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Definitions: Variance and 
Covariance

• Variance:   SXX = E[(X-m)(X-m)T]  
– Estimated as SXX = (1/N) (X-avg(X)) (X-avg(X))T

– How “spread” is the data in the direction of X (assuming 0 mean)

– Scalar version: ௫
ଶ ଶ

• Covariance: SXY = E [(X-mX)(X-mY)T] 
– Estimated as SXY = (1/N) (X-avg(X)) (Y-avg(Y))T

– How much does X predict Y (assuming 0 mean)

– Scalar version: ௫௬ ௫ ௬
11-755/18-797 2

௬

௫

௫௬



Definition: Whitening Matrix

• Whitening matrix: 
• Transforms the variable to unit variance
• Scalar version: 

11-755/18-797 3

௜

 

௜

௑௑
ି଴.ହ

௑௑
ି଴.ହ

If X is already centered



Definition: Correlation Coefficient

• Normalized Correlation: 

• Scalar version: 

– Explains how Y varies with , after normalizing 
out innate variation of and 
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MLSP
• Application of Machine Learning techniques to the 

analysis of signals 

• Feature Extraction:  

– Supervised (Guided) representation
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Bases to represent data
• Basic:  The bases we considered first were data agnostic

– Fourier / Wavelet type bases, which did not consider the 
characteristics of the data

• Improvement I:  The bases we saw next were data specific
– PCA, NMF, ICA, ...

• Different techniques emphasize different aspects of the data

– The bases changed depending on the data characteristics
– But do not consider what the data are used for

• I.e. they are data dependent, but independent of the task

• Improvement II:  What if bases are both data specific and 
task specific?
– Basis depends on both the data and the task being performed
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Recall: Data-dependent bases

• What is a good basis?
– Energy Compaction  Karkhonen-Loève

– Retain maximum variance  PCA
• Also uncorrelatedness of representation

– Sparsity  Overcomplete bases

– Constructive composability  NMF

– Statistical Independence  ICA

• We create a narrative about how the data are 
created
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Task-dependent bases?
• Task: Regression

– We attempt to predict some variable Y using a variable X
• Via linear regression

• Standard data-driven bases:  
– Find a representation of X that best captures the characteristics of X

• Without considering Y

– Find a representation of Y that best captures the characteristics of Y
• Without considering X

– The two representations are independently learned
– Try to predict (learned representation of) Y from the (learned representation of) X

• Can we do better if the bases used to represent X and Y are jointly 
learned?
– Such that the learned representation of X is now better able to predict the learned 

representation of Y

11-755/18-797 9



Task-dependent bases?

• Task: Classification
– We attempt to assign a class Y to input data X

• Standard data-driven bases:
– Find a representation of X that best captures the characteristics of X

• Without considering Y

– Try to predict Y from the (learned representation of) X

• Can we do better if the bases used to represent X 
considering the classes Y?
– Such that the learned representation of X are more useful for 

classification of X into Y
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Supervised learning of bases

• Problems are instances of supervised learning of bases
– Supervision provided by variable Y

• What is a good basis?
– Basis that gives best classification performance
– Basis that results in best regression performance

• Here bases can be  jointly learned for both independent variable X 
and dependent variable Y

– In general: Basis that maximizes shared information with 
another ‘view’
• The second “view” is the task
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Regression
• Simplest case

– Given a bunch of scalar data points predict some 
value

– Years are independent
– Temperature

is dependent

– = temperature

–
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Regression

• Formulation of problem

–

–

• Solving: 
–

–
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Regression
• Formulation of problem

• Solving: 
–

• Note that this looks a lot like 

– In the 1-d case where predicts this is just … 
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Multiple Regression
• Robot Archer Example

– A robot fires defective arrows at a target
• We don’t know how wind might affect their movement, 

but we’d like to correct for it if possible.

