@—— 9 O0——Y¥eO i

L lower lip

pharynx
Open-mid £ CE—S\G — A®D
e

Open de(E A— deD

Where symbols appear in pairs, the one to the right
represents a rounded vowel
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V"Bakeoff — PCA, CCA, LDA on Vowel
Classification
e Task:

— Discover the vowel chart from data

* CCA on Acoustic and Articulatory View

— Project Acoustic data onto top 3 dimensions

PCA CCA

VOWELS VOWELS
Front Central Back Front Central Back
Close 1@ Y te © We U Close i y ie U

Y 0
Closemid C@@— 90— Y¥eoO Closemid €w @—— 98 ©
o
Open-mid E RO 3\6 — A®D Open-mid
T e
Open gw de(E A— QeD Open

Where symbols appear in pairs, the one to the right Where symbols appear in pairs, the one to the right
represents a rounded vowel 11-755/18réprésents a rounded vowel 70



V”Bakeoff — PCA, CCA, LDA on Vowel
Classification

e Using a one hot encoding of labels as a view
gives LDA

CCA LDA

VOWELS VOWELS
Front Central Back Front Central Back
Close 1 y te t We U Close 1
IY O
Closemid €@ @—— 98 © ¥eO Close-mid
9
Open-mid Eae— 3\6 —A®D Open-mid
* IIAEII & I|AEI|
* IIAOII & B "AO" & B
IlIYII * n IY“
Open ow| awE 2\ aep Open ow A N\ aep
Where symbols appear in pairs, the one to the right Where symbols appear in pairs, the one to the right
represents a rounded vowel represents a rounded vowel
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 Another Example of CCA
— Word is mapped into some vector space

— A notion of distance between words is defined
and the mapping is such that words that are
semantically similar are mapped to near to each

- therapy &)

other (hopefully) & noaponia :

langu
R societyValUes emjgrants ® fﬁé!ﬁ/ : 5
® g'cs .”tﬁpélﬁsophy g. ﬁct% classical_mu

ditasty!|® tRSs@mplishment ® Y r
°® ® clgmentany_schools
talgs oAU e o o vigh
raﬁs?uga%sfﬁm. educgatidnacﬁﬁ%%hom Bl
ke nanotechnolugiwersity studefMs. ... ipgarf3! ite
\tpenageaniants’ o
wetﬁ%rasts r&ég%ﬁyQoll.ege ee o 2
2 spagles % ey
!ered_sp_ec@%@“ﬂ“ugﬁﬁ%’om {flg disabled pe
CQMQ&E ree di doption adults
® orticulture _audit g ® deki
;wabl.e_energy @ <accoultin esign

social_networkiagarity reno®tiol

) ® |

-oal ethics  vaccines > . radio ®

tele A "

B gas | @ o Beutical lobbying %?é%.mf“hm

E. H8ulation @ peiris s bata! dr
taxati s : e
ey Qtaw,supmﬁwgﬁwsaér vl

http://gyz@Mgiz}&_:]Q@mﬂZvec-on-databrickS/
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Multilingual CCA

 What if parallel text in another language

exists?

 What if we could generate words in another

language?
Use different
languages as
different views

- therapy e

sl demog.raphics 2
® langul
: ity Values d iﬁéfﬁf 5
)g}:aﬂguzs souetﬁw.sophyemlgrants [ ] - ® classmal mu
ctio
dj&styl! tmmphshment Q 'Y
® clermentany_schools
, enV|ronmerl1ttIes a.ma V'BH
‘5“0“” a%sﬁ’ﬂm educatideac %hool A atlo
”Vim nanotechnolugwgrslty Ude,.ﬁ&gnagém‘alﬂ%
orests r ég%ﬁy ollege
g o
ma
red spec g‘zgnngﬁﬁ fHg disabled pe
cﬁﬁﬂﬂéﬂé dit doption adults
® orticulture auai &) d
zwable_energy @ coulting |_networki esign
3 @ [ ] social_networ I%”ty renOﬁth\
-oal ethics vaccines radio®
tele
Jﬁl _gas @ pharmeﬂeutlpcal lobbying Wé%.cefeblm

@
lation
taxat'mcktary supﬂ“‘#%@%saér s ,!ewenld'

http://www.trivial.io/word2vec-on-databricks/
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600 . . . . . r .
pretty
4001 awfil . cute
foul charming
ugly gorgeous ..elous
magnificent
200 id.. .
elegant splendig hideous beastly
grotesque  horid
_D -
elegant’ charming' cute’
—200F gorgeous'  pretty’ ugly’ : 'ug.b.uuv'
magnificent’ hideous’
lendid' awful’
o - harrict
—_400}t marvelous’ foul'
_EGD 1 1 1 1 i 1
—400 —-300 —-200 —100 0 100 200 300 400

Faruqui, Manaal, and Chris Dyer. "Improving vector space word representations using multilingual
correlation."” Association for Computational Linguistics, 2014.
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Fisher Faces

* We can apply LDA to the same faces we all
know and love.

— The details, especially stranger ones such as eye
depth emerge as discriminating |

features
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Conclusions

* LDA learns discriminative representations by
using supervision
— Knowledge of Labels

 CCA is equivalent to LDA when one view is
labels

— CCA provides soft supervision by exploiting
redundant view of data
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