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Learning Representations:
Problem so far .
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* Problem: Given a collection of data X, find a
set of “bases” B, such that each vector x; can
be expressed as a weighted combination of

the bases
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Why is this important?

. b

* With the right set of bases, the weights represent the data most effectively
— We can now use the weights to represent the data
— E.g. with notes as bases, the weights would be the score

* If the bases are agreed upon, we can also communicate the information about the
data most efficiently
— Just communicate the weights
— E.g. enough to store eigen face weights to reconstruct face
— E.g. just reading the score is sufficient for anyone to recreate music



What is the most accurate way to
represent data

f= E w;d; /
PEEEEERARAREEEER "

D wy = 1, le=0f0rj;tk u
!

Selecting the kth face in the collection

* |f, instead of bases, we had a dictionary of all possible data
— A matrix that included every possible data vector as a column

— And the weights vector simply selected the correct data
instance

— |l.e. w was one-sparse vector
wlp =1

(actually a one-hot vector because the one non-zero entry of w =
1, l.e. Zi W; = 1)

MLSEP
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What is the most accurate way to
represent data

f= E w;d;

i
D wry =1, wj=0forj+#k
!
Selecting the kth face in the collection

* If, instead of bases, we had a dictionary of all possible data
— A matrix that included every possible data vector as a column
— And the weights vector simply selected the correct data instance

* Problem: Infeasible to construct such a dictionary!
— Will require infinite entries
* And our w vector too will require infinite bits to represent

— Alternately, will require storing the entire training data
* And will not be useful to represent data outside the training set 5
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Approximate representation with a

dictionary
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Selecting the kth face in the collection

 Problem: Infeasible to construct a perfect dictionary
— Will require too many (potentially infinite) entries

e Solution: Can we instead construct a smaller finite dictionary such that all
data can be approximated well by one of the entries in the dictionary?

— E.g. “The guy looks a lot like the 7t face in the dictionary”
— E.g. The vector x looks a lot like the d;, the i-th entry in the dictionary.
* Questions:
— What do we mean by “looks a lot like”
— How do we construct the dictionary? 6
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Approximate representation with a

dictionary
FEEEIREARAREEEEE f@z Widi
l
b we =1, wj=0forj =k
T

Selecting the kth face in the collection

 Problem: Infeasible to construct a perfect dictionary
— Will require too many (potentially infinite) entries

e Solution: Can we instead construct a smaller finite dictionary such that all
data can be approximated well by one of the entries in the dictionary?

— E.g. “The guy looks a lot like the 7t face in the dictionary”

— E.g. The vector x looks a lot like the d;, the i-th entry in the dictionary.
* Questions:

— What do we mean by “looks a lot like”

— How do we construct the dictionary? 7



Quantifying the error

| fi=)) wid,
NEEHEEARAEAREEEER -

i
D wry =1, wj=0forj+#k
!
Selecting the kth face in the collection

 Different error metrics will result in different solutions

* Lets generically represent the error as div()
f = Dw, |w|0=1,ZWi=1
i
Error(f) = div(f,f)

e A common choice is the L2 error

Error(f) = |f — fI?

MLSP
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Approximate representation with a

dictionary
FEEEIREARAREEEEE f@z Widi
l
b we =1, wj=0forj =k
T

Selecting the kth face in the collection

 Problem: Infeasible to construct a perfect dictionary
— Will require too many (potentially infinite) entries

e Solution: Can we instead construct a smaller finite dictionary such that all
data can be approximated well by one of the entries in the dictionary?

— E.g. “The guy looks a lot like the 7t face in the dictionary”

— E.g. The vector x looks a lot like the d;, the i-th entry in the dictionary.
* Questions:

— What do we mean by “looks a lot like”

— How do we construct the dictionary? 9




Learning the Dictionary

V =V, V,, Vs, ...] are the data for which the dictionary is
being learned

= |dq,ds, ..., dg] is the matrix of dictionary vectors
W = |wy,w,, W3, ... ] is a set of one-hot vectors
Learning: Learn D and W to minimize total error on V

D,W = argmindiv(V,DW) = argmmz div(V;, Dw;),
D,W
s.t.w; = one hot

If we’re only interested in learning the dictionary

D = argmin mui,nz div(V;, Dw;), s.t.w; = one hot
D .