– Predict the distance from the center of a target of 
a fired arrow

• Measure wind speed in 
3 directions 
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Multiple Regression

• Wind speed

• Offset from center in 2 directions
• Model
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Multiple Regression

• Answer

– Here contains measurements of the distance of 
the arrow from the center

– 
We are fitting a plane

– Correlation is basically
just the gradient of the 
plane
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Focusing on what’s important
• Do all wind factors affect the position

– Or just some low-dimensional combinations 

• Do they affect both coordinates individually
– Or just some of combination 
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Canonical Correlation Analysis
• Find a projection of wind vector , and a projection of 

arrow location vector such that the projection of 
best predicts the projection of 
– The projection of the vectors for and respectively that 

are most correlated
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Canonical Correlation Analysis

• What do these vectors represent?
– Direction of max correlation ignores parts of wind 

and location data that do not affect each other
• Only information about the defective arrow remains!
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CCA Motivation and History

• Proposed by Hotelling (1936)
• Many real world problems involve 2 ‘views’ of data

• Economics
– Consumption of wheat is related to the price of 

potatoes, rice and barley … and wheat
– Random vector of prices X
– Random vector of consumption Y
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CCA Motivation and History

• Magnus Borga, David Hardoon popularized 
CCA as a technique in signal processing and 
machine learning

• Better for dimensionality reduction in many 
cases
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CCA Dimensionality Reduction

• We keep only the correlated subspace
• Is this always good?

– If we have measured things we care about then 
we have removed useless information
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CCA Dimensionality Reduction

• In this case:
– CCA found a basis component that preserved  

class distinctions while reducing dimensionality
– Able to preserve class in both views
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Comparison to PCA

• PCA fails to preserve class distinctions as well
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Failure of PCA

• PCA is unsupervised
– Captures the direction of greatest variance 

(Energy)
– No notion of task or hence what is good or bad 

information
– The direction of greatest variance can sometimes 

be noise
– Ok for reconstruction of signal
– Catastrophic for preserving class information in 

some cases
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Benefits of CCA

• Why did CCA work?
– Supervision

• External Knowledge

– The 2 views track each other in a direction that 
does not correspond to noise 

– Noise suppression (sometimes)

• Preview
– If one of the sets of signals are true labels, CCA is 

equivalent to Linear Discriminant Analysis
– Hard Supervision
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Multiview Assumption
• CCA models both variables as different views of a 

common reality
– X and Y are obtained from different views of the same 

common space
• The two views are correlated
• But each of the views also loses some information

– E.g the total dimensions of the views of X and Y may be fewer than the 
total dimensions of the space

– Each view locally perturbed by noise

• Challenge: Extract the correlated subspaces of X and Y 
from their noise 
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Multiview Examples

11-755/18-797 29http://mlg.postech.ac.kr/static/research/multiview_overview.png

Here the total dimensionality of the two views is greater than the
dimensions of the original data



Multiview Assumption

• We can sort of think of a model for how our 
data might be generated

• We want View 1 independent of View 2 
conditioned on knowledge of the source
– All correlation is due to source
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Multiview Examples

• Look at many stocks from different sectors of 
the economy
– Conditioned on the fact that they are part of the 

same economy they might be independent of one 
another

• Multiple Speakers saying the same sentence
• The sentence generates signals from many speakers. 

Each speaker might be independent of each other 
conditioned on the sentence
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Multiview Assumption

• When does CCA work?
– The correlated subspace must actually have 

interesting signal
• If two views have correlated noise then we will learn a 

bad representation

• Sometimes the correlated subspace can be 
noise
– Correlated noise in both sets of views
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Why two views?
• Why not just concatenate both views?

– E.g. create ் ் ் and just perform PCA on 

• It does not exploit the extra structure of the signal (more on this shortly)
– PCA on joint data will decorrelate all variables

• Also mixes 𝑋 and 𝑌, whereas we want to predict 𝑌 from 𝑋

– We want to decorrelate and , but maximize cross-correlation between 
and 
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Recall: Least squares formulae

• Expressing total error as a matrix operation
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Recall: Objective Functions

• Least Squares

• Older theories of “good” bases
– Energy Compaction  Karhonen-Loève

– Positive Sparse  NMF

– Regression
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A Quick Review

• The effect of a transform on the covariance of 
an RV
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Recall: Objective Functions

• So far our objective needs no external data
– No knowledge of task

• CCA requires an extra view 
– We force both views to look like each other
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Interpreting the CCA Objective

• Minimize the reconstruction error between 
the projections of both views of data

• Find the subspaces onto which we 
project views and such that their 
correlation is maximized

• Find combinations of both views that best 
predict each other
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A Quick Review

• Cross Covariance
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A Quick Review

• Matrix representation
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Interpreting the CCA Objective

• CCA maximizes correlation between two views

• While keeping individual views uncorrelated
– Uncorrelated measurements are easy to model
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CCA Derivation

• Assume , are invertible

• Create the Lagrangian and differentiate
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CCA Derivation

• So we can solve the equivalent problem below
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CCA Derivation

• Incorporating Lagrangian, maximize

• Remember that the constraints matrices are symmetric
• Also for any , 

11-755/18-797 44



CCA Derivation

• Taking derivatives and after a few 
manipulations

• We arrive at the following system of equation
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CCA Derivation

• We isolate 

• We arrive at the following system of equation
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CCA Derivation
• For we just have to find eigenvectors for

௑௑
ିଵ

௑௒ ௒௒
ିଵ

௒௑

– Basically, the Eigen vectors for the correlation of the vector obtained 
by transforming to and back to 

– After normalizing out the local variance

• We then solve for the other view using the expression for on the 
previous slide.

• In PCA the eigenvalues were the variances in the PCA bases 
directions

• In CCA the eigenvalues are the squared correlations in the canonical 
correlation directions
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CCA as Generalized Eigenvalue 
Problem

• Combine the system of eigenvalue eigenvector 
equations

• Generalized eigenvalue problem

• We assumed invertible 

• Solve a single eigenvalue/vector equation
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CCA as Generalized Eigenvalue 
Problem 

• Rayleigh Quotient
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CCA as Generalized Eigenvalue 
Problem 

• So the solutions to CCA are the same as those 
to the Rayleigh quotient

• PCA is actually also this problem with

• We will see that Linear Discriminant Analysis 
also takes this form, but first we need to fix a 
few CCA things
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CCA Fixes

• We assumed invertibility of covariance 
matrices.
– Sometimes they are close to singular and we 

would like stable matrix inverses
– If we added a small positive diagonal element to 

the covariances then we could guarantee 
invertibility. 

• It turns out this is equivalent to regularization
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CCA Fixes

• The following problems are equivalent
– They have the same gradients

• The previous solution still applies but with slightly 
different autocovariance matrices
– “Diagonal load” the autocovariances
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CCA Fixes

• Since we now have strictly positive 
autocovariance matrices, we know they have 
Cholesky decompositions.

• This results in the following problem

• We note that the matrix is symmetric and 
• So the problem is solved by SVD on the matrix M
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What to do with the CCA Bases?

• The CCA Bases are important in their own 
right.
– Allow us a generalized measure of correlation
– Compressing data into a compact correlative basis

• For machine learning we generally …
– Learn a CCA basis for a class of data
– Project new instances of data from that class onto 

the learned basis
– This is called multi-view learning
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Multiview Setup

Train
View 1

Train
View 2

CCA

U

V

Test
View 1

Projected 
Test View 1

Down 
Stream 

Task
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Multiview Setup

• Often one view consists of measurements that 
are very hard to collect
– Speakers all saying the same sentence
– Articulatory measurements along with speech
– Odd camera angles
– Etc.
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Multiview Setup

• We learn the correlated direction from data 
during training

• Constrain the common view to lie in the 
correlated subspace at test time
– Removes useless 
information (Noise)

http://ema.umcs.pl/pl/laboratorium/11-755/18-797 57



Linear Discriminant Analysis

• Given data from two classes
• Find the projection U
• Such that the separation between the classes is maximum 

along U
– Y = UTX is the projection bases in U
– No other basis separates the classes as much as U
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Linear Discriminant Analysis

• We have 2 views as in CCA
• One of the views is the class labels of the data

– Learn the direction that is maximally correlated 
with the class labels!

• It turns out that LDA and CCA are equivalent 
when the situation above is true
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LDA Formulation

• LDA setup
– Assume classes are roughly Gaussian

• Still works if they are not, but not as well

– We know the class membership of our training 
data

– Classes are distinguishable by …
• Big gaps between classes with no data points
• Relatively compact clusters
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LDA Formulation

• LDA setup

11-755/18-797 61



LDA Formulation

• We define a few Quantities
– Within-class scatter

• Minimize how far points can stray from the mean
• Compact classes

– Between-class scatter
• Maximize the variance of the class means (distance 

between means)
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LDA Formulation

• We want a small within-class variance
• We want a high between-class variance
• Let’s maximize the ratio of the two!!

• Remember we are looking for the basis W 
onto which projections maximize this ratio
– Key concept: what is the covariance of 

given ?
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Recall: Effect of projection on 
scatter

• Let  
• Let and be the between and within 

class scatter of 

• Within class scatter of 
• Between class scatter of 
• Must maximize while minimizing .
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• We actually have too much freedom
– Without any constraints on 
• Let’s fix the within-class variance to be 1.

– The Lagrangian is …

– So we see that we have a generalized eigenvalue solution

• is any column of and is a diagonal entry of 

LDA Formulation
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LDA Formulation

• When does LDA fail?
• When classes do not fit into our model of a blob
• We assumed classes are separated by means
• They might be separated

by variance
• We can fix this using

heteroscedastic LDA
– Fixes the assumption of 

shared covariance across
class.

https://www.lsv.uni-
saarland.de/fileadmin/teaching/dsp/ss15/DSP2016/matdid437773.pdf

11-755/18-797 66



LDA for classification

• For each class assume a Gaussian Distribution
• Estimate parameters of the Gaussian
• We want argmax P(Y = K | X) 
• We use Bayes rule 
P(Y = K | X ) = P(X | Y = K )P(Y = K)
• We end up with linear decision surfaces between classes
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Bakeoff – PCA, CCA, LDA on Vowel 
Classification

• Speech is produced by an excitation in the glottis (vocal 
folds)

• Sound is then shaped with the tongue, teeth, soft palate …
• This shaping is what

generates the
different vowels

https://www.youtube.com/watch?v=58AJya7
JzOU#t=00m36s
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Bakeoff – PCA, CCA, LDA on Vowel 
Classification

• To represent where in the mouth the vowels are being 
shaped linguists have something called a vowel diagram

• It classifies vowels as front-back, open-closed depending 
on tongue position
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Bakeoff – PCA, CCA, LDA on Vowel 
Classification

• Task:
– Discover the vowel chart from data

• CCA on Acoustic and Articulatory View
– Project Acoustic data onto top 3 dimensions
PCA CCA
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Bakeoff – PCA, CCA, LDA on Vowel 
Classification

• Using a one hot encoding of labels as a view 
gives LDA

CCA LDA
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Multilingual CCA 

72

• Another Example of CCA
– Word is mapped into some vector space
– A notion of distance between words is defined 

and the mapping is such that words that are 
semantically similar are mapped to near to each 
other (hopefully)

520-412/520-612http://www.trivial.io/word2vec-on-databricks/
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Multilingual CCA 
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• What if parallel text in another language 
exists?

• What if we could generate words in another 
language?

• Use different
languages as
different views

http://www.trivial.io/word2vec-on-databricks/



Multilingual CCA 
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Faruqui, Manaal, and Chris Dyer. "Improving vector space word representations using multilingual 
correlation." Association for Computational Linguistics, 2014.



Fisher Faces
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• We can apply LDA to the same faces we all 
know and love.
– The details, especially stranger ones such as eye 

depth emerge as discriminating
features



Conclusions
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• LDA learns discriminative representations by 
using supervision
– Knowledge of Labels

• CCA is equivalent to LDA when one view is 
labels
– CCA  provides soft supervision by exploiting 

redundant view of data


