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You’ve been kidnapped

And blindfolded

You can only hear the car
You must find your way back home from wherever they
drop you off



Kidnapped

• Determine automatically, by only listening to a running 
automobile, if it is:

– Idling; or

– Travelling at constant velocity; or

– Accelerating; or

– Decelerating

• You are super acoustically sensitive and can determine 
sound pressure level (SPL)

– The SPL is measured once per second
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What you know

• An automobile that is at rest can accelerate, or 

continue to stay at rest

• An accelerating automobile can hit a steady-

state velocity, continue to accelerate, or 

decelerate

• A decelerating automobile can continue to 

decelerate, come to rest, cruise, or accelerate

• A automobile at a steady-state velocity can 

stay in steady state, accelerate or decelerate
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What else you know

• The probability distribution of the SPL of the 
sound is different in the various conditions
– As shown in figure

• In reality, depends on the car

• The distributions for the different conditions 
overlap
– Simply knowing the current sound level is not enough 

to know the state of the car 
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The Model!

• The state-space model
– Assuming all transitions from a state are equally probable

– We will help you find your way back home in the next class
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What is an HMM

• The model assumes that the process can be in one of a number 
of states at any time instant

• The state of the process at any time instant depends only on the 
state at the previous instant (causality, Markovian)

• At each instant the process generates an observation from a 
probability distribution that is specific to the current state

• The generated observations are all that we get to see
– the actual state of the process is not directly observable 

• Hence the qualifier hidden
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• “Probabilistic function of a markov chain”

• Models a dynamical system

• System goes through a number of states
– Following a Markov chain model

• On arriving at any state it generates observations according to 
a state-specific probability distribution
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• A Hidden Markov Model consists of two components

– A state/transition backbone that specifies how many states there are, 

and how they can follow one another

– A set of probability distributions, one for each state, which specifies the 

distribution of all vectors in that state
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HMM assumed to be 

generating data

How an HMM models a process

state 

distributions

state 

sequence

observation

sequence
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HMM Parameters

• The topology of the HMM

– Number of states and allowed 
transitions

– E.g. here we have 3 states and cannot 
go from the blue state to the red

• The transition probabilities

– Often represented as a matrix as here

– Tij is the probability that when in 
state i, the process will move to j

• The probability pi of beginning at 
any state si

– The complete set is represented as p

• The state output distributions
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Three Basic HMM Problems

• What is the probability that it will generate a 
specific observation sequence

• Given a observation sequence, how do we 
determine which observation was generated 
from which state

– The state segmentation problem

• How do we learn the parameters of the HMM 
from observation sequences 
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Computing the Probability of  an 
Observation Sequence

• Two aspects to producing the observation:

– Progressing through a sequence of states

– Producing observations from these states
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HMM assumed to be 

generating data

Progressing through states

state 

sequence

• The process begins at some state (red) here

• From that state, it makes an allowed transition

– To arrive at the same or any other state

• From that state it makes another allowed transition

– And so on
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Probability that the HMM will follow 
a particular state sequence

• P(s1) is the probability that the process will initially be in 
state s1

• P(si | si) is the transition probability of moving to state si at 
the next time instant when the system is currently in si

– Also denoted by Tij earlier
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HMM assumed to be 

generating data

Generating Observations from States

state 

distributions

state 

sequence

observation

sequence

• At each time it generates an observation from the 
state it is in at that time
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P o o o s s s P o s P o s P o s( , , ,...| , , ,...) ( | ) ( | ) ( | )...
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• P(oi | si) is the probability of generating 

observation oi when the system is in state si

Probability that the HMM will generate 
a particular observation sequence given 

a state sequence 
(state sequence known)

Computed from the Gaussian or Gaussian mixture for state s1
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HMM assumed to 

be generating data

Proceeding through States and 
Producing Observations

state 

distributions

state 

sequence

observation

sequence

• At each time it produces an observation and makes 
a transition
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Probability that the HMM will generate a 
particular state sequence and from it, a 

particular observation sequence

P o s P o s P o s P s P s s P s s( | ) ( | ) ( | )... ( ) ( | ) ( | )...
1 1 2 2 3 3 1 2 1 3 2

P o o o s s s( , , ,..., , , ,...)
1 2 3 1 2 3

=

P o o o s s s P s s s( , , ,...| , , ,...) ( , , ,...)
1 2 3 1 2 3 1 2 3

=
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Probability of Generating an 
Observation Sequence

P o s P o s P o s P s P s s P s s
all possible

state sequences

( | ) ( | ) ( | )... ( ) ( | ) ( | )...
.

