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Preliminaries : P(y|x) for Gaussian

• The conditional probability of y given x is also Gaussian
– The slice in the figure is Gaussian

• The mean of this Gaussian is a function of x
• The variance of y reduces if x is known

– Uncertainty is reduced
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• If P(x,y) is Gaussian:
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Preliminaries : P(y|x) for Gaussian
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Best guess for Y
when X is not known
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Preliminaries : P(y|x) for Gaussian
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Best guess for Y
when X is not known

Correction  of Y using 
information in X

Mean of Y given X

Given X value

Update guess of Y based on information in X
Correction is 0 if  X and Y are uncorrelated, i.e Cyx = 0
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Preliminaries : P(y|x) for Gaussian
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Best guess for Y
when X is not known

Correction  of Y using 
information in X

Mean of Y given X

Given X value

offset

Slope

Correction to Y = slope * (offset of X from mean)
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Preliminaries : P(y|x) for Gaussian
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Best guess for Y
when X is not known

Correction  of Y using 
information in X

Uncertainty in Y
when X is not known
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Preliminaries : P(y|x) for Gaussian
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Best guess for Y
when X is not known

Correction  of Y using 
information in X

Uncertainty in Y
when X is not known

Reduced uncertainty
from knowing X

Shrinkage of 
uncertainty
from knowing X

Shrinkage of variance is 0 if  X and Y are uncorrelated, i.e Cyx = 0



Preliminaries : P(y|x) for Gaussian
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Given X value

Mean of Y given X
(MAP estimate of Y)

Variance of Y when
X is known

Overall variance 
of Y when X is 
unknown

Knowing X modifies the mean of Y and shrinks its variance



Background: Sum of Gaussian RVs

• Consider a random variable O obtained as above

• The expected value of O is given by
 

• Notation:
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Background: Sum of Gaussian RVs

• The variance of O is given by

• This is just the sum of the variance of and 
the variance of 
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Background: Sum of Gaussian RVs

• The conditional probability of O:

• The overall probability of O:
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Background: Sum of Gaussian RVs

• The cross-correlation between O and S
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Background: Joint Prob. of O and S

• The joint probability of O and S (i.e. P(Z)) is 
also Gaussian

• Where

•
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Preliminaries : Conditional of S 
given O: P(S|O)
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The little parable
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You’ve been kidnapped

And blindfolded
You can only hear the car
You must find your way back home from wherever they
drop you off



Kidnapped!

• Determine by only listening to a running automobile, if 
it is:
– Idling; or
– Travelling at constant velocity; or
– Accelerating; or
– Decelerating

• You only record energy level (SPL) in the sound
– The SPL is measured once per second
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What we know
• An automobile that is at rest can accelerate, or 

continue to stay at rest

• An accelerating automobile can hit a steady-
state velocity, continue to accelerate, or 
decelerate

• A decelerating automobile can continue to 
decelerate, come to rest, cruise, or accelerate

• A automobile at a steady-state velocity can 
stay in steady state, accelerate or decelerate
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What else we know

• The probability distribution of the SPL of the 
sound is different in the various conditions
– As shown in figure

• In reality, depends on the car

• The distributions for the different conditions 
overlap
– Simply knowing the current sound level is not enough 

to know the state of the car 
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The Model!

• The state-space model
– Assuming all transitions from a state are equally probable
– This is a Hidden Markov Model!
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Estimating the state at T = 0-

• A T=0, before the first observation, we know 
nothing of the state
– Assume all states are equally likely 
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The first observation: T=0

• At T=0 you observe the sound level x0 = 68dB 
SPL

– The observation modifies our belief in the state 
of the system
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The first observation: T=0
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The first observation: T=0
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• Combine prior information about state and 
evidence from observation

• We want 
• We can compute it using Bayes rule as
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Estimating state after at observing x0



The Posterior

• Multiply the two, term by term, and normalize 
them so that they sum to 1.0
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Estimating the state at T = 0+

• At T=0, after the first observation x0, we update 
our belief about the states
– The first observation provided some evidence about 

the state of the system
– It modifies our belief in the state of the system
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Predicting the state at T=1

• Predicting the probability of idling at T=1
– P(idling | idling) = 0.5; 

– P(idling | deceleration) = 0.25

– P(idling at T=1| x0) = 
P(IT=0|x0) P(I|I) + P(DT=0|x0) P(I|D) = 2.1 x 10-5

• In general, for any state S
•

೅సబ
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Predicting the state at T = 1
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Updating after the observation at T=1

• At T=1 we observe  x1 = 63dB SPL
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Updating after the observation at T=1
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The second observation: T=1

31

45 706560

P(x|idle) P(x|decel) P(x|cruise) P(x|accel)

Idling Declerating Cruising Accelerating

Idling Declerating Cruising Accelerating

0.33 0.33 0.33
𝟎

Remember the prior

0
0.2

0.5

0.02

63dB

2.1x10-5



• Combine prior information from the 
observation at time T=0, AND evidence from 
observation at T=1 to estimate state at T=1

• We want 
• We can compute it using Bayes rule as
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Estimating state after at observing x1



The Posterior at T = 1

• Multiply the two, term by term, and normalize 
them so that they sum to 1.0
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Estimating the state at T = 1+

• The updated probability at T=1 incorporates 
information from both x0 and x1

– It is NOT a local decision based on x1 alone
– Because of the Markov nature of the process, the state at 

T=0 affects the state at T=1
• x0 provides evidence for the state at T=1
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Overall Process
Time

• T=0- :  A priori probability
• T = 0+:  Update after X0

• T=1- (Prediction before X1)
• T = 1+: Update after X1

• T=2- (Prediction before X2)
• T = 2+: Update after X2

• …
• T= t- (Prediction before Xt)

• T = t+: Update after Xt

Computation
• 0

• 0 0 0 0 0

• 1 0 1 0 0 0
 

଴

• 1 1 0 1 1

• 2 2 1 1
 

ଵ

• 2 2 2 2

• …
•

𝑡೟షభ

• 𝑡 𝑡 𝑡 𝑡
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Overall procedure

• At T=0 the predicted state distribution is the initial state 
probability

• At each time T, the current estimate of the distribution over 
states considers all observations x0 ... xT
– A natural outcome of the Markov nature of the model

• The prediction+update is identical to the forward computation 
for HMMs to within a normalizing constant
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Predict the 
distribution of the 

state at T

Update the 
distribution of the 

state at T
after observing xT

T=T+1

P(ST | x0:T-1)  = SST-1
P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T)  = C. P(ST | x0:T-1) P(xT|ST)

PREDICT UPDATE



Comparison to Forward Algorithm

• Forward Algorithm:
– P(x0:T,ST)  = P(xT|ST) SST-1

P(x0:T-1, ST-1) P(ST|ST-1)

• Normalized:
– P(ST|x0:T)  = (SS’T

P(x0:T,S’T))-1 P(x0:T,ST) = C P(x0:T,ST)
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Predict the 
distribution of the 

state at T

Update the 
distribution of the 

state at T
after observing xT

T=T+1

PREDICT UPDATE

PREDICT

UPDATE

P(ST | x0:T-1)  = SST-1
P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T)  = C. P(ST | x0:T-1) P(xT|ST)



Decomposing the Algorithm

Predict: 
೟షభ

Update: ௧ బ:೟షభ

బ:೟షభ
 
ೄ
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Estimating a Unique state

• What we have estimated is a distribution over 
the states

• If we had to guess a state, we would pick the 
most likely state from the distributions

• State(T=0) = Accelerating

• State(T=1) = Cruising
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Estimating the state

• The state is estimated from the updated 
distribution
– The updated distribution is propagated into time, not 

the state
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Estimate(ST)

Predict the 
distribution of the 

state at T

Update the 
distribution of the 

state at T
after observing xT

T=T+1

Estimate(ST) = argmax ST
P(ST | x0:T)

P(ST | x0:T-1)  = SST-1
P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T)  = C. P(ST | x0:T-1) P(xT|ST)



Predicting the next observation

• The probability distribution for the observations at the 
next time is a mixture:

•
೟

• The actual observation can be predicted from P(xT|x0:T-1)
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Predict P(xT|x0:T-1)

Predict the 
distribution of the 

state at T

Update the 
distribution of the 

state at T
after observing xT

T=T+1

Predict xT

P(ST | x0:T-1)  = SST-1
P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T)  = C. P(ST | x0:T-1) P(xT|ST)



Predicting the next observation

• Can use any of the various estimators of xT

from P(xT|x0:T-1)

• MAP estimate:
– argmaxxT

P(xT|x0:T-1)

• MMSE estimate:
– Expectation(xT|x0:T-1)
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Difference from Viterbi decoding

• Estimating only the current state at any time
– Not the state sequence
– Although we are considering all past observations

• The most likely state at T and T+1 may be such 
that there is no valid transition between ST
and ST+1
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A continuous state model
• HMM assumes a very coarsely quantized state 

space
– Idling / accelerating / cruising / decelerating

• Actual state can be finer
– Idling, accelerating at various rates, decelerating at 

various rates, cruising at various speeds

• Solution:  Many more states (one for each 
acceleration /deceleration rate, crusing speed)?

• Solution: A continuous valued state
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Tracking and Prediction:
The wind and the target

• Aim: measure wind velocity
• Using a noisy wind speed sensor

– E.g. arrows shot at a target

• State: Wind speed at time t depends on speed at 
time t-1

• Observation: Arrow position at time t depends on 
wind speed at time t
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The real-valued state model
• A state equation describing the dynamics of the system

– st is the state of the system at time t
– et is a driving function, which is assumed to be random

• The state of the system at any time depends only on the state at 
the previous time instant and the driving term at the current time

• An observation equation relating state to observation

– ot is the observation at time t
– gt is the noise affecting the observation (also random)

• The observation at any time depends only on the current state of 
the system and the noise
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States are still “hidden”

• The state is a continuous valued parameter that is not directly 
seen
– The state is the position of the automobile or the star

• The observations are dependent on the state and are the only way 
of knowing about the state
– Sensor readings (for the automobile) or recorded image (for the telescope)
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Statistical Prediction and Estimation

• Given an a priori probability distribution for 
the state
– P0(s):  Our belief in the state of the system before 

we observe any data
• Probability of state of navlab
• Probability of state of stars

• Given a sequence of observations o0..ot

• Estimate state at time t
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Prediction and update at t = 0

• Prediction
– Initial probability distribution for state
– P(s0) = P0(s0)

• Update:
– Then we observe o0

– We must update our belief in the state

• P(s0|o0) = C.P0(s0)P(o0|s0)
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Prediction and update at t = 0

• Prediction
– Initial probability distribution for state
– P(s0) = P0(s0)

• Update:
– Then we observe o0

– We must update our belief in the state

• P(s0|o0) = C.P0(s0)P(o0|s0)
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The observation probability: P(o|s)

•
– This is a (possibly many-to-one) stochastic function 

of state st and noise gt

– Noise gt is random. Assume it is the same 
dimensionality as ot

• Let Pg(gt) be the probability distribution of gt

• Let  {g:g(st,g)=ot} be all g that result in ot
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The observation probability
• P(o|s) = ?

• The J is a Jacobian

• For scalar functions of scalar variables, it is simply a 
derivative:  
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Predicting the next state at t=1
• Given P(s0|o0), what is the probability of the state 

at t=1

• State progression function:

– et is a driving term with probability distribution Pe(et)

• P(st|st-1) can be computed similarly to P(o|s)
– P(s1|s0) is an instance of this
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And moving on

• P(s1|o0) is the predicted state distribution for 
t=1

• Then we observe o1

– We must update the probability distribution for s1

– P(s1|o0:1) = CP(s1|o0)P(o1|s1)

• We can continue on
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Update after O1: 

Discrete vs. Continuous state systems

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 
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Update after observing  Ot: 

Discrete vs. Continuous State Systems

Prediction at time t: 
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Initial state prob.

Discrete vs. Continuous State Systems

Parameters
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Special case: Linear Gaussian model

• A linear state dynamics equation
– Probability of state driving term e is Gaussian
– Sometimes viewed as a driving term e and additive 

zero-mean noise
• A linear observation equation

– Probability of observation noise g is Gaussian
• At, Bt and Gaussian parameters assumed known

– May vary with time
11-755/18797 58

tttt sBo g

tttt sAs e 1
    eee

e

ee
p

e 


 15.0exp
||)2(

1
)( T

d
P

    ggg

g

gg
p

g 


 15.0exp
||)2(

1
)( T

d
P



Linear model example
The wind and the target

• State: Wind speed at time t depends on speed at 
time t-1

• Observation: Arrow position at time t depends on 
wind speed at time t
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Model Parameters: 
The initial state probability

• We also assume the initial state distribution to 
be Gaussian
– Often assumed zero mean
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Model Parameters:
The observation probability

• The probability of the observation, given the state, is 
simply the probability of the noise, with the mean 
shifted
– Since the only uncertainty is from the noise

• The new mean is the mean of the distribution of the 
noise + the value of the observation in the absence of 
noise
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Model Parameters:
State transition probability

• The probability of the state at time t, given the 
state at t-1, is simply the probability of the 
driving term, with the mean shifted
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Update after O1: 

Continuous state systems

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 
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Update after O1: 

Update after O0: 

Prediction at time 1: 
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Continuous state systems



Model Parameters: 
The initial state probability

• We assume the initial state distribution to be 
Gaussian
– Often assumed zero mean
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Update after O1: 

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 
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Update after O1: 

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 
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Recap: Conditional of S given O: 
P(S|O) for Gaussian RVs
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Recap: Conditional of S given O: 
P(S|O) for Gaussian RVs
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Recap: Conditional of S given O: 
P(S|O) for Gaussian RVs
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Update after O1: 

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 
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Update after O1: 

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 
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Continuous state systems

𝑹෡𝟎 = (𝑰 − 𝑲𝟎) 𝑹𝟎𝒔ො𝟎 = 𝒔ത0 + 𝑲𝟎(𝑶𝟎 − 𝑩𝒔0ഥ − 𝝁𝜸)

𝑲𝟎 = 𝑹0𝑩୘ 𝑩𝑹0𝑩୘ + 𝜣𝜸
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Update after O1: 

Update after O0: 

Prediction at time 1: 
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Introducting shorthand notation
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Introducting shorthand notation

75

0 0 0 0 0 0 0

0 0 0 0



Update after O1: 

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 
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Continuous state systems
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Update after O1: 

Continuous state systems

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 
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The prediction equation

• The integral of the product of two Gaussians
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The Prediction Equation
• The integral of the product of two Gaussians is 

Gaussian!
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Update after O1: 

Continuous state systems

Update after O0: 
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Prediction at time 0: 
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More shorthand notation
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Update after O1: 

Continuous state systems

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 

P
0
(s

)

s

ଵ ଴ 𝟏 𝟏

ଵ ଴:ଵ ଵ ଴ ଵ ଵ

tttt sAs e1

tttt sBo g

𝒔ത𝟏 = 𝑨𝒔ො𝟎 + 𝝁𝜺

𝑹𝟏 = 𝜣𝜺 + 𝑨𝑹෡𝟎𝑨𝑻

𝟎 𝟎 𝟎

଴ ଴ ଴ ଴ 𝑹෡𝟎 = (𝑰 − 𝑲𝟎) 𝑹𝟎𝒔ො𝟎 = 𝒔ത0 + 𝑲𝟎(𝑶𝟎 − 𝑩𝒔0ഥ − 𝝁𝜸)

𝑲𝟎 = 𝑹0𝑩୘ 𝑩𝑹0𝑩୘ + 𝜣𝜸
ି𝟏



Update after O1: 

Continuous state systems

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 

P
0
(s

)

s

ଵ ଴:ଵ ଵ ଴ ଵ ଵ

tttt sAs e1

tttt sBo g

𝟎 𝟎 𝟎

଴ ଴ ଴ ଴

ଵ ଴ ଵ ଵ

𝒔ത𝟏 = 𝑨𝒔ො𝟎 + 𝝁𝜺

𝑹𝟏 = 𝜣𝜺 + 𝑨𝑹෡𝟎𝑨𝑻

𝑹෡𝟎 = (𝑰 − 𝑲𝟎) 𝑹𝟎𝒔ො𝟎 = 𝒔ത0 + 𝑲𝟎(𝑶𝟎 − 𝑩𝒔0ഥ − 𝝁𝜸)

𝑲𝟎 = 𝑹0𝑩୘ 𝑩𝑹0𝑩୘ + 𝜣𝜸
ି𝟏



Update after O1: 

Continuous state systems

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 

P
0
(s

)

s

ଵ ଴:ଵ ଵ ଴ ଵ ଵ

tttt sAs e1

tttt sBo g

𝟎 𝟎 𝟎

଴ ଴ ଴ ଴

ଵ ଴ ଵ ଵ

𝒔ത𝟏 = 𝑨𝒔ො𝟎 + 𝝁𝜺

𝑹𝟏 = 𝜣𝜺 + 𝑨𝑹෡𝟎𝑨𝑻

𝟏 𝟏

𝑹෡𝟎 = (𝑰 − 𝑲𝟎𝑩) 𝑹𝟎

𝑹෡𝟏 = (𝑰 − 𝑲𝟏𝑩) 𝑹𝟏

𝒔ො𝟎 = 𝒔ത0 + 𝑲𝟎(𝑶𝟎 − 𝑩𝒔0ഥ − 𝝁𝜸)

𝑲𝟎 = 𝑹0𝑩୘ 𝑩𝑹0𝑩୘ + 𝜣𝜸
ି𝟏

𝒔ො𝟏 = 𝒔ത1 + 𝑲𝟏(𝑶𝟏 − 𝑩𝒔1ഥ − 𝝁𝜸)

𝑲𝟏 = 𝑹1𝑩୘ 𝑩𝑹1𝑩୘ + 𝜣𝜸
ି𝟏



Update after O1: 

Continuous state systems

Update after O0: 
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Update after observing  Ot: 

Gaussian Continuous State 
Linear Systems

Prediction at time t: 

P
0
(s

)

s

tttt sAs e1

tttt sBo g



Update after observing  Ot: 
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Update after observing  Ot: 
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The Kalman filter
• Prediction (based on state equation)

• Update (using observation and observation 
equation)
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 g tttttt sBoKsŝ

Explaining the Kalman Filter
• Prediction

• Update
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The Kalman filter can be explained 
intuitively without working through 
the math



The Kalman filter
• Prediction

• Update
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The predicted state at time t is obtained 
simply by propagating the estimated state
at t-1 through the state dynamics equation
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The Kalman filter
• Prediction

• Update
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This is the uncertainty in the prediction. 
The variance of the predictor = 
variance of et + variance of Ast-1

The two simply add because et is not 
correlated with st



 g tttttt sBoKsŝ

The Kalman filter
• Prediction

• Update

11-755/18797
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We can also predict the observation from
the predicted state using the observation
equation

g ttt sBô



The Kalman filter
• Prediction

• Update

11-755/18797 94

e 1t̂tt sAs

  tttt RBKIR ˆ

T
tttt ARAR 1

ˆ
 e

 tttttt sBoKss ˆ

  1
 g

T
ttt

T
ttt BRBBRK

tttt sAs e 1

Actual observation
g ttt sBô
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MAP Recap (for Gaussians)
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MAP Recap: For Gaussians
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The Kalman filter
• Prediction

• Update
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This is the slope of the MAP estimator 
that predicts s from o
RBT =  Cso,   (BRBT+) = Coo

This is also called the Kalman Gain
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The Kalman filter
• Prediction

• Update
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The correction is the difference between 
the actual observation and the predicted 
observation, scaled by the Kalman Gain

We must correct the predicted 
value of the state after making 
an observation

g ttt sBô
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The Kalman filter
• Prediction

• Update
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The Kalman filter
• Prediction

• Update:

• Update
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The Kalman filter
• Prediction

• Update:

• Update
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The Kalman Filter

• Very popular for tracking the state of 
processes
– Control systems
– Robotic tracking

• Simultaneous localization and mapping
– Radars
– Even the stock market..

• What are the parameters of the process?
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Kalman filter contd.

• Model parameters A and B must be known
– Often the state equation includes an additional 

driving term:   st = Atst-1 + Gtut + et

– The parameters of the driving term must be 
known

• The initial state distribution must be known
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Defining the parameters
• State state must be carefully defined

– E.g. for a robotic vehicle, the state is an extended 
vector that includes the current velocity and 
acceleration

• S = [X, dX, d2X]

• State equation: Must incorporate appropriate 
constraints
– If state includes acceleration and velocity, velocity at 

next time = current velocity + acc. * time step
– St = ASt-1 + e

• A = [1 t 0.5t2;  0 1 t; 0 0 1]
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Parameters

• Observation equation:
– Critical to have accurate observation equation
– Must provide a valid relationship between state 

and observations

• Observations typically high-dimensional
– May have higher or lower dimensionality than 

state
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Problems

• f() and/or g() may not be nice linear functions
– Conventional Kalman update rules are no longer 

valid

• e and/or g may not be Gaussian
– Gaussian based update rules no longer valid
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Linear Gaussian Model

P(s0| O0)  C P(s0) P(O0| s0)

0010001 )|()O|()O|( dsssPsPsP 






P(s1| O0:1)  C P(s1| O0) P(O1| s0)

1121:011:02 )|()O|()O|( dsssPsPsP 






P(s2| O0:2)  C P(s2| O0:1) P(O2| s2)

All distributions remain Gaussian

P(s)  P(st|st-1)  P(Ot|st) 

P(s0)  P(s)

a priori Transition prob. State output prob

tttt sBo g
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Problems

• Nonlinear f() and/or g() : The Gaussian 
assumption breaks down
– Conventional Kalman update rules are no longer 

valid
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The problem with non-linear 
functions

• Estimation requires knowledge of P(o|s)
– Difficult to estimate for nonlinear g()

– Even if it can be estimated, may not be tractable with update loop

• Estimation also requires knowledge of P(st|st-1)
– Difficult for nonlinear f()
– May not be amenable to closed form integration
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The problem with nonlinearity

• The PDF may not have a closed form

• Even if a closed form exists initially, it will typically 
become intractable very quickly
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Example: a simple nonlinearity

• P(o|s) = ?
– Assume g is Gaussian
– P(g) = Gaussian(g; g, g)
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Example: a simple nonlinearity

• P(o|s) = ?
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Example: At T=0.

• Update
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g  ; s=0

))exp(1log( so  g

 Assume initial probability P(s) is Gaussian
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UPDATE: At T=0.

• = Not Gaussian
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Prediction for T = 1
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Update at T=1 and later

• Update at T=1

– Intractable

• Prediction for T=2

– Intractable
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The State prediction Equation

• Similar problems arise for the state prediction 
equation

• P(st|st-1) may not have a closed form
• Even if it does, it may become intractable within 

the prediction and update equations
– Particularly the prediction equation, which includes an 

integration operation
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Simplifying the problem: Linearize

• The tangent at any point  is a good local 
approximation if the function is sufficiently 
smooth 

11-755/18797 118

s

))exp(1log( so  g



Simplifying the problem: Linearize

• The tangent at any point  is a good local 
approximation if the function is sufficiently 
smooth 
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Simplifying the problem: Linearize

• The tangent at any point  is a good local 
approximation if the function is sufficiently 
smooth 
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Simplifying the problem: Linearize

• The tangent at any point  is a good local 
approximation if the function is sufficiently 
smooth 
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Linearizing the observation function

• Simple first-order Taylor series expansion
– J() is the Jacobian matrix

• Simply a determinant for scalar state

• Expansion around current predicted a priori 
(or predicted) mean of the state
– Linear approximation changes with time
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Most probability is in the low-error 
region

• P(st) is small where approximation error is large
– Most of the probability mass of s is in low-error 

regions
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Linearizing the observation function

• With the linearized approximation the system 
becomes “linear”

• The observation PDF becomes Gaussian
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The state equation?
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 Solution: Linearize

e  )( 1tt sfs ),0;()( eee  GaussianP

 Again, direct use of f() can be disastrous

 Linearize around the mean of the updated 
distribution of s at t-1
 Converts the system to a linear one

e  )( 1tt sfs

)ˆ,ˆ;()|( 1111:01   ttttt RssGaussianosP

)ˆ)(ˆ()ˆ( 1111   tttftt sssJsfs e



Linearized System

• Now we have a simple time-varying linear 
system

• Kalman filter equations directly apply
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The Extended Kalman filter
• Prediction

• Update
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Linearization

Assuming e and g
are 0 mean for
simplicity



The Extended Kalman filter
• Prediction

• Update
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The predicted state at time t is obtained 
simply by propagating the estimated state
at t-1 through the state dynamics equation
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)( tgt sJB 

The Extended Kalman filter
• Prediction

• Update
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The Extended Kalman filter
• Prediction

• Update

11-755/18797 130

)ˆ( 1 tt sfs

  tttt RBKIR ˆ

T
tttt ARAR 1

ˆ
 e

 )(ˆ ttttt sgoKss 

  1
 g

T
ttt

T
ttt BRBBRK

e  )( 1tt sfs

e )( tt sgo

)( tt sgo 

The Kalman gain is the slope of the MAP 
estimator that predicts s from o
RBT =  Cso,   (BRBT+) = Coo
B is obtained by linearizing g()

)( tgt sJB 



The Extended Kalman filter
• Prediction

• Update
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The Extended Kalman filter
• Prediction

• Update
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The correction is the difference between 
the actual observation and the predicted 
observation, scaled by the Kalman Gain

We must correct the predicted value of 
the state after making an observation



The Extended Kalman filter
• Prediction

• Update
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observe the data and make a correction

The reduction is a multiplicative “shrinkage” 
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The Extended Kalman filter
• Prediction

• Update
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EKFs
• EKFs are probably the most commonly used algorithm 

for tracking and prediction
– Most systems are non-linear
– Specifically, the relationship between state and 

observation is usually nonlinear
– The approach can be extended to include non-linear 

functions of noise as well

• The term “Kalman filter” often simply refers to an 
extended Kalman filter in most contexts.

• But..
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EKFs have limitations

• If the non-linearity changes too quickly with s, the linear 
approximation is invalid
– Unstable

• The estimate is often biased
– The true function lies entirely on one side of the approximation

• Various extensions have been proposed:
– Invariant extended Kalman filters (IEKF)
– Unscented Kalman filters (UKF)
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Conclusions

• HMMs are predictive models
• Continuous-state models are simple 

extensions of HMMs
– Same math applies

• Prediction of linear, Gaussian systems can be 
performed by Kalman filtering

• Prediction of non-linear, Gaussian systems can 
be performed by Extended Kalman filtering
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