Machine Learning for Signal Processing Predicting and Estimation from Time Series

Bhiksha Raj

11-755/18797

• If P(x,y) is Gaussian:

$$P(\mathbf{x}, \mathbf{y}) = N(\begin{bmatrix} \mu_{\mathbf{x}} \\ \mu_{\mathbf{y}} \end{bmatrix}, \begin{bmatrix} C_{\mathbf{x}\mathbf{x}} & C_{\mathbf{x}\mathbf{y}} \\ C_{\mathbf{y}\mathbf{x}} & C_{\mathbf{y}\mathbf{y}} \end{bmatrix}$$

• The conditional probability of y given x is also Gaussian

- The slice in the figure is Gaussian

$$P(y \mid x) = N(\mu_{y} + C_{yx}C_{xx}^{-1}(x - \mu_{x}), C_{yy} - C_{yx}C_{xx}^{-1}C_{xy})$$

- The mean of this Gaussian is a function of x
- The variance of y reduces if x is known
 - Uncertainty is reduced

Correction to Y = slope * (offset of X from mean)

Shrinkage of variance is 0 if X and Y are uncorrelated, i.e $C_{yx} = 0$

Knowing X modifies the mean of Y and shrinks its variance

$$O = AS + \varepsilon$$

$$S \sim N(\mu_s, \Theta_s) \qquad \varepsilon \sim N(\mu_\varepsilon, \Theta_\varepsilon)$$

- Consider a random variable O obtained as above
- The expected value of *O* is given by $E[O] = E[AS + \varepsilon] = A\mu_s + \mu_{\varepsilon}$
- Notation:

$$E[O] = \mu_O$$

$$O = AS + \varepsilon$$

$$S \sim N(\mu_s, \Theta_s) \qquad \varepsilon \sim N(\mu_\varepsilon, \Theta_\varepsilon)$$

- The variance of *O* is given by $Var(O) = \Theta_{O} = E[(O - \mu_{O})(O - \mu_{O})^{T}]$
- This is just the sum of the variance of AS and the variance of ${m \epsilon}$

 $\boldsymbol{\Theta}_{\boldsymbol{O}} = \boldsymbol{A}\boldsymbol{\Theta}_{\boldsymbol{S}}\boldsymbol{A}^{\mathrm{T}} + \boldsymbol{\Theta}_{\boldsymbol{\varepsilon}}$

$$O = AS + \varepsilon$$

$$S \sim N(\mu_s, \Theta_s) \qquad \varepsilon \sim N(\mu_\varepsilon, \Theta_\varepsilon)$$

- The conditional probability of *O*: $P(O|S) = N(AS + \mu_{\varepsilon}, \Theta_{\varepsilon})$
- The overall probability of *O*: $P(O) = N(A\mu_s + \mu_{\varepsilon}, A\Theta_s A^T + \Theta_{\varepsilon})$

$$O = AS + \varepsilon$$

$$S \sim N(\mu_s, \Theta_s) \qquad \varepsilon \sim N(\mu_\varepsilon, \Theta_\varepsilon)$$

• The cross-correlation between O and S

$$\Theta_{OS} = E[(O - \mu_0)(S - \mu_s)^T]$$

= $E[(A(S - \mu_s) + (\varepsilon - \mu_\varepsilon))(S - \mu_s)^T]$
= $E[A(S - \mu_s)(S - \mu_s)^T + (\varepsilon - \mu_\varepsilon)(S - \mu_s)^T]$
= $AE[(S - \mu_s)(S - \mu_s)^T] + E[(\varepsilon - \mu_\varepsilon)(S - \mu_s)^T]$
= $AE[(S - \mu_s)(S - \mu_s)^T]$

• = $A \Theta_s$

• The cross-correlation between O and S is

$$\Theta_{OS} = A\Theta_S$$

$$\Theta_{SO} = \Theta_S A^T$$
 12

Background: Joint Prob. of O and S

$$O = AS + \varepsilon \qquad \qquad Z = \begin{bmatrix} O \\ S \end{bmatrix}$$

• The joint probability of *O* and *S* (i.e. P(*Z*)) is also Gaussian

$$P(Z) = P(O, S) = N(\mu_Z, \Theta_Z)$$

• Where

$$\mu_{Z} = \begin{bmatrix} \mu_{0} \\ \mu_{S} \end{bmatrix} = \begin{bmatrix} A\mu_{s} + \mu_{\varepsilon} \\ \mu_{S} \end{bmatrix}$$

• $\Theta_{Z} = \begin{bmatrix} \Theta_{0} & \Theta_{0S} \\ \Theta_{S0} & \Theta_{S} \end{bmatrix} = \begin{bmatrix} A\Theta_{S}A^{T} + \Theta_{\varepsilon} & A\Theta_{S} \\ \Theta_{S}A^{T} & \Theta_{S} \end{bmatrix}$

Preliminaries : Conditional of S given O: P(S|O)

The little parable

You've been kidnapped

You can only hear the car You must find your way back home from wherever they drop you off

11755/18797

Kidnapped!

- Determine by only *listening* to a running automobile, if it is:
 - Idling; or
 - Travelling at constant velocity; or
 - Accelerating; or
 - Decelerating
- You only record energy level (SPL) in the sound
 - The SPL is measured once per second

What we know

- An automobile that is at rest can accelerate, or continue to stay at rest
- An accelerating automobile can hit a steadystate velocity, continue to accelerate, or decelerate
- A decelerating automobile can continue to decelerate, come to rest, cruise, or accelerate
- A automobile at a steady-state velocity can stay in steady state, accelerate or decelerate

What else we know

- The probability distribution of the SPL of the sound is different in the various conditions
 - As shown in figure
 - In reality, depends on the car
- The distributions for the different conditions overlap
 - Simply knowing the current sound level is not enough to know the state of the car

- The state-space model
 - Assuming all transitions from a state are equally probable
 - This is a Hidden Markov Model!

Estimating the state at T = 0-

- A T=0, before the first observation, we know nothing of the state
 - Assume all states are equally likely

The first observation: T=0

- At T=0 you observe the sound level x₀ = 68dB
 SPL
- The observation modifies our belief in the state of the system

The first observation: T=0

P(x idle)	P(x deceleration)	P(x cruising)	P(x acceleration)
0	0.0001	0.5	0.7

The first observation: T=0

Estimating state *after* at observing x₀

- Combine prior information about state and evidence from observation
- We want $P(state|\mathbf{x}_0)$
- We can compute it using Bayes rule as

$$P(state|x_0) = \frac{P(state)P(x_0|state)}{\sum_{state'}P(state')P(x_0|state')}$$

The Posterior

• Multiply the two, term by term, and normalize them so that they sum to 1.0

11-755/18797

Estimating the state at T = O+

- At T=0, after the first observation x₀, we update our belief about the states
 - The first observation provided some evidence about the state of the system
 - It modifies our belief in the state of the system

Predicting the state at T=1

- Predicting the probability of idling at T=1
 - $P(idling \mid idling) = 0.5;$
 - P(idling | deceleration) = 0.25
 - P(*idling* at T=1| x_0) = P(I_{T=0}| x_0) P(I|I) + P(D_{T=0}| x_0) P(I|D) = 2.1 x 10⁻⁵
- In general, for any state S

•
$$P(S_{T=1}|\mathbf{x}_0) = \sum_{S_{T=0}} P(S_{T=0}|\mathbf{x}_0) P(S_{T=1}|S_{T=0})$$

Predicting the state at T = 1

Updating after the observation at T=1

• At T=1 we observe $x_1 = 63dB SPL$

Updating after the observation at T=1

P(x idle)	P(x deceleration)	P(x cruising)	P(x acceleration)
0	0.2	0.5	0.01

The second observation: T=1P(x|idle) P(x|decel) P(x|cruise) P(x|accel)

Estimating state *after* at observing x₁

- Combine prior information from the observation at time T=0, AND evidence from observation at T=1 to estimate *state* at T=1
- We want $P(state | \mathbf{x}_0, \mathbf{x}_1)$
- We can compute it using Bayes rule as

 $P(state|\mathbf{x}_{0}, \mathbf{x}_{1}) = \frac{P(state|\mathbf{x}_{0})P(\mathbf{x}_{1}|state)}{\sum_{state'}P(state'|\mathbf{x}_{0})P(\mathbf{x}_{1}|state')}$

The Posterior at T = 1

• Multiply the two, term by term, and normalize them so that they sum to 1.0

11-755/18797

Estimating the state at T = 1+

- The updated probability at T=1 incorporates information from both x₀ and x₁
 - It is NOT a local decision based on x_1 alone
 - Because of the Markov nature of the process, the state at T=0 affects the state at T=1
 - x₀ provides evidence for the state at T=1

Overall Process

Time	Computation
• T=0- : A priori probability •	$P(S_0) = P(S)$
• $T = 0+$: Update after X_0 •	$P(S_0 X_0) = C.P(S_0)P(X_0 S_0)$
• T=1- (Prediction before X ₁) •	$P(S_1 X_0) = \sum_{S_0} P(S_1 S_0) P(S_0 X_0)$
• $T = 1 +: Update after X_1 $ •	$P(S_1 X_{0:1}) = C P(S_1 X_0)P(X_1 S_1)$
• T=2- (Prediction before X ₂) •	$P(S_2 X_{0:1}) = \sum_{S_1} P(S_2 S_1) P(S_1 X_{0:1})$
• T = 2+: Update after X ₂ •	$P(S_2 X_{0:2}) = C.P(S_2 X_{0:1})P(X_2 S_2)$
• •	
• T= t- (Prediction before X _t) •	$P(S_t X_{0:t-1}) =$
	$\sum_{S_{t-1}} P(S_t S_{t-1}) P(S_{t-1} X_{0:t-1})$
• T = t+: Update after X _t •	$P(S_t X_{0:t}) = C.P(S_t X_{0:t-1})P(X_t S_t)$

Overall procedure

- At T=0 the predicted state distribution is the initial state probability
- At each time T, the current estimate of the distribution over states considers *all* observations $x_0 \dots x_T$
 - A natural outcome of the Markov nature of the model
- The prediction+update is identical to the forward computation for HMMs to within a normalizing constant

Comparison to Forward Algorithm

• Forward Algorithm:

$$-P(x_{0:T},S_{T}) = P(x_{T}|S_{T}) \sum_{S_{T-1}} P(x_{0:T-1},S_{T-1}) P(S_{T}|S_{T-1})$$

$$\xrightarrow{PREDICT}$$

$$UPDATE$$

• Normalized:

 $- P(S_T|X_{0:T}) = (\Sigma_{S'_T} P(X_{0:T}, S'_T))^{-1} P(X_{0:T}, S_T) = C P(X_{0:T}, S_T)$

Decomposing the Algorithm

$$P(S_t, X_{0:t}) = P(X_t | S_t) \sum_{S_{t-1}} P(S_t | S_{t-1}) P(S_{t-1}, X_{0:t-1})$$

Predict: $P(S_t|X_{0:t-1}) = \sum_{S_{t-1}} P(S_t|S_{t-1}) P(S_{t-1}|X_{0:t-1})$

Update:
$$P(S_t|X_{0:t}) = \frac{P(S_t|X_{0:t-1})P(X_t|S_t)}{\sum_{S} P(S|X_{0:t-1})P(X_t|S)}$$

Estimating a Unique state

- What we have estimated is a *distribution* over the states
- If we had to guess *a* state, we would pick the most likely state from the distributions
- State(T=0) = Accelerating
- State(T=1) = Cruising

Estimating the *state*

- The state is estimated from the updated distribution
 - The updated distribution is propagated into time, not the state

Predicting the next observation

- The probability distribution for the observations at the next time is a mixture:
- $P(X_t|X_{0:t-1}) = \sum_{S_t} P(X_t|S_t) P(S_t|X_{0:t-1})$
- The actual observation can be predicted from $P(x_T | x_{0:T-1})$

Predicting the next observation

- Can use any of the various estimators of \boldsymbol{x}_T from $P(\boldsymbol{x}_T | \boldsymbol{x}_{0:T\text{-}1})$
- MAP estimate: - $\operatorname{argmax}_{x_{T}} P(x_{T}|x_{0:T-1})$
- MMSE estimate:
 - Expectation($x_T | x_{0:T-1}$)

Difference from Viterbi decoding

- Estimating only the *current* state at any time
 - Not the state sequence
 - Although we are considering all past observations
- The most likely state at T and T+1 may be such that there is no valid transition between $\rm S_{T}$ and $\rm S_{T+1}$

A continuous state model

- HMM assumes a very coarsely quantized state space
 - Idling / accelerating / cruising / decelerating
- Actual state can be finer
 - Idling, accelerating at various rates, decelerating at various rates, cruising at various speeds
- Solution: Many more states (one for each acceleration /deceleration rate, crusing speed)?
- Solution: A *continuous* valued state

Tracking and Prediction: The wind and the target

- Aim: measure wind velocity
- Using a noisy wind speed sensor
 - E.g. arrows shot at a target

• State: Wind speed at time *t* depends on speed at time *t*-1

 $S_t = S_{t-1} + \epsilon_t$

Observation: Arrow position at time t depends on wind speed at time t

$$Y_t = AS_t + \gamma_t$$

11755/18797

The real-valued state model

• A state equation describing the dynamics of the system

$$s_t = f(s_{t-1}, \varepsilon_t)$$

- $-s_t$ is the state of the system at time t
- $\epsilon_{\rm t}\,$ is a driving function, which is assumed to be random
- The state of the system at any time depends only on the state at the previous time instant and the driving term at the current time
- An observation equation relating state to observation

$$o_t = g(s_t, \gamma_t)$$

- o_t is the observation at time t
- $-\gamma_{t}$ is the noise affecting the observation (also random)
- The observation at any time depends only on the current state of the system and the noise

States are still "hidden"

$$s_t = f(s_{t-1}, \mathcal{E}_t)$$

$$o_t = g(s_t, \gamma_t)$$

- The state is a continuous valued parameter that is not directly seen
 - The state is the position of the automobile or the star
- The observations are dependent on the state and are the only way of knowing about the state
 - Sensor readings (for the automobile) or recorded image (for the telescope)

Statistical Prediction and Estimation

- Given an *a priori* probability distribution for the state
 - $-P_0(s)$: Our belief in the state of the system before we observe any data
 - Probability of state of navlab
 - Probability of state of stars
- Given a sequence of observations $o_0..o_t$
- Estimate state at time t

Prediction and update at t = 0

- Prediction
 - Initial probability distribution for state
 - $P(s_0) = P_0(s_0)$
- Update:
 - Then we observe o_0
 - We must update our belief in the state

$$P(s_0 \mid o_0) = \frac{P(s_0)P(o_0 \mid s)}{P(o_0)} = \frac{P_0(s_0)P(o_0 \mid s_0)}{P(o_0)}$$

• $P(s_0 | o_0) = C.P_0(s_0)P(o_0 | s_0)$

Prediction and update at t = 0

- Prediction
 - Initial probability distribution for state
 - $P(s_0) = P_0(s_0)$
- Update:
 - Then we observe o_0
 - We must update our belief in the state

$$P(s_0 \mid o_0) = \frac{P(s_0)P(o_0 \mid s)}{P(o_0)} = \frac{P_0(s_0)P(o_0 \mid s_0)}{P(o_0)}$$

• $P(s_0 | o_0) = C.P_0(s_0)P(o_0 | s_0)$

The observation probability: P(o|s)

•
$$o_t = g(s_t, \gamma_t)$$

- This is a (possibly many-to-one) stochastic function of state $s_{\rm t}$ and noise $\gamma_{\rm t}$
- Noise $\gamma_{\rm t}$ is random. Assume it is the same dimensionality as $o_{\rm t}$
- Let $P_{\gamma}(\gamma_t)$ be the probability distribution of γ_t
- Let $\{\gamma: g(s_t, \gamma) = o_t\}$ be all γ that result in o_t

$$P(o_t \mid s_t) = \sum_{\gamma:g(s_t,\gamma)=o_t} \frac{P_{\gamma}(\gamma)}{|J_{\gamma}(g(s_t,\gamma))|}$$

The observation probability

• P(o|s) = ? $O_t = g(s_t, \gamma_t)$

$$P(o_t \mid s_t) = \sum_{\gamma:g(s_t,\gamma)=o_t} \frac{P_{\gamma}(\gamma)}{|J_{\gamma}(g(s_t,\gamma))|}$$

• The J is a Jacobian

$$|J_{\gamma}(g(s_t,\gamma))| = \begin{vmatrix} \frac{\partial o_t(1)}{\partial \gamma(1)} & \dots & \frac{\partial o_t(1)}{\partial \gamma(n)} \\ \vdots & \ddots & \vdots \\ \frac{\partial o_t(n)}{\partial \gamma(1)} & \dots & \frac{\partial o_t(n)}{\partial \gamma(n)} \end{vmatrix}$$

• For scalar functions of scalar variables, it is simply a derivative: $|J_{\gamma}(g(s_t,\gamma))| = \left|\frac{\partial o_t}{\partial \gamma}\right|$

Predicting the next state at t=1

 Given P(s₀|o₀), what is the probability of the state at t=1

$$P(s_1 \mid o_0) = \int_{\{s_0\}} P(s_1, s_0 \mid o_0) ds_0 = \int_{\{s_0\}} P(s_1 \mid s_0) P(s_0 \mid o_0) ds_0$$

• State progression function:

$$s_t = f(s_{t-1}, \varepsilon_t)$$

 $-\epsilon_{t}$ is a driving term with probability distribution P_{ϵ}(ϵ_{t})

P(s_t | s_{t-1}) can be computed similarly to P(o|s)
 – P(s₁ | s₀) is an instance of this

And moving on

- P(s₁|o₀) is the predicted state distribution for t=1
- Then we observe o₁
 - We must update the probability distribution for s_1
 - $P(s_1 | o_{0:1}) = CP(s_1 | o_0)P(o_1 | s_1)$
- We can continue on

Discrete vs. Continuous state systems

Discrete vs. Continuous State Systems

 $s_t = f(s_{t-1}, \varepsilon_t)$ $o_t = g(s_t, \gamma_t)$

Prediction at time t: $P(S_t|O_{0:t-1}) = \sum_{S_{t-1}} P(S_{t-1}|O_{0:t-1})P(S_t|S_{t-1})$

Update after observing O_t:

 $P(S_t|O_{0:t}) = C.P(S_t|O_{0:t-1})P(O_t|S_t)$

$$P(S_t|O_{0:t-1}) = \int_{-\infty}^{\infty} P(S_{t-1}|O_{0:t-1})P(S_t|S_{t-1})dS_{t-1}$$

$$P(S_t|O_{0:t}) = C.P(S_t|O_{0:t-1})P(O_t|S_t)$$

Discrete vs. Continuous State Systems

Special case: Linear Gaussian model

$$\sum_{t} S_{t} = A_{t}S_{t-1} + \mathcal{E}_{t}$$

$$P(\varepsilon) = \frac{1}{\sqrt{(2\pi)^{d} |\Theta_{\varepsilon}|}} \exp\left(-0.5(\varepsilon - \mu_{\varepsilon})^{T}\Theta_{\varepsilon}^{-1}(\varepsilon - \mu_{\varepsilon})\right)$$

$$P(\gamma) = \frac{1}{\sqrt{(2\pi)^{d} |\Theta_{\gamma}|}} \exp\left(-0.5(\gamma - \mu_{\gamma})^{T}\Theta_{\gamma}^{-1}(\gamma - \mu_{\gamma})\right)$$

- A linear state dynamics equation
 - Probability of state driving term $\boldsymbol{\epsilon}$ is Gaussian
 - Sometimes viewed as a driving term μ_ϵ and additive zero-mean noise
- A *linear* observation equation
 - Probability of observation noise $\boldsymbol{\gamma}$ is Gaussian
- A_t, B_t and Gaussian parameters assumed known
 May vary with time

Linear model example The wind and the target

• **State:** Wind speed at time *t* depends on speed at time *t*-1

$$S_t = S_{t-1} + \epsilon_t$$

Observation: Arrow position at time t depends on wind speed at time t

$$\boldsymbol{O}_t = \boldsymbol{B}\boldsymbol{S}_t + \boldsymbol{\gamma}_t$$

11755/18797

$$P_0(s) = \frac{1}{\sqrt{(2\pi)^d |R|}} \exp\left(-0.5(s-\bar{s})R^{-1}(s-\bar{s})^T\right)$$

 $P_0(s) = Gaussian(s; \bar{s}, R)$

• We also assume the *initial* state distribution to be Gaussian

- Often assumed zero mean

$$s_t = A_t s_{t-1} + \varepsilon_t$$

$$o_t = B_t s_t + \gamma_t$$

Model Parameters:The observation probability $o_t = B_t s_t + \gamma_t$ $P(\gamma) = Gaussian(\gamma; \mu_{\gamma}, \Theta_{\gamma})$

$$P(o_t \mid s_t) = Gaussian(o_t; \mu_{\gamma} + B_t s_t, \Theta_{\gamma})$$

- The probability of the observation, given the state, is simply the probability of the noise, with the mean shifted
 - Since the only uncertainty is from the noise
- The new mean is the mean of the distribution of the noise + the value of the observation in the absence of noise

$$s_{t+1} = A_t s_t + \varepsilon_t \qquad P(\varepsilon) = Gaussian(\varepsilon; \mu_{\varepsilon}, \Theta_{\varepsilon})$$

 $P(s_{t+1} \mid s_t) = Gaussian(s_t; \mu_{\varepsilon} + A_t s_t, \Theta_{\varepsilon})$

 The probability of the state at time t, given the state at t-1, is simply the probability of the driving term, with the mean shifted

Continuous state systems

$$\underbrace{\mathfrak{S}}_{\mathfrak{a}} \underbrace{\mathfrak{S}}_{\mathfrak{a}} \underbrace{\mathfrak{S}}_{\mathfrak{c}} = A_t S_t + \mathcal{E}_t \\ o_t = B_t S_t + \gamma_t$$

Prediction at time 0:

$$P(S_0) = P_0(S_0)$$

Update after O₀:

$$P(S_0|O_0) = C.P(S_0)P(O_0|S_0)$$

Prediction at time 1:

$$P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0) P(S_1|S_0) dS_0$$

Update after O₁:

$$P(S_1|O_{0:1}) = C.P(S_1|O_0)P(O_1|S_1)$$

Continuous state systems

$$\underbrace{\underbrace{s}}_{s} \underbrace{s}_{t+1} = A_t s_t + \varepsilon_t \\
o_t = B_t s_t + \gamma_t$$

Prediction at time 0:

$$P(S_0) = P_0(S_0)$$

Update after O_0 :

$$P(S_0|O_0) = C.P(S_0)P(O_0|S_0)$$

Prediction at time 1:

$$P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0) P(S_1|S_0) dS_0$$

Update after O₁:

$$P(S_1|O_{0:1}) = C.P(S_1|O_0)P(O_1|S_1)$$

$$P_0(s) = \frac{1}{\sqrt{(2\pi)^d |R_0|}} \exp\left(-0.5(s - \bar{s}_0)R_0^{-1}(s - \bar{s}_0)^T\right)$$

 $P_0(s) = Gaussian(s; \bar{s}_0, R_0)$

• We assume the *initial* state distribution to be Gaussian

- Often assumed zero mean

Continuous state systems

$$\underbrace{\underbrace{\mathfrak{S}}_{s}}_{s} \underbrace{S_{t+1}}_{s} = A_{t}S_{t} + \mathcal{E}_{t}}_{o_{t}} = B_{t}S_{t} + \gamma_{t}}$$

Prediction at time 0:

$$P(S_0) = P_0(S_0)$$

a priori probability distribution of state s

 $= N(\bar{s}_0, R_0)$

Update after O_0 :

$$P(S_0|O_0) = C.P(S_0)P(O_0|S_0)$$

Prediction at time 1:

$$P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0) P(S_1|S_0) dS_0$$

Update after O₁:

$$P(S_1|O_{0:1}) = C.P(S_1|O_0)P(O_1|S_1)$$

Continuous state systems

$$\underbrace{\underbrace{\mathfrak{S}}_{\mathfrak{a}^{\mathsf{S}}}}_{s} \underbrace{S_{t+1}}_{s} = A_{t}S_{t} + \mathcal{E}_{t}}_{o_{t}} \underbrace{S_{t+1}}_{o_{t}} = B_{t}S_{t} + \gamma_{t}}_{o_{t}}$$

Prediction at time 0:

$$P(S_0) = N(\overline{s}_0, R_0)$$

Update after O_0 :

$$P(S_0|O_0) = C.P(S_0)P(O_0|S_0)$$

Prediction at time 1:

$$P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0) P(S_1|S_0) dS_0$$

Update after O₁:

$$P(S_1|O_{0:1}) = C.P(S_1|O_0)P(O_1|S_1)$$

Recap: Conditional of S given O: MLSP P(S|O) for Gaussian RVs

 $P(S|O) = N(\mu_S + \Theta_{SO}\Theta_O^{-1}(O - \mu_O), \quad \Theta_S - \Theta_{SO}\Theta_O^{-1}\Theta_{OS})$

Recap: Conditional of S given O: MLSP P(S|O) for Gaussian RVs

Recap: Conditional of S given O: ^{ML}♀ P(S|O) for Gaussian RVs

$$P(S_0|O_0) = N(\overline{s_0} + R_0 B^{\mathrm{T}} (BR_0 B^{\mathrm{T}} + \Theta_{\gamma})^{-1} (O_0 - B\overline{s}_0 - \mu_{\gamma}),$$

$$R_0 - R_0 B^{\mathrm{T}} (BR_0 B^{\mathrm{T}} + \Theta_{\gamma})^{-1} BR_0)$$

70

Continuous state systems

 γ_t

$$\underbrace{\mathfrak{S}}_{s} \underbrace{S}_{t+1} = A_t S_t + \mathcal{E}_t \\ o_t = B_t S_t + \gamma_t$$

Prediction at time 0:

$$P(S_0) = N(\bar{s}_0, R_0)$$

Update after O₀:

$$P(S_0|O_0) = C.P(S_0)P(O_0|S_0)$$

 $P(S_0|O_0) = N(\hat{s}_0, \hat{R}_0)$

Prediction at time 1: $P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0) P(S_1|S_0) dS_0$

Update after O₁:

$$P(S_1|O_{0:1}) = C.P(S_1|O_0)P(O_1|S_1)$$

Continuous state systems

$$\underbrace{\underbrace{\mathfrak{S}}_{\mathsf{a}^{\mathsf{S}}}}_{\mathsf{s}} \underbrace{\mathsf{S}_{t+1}}_{\mathsf{s}} = A_t s_t + \varepsilon_t}_{o_t} \\
o_t = B_t s_t + \gamma_t$$

Prediction at time 0:

$$P(S_{0}) - N(S_{0}, K_{0})$$
Update after O₀:

$$R_{0} = R_{0}B^{T}(BR_{0}B^{T} + \Theta_{\gamma})^{-1}$$

$$P(S_{0}|O_{0}) = N(\hat{s}_{0}, \hat{R}_{0})$$

$$\hat{s}_{0} = \bar{s}_{0} + K_{0}(O_{0} - B\bar{s}_{0} - \mu_{\gamma})$$

$$\hat{R}_{0} = (I - K_{0})R_{0}$$

Prediction at time 1:

$$P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0) P(S_1|S_0) dS_0$$

 $D(\mathbf{C}) = M(\overline{\mathbf{c}} \mid \mathbf{D})$

Update after O₁:

$$P(S_1|O_{0:1}) = C.P(S_1|O_0)P(O_1|S_1)$$
\mathcal{E}_t

$$\underbrace{\underbrace{\mathfrak{S}}_{1}}_{s} \underbrace{S_{t+1}}_{s} = A_{t}S_{t} + \mathcal{E}_{t} \\
o_{t} = B_{t}S_{t} + \gamma_{t}$$

Prediction at time 0:

$$P(S_0) = N(\bar{s}_0, R_0)$$

Update after O₀:
$$P(S_0|O_0) = C.P(S_0)P(O_0|S_0)$$
$$= N(\bar{s}_0 + R_0B^{T}(BR_0B^{T} + \Theta_{\gamma})^{-1}(O_0 - B\bar{s}_0 - \mu_{\gamma}),$$
$$R_0 - R_0B^{T}(BR_0B^{T} + \Theta_{\gamma})^{-1}BR_0)$$

Prediction at time 1:

$$P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0) P(S_1|S_0) dS_0$$

Update after O₁:

$$P(S_1|O_{0:1}) = C.P(S_1|O_0)P(O_1|S_1)$$

Introducting shorthand notation

$$P(S_0|O_0) = N(\bar{s}_0 + R_0 B^{\rm T} (BR_0 B^{\rm T} + \Theta_{\gamma})^{-1} (O_0 - B\bar{s}_0 - \mu_{\gamma}),$$

$$R_0 - R_0 B^{\rm T} (BR_0 B^{\rm T} + \Theta_{\gamma})^{-1} BR_0)$$

$$\hat{s}_0 = \bar{s}_0 + R_0 B^{\mathrm{T}} (BR_0 B^{\mathrm{T}} + \Theta_{\gamma})^{-1} (O - B\bar{s}_0 - \mu_{\gamma})$$
$$\hat{R}_0 = R_0 - R_0 B^{\mathrm{T}} (BR_0 B^{\mathrm{T}} + \Theta_{\gamma})^{-1} BR_0$$

$$P(S_0|O_0) = N(\hat{s}_0, \hat{R}_0)$$

Introducting shorthand notation

$$P(S_0|O_0) = N(\bar{s}_0 + R_0 B^{\rm T} (BR_0 B^{\rm T} + \Theta_{\gamma})^{-1} (O_0 - B\bar{s}_0 - \mu_{\gamma}),$$

$$R_0 - R_0 B^{\rm T} (BR_0 B^{\rm T} + \Theta_{\gamma})^{-1} BR_0)$$

$$K_0 = R_0 B^{\mathrm{T}} (BR_0 B^{\mathrm{T}} + \Theta_{\gamma})^{-1}$$
$$\hat{s}_0 = \bar{s}_0 + K_0 (O - B\bar{s}_0 - \mu_{\gamma})$$
$$\hat{R}_0 = (I - K_0 B)R_0$$

$$P(S_0|O_0) = N(\hat{s}_0, \hat{R}_0)$$

$$\underbrace{\mathfrak{S}}_{\mathsf{a}^{\mathsf{S}}} \underbrace{\mathsf{s}_{t+1}}_{\mathsf{s}} = A_t s_t + \varepsilon_t}_{\mathsf{s}}$$
$$o_t = B_t s_t + \gamma_t$$

Prediction at time 0:

$$P(S_{0}) - N(S_{0}, K_{0})$$
Update after O₀:

$$R_{0} = R_{0}B^{T}(BR_{0}B^{T} + \Theta_{\gamma})^{-1}$$

$$P(S_{0}|O_{0}) = N(\hat{s}_{0}, \hat{R}_{0})$$

$$\hat{s}_{0} = \bar{s}_{0} + K_{0}(O_{0} - B\bar{s}_{0} - \mu_{\gamma})$$

$$\hat{R}_{0} = (I - K_{0})R_{0}$$

Prediction at time 1:

$$P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0) P(S_1|S_0) dS_0$$

 $D(\mathbf{C}) = M(\overline{\mathbf{c}} \mid \mathbf{D})$

Update after O₁:

$$P(S_1|O_{0:1}) = C.P(S_1|O_0)P(O_1|S_1)$$

$$\underbrace{\underbrace{\mathfrak{S}}_{\mathfrak{a}}}_{s} \underbrace{S_{t+1}}_{s} = A_t S_t + \mathcal{E}_t \\ o_t = B_t S_t + \gamma_t$$

Prediction at time 0:

$$P(S_0) = N(\overline{s}_0, R_0)$$

Update after O₀:

$$K_{0} = R_{0}B^{T}(BR_{0}B^{T} + \Theta_{\gamma})^{-1}$$

$$P(S_{0}|O_{0}) = N(\hat{s}_{0}, \hat{R}_{0}) \qquad \hat{s}_{0} = \bar{s}_{0} + K_{0}(O_{0} - B\bar{s}_{0} - \mu_{\gamma}) \qquad \hat{R}_{0} = (I - K_{0})R_{0}$$

Prediction at time 1:

$$P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0) P(S_1|S_0) dS_0$$

Update after O₁:

$$P(S_1|O_{0:1}) = C.P(S_1|O_0)P(O_1|S_1)$$

The prediction equation

$$P(S_{1}|O_{0}) = \int_{-\infty}^{\infty} P(S_{0}|O_{0})P(S_{1}|S_{0})dS_{0}$$

$$P(S_{0}|O_{0}) = N(\hat{s}_{0}, \hat{R}_{0})$$

$$P(\varepsilon) = N(\mu_{\varepsilon}, \Theta_{\varepsilon})$$

$$P(S_{1}|S_{0}) = N(AS_{0} + \mu_{\varepsilon}, \Theta_{\varepsilon})$$

$$S_{t+1} = A_{t}S_{t} + \varepsilon_{t}$$

• The integral of the product of two Gaussians

$$P(S_1|O_0) = \int_{-\infty}^{\infty} Gaussian(S_0; \hat{s}_0, \hat{R}_0) Gaussian(S_1; AS_0, \Theta_{\varepsilon}) dS_0$$

The Prediction Equation

• The integral of the product of two Gaussians is Gaussian!

$$P(S_1|O_0) = \int_{-\infty}^{\infty} Gaussian(S_0; \hat{s}_0, \hat{R}_0) Gaussian(S_1; AS_0 + \mu_{\varepsilon}, \Theta_{\varepsilon}) dS_0$$

$$= \int_{-\infty}^{\infty} C_1 exp(-0.5(S_0 - \hat{s}_0)\hat{R}_0^{-1}(S_0 - \hat{s}_0)^T) C_2 exp(-0.5(S_1 - AS_0 - \mu_{\varepsilon})\Theta_{\varepsilon}^{-1}(S_1 - AS_0 - \mu_{\varepsilon})^T) dS_0$$

 $= Gaussian(S_1; A\hat{s}_0 + \mu_{\varepsilon}, \Theta_{\varepsilon} + A\hat{R}_0 A^T)$

$$P(S_1|O_0) = N(A\hat{s}_0 + \mu_{\varepsilon}, \Theta_{\varepsilon} + A\hat{R}_0 A^T)$$

$$\underbrace{\underbrace{\mathfrak{S}}_{\mathfrak{a}^{\mathsf{S}}}}_{s} \underbrace{S_{t+1}}_{s} = A_{t}S_{t} + \mathcal{E}_{t}}_{o_{t}} = B_{t}S_{t} + \gamma_{t}}$$

Prediction at time 0:

$$P(S_0) = N(\overline{s}_0, R_0)$$

Update after O₀:

$$P(S_0|O_0) = N(\hat{s}_0, \hat{R}_0) \qquad \hat{s}_0 = \bar{s}_0 + K_0(O_0 - B\bar{s}_0 - \mu_{\gamma}) \qquad \hat{R}_0 = (I - K_0)R_0$$

Prediction at time 1:

	ر [∞]	
$P(S_1 O_0) =$	$P(S_0 O_0)P(S_1 S_0)dS_0$	
$J = \infty$		

$$= N(A\hat{s}_0 + \mu_{\varepsilon}, \Theta_{\varepsilon} + A\hat{R}_0 A^T)$$

 $K_0 = R_0 B^{\mathrm{T}} (B R_0 B^{\mathrm{T}} + \Theta_{\mathrm{rr}})^{-1}$

Update after O₁:

$$P(S_1|O_{0:1}) = C.P(S_1|O_0)P(O_1|S_1)$$

More shorthand notation

$$P(S_1|O_0) = N(A\hat{s}_0 + \mu_{\varepsilon}, \Theta_{\varepsilon} + A\hat{R}_0A^T)$$

$$\overline{s}_1 = A\hat{s}_0 + \mu_{\varepsilon}$$

$$\boldsymbol{R_1} = \boldsymbol{\Theta}_{\varepsilon} + A \boldsymbol{\widehat{R}}_0 \boldsymbol{A}^T$$

$$P(S_1|O_0) = N(\overline{s}_1, R_1)$$

$$\underbrace{\underbrace{\mathfrak{S}}_{\mathfrak{a}^{\mathsf{S}}}}_{s} \underbrace{S_{t+1}}_{s} = A_{t}S_{t} + \mathcal{E}_{t}}_{o_{t}} = B_{t}S_{t} + \gamma_{t}}$$

Prediction at time 0:

$$\boldsymbol{P}(\boldsymbol{S}_0) = \boldsymbol{N}(\bar{\boldsymbol{S}}_0, \boldsymbol{R}_0)$$

Update after O₀:

Prediction at time 1:

$$\overline{s_1} = A \widehat{s}_0 + \mu_{\varepsilon}$$

$$P(S_1 | O_0) = N(\overline{s_1}, R_1)$$

$$R_1 = \Theta_{\varepsilon} + A \widehat{R}_0 A^T$$

Update after O₁:

 $P(S_1|O_{0:1}) = C.P(S_1|O_0)P(O_1|S_1)$

$$\underbrace{\underbrace{\mathfrak{S}}_{\mathsf{a}^{\mathsf{S}}}}_{\mathsf{s}} \underbrace{\mathsf{S}_{t+1}}_{\mathsf{s}} = A_t S_t + \mathcal{E}_t}_{\mathsf{s}} \\ o_t = B_t S_t + \gamma_t$$

Prediction at time 0:

$$\boldsymbol{P}(\boldsymbol{S}_0) = \boldsymbol{N}(\boldsymbol{\bar{S}}_0, \boldsymbol{R}_0)$$

Update after O₀: $P(S_0|O_0) = N(\hat{s}_0, \hat{R}_0)$ $R_0 = R_0 B^T (BR_0 B^T + \Theta_{\gamma})^{-1}$ $\hat{s}_0 = \bar{s}_0 + K_0 (\Theta_0 - B\bar{s}_0 - \mu_{\gamma})$ $\hat{R}_0 = (I - K_0) R_0$ Prediction at time 1: $P(S_1|O_0) = N(\bar{s}_1, R_1)$ $R_1 = \Theta_{\varepsilon} + A\hat{R}_0 A^T$

Update after O₁:

 $P(S_1|O_{0:1}) = C.P(S_1|O_0)P(O_1|S_1)$

$$\underbrace{\underbrace{\mathfrak{S}}_{\mathfrak{a}^{\mathsf{S}}}}_{s} \underbrace{S_{t+1}}_{s} = A_{t}S_{t} + \mathcal{E}_{t}}_{o_{t}} = B_{t}S_{t} + \gamma_{t}}$$

 $\mathbf{D}(\mathbf{C}) = \mathbf{N}(\mathbf{z} \cdot \mathbf{D})$

Prediction at time 0:

$$P(S_{0}) = N(S_{0}, R_{0})$$
Update after O₀:

$$P(S_{0}|O_{0}) = N(\hat{s}_{0}, \hat{R}_{0})$$

$$R_{0} = R_{0}B^{T}(BR_{0}B^{T} + \theta_{\gamma})^{-1}$$

$$\hat{R}_{0} = (I - K_{0}B)R_{0}$$
Prediction at time 1:

$$P(S_{1}|O_{0}) = N(\bar{s}_{1}, R_{1})$$

$$R_{1} = \theta_{\varepsilon} + A\hat{R}_{0}A^{T}$$
Update after O₁:

$$P(S_{1}|O_{0})P(O_{1}|S_{1}) = N(\hat{s}_{1}, \hat{R}_{1})$$

$$R_{1} = \bar{s}_{1} + K_{1}(O_{1} - B\bar{s}_{1} - \mu_{\gamma})$$

$$\hat{R}_{1} = (I - K_{1}B)R_{1}$$

$$\underbrace{\underbrace{\mathfrak{S}}_{\mathfrak{a}^{\mathsf{S}}}}_{s} \underbrace{S_{t+1}}_{s} = A_{t}S_{t} + \mathcal{E}_{t}}_{o_{t}} = B_{t}S_{t} + \gamma_{t}}$$

 $\mathbf{D}(\mathbf{C}) = \mathbf{N}(\mathbf{\overline{c}} \ \mathbf{D})$

Prediction at time 0:

$$P(S_{0}) = N(S_{0}, R_{0})$$
Update after O₀:

$$P(S_{0}|O_{0}) = N(\hat{s}_{0}, \hat{R}_{0})$$

$$R_{0} = R_{0}B^{T}(BR_{0}B^{T} + \theta_{\gamma})^{-1}$$

$$\hat{s}_{0} = \bar{s}_{0} + K_{0}(\theta_{0} - B\bar{s}_{0} - \mu_{\gamma})$$

$$\hat{R}_{0} = (I - K_{0}B)R_{0}$$
Prediction at time 1:

$$P(S_{1}|O_{0}) = N(\bar{s}_{1}, R_{1})$$

$$R_{1} = \theta_{\varepsilon} + A\hat{R}_{0}A^{T}$$
Update after O₁:

$$P(S_{1}|O_{0:1}) = N(\hat{s}_{1}, \hat{R}_{1})$$

$$\frac{K_{1} = R_{1}B^{T}(BR_{1}B^{T} + \theta_{\gamma})^{-1}}{\hat{s}_{1} = \bar{s}_{1} + K_{1}(\theta_{1} - B\bar{s}_{1} - \mu_{\gamma})}$$

$$\hat{R}_{1} = (I - K_{1}B)R_{1}$$

Gaussian Continuous State Linear Systems

Prediction at time t:

$$P(S_t|O_{0:t-1}) = \int_{-\infty}^{\infty} P(S_{t-1}|O_{0:t-1})P(S_t|S_{t-1})dS_{t-1}$$

Update after observing O_t:

$$P(S_t|O_{0:t}) = C.P(S_t|O_{0:t-1})P(O_t|S_t)$$

Gaussian Continuous State Linear Systems

$$p_t = B_t s_t + \gamma_t$$

Prediction at time t

$$P(S_t|O_{0:t-1}) = N(\bar{s}_t, R_t)$$

$$\bar{s}_t = A\hat{s}_{t-1} + \mu_{\varepsilon}$$
$$R_t = \Theta_{\varepsilon} + A\hat{R}_{t-1}A^T$$

Update after observing O_t:

 $P(S_t | O_{0:t}) = N(\hat{s}_t, \hat{R}_t)$

$$K_{t} = R_{1}B^{T} (BR_{1}B^{T} + \Theta_{\gamma})^{-1}$$
$$\hat{s}_{t} = \bar{s}_{t} + Kt (Ot - B\bar{s}_{t} - \mu_{\gamma})$$
$$\hat{R}_{t} = (I - KtB) R_{t}$$

Gaussian Continuous State Linear Systems

 $s_{t+1} = A_t s_t + \varepsilon_t$ $o_t = B_t s_t + \gamma_t$

Prediction at time t:

$$P(S_t|O_{0:t-1}) = N(\bar{s}_t, R_t)$$

Update after observing O_t:

 $P(S_t|O_{0:t}) = N(\hat{s}_t, \hat{R}_t)$

KALMAN FILTER
$$\bar{s}_t = A\hat{s}_{t-1} + \mu_{\varepsilon}$$
 $R_t = \Theta_{\varepsilon} + A\hat{R}_{t-1}A^T$ $K_t = R_1 B^T (BR_1 B^T + \Theta_{\gamma})^{-1}$ $\hat{s}_t = \bar{s}_t + Kt (Ot - B\bar{s}_t - \mu_{\gamma})$ $\hat{R}_t = (I - KtB) R_t$

• Prediction (based on state equation)

$$\bar{s}_t = A_t \hat{s}_{t-1} + \mu_{\varepsilon}$$

$$S_t = A_t S_{t-1} + \mathcal{E}_t$$

$$R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$$

• Update (using observation and observation equation) equation) $O_{t} = B_{t}S_{t} + O_{t}$

$$K_t = R_t B_t^T \left(B_t R_t B_t^T + \Theta_{\gamma} \right)^{-1} \qquad o_t = B_t S_t + \gamma_t$$

$$\hat{s}_t = \bar{s}_t + K_t \left(o_t - B_t \bar{s}_t - \mu_\gamma \right)$$

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

Explaining the Kalman Filter

• Prediction

$$\bar{s}_t = A_t \hat{s}_{t-1} + \mu_{\varepsilon}$$

$$o_t = B_t s_t + \gamma_t$$

 $S_t = A_t S_{t-1} + \mathcal{E}_t$

$$R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$$

 The Kalman filter can be explained intuitively without working through the math

$$\hat{s}_t = \overline{s}_t + K_t (o_t - B_t \overline{s}_t - \mu_\gamma)$$

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

Prediction

$$S_t = A_t S_{t-1} + \mathcal{E}_t$$

$$o_t = B_t s_t + \gamma_t$$

The predicted state at time t is obtained simply by propagating the estimated state at t-1 through the state dynamics equation $K_t = R_t B_t (B_t R_t B_t + \Theta_y)$

$$\hat{s}_t = \bar{s}_t + K_t \left(o_t - B_t \bar{s}_t - \mu_\gamma \right)$$

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

• Prediction $\overline{s_t} = A_t \hat{s}_{t-1} + \mu_{\varepsilon}$ $\overline{s_t} = A_t \hat{s}_{t-1} + \mu_{\varepsilon}$ $\overline{R_t} = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$

This is the uncertainty in the prediction. The variance of the predictor = variance of ε_t + variance of As_{t-1}

The two simply add because $\epsilon_{\rm t}$ is not correlated with $\textbf{s}_{\rm t}$

 $\overline{s}_t = A_t \hat{s}_{t-1} + \mu_{\varepsilon}$

 $R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$

Prediction

$$S_t = A_t S_{t-1} + \mathcal{E}_t$$

 $o_t = B_t s_t + \gamma_t$

 $\hat{o}_t = B_t \overline{s}_t + \mu_{\gamma}$

We can also predict the observation from the predicted state using the observation equation

$$S_t = S_t + K_t (O_t - B_t S_t - \mu_{\gamma})$$

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

93

 $s_t = A_t s_{t-1} + \varepsilon_t$ Prediction $\overline{S}_t = A_t \hat{S}_{t-1} + \mu_{\varepsilon}$ $o_t = B_t s_t + \gamma_t$ $R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$ $\hat{o}_t = B_t \overline{s}_t + \mu_{\gamma}$ Actual observation Update O_t $K_{t} = R_{t}B_{t}^{T}\left(B_{t}R_{t}B_{t}^{T} + \Theta_{v}\right)^{-1}$ $\hat{s}_t = \overline{s}_t + K_t (o_t - B_t \overline{s}_t)$ $\hat{R}_t = (I - K_t B_t) R_t$

MAP Recap (for Gaussians)

• If P(x,y) is Gaussian:

MAP Recap: For Gaussians

• If P(x,y) is Gaussian:

 $\mathsf{R}\mathsf{B}^{\mathsf{T}} = C_{\mathsf{so}}, \quad (\mathsf{B}\mathsf{R}\mathsf{B}^{\mathsf{T}} + \Theta) = C_{\mathsf{oo}}$

This is also called the Kalman Gain

 $\overline{s}_t = A_t \hat{s}_{t-1} + \mu_{\varepsilon}$

Prediction

 $\hat{o}_t = B_t \overline{s}_t + \mu_{\gamma}$

0

We must correct the predicted value of the state after making an observation

$$K_t = R_t B_t^T \left(B_t R_t B_t^T + \Theta_{\gamma} \right)^{-1}$$

$$\hat{s}_t = \bar{s}_t + K_t (o_t - \hat{o}_t)$$

The correction is the difference between the actual observation and the predicted observation, scaled by the Kalman Gain

 $\overline{s}_t = A_t \hat{s}_{t-1} + \mu_{\varepsilon}$

Prediction

 $\hat{o}_t = B_t \overline{s}_t + \mu_{\gamma}$

0

We must correct the predicted value of the state after making an observation

$$K_t = R_t B_t^T \left(B_t R_t B_t^T + \Theta_{\gamma} \right)$$

 $\hat{s}_t = \overline{s}_t + K_t \left(o_t - B_t \overline{s}_t - \mu_\gamma \right)$

The correction is the difference between the actual observation and the predicted observation, scaled by the Kalman Gain

• Prediction

$$\overline{s}_t = A_t \hat{s}_{t-1} + \mu_{\varepsilon}$$

 $R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$

$$s_t = A_t s_{t-1} + \varepsilon_t$$
$$o_t = B_t s_t + \gamma_t$$

The uncertainty in state decreases if we observe the data and make a correction

The reduction is a multiplicative "shrinkage" based on Kalman gain and B

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

11-755/18797

• Prediction

$$\overline{s}_t = A_t \hat{s}_{t-1} + \mu_{\varepsilon}$$

$$R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$$

$$s_t = A_t s_{t-1} + \varepsilon_t$$
$$o_t = B_t s_t + \gamma_t$$

• Update:

$$K_t = R_t B_t^T \left(B_t R_t B_t^T + \Theta_{\gamma} \right)^{-1}$$

$$\hat{s}_t = \overline{s}_t + K_t \left(o_t - B_t \overline{s}_t - \mu_\gamma \right)$$

• Update

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

- Very popular for tracking the state of processes
 - Control systems
 - Robotic tracking
 - Simultaneous localization and mapping
 - Radars
 - Even the stock market..
- What are the parameters of the process?

Kalman filter contd.

$$s_t = A_t s_{t-1} + \varepsilon_t$$
$$o_t = B_t s_t + \gamma_t$$

- Model parameters A and B must be known
 - Often the state equation includes an *additional* driving term: $s_t = A_t s_{t-1} + G_t u_t + \varepsilon_t$
 - The parameters of the driving term must be known
- The initial state distribution must be known

Defining the parameters

- State state must be carefully defined
 - E.g. for a robotic vehicle, the state is an extended vector that includes the current velocity and acceleration
 - $S = [X, dX, d^2X]$
- State equation: Must incorporate appropriate constraints
 - If state includes acceleration and velocity, velocity at next time = current velocity + acc. * time step

$$-$$
 St = AS_{t-1} + e

•
$$A = [1 t 0.5t^2; 0 1 t; 0 0 1]$$

Parameters

- Observation equation:
 - Critical to have accurate observation equation
 - Must provide a valid relationship between state and observations
- Observations typically high-dimensional
 - May have higher or lower dimensionality than state

Problems

$$s_t = f(s_{t-1}, \varepsilon_t)$$
$$o_t = g(s_t, \gamma_t)$$

- f() and/or g() may not be nice linear functions
 - Conventional Kalman update rules are no longer valid
- ϵ and/or γ may not be Gaussian
 - Gaussian based update rules no longer valid

All distributions remain Gaussian

Problems

$$s_t = f(s_{t-1}, \varepsilon_t)$$
$$o_t = g(s_t, \gamma_t)$$

- Nonlinear f() and/or g() : The Gaussian assumption breaks down
 - Conventional Kalman update rules are no longer valid
The problem with non-linear functions

$$s_t = f(s_{t-1}, \varepsilon_t)$$
$$o_t = g(s_t, \gamma_t)$$

$$P(s_t \mid o_{0:t-1}) = \int_{-\infty}^{\infty} P(s_{t-1} \mid o_{0:t-1}) P(s_t \mid s_{t-1}) ds_{t-1}$$

$$P(s_t \mid \mathbf{o}_{0:t}) = CP(s_t \mid \mathbf{o}_{0:t-1})P(\mathbf{o}_t \mid s_t)$$

- Estimation requires knowledge of P(o|s)
 - Difficult to estimate for nonlinear g()
 - Even if it can be estimated, may not be tractable with update loop
- Estimation also requires knowledge of $P(s_t|s_{t-1})$
 - Difficult for nonlinear f()
 - May not be amenable to closed form integration

The problem with nonlinearity

$$o_t = g(s_t, \gamma_t)$$

• The PDF may not have a closed form

• Even if a closed form exists initially, it will typically become intractable very quickly

Example: a simple nonlinearity

$$o = \gamma + \log(1 + \exp(s))$$

- P(o|s) = ?
 - Assume γ is Gaussian

$$-P(\gamma) = Gaussian(\gamma; \mu_{\gamma}, \Theta_{\gamma})$$

Example: a simple nonlinearity

bservation (o) A CI

-6

 $^{4}\gamma = 0$; s

2

4

6

$$o = \gamma + \log(1 + \exp(s))$$

• P(o|s) = ?

$$P(\gamma) = Gaussian(\gamma; \mu_{\gamma}, \Theta_{\gamma})$$

$$P(o \mid s) = Gaussian(o; \mu_{\gamma} + \log(1 + \exp(s)), \Theta_{\gamma})$$

Example: At T=0.

- Assume initial probability P(s) is Gaussian $P(s_0) = P_0(s) = Gaussian(s; \bar{s}, R)$
- Update $P(s_0 | o_0) = CP(o_0 | s_0)P(s_0)$

 $P(s_0 | o_0) = CGaussian(o; \mu_{\gamma} + \log(1 + \exp(s_0)), \Theta_{\gamma})Gaussian(s_0; \bar{s}, R)$

UPDATE: At T=0.

 $P(s_0 \mid o_0) = CGaussian(o; \mu_{\gamma} + \log(1 + \exp(s_0)), \Theta_{\gamma})Gaussian(s_0; \bar{s}, R)$

 $P(s_0 \mid o_0) = C \exp \begin{pmatrix} -0.5(\mu_{\gamma} + \log(1 + \exp(s_0)) - o)^T \Theta_{\gamma}^{-1}(\mu_{\gamma} + \log(1 + \exp(s_0)) - o) \\ -0.5(s_0 - \overline{s})^T R^{-1}(s_0 - \overline{s}) \end{pmatrix}$

• = Not Gaussian

Prediction for T = 1

$$S_t = S_{t-1} + \mathcal{E}$$
 $P(\varepsilon) = Gaussian(\varepsilon; 0, \Theta_{\varepsilon})$

$$P(s_1 | o_0) = \int_{-\infty}^{\infty} C \exp\left(-\frac{0.5(\mu_{\gamma} + \log(1 + \exp(s_0)) - o)^T \Theta_{\gamma}^{-1}(\mu_{\gamma} + \log(1 + \exp(s_0)) - o)}{-0.5(s_0 - \bar{s})^T R^{-1}(s_0 - \bar{s})}\right) \exp\left((s_1 - s_0)^T \Theta_{\varepsilon}^{-1}(s_1 - s_0)\right) ds_0$$

Update at T=1 and later

• Update at T=1 $P(s_t | o_{0:t}) = CP(s_t | o_{0:t-1})P(o_t | s_t)$

Intractable

• Prediction for T=2

$$P(s_t \mid o_{0:t-1}) = \int_{-\infty}^{\infty} P(s_{t-1} \mid o_{0:t-1}) P(s_t \mid s_{t-1}) ds_{t-1}$$

– Intractable

The State prediction Equation

 $S_t = f(S_{t-1}, \mathcal{E}_t)$

- Similar problems arise for the state prediction equation
- $P(s_t|s_{t-1})$ may not have a closed form
- Even if it does, it may become intractable within the prediction and update equations
 - Particularly the prediction equation, which includes an integration operation

• The *tangent* at any point is a good *local* approximation if the function is sufficiently smooth

 The tangent at any point is a good local approximation if the function is sufficiently smooth

 The tangent at any point is a good local approximation if the function is sufficiently smooth

 The tangent at any point is a good local approximation if the function is sufficiently smooth

Linearizing the observation function

$$P(s_t \mid o_{0:t-1}) = Gaussian(\bar{s}_t, R_t)$$

$$o = \gamma + g(s)$$
 $rac{1}{2} o \approx \gamma + g(\overline{s}_t) + J_g(\overline{s}_t)(s - \overline{s}_t)$

- Simple first-order Taylor series expansion
 - J() is the Jacobian matrix
 - Simply a determinant for scalar state
- Expansion around *current* predicted *a priori* (or predicted) mean of the state
 - Linear approximation changes with time

P(s_t) is small where approximation error is large

 Most of the probability mass of s is in low-error regions

Linearizing the observation function

$$P(s_t \mid o_{0:t-1}) = Gaussian(\bar{s}_t, R_t)$$

$$o = \gamma + g(s)$$
 $rac{1}{2} o \approx \gamma + g(\overline{s}_t) + J_g(\overline{s}_t)(s - \overline{s}_t)$

- With the linearized approximation the system becomes "linear"
- The observation PDF becomes Gaussian

 $P(\gamma) = Gaussian(\gamma; 0, \Theta_{\gamma})$

$$P(o \mid s) = Gaussian(o; g(\bar{s}) + J_g(\bar{s})(s - \bar{s}), \Theta_{\gamma})$$

The state equation?

$$s_t = f(s_{t-1}) + \varepsilon$$
 $P(\varepsilon) = Gaussian(\varepsilon; 0, \Theta_{\varepsilon})$

- Again, direct use of f() can be disastrous
- Solution: Linearize

$$P(s_{t-1} \mid o_{0:t-1}) = Gaussian(s_{t-1}; \hat{s}_{t-1}, \hat{R}_{t-1})$$

 $s_t = f(s_{t-1}) + \varepsilon$ $rac{s_t}{s_t} \approx \varepsilon + f(\hat{s}_{t-1}) + J_f(\hat{s}_{t-1})(s_{t-1} - \hat{s}_{t-1})$

11-755/18797

- Linearize around the mean of the updated distribution of s at t-1
 - Converts the system to a linear one

125

Linearized System

$$o = \gamma + g(s)$$

$$s_{t} = f(s_{t-1}) + \varepsilon$$

$$o \approx \gamma + g(\overline{s}_{t}) + J_{g}(\overline{s}_{t})(s - \overline{s}_{t})$$

$$s_{t} \approx \varepsilon + f(\hat{s}_{t-1}) + J_{f}(\hat{s}_{t-1})(s_{t-1} - \hat{s}_{t-1})$$

- Now we have a simple time-varying linear system
- Kalman filter equations directly apply

• Prediction

$$\overline{s}_t = f(\hat{s}_{t-1})$$

$$R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$$

$$K_{t} = R_{t}B_{t}^{T} \left(B_{t}R_{t}B_{t}^{T} + \Theta_{\gamma}\right)^{-1}$$

$$\hat{s}_t = \bar{s}_t + K_t (o_t - g(\bar{s}_t))$$

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

$$s_t = f(s_{t-1}) + \varepsilon$$

c 1

$$o_t = g(s_t) + \gamma$$

$$A_t = J_f(\hat{s}_{t-1})$$
$$B_t = J_g(\overline{s}_t)$$

Jacobians used in Linearization

Assuming ϵ and γ are 0 mean for simplicity

• Prediction

$$\overline{s}_t = f(\hat{s}_{t-1})$$

 $o_t = g(s_t) + \gamma$

 $S_t = f(S_{t-1}) + \mathcal{E}$

The predicted state at time t is obtained simply by propagating the estimated state at t-1 through the state dynamics equation $K_t = K_t B_t (B_t K_t B_t + \Theta_v)$

$$\hat{s}_t = \overline{s}_t + K_t (o_t - g(\overline{s}_t))$$

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

• Prediction

$$\overline{s}_t = f(\hat{s}_{t-1})$$

$$R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$$

$$s_t = f(s_{t-1}) + \varepsilon$$
$$o_t = g(s_t) + \varepsilon$$

$$A_t = J_f(\hat{s}_{t-1})$$

$$B_t = J_g(\bar{s}_t)$$

Uncertainty of prediction. The variance of the predictor = variance of ε_t + variance of As_{t-1}

A is obtained by linearizing f()

 $\mathbf{n}_t \boldsymbol{\nu}_t \mathbf{j} \mathbf{n}_t$

• Prediction

$$\overline{s}_t = f(\hat{s}_{t-1})$$

$$s_t = f(s_{t-1}) + \varepsilon$$

$$o_t = g(s_t) + \varepsilon$$

$$R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$$

• Update

$$B_t = J_g(\bar{s}_t)$$

$$K_t = R_t B_t^T \left(B_t R_t B_t^T + \Theta_{\gamma} \right)^{-1}$$

The Kalman gain is the slope of the MAP estimator that predicts s from o RBT = C_{so} , (BRB^T+ Θ) = C_{oo} B is obtained by linearizing g()

• Prediction

We can also predict the observation from the predicted state using the observation equation

$$\hat{s}_t = \bar{s}_t + K_t (o_t - g(\bar{s}_t))$$

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

 $S_t = f(S_{t-1}) + \mathcal{E}$

• Prediction

$$\overline{s}_t = f(\hat{s}_{t-1})$$

 $R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$

$$o_t = g(s_t) + \varepsilon$$

 $= g(\overline{S}_{t})$

 $S_t = f(S_{t-1}) + \mathcal{E}$

$$\hat{s}_t = \bar{s}_t + K_t (o_t - g(\bar{s}_t)) \qquad \overline{o}_t$$

The correction is the difference between the actual observation and the predicted observation, scaled by the Kalman Gain

Prediction

$$\overline{s}_t = f(\hat{s}_{t-1})$$

$$o_t = g(s_t) + \varepsilon$$

 $g = f(g) \perp c$

$$R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$$

$$B_t = J_g(\bar{s}_t)$$

The uncertainty in state decreases if we observe the data and make a correction

The reduction is a multiplicative "shrinkage" based on Kalman gain and B

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

• Prediction

$$\overline{s}_t = f(\hat{s}_{t-1})$$

$$R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$$

$$o_t = g(s_t) + \varepsilon$$

 $s_t = f(s_{t-1}) + \varepsilon$

$$A_t = J_f(\hat{s}_{t-1})$$
$$B_t = J_g(\overline{s}_t)$$

• Update

$$K_{t} = R_{t}B_{t}^{T} \left(B_{t}R_{t}B_{t}^{T} + \Theta_{\gamma}\right)^{-1}$$
$$\hat{s}_{t} = \bar{s}_{t} + K_{t} \left(o_{t} - g(\bar{s}_{t})\right)$$

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

- EKFs are probably the most commonly used algorithm for tracking and prediction
 - Most systems are non-linear
 - Specifically, the relationship between state and observation is usually nonlinear
 - The approach can be extended to include non-linear functions of noise as well
- The term "Kalman filter" often simply refers to an *extended* Kalman filter in most contexts.
- But..

EKFs have limitations

- If the non-linearity changes too quickly with s, the linear approximation is invalid
 - Unstable
- The estimate is often biased
 - The true function lies entirely on one side of the approximation
- Various extensions have been proposed:
 - Invariant extended Kalman filters (IEKF)
 - Unscented Kalman filters (UKF)

Conclusions

- HMMs are predictive models
- Continuous-state models are simple extensions of HMMs
 - Same math applies
- Prediction of linear, Gaussian systems can be performed by Kalman filtering
- Prediction of non-linear, Gaussian systems can be performed by Extended Kalman filtering