.
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P o o o s s s
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( , , ,..., , , ,...)
.

.
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• The precise state sequence is not known

• All possible state sequences must be considered
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Computing it Efficiently

• Explicit summing over all state sequences is not 
tractable

– A very large number of possible state sequences

• Instead we use the forward algorithm

• A dynamic programming technique.
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Illustrative Example

• Example: a generic HMM with 5 states and a “terminating 
state”. 
– Left to right topology

• P(si) = 1 for state 1 and 0 for others

– The arrows represent transition for which the probability is not 0

• Notation:

– P(si | si) = Tij

– We represent P(ot | si) = bi(t) for brevity
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Introducing the Trellis

• Draw grid showing state vs time

• Explain state
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Introducing the Trellis

• Draw grid showing state vs time

• Explain state

• Show a single path and explain how it’s a state 
sequence
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• Draw entire trellis and show its all paths
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Introducing the Trellis

• Draw grid showing state vs time

• Explain state

• Show a single path and explain how it’s a state 
sequence

• Draw entire trellis and show its all paths

• Introduce alpha from time 0 in fact
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Introducing the Trellis

• Draw grid showing state vs time

• Explain state

• Show a single path and explain how it’s a state 
sequence

• Draw entire trellis and show its all paths

• Introduce alpha from time 0 in fact

• Explain alpha at next time

• Then recurse
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Diversion: The Trellis

Feature vectors

(time)
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• The trellis is a graphical representation of all possible paths through the HMM to 
produce a given observation

• The Y-axis represents HMM states, X axis represents observations

• Every edge in the graph represents a valid transition in the HMM over a single 
time step 

• Every node represents the event of a particular observation being generated 
from a particular state
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The Forward Algorithm

time
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• a(s,t) is the total probability of ALL state 
sequences that end at state s at time t, and 
all observations until xt
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The Forward Algorithm

time
t-1 t

Can be recursively 

estimated starting 

from the first time 

instant 

(forward recursion)
s
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• a(s,t) can be recursively computed in terms of 
a(s’,t’), the forward probabilities at time t-1 
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• In the final observation the alpha at each state gives the 
probability of all state sequences ending at that state

• General model: The total probability of the observation is 
the sum of the alpha values at all states
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Problem 2: State segmentation

• Given only a sequence of observations, how 
do we determine which sequence of states 
was followed in producing it?
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HMM assumed to be 

generating data

The HMM as a generator

state 

distributions

state 

sequence

observation

sequence

• The process goes through a series of states and 
produces observations from them
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HMM assumed to be 

generating data

state 

distributions

state 

sequence

observation

sequence

• The observations do not reveal the underlying state
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States are hidden



HMM assumed to be 

generating data

state 

distributions

state 

sequence

observation

sequence

• State segmentation: Estimate state sequence given 
observations
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The state segmentation problem



P o o o s s s( , , ,..., , , ,...)
1 2 3 1 2 3

=

Estimating the State Sequence

• Many different state sequences are capable of 
producing the observation

• Solution: Identify the most probable state sequence

– The state sequence for which the probability of 
progressing through that sequence and generating the 
observation sequence is maximum

– i.e is maximum
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Estimating the state sequence

• Once again, exhaustive evaluation is impossibly 
expensive

• But once again a simple dynamic-programming 
solution is available

• Needed:
)|()|()|()|()()|(maxarg 23331222111,...,, 321

ssPsoPssPsoPsPsoPsss
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Estimating the state sequence

• Once again, exhaustive evaluation is impossibly 
expensive

• But once again a simple dynamic-programming 
solution is available

• Needed:
)|()|()|()|()()|(maxarg 23331222111,...,, 321

ssPsoPssPsoPsPsoPsss
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HMM assumed to be 

generating data

The HMM as a generator

state 

distributions

state 

sequence

observation

sequence

• Each enclosed term represents one forward 
transition and a subsequent emission
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The state sequence

• The probability of a state sequence ?,?,?,?,sx,sy ending at 

time t , and producing all observations until ot

– P(o1..t-1, ?,?,?,?, sx , ot,sy) = P(o1..t-1,?,?,?,?, sx ) P(ot|sy)P(sy|sx)

• The best state sequence that ends with sx,sy at t will have 

a probability equal to the probability of the best state 

sequence ending at t-1 at sx times P(ot|sy)P(sy|sx)
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Extending the state sequence

state 

distributions

state 

sequence

observation

sequence

• The probability of a state sequence ?,?,?,?,sx,sy

ending at time t and producing observations until ot

– P(o1..t-1,ot, ?,?,?,?, sx ,sy) = P(o1..t-1,?,?,?,?, sx )P(ot|sy)P(sy|sx)

11755/18797 57

t

sx sy



Trellis
• The graph below shows the set of all possible state 

sequences through this HMM in five time instants

11755/18797 58

time
t



The cost of extending a state 
sequence

• The cost of extending a state sequence ending at sx is 
only dependent on the transition from sx to sy, and 
the observation probability at sy
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The cost of extending a state 
sequence

• The best path to sy through sx is simply an 
extension of the best path to sx
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The Recursion

• The overall best path to sy is an extension of 
the best path to one of the states at the 
previous time
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The Recursion

◼ Prob. of best path to sy = 
Maxsx

BestP(o1..t-1,?,?,?,?, sx ) P(ot|sy)P(sy|sx)
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Finding the best state sequence

• The simple algorithm just presented is called the VITERBI 
algorithm in the literature
– After A.J.Viterbi, who invented this dynamic programming algorithm for a 

completely different purpose: decoding error correction codes!
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Viterbi Search (contd.)
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time
Initial state initialized with path-score = P(s1)b1(1)

In this example all other states have score 0 since P(si) = 0 for 

them



Viterbi Search (contd.)
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time

State with best path-score

State with path-score < best

State without a valid path-score

P (t)
j

= max [P (t-1) t   b  (t)]
i ij ji

Total path-score ending up at state j at time t

State transition probability, i to j

Score for state j, given the input at time t



Viterbi Search (contd.)

11755/18797 66

time

P (t)
j

= max [P (t-1) t   b  (t)]
i ij ji

Total path-score ending up at state j at time t

State transition probability, i to j

Score for state j, given the input at time t



Viterbi Search (contd.)
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Viterbi Search (contd.)
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Viterbi Search (contd.)

11755/18797 69

time



Viterbi Search (contd.)
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Viterbi Search (contd.)
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Viterbi Search (contd.)
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Viterbi Search (contd.)
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Viterbi Search (contd.)

11755/18797 74

time

THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE

SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION



Problem3: Training HMM parameters

• We can compute the probability of an observation, 
and the best state sequence given an observation, 
using the HMM’s parameters

• But where do the HMM parameters come from?

• They must be learned from a collection of 
observation sequences
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Learning HMM parameters: Simple 
procedure – counting

• Given a set of training instances

• Iteratively:

1. Initialize HMM parameters

2. Segment all training instances

3. Estimate transition probabilities and state 
output probability parameters by counting
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Learning by counting example

• Explanation by example in next few slides
• 2-state HMM, Gaussian PDF at states, 3 observation 

sequences
• Example shows ONE iteration

– How to count after state sequences are obtained
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Example: Learning HMM Parameters

• We have an HMM with two states s1 and s2.

• Observations are vectors xij
– i-th sequence,  j-th vector

• We are given the following three observation sequences
– And have already estimated state sequences
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Time 1 2 3 4 5 6 7 8 9 10

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9

state S2 S2 S1 S1 S2 S2 S2 S2 S1

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8

state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3



Example: Learning HMM Parameters

• Initial state probabilities (usually denoted as p):

– We have 3 observations

– 2 of these begin with S1, and one with S2

– p(S1) = 2/3, p(S2) = 1/3

11755/18797 79

Time 1 2 3 4 5 6 7 8 9 10

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9

state S2 S2 S1 S1 S2 S2 S2 S2 S1

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8

state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3



Example: Learning HMM Parameters

• Transition probabilities:
– State S1 occurs 11 times in non-terminal locations

– Of these, it is followed by S1 X times

– It is followed by S2 Y times

– P(S1 | S1) = x/ 11;   P(S2 | S1) = y / 11
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Time 1 2 3 4 5 6 7 8 9 10

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
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state S2 S2 S1 S1 S2 S2 S2 S2 S1
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Time 1 2 3 4 5 6 7 8

state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3



Example: Learning HMM Parameters

• Transition probabilities:
– State S1 occurs 11 times in non-terminal locations

– Of these, it is followed immediately by S1 6 times

– It is followed by S2 Y times

– P(S1 | S1) = x/ 11;   P(S2 | S1) = y / 11
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Time 1 2 3 4 5 6 7 8 9 10

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9

state S2 S2 S1 S1 S2 S2 S2 S2 S1

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8

state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3



Example: Learning HMM Parameters

• Transition probabilities:
– State S1 occurs 11 times in non-terminal locations

– Of these, it is followed immediately by S1 6 times

– It is followed immediately by S2 5 times

– P(S1 | S1) = x/ 11;   P(S2 | S1) = y / 11
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Time 1 2 3 4 5 6 7 8 9 10

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9

state S2 S2 S1 S1 S2 S2 S2 S2 S1

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8

state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3



Example: Learning HMM Parameters

• Transition probabilities:
– State S1 occurs 11 times in non-terminal locations

– Of these, it is followed immediately by S1 6 times

– It is followed immediately by S2 5 times

– P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11
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Time 1 2 3 4 5 6 7 8 9 10

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9

state S2 S2 S1 S1 S2 S2 S2 S2 S1

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8

state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3



Example: Learning HMM Parameters

• Transition probabilities:
– State S2 occurs 13 times in non-terminal locations

– Of these, it is followed immediately by S1 6 times

– It is followed immediately by S2 5 times

– P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11
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Time 1 2 3 4 5 6 7 8 9 10

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1

Obs. Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9

state S2 S2 S1 S1 S2 S2 S2 S2 S1

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8

state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3



Example: Learning HMM Parameters

• Transition probabilities:
– State S2 occurs 13 times in non-terminal locations

– Of these, it is followed immediately by S1 5 times

– It is followed immediately by S2 5 times

– P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11
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Time 1 2 3 4 5 6 7 8 9 10

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9

state S2 S2 S1 S1 S2 S2 S2 S2 S1

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8

state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3



Example: Learning HMM Parameters

• Transition probabilities:
– State S2 occurs 13 times in non-terminal locations

– Of these, it is followed immediately by S1 5 times

– It is followed immediately by S2 8 times

– P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11
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Time 1 2 3 4 5 6 7 8 9 10

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9

state S2 S2 S1 S1 S2 S2 S2 S2 S1

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8

state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3



Example: Learning HMM Parameters

• Transition probabilities:
– State S2 occurs 13 times in non-terminal locations

– Of these, it is followed immediately by S1 5 times

– It is followed immediately by S2 8 times

– P(S1 | S2) = 5 / 13;   P(S2 | S2) = 8 / 13
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Time 1 2 3 4 5 6 7 8 9 10

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9

state S2 S2 S1 S1 S2 S2 S2 S2 S1

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8

state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3



Parameters learnt so far

• State initial probabilities, often denoted as p

– p(S1) = 2/3 = 0.66

– p(S2) = 1/3 = 0.33

• State transition probabilities

– P(S1 | S1) = 6/11 = 0.545;  P(S2 | S1) = 5/11 = 0.455

– P(S1 | S2) = 5/13 = 0.385; P(S2 | S2) = 8/13 = 0.615

– Represented as a transition matrix
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Example: Learning HMM Parameters

• State output probability for S1

– There are 13 observations in S1
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Time 1 2 3 4 5 6 7 8 9 10

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9

state S2 S2 S1 S1 S2 S2 S2 S2 S1

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8

state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3



Example: Learning HMM Parameters

• State output probability for S1
– There are 13 observations in S1

– Segregate them out and count
• Compute parameters (mean and variance) of Gaussian 

output density for state S1
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Time 1 2 6 7 9 10

state S1 S1 S1 S1 S1 S1

Obs Xa1 Xa2 Xa6 Xa7 Xa9 Xa10

Time 3 4 9

state S1 S1 S1

Obs Xb3 Xb4 Xb9

Time 1 3 4 5

state S1 S1 S1 S1

Obs Xc1 Xc2 Xc4 Xc5
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Example: Learning HMM Parameters

• State output probability for S2

– There are 14 observations in S2
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Time 1 2 3 4 5 6 7 8 9 10

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9

state S2 S2 S1 S1 S2 S2 S2 S2 S1

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8

state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3



Example: Learning HMM Parameters

• State output probability for S2
– There are 14 observations in S2

– Segregate them out and count
• Compute parameters (mean and variance) of Gaussian 

output density for state S2
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Time 3 4 5 8

state S2 S2 S2 S2

Obs Xa3 Xa4 Xa5 Xa8

Time 1 2 5 6 7 8

state S2 S2 S2 S2 S2 S2

Obs Xb1 Xb2 Xb5 Xb6 Xb7 Xb8

Time 2 6 7 8

state S2 S2 S2 S2

Obs Xc2 Xc6 Xc7 Xc8
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We have learnt all the HMM parmeters

• State initial probabilities, often denoted as p
– p(S1) = 0.66             p(S2) = 1/3 = 0.33

• State transition probabilities

• State output probabilities
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Update rules at each iteration

• Assumes state output PDF = Gaussian
– For GMMs, estimate GMM parameters from collection of observations 

at any state
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Initialize all HMM parameters

Segment all training observation sequences into states using the Viterbi

algorithm with the current models

Using estimated state sequences and training observation sequences, 

reestimate the HMM parameters

This method is also called a “segmental k-means” learning procedure

Training by segmentation: Viterbi 
training

11755/18797

Initial  
models Segmentations Models Converged?

yes

no



Alternative to counting: SOFT 
counting

• Expectation maximization

• Every observation contributes to every state
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Update rules at each iteration

• Every observation contributes to every state
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Update rules at each iteration

• Where did these terms come from?
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),...,,,)(( 21 Ti xxxststateP =

• The probability that the process was at s when 
it generated Xt given the entire observation

• Dropping the “Obs” subscript for brevity

• We will compute                                                     
first

– This is the probability that the process visited s at 
time t while producing the entire observation
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• The probability that the HMM was in a particular state s when 
generating the observation sequence is the probability that it 
followed a state sequence that passed through s at time t
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s

time
t
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• This can be decomposed into two multiplicative sections
– The section of the lattice leading into state s at time t and the section 

leading out of it
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time
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The Forward Paths
• The probability of the red section is the total probability of all 

state sequences ending at state s at time t
– This is simply a(s,t)

– Can be computed using the forward algorithm
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time
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The Backward Paths
• The blue portion represents the probability of all state 

sequences that began at state s at time t
– Like the red portion it can be computed using a backward recursion
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time
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The Backward Recursion

t+1

s

t

Can be recursively 

estimated starting 

from the final time 

time instant

(backward recursion)

time

• b(s,t) is the total probability of ALL state sequences that 
depart from s at time t, and all observations after xt

– b(s,T) = 1 at the final time instant for all valid final states
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The complete probability

t+1tt-1

s

time

a(s,t-1) b(s,t)

b(N,t)

a(s1,t-1)

))(,,...,,(),(),( 21 ststatexxxPtsts Ttt == ++ba
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Posterior probability of a state

• The probability that the process was in state s 
at time t, given that we have observed the 
data is obtained by simple normalization

• This term is often referred to as the gamma 
term and denoted by gs,t
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Update rules at each iteration

• These have been found
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Update rules at each iteration

• Where did these terms come from?
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sequencesn observatio of no. Total
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s’

time

t

),...,,,')1(,)(( 21 TxxxststateststateP =+=

s

t+1
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The a posteriori probability of 
transition

• The a posteriori probability of a transition 
given an observation
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Update rules at each iteration

• These have been found
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sequencesn observatio of no. Total
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State 
association 
probabilities

Initial  
models

Every feature vector associated with every state of every HMM with a 

probability

Probabilities computed using the forward-backward algorithm

Soft decisions taken at the level of HMM state

In practice, the segmentation based Viterbi training is much easier to 
implement and is much faster

The difference in performance between the two is small, especially if we have 

lots of training data

Training without explicit segmentation: 
Baum-Welch training

11755/18797

Models Converged?
yes

no



HMM Issues

• How to find the best state sequence: Covered

• How to learn HMM parameters: Covered

• How to compute the probability of an 
observation sequence: Covered
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Magic numbers

• How many states:

– No nice automatic technique to learn this

– You choose

• For speech, HMM topology is usually left to right (no 
backward transitions)

• For other cyclic processes, topology must reflect nature 
of process

• No. of states – 3 per phoneme in speech

• For other processes, depends on estimated no. of 
distinct states in process
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Applications of HMMs

• Classification:
– Learn HMMs for the various classes of time series 

from training data

– Compute probability of test time series using the 
HMMs for each class

– Use in a Bayesian classifier

– Speech recognition, vision, gene sequencing, 
character recognition, text mining…

• Prediction

• Tracking
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Applications of HMMs

• Segmentation:

– Given HMMs for various events, find event 
boundaries

• Simply find the best state sequence and the locations 
where state identities change

• Automatic speech segmentation, text 
segmentation by topic, geneome
segmentation, …
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