MLSEP
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Learning the Dictionary

e D= argmin mmi,n 2. div(V;, Dw;)
D

= argmin E min div(V;, Dw;)
D - Wi
l

* Generally does not have a closed form solution, but can
solved with the following iteration that provably reduces

error in each step

w; = argmin div(V;, Dw)
A%

D = argmin z div(V;, Dw;)
D .
l

MLSP
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Learning the Dictionary

A~

e N — arominmin Y. din(V. Dw.)

For div(.) = ||V; — Dw;]|* this gives us the well-known K-means algorithm

= argmin E min div(V;, Dw;)
D - Wi
l

* Generally does not have a closed form solution, but can
solved with the following iteration that provably reduces
error in each step

w; = argmin div(V;, Dw)
A%

D = argmin z div(V;, Dw;)
D .
l
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Learning the Dictionary

A~

e D = argminminY; div(V;, Dw;)

For div(.) = ||[V; — Dw;]||* this gives us the well-known
K-means algorithm

D e W

- Grouping V; by the dictionary entries they are
assigned to (w;) results in clustering
error in each step

w; = argmin div(V;, Dw)
A%

D = argmin z div(V;, Dw;)
D .
l




So lets look at clustering

 From a more naive, procedural perspective..

MLSP
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Clustering
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Statistical Modelling and Latent
Structure

Much of statistical modelling attempts to identify latent structure in
the data

— Structure that is not immediately apparent from the observed data

— But which, if known, helps us explain it better, and make predictions
from or about it

Clustering methods attempt to extract such structure from
proximity
— First-level structure (as opposed to deep structure)

We will see still other forms of latent structure discovery later in the
course



How
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Clustering

 What is clustering

— Clustering is the determination of
naturally occurring grouping of
data/instances (with low within-
group variability and high between-
group variability)

MLSP
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Clustering

 What is clustering

— Clustering is the determination of
naturally occurring grouping of
data/instances (with low within-
group variability and high between-
group variability)
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Clustering

 What is clustering

— Clustering is the determination of
naturally occurring grouping of
data/instances (with low within-
group variability and high between-
group variability)

e How s it done

— Find groupings of data such that the
groups optimize a “within-group-
variability” objective function of
some kind

20



Clustering

 What is clustering

— Clustering is the determination of
naturally occurring grouping of
data/instances (with low within-
group variability and high between-
group variability)

* How is it done
— Find groupings of data such that the
groups optimize a “within-group-
variability” objective function of
some kind

— The objective function used affects
the nature of the discovered clusters

e E.g. Euclidean distance vs.

21
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Clustering

 What is clustering

— Clustering is the determination of
naturally occurring grouping of
data/instances (with low within-
group variability and high between-
group variability)

e How s it done

— Find groupings of data such that the
groups optimize a “within-group-
variability” objective function of
some kind

— The objective function used affects
the nature of the discovered clusters

e E.g. Euclidean distance vs.
* Distance from center

22




Why Clustering

e Automatic grouping into “Classes”
— Different clusters may show different behavior

* Representation: Quantization

— All data within a cluster are represented by a
single point

* Preprocessing step for other algorithms
— Indexing, categorization, etc.

MLSP
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Finding natural structure in data

High High income,
A _~ low-moderate education D
Low-moderate  * o gl o Moderate-high education,
iNcome, young ~~. am|" . — low-moderate income 3 |
_ g e : 2
Low education, =« * 5| » -
low income . = High 1
i o
- l: - ':..:r
Low * . * .~ Moderate education, a 0
o low income, middle-aged :
High
b =
=
- =% -
'"E'_\-l_ i o =
i d.-l‘l'ﬁ

* Find natural groupings in data for further analysis
e Discover latent structure in data

24
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Some Applications of Clustering

* Image segmentation

25
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Representation: Quantization

TRAINING QUANTIZATION

Quantize every vector to one of K (vector) values

What are the optimal K vectors? How do we find them? How do
we perform the quantization?

LBG algorithm o6
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Quantization: Formally

IV = ZWidi

Dw [w|=
Wiy =1

<
I

* d; are the “representative” vectors of each cluster
* Restriction: only one of the w; is 1, therest are O
- Liw; =0
— W is unit length and one-sparse

27



Representation: BOW

| 2 NM-Q 0:08/ 4:41

How to retrieve all music videos by this guy?

Build a classifier
— But how do you represent the video?

o

MLSEP.

28



MLSEP.

Representation: BOW

R
- | Vk=DWk f=zwk
k

o — _ Representation: Each number is the
Training: Each point is a video frame #frames assigned to the codeword

* Bag of words representations of
video/audio/data

29



MLSP
Obtaining “Meaningful” Clusters

* Two key aspects:

— 1. The feature representation used to characterize
your data

— 2. The “clustering criteria” employed

30



Clustering Criterion

* The “Clustering criterion” actually has two
aspects

* Cluster compactness criterion

— Measure that shows how “good” clusters are
* The objective function

* Distance of a point from a cluster
— To determine the cluster a data vector belongs to

MLSP
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“Compactness” criteria for clustering
* Distance based measures
— Total distance between each )
element in the cluster and . .
every other element in the .

cluster

32
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“Compactness” criteria for clustering
e Distance based measures
— Total distance between each
element in the cluster and %
every other element in the

cluster

33
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“Compactness” criteria for clustering

e Distance based measures

— Total distance between each
element in the cluster and
every other element in the
cluster

— Distance between the two
farthest points in the cluster

34
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“Compactness” criteria for clustering

Distance based measures

— Total distance between each
element in the cluster and
every other element in the
cluster

— Distance between the two
farthest points in the cluster

— Total distance of every
element in the cluster from the
centroid of the cluster

35
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“Compactness” criteria for clustering

Distance based measures

— Total distance between each
element in the cluster and
every other element in the
cluster

— Distance between the two
farthest points in the cluster

— Total distance of every
element in the cluster from the
centroid of the cluster
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“Compactness” criteria for clustering

Distance based measures @
— Total distance between each

element in the cluster and %
every other element in the

cluster I
— Total distance of every

element in the cluster from the :

centroid of the cluster @
SO

— Distance between the two
farthest points in the cluster
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“Compactness” criteria for clustering

e Distance based measures @

— Total distance between each
element in the cluster and every %
other element in the cluster

— Distance between the two farthest
points in the cluster

— Total distance of every element in
the cluster from the centroid of the
cluster

N

— Distance measures are often
weighted Minkowski metrics @
dist =§wa, = b|" + w,|a, —=b,|" +...+ w,|a,, —b,,| %
38




Clustering: Distance from cluster

 How faris a data point from a
cluster?

— Euclidean or Minkowski distance
from the centroid of the cluster

MLSP
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Clustering: Distance from cluster

 How faris a data point from a

cluster?

— Euclidean or Minkowski distance
from the centroid of the cluster

— Distance from the closest point in
the cluster

MLSEP



Clustering: Distance from cluster

 How faris a data point from a
cluster?
— Euclidean or Minkowski distance
from the centroid of the cluster

— Distance from the closest point in
the cluster

— Distance from the farthest point in
the cluster
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Clustering: Distance from cluster

 How faris a data point from a
cluster?
— Euclidean or Minkowski distance
from the centroid of the cluster

— Distance from the closest point in
the cluster

— Distance from the farthest point in
the cluster

— Probability of data measured on
cluster distribution

MLSEP



Clustering: Distance from cluster

 How faris a data point from a
cluster?
— Euclidean or Minkowski distance
from the centroid of the cluster

— Distance from the closest point in
the cluster

— Distance from the farthest point in
the cluster

— Probability of data measured on
cluster distribution

— Fit of data to cluster-based
regression

-8B

MLSEP
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Optimal clustering: Exhaustive enumeration

e All possible combinations of data must be evaluated

— If there are M data points, and we desire N clusters, the
number of ways of separating M instances into N clusters is

L3 Ny
2D ( l. ](N—z)

— Exhaustive enumeration based clustering requires that the
objective function (the “Goodness measure”) be evaluated
for every one of these, and the best one chosen

* This is the only correct way of optimal clustering

— Unfortunately, it is also computationally unrealistic



MLSP

el aseing o SgaProcesing Groug:

Not-quite non sequitur: Quantization”

Signal Value Bits | Mapped to
S >=3.75v 11 | 3 * const
3.75v > S >= 2.5v 10 |2 * const
2.5v >3 >=1.25v 01 |1 *const
1.25v > S >= Qv 00 |0

ARAREEARANS

Analog value (arrows are quantization levels)

Probability of analog value

* Linear quantization (uniform quantization):
— Each digital value represents an equally wide range of analog values
— Regardless of distribution of data
— Digital-to-analog conversion represented by a “uniform” table

45
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Not-quite non sequitur: Quantization”

ARRHHERRE

Analog value (arrows are quantization levels)

Q

_g Signal Value Bits Mapped to
> _

3 S >= 4y 11 4.5
S 4v > S >= 2.5v 10 3.25
<

:_5 25v>S>=1yv 01 1.25
; 1.0v > S >=0v 00 0.5
=

a

o

Wel

O

L -

a.

* Non-Linear quantization:
— Each digital value represents a different range of analog values

* Finer resolution in high-density areas
* Mu-law / A-law assumes a Gaussian-like distribution of data

— Digital-to-analog conversion represented by a “non-uniform” table

46
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Non-uniform quantization

/N

Analog value

Probability of analog value

If data distribution is not Gaussian-ish?
— Mu-law / A-law are not optimal

— How to compute the optimal ranges for quantization?
* Orthe optimal table

47
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The Lloyd Quantizer

Probability of analog value

(R

Analog value (arrows show quantization levels)

Lloyd quantizer: An iterative algorithm for computing optimal
guantization tables for non-uniformly distributed data

Learned from “training” data

48



Lloyd Quantizer

JANVAVANS

Randomly initialize
quantization points

— Right column entries of
guantization table

MLSP
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Lloyd Quantizer

JANAVAN

JANVAVAN

)

Randomly initialize
guantization points

— Right column entries of
guantization table

Assign all training points to
the nearest quantization
point

— Draw boundaries

MLSP

Vadhnelaseming o SgaProcesing Grop
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Lloyd Quantizer

 Randomly initialize
guantization points
/\ — Right column entries of
O

guantization table

e Assign all training points to
/\ the nearest quantization
T O point

— Draw boundaries

* Reestimate quantization
points

A I B

51
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Lloyd Quantizer

JAWAVAN

Randomly initialize
guantization points

— Right column entries of
guantization table

Assign all training points to
the nearest quantization
point

— Draw boundaries

Reestimate quantization
points

lterate until convergence

52
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Generalized Lloyd Algorithm: K-means clustering

« K means is an iterative algorithm for clustering vector
data

McQueen, J. 1967. “Some methods for classification and
analysis of multivariate observations.” Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Probability,
281-297

* General procedure:

Initially group data into the required number of clusters
somehow (initialization)

Assign each data point to the closest cluster
Once all data points are assigned to clusters, redefine clusters

lterate



MLSP

el aseing o SgaProcesing (o

K—means

e Problem: Given a set of data
vectors, find natural clusters

Clustering criterion is scatter:
distance from the centroid
—  Every cluster has a centroid
—  The centroid represents the cluster

 Definition: The centroid is the
weighted mean of the cluster
—  Weight =1 for basic scheme

1
m cluster — Z Wi X i

Wi iecluster

iecluster
54
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K—means

Initialize a set of centroids
randomly

MLSEP
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K—means

Initialize a set of centroids
randomly

For each data point x, find the o .

distance from the centroid for

each cluster ¢ ., e
d = distance(x,m_, . ) ®

cluster



K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for

each cluster ¢

dcluster — dlStance('x9 mcluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dgg, IS
minimum

MLSEP



K—means

Initialize a set of centroids
randomly

For each data point x, find the

distance from the centroid for S

each cluster o

dcluster — dlStance('x9 mcluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dgg, IS
minimum

o* e,
. .
. .
. N
. N
.
",
0
.
.
‘e
.
.
.
.
N
.
.
.,
0
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K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster

*d = distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

*  Cluster for which dgg, IS
minimum

MLSEP
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K—means

Initialize a set of centroids
randomly

.
.
.
.

For each data point x, find the . .
distance from the centroid for R v .
each cluster P ®

d = distance(x,m_, . ) .

cluster

Put data point in the cluster of the
closest centroid

*  Cluster for which dgg, IS
minimum



K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for

each cluster ®

dcluster — dlStance('x9 mcluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dgg, IS
minimum

MLSEP
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K—means

Initialize a set of centroids
randomly

For each data point x;, find the ©
distance from the centroid for E .

each cluster P ‘@@
) dcluster = diStance('x9 mcluster) @ -‘“‘
Put data point in the cluster of the

closest centroid e

*  Cluster for which dgg, IS
minimum
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K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster

*d = distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

*  Cluster for which dgg, IS
minimum

———
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K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster

*d = distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

«  Cluster for which d g, |
minimum

When all data points are
clustered, recompute centroids

m cluster — Z Z W .X
eclus.

MLSEP
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K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster

* d

Put data point in the cluster of the

closest centroid

*  Cluster for which d ., iS
minimum

When all data points are

clustered, recompute centroids

cluster — dlStance('x9 mcluster)

If not converged, go back to 2

MLSEP
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K-Means comments

e The distance metric determines the clusters
— In the original formulation, the distance is L, distance

* Euclidean norm, w; =1

1
diStance (x7 mcluster) :H X— mcluster ||2 mCluSter B N Z Xi

cluster |
cluster 1€cluster

— If we replace every x by m (x), we get Vector

Quantization

cluster

 K-means is an instance of generalized EM

* Not guaranteed to converge for all distance
metrics

MLSEP
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Initialization

e Random initialization

* Top-down clustering

— Initially partition the data into two (or a small
number of) clusters using K means

— Partition each of the resulting clusters into two
(or a small number of) clusters, also using K
means

— Terminate when the desired number of clusters
is obtained



1.

K-Means for Top—Down clustering

Start with one cluster

MLSP
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K-Means for Top—Down clustering

Start with one cluster O

MLSP
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1.

2.

Start with one cluster

Split each cluster into two:

0 Perturb centroid of cluster slightly (by < 5%) to
generate two centroids

70
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2.

K-Means for Top—Down clustering

Start with one cluster

Split each cluster into two:

0 Perturb centroid of cluster slightly (by < 5%) to
generate two centroids
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1.

2.

3.

K-Means for Top—Down clustering

Start with one cluster

Split each cluster into two:

0 Perturb centroid of cluster slightly (by < 5%) to
generate two centroids

Initialize K means with new set of
centroids

MLSP
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K-Means for Top—Down clustering

Start with one cluster

Split each cluster into two:

0 Perturb centroid of cluster slightly (by < 5%) to
generate two centroids

Initialize K means with new set of
centroids

lterate Kmeans until convergence
O

MLSP

Machivkaseing o Sep3aProcesing (rotp:
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K-Means for Top—Down clustering

Start with one cluster

Split each cluster into two:

— Perturb centroid of cluster slightly (by < 5%) to
generate two centroids

Initialize K means with new set of
centroids

lterate Kmeans until convergence
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Start with one cluster

Split each cluster into two:

— Perturb centroid of cluster slightly (by < 5%) to
generate two centroids

Initialize K means with new set of
centroids

lterate Kmeans until convergence

If the desired number of clusters is not
obtained, return to 2

75



Non-Euclidean clusters

* Basic K-means results in good clusters in
Euclidean spaces

— Alternately stated, will only find clusters that are
“good” in terms of Euclidean distances

* Will not find other types of clusters

MLSP
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Non-Euclidean clusters

] A Ins

f([X,Y]) -> [X9Y9Z] IR
X=X L

y:y 0.5+ ="
z=o(x?+y?)

* For other forms of clusters we must modify the di:s,f;ance measure
— E.g. distance from a circle

 May be viewed as a distance in a higher dimensional space
— |.e Kernel distances
— Kernel K-means

* Other related clustering mechanisms:

— Spectral clustering
* Non-linear weighting of adjacency

— Normalized cuts.. .
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The Kernel Trick |

* Transform the data into a synthetic higher-dimensional space where the
desired patterns become natural clusters based on Euclidean distance
— E.g. the quadratic transform above

* Problem: What is the function/space?

* Problem: Distances in higher dimensional-space are more expensive to
compute

— Yet only carry the same information in the lower-dimensional space

78
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Distance in higher-dimensional space

* Transform data x through a possibly unknown
function ®(x) into a higher (potentially infinite)
dimensional space

— z = DO(x)

* The distance between two points is computed in
the higher-dimensional space

—d(x), X;) = |24~ 2,| |? = | |O(x;) = D(x,) | |?

* d(x;, X,) can be computed without computing z

— Since it is a direct function of x, and x,
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Distance in higher-dimensional spacey

* Distance in lower-dimensional space: A combination of
dot products

— |lz-2,| |* = (2,- 2,) (2~ 2,) = 2,2, + 2,.2,-2 2,.Z,

* Distance in higher-dimensional space

— d(Xp Xz) =| |(D(X1) - (D(Xz)l |2
= D(x;). D(x,) + D(x,). D(x,)-2 D(x,). D(x,)

* d(x,, xX,) can be computed without knowing ®(x) if:

— O(x,). P(x,) can be computed for any x, and x, without
knowing ®(.)

80
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The Kernel function

* A kernel function K(x,,X,) is a function such that:
— K(x;,X,) = O(x;). D(x,)

 Once such a kernel function is found, the distance
in higher-dimensional space can be found in
terms of the kernels
—d(x,, X,) =| | D(x;) - DO(x,) ] |
= O(x,). O(x,;) + D(x,). D(x,)-2 D(x,). D(x,)
= K(x,,x,) + K(x,,X,) - 2K(x,X,)

* But what is K(x,,x,)?



A property of the dot product

* Foranyvectorv,viv=||v]||%? >=0

— This is just the length of v and is therefore non-
negative

* Foranyvectoru=Xav, ||u||?>=0
=> (2. a. V.)T(Z. av)>=0

=>2 2 aav.v; >=0

* This holds for ANY real {a,, a,, ...}

MLSP
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The Mercer Condition

* If z= d(x) is a high-dimensional vector derived
from x then for all real {a,, a,, ...} and any set {z,,
Z,, ... } = {D(Xx,), D(Xx,),...}

-2 2a,37.2z >=0

— % 2,8, 3, O(x;).O(x;) >=0

i <Y

* If K(x,x,) = O(x,). D(x,)
=> 2, %;a; 8, K(x;,x;) >=0

e Tt B Tt Wiy

* Any function K() that satisfies the above condition
is a valid kernel function



MLSP

Vadhnelaseming o SgaProcesing Group

The Mercer Condition

K(x,x,) = O(x,). O(x,)
=>2.2.a a K(xi,xj) >=(0

N

A corollary: If any kernel K{(.) satisfies the Mercer
condition

d(x,, x,) = K(x,,x,) + K(x,,X,) - 2K(x,,X,)
satisfies the following requirements for a
“distance”

—d(x,x)=0

—d(x,y)>=0

—d(x,w) + d(w,y) >=d(x,y)



Typical Kernel Functions
Linear: K(x,y) =x"y + ¢
Polynomial K(x,y) = (ax'y + ¢)"
Gaussian: K(x,y) = exp(-| | x-y| | ?/o?)
Exponential: K(x,y) = exp(-| |x-y| |/A)

Several others

— Choosing the right Kernel with the right
parameters for your problem is an artform

MLSP
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Kernel K-means

K(x,y)= (xTy +¢c)* =

* Perform the K-mean in the Kernel space

— The space of z = ®(x)

* The algorithm..
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The mean of a cluster

The average value of the points in the cluster computed in the
high-dimensional space

|
mcluster = N Z(D(xl)
luster 1€cluster

C

Alternately the weighted average

M cpuster = Z ZW(D(X) C ZW(D(X)

i iecluster iecluster

iecluster
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The mean of a cluster

The average value of the points in the cluster computed in the
high-dimensional space

|
mcluster — N Z(D('xz)

cluster 1€cluster

RECALL: We may never actually be able to compute this mean because

D(x) is not known

Alternately the weighted average

M cpuster = Z ZW(D(X) C ZW(D(X)

i iecluster iecluster

iecluster



MLSEP

el aseing o SgaProcesing (o

K—means

* |nitialize the clusters with a 1
random set of K points M etuster = Z(D(xi)

N cluster 1€cluster

custer 1S NO. Of points in cluster

* For each data point x, find the closest cluster

\®)

cluster(x) = min d(x,cluster) = min | D(x)—m

cluster cluster cluster

d(xaclustel’)=llCD(X)—mduster||2=(CD(X)— 1 Zq)(xi)J (CD(X)—N1 2, P(x)

cluster iecluster cluster iecluster

— [CI)(x)TCI)(x)—2 Z CD(x)TCD(xl.)+ N21 Z ZCD(XZ-)TCD(XJ-)]

cluster iecluster cluster iecluster jecluster
2 1
ZK(X,X)——N Z K(x,x,)+— Z ZK(xl.,xj)
cluster ie€cluster cluster iecluster jecluster

Computed entirely using only the kernel function!
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K—means

1. Initialize a set of clusters
randomly
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K—means

1. Initialize a set of clusters
randomly

The centroids are virtual:
we don't actually compute
them explicitly!

m

cluster — Z WiX;
Z W,

i iecluster
iecluster
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K—means

1. Initialize a set of clusters
randomly

2. For each data point x, find the o .
distance from the centroid for
each cluster ) . e
d = distance(x,m_, . ) ®

cluster

d = K(x,x)-2C Z w.K (x,x,)+C” Z Zwl.ij(xl.,xj)

iecluster iecluster jecluster

cluster



K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for

each cluster ¢

dcluster — dlStance('x9 mcluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dgg, IS
minimum

MLSEP



K—means

Initialize a set of clusters
randomly

For each data point x, find the

distance from the centroid for S

each cluster o

dcluster — dlStance('x9 mcluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dgg, IS
minimum

o* e,
. .
. .
. N
. N
.
",
0
.
.
‘e
.
.
.
.
N
.
.
.,
0
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

*d = distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

*  Cluster for which dgg, IS
minimum

MLSEP



K—means

Initialize a set of clusters
randomly

For each data point x, find the

distance from the centroid for R

each cluster @

dcluster — dlStance('x9 mcluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dgg, IS
minimum

.
o*
.
R

.
.
. []
.
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for

each cluster ®

dcluster — dlStance('x9 mcluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dgg, IS
minimum

MLSEP
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K—means

Initialize a set of clusters
randomly

For each data point x;, find the ©
distance from the centroid for E .

each cluster P ‘@@
) dcluster = diStance('x9 mcluster) @ -‘“‘
Put data point in the cluster of the

closest centroid e

*  Cluster for which dgg, IS
minimum

98



K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

*d = distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

*  Cluster for which dgg, IS
minimum

———

MLSEP
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

* d

= distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

«  Cluster for which d g, |
minimum

When all data points are
clustered, recompute centroids

M otuster = Z WX,
Z W,

i iecluster
iecluster

We do not explicitly compute the
means

May be impossible — we do not
know the high-dimensional
space

We only know how to compute
inner products in it
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Kernel K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

* d

— dlStance('x9 mcluster )

cluster

Put data point in the cluster of the
closest centroid

«  Cluster for which d g, |
minimum

When all data points are
clustered, recompute centroids

m

i iecluster

cluster — Z WiX;
Z "

iecluster

If not converged, go back to 2

We do not explicitly compute the
means

May be impossible — we do not
know the high-dimensional
space

We only know how to compute
inner products in it
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How many clusters?

* Assumptions:

— Dimensionality of kernel space > no. of clusters

— Clusters represent separate directions in Kernel spaces

e Kernel correlation matrix K
— Kij = K(xi,xj)

* Find Eigen values A and Eigen vectors e of kernel
matrix

— No. of clusters = no. of dominant A, (17e.) terms
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Spectral Methods

IH |II

“Spectral” methods attempt to find “principa
subspaces of the high-dimensional kernel space
Clustering is performed in the principal subspaces

— Normalized cuts
— Spectral clustering

Involves finding Eigenvectors and Eigen values of
Kernel matrix

Fortunately, provably analogous to Kernel K-
means
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Other clustering methods

* Regression based clustering
* Find a regression representing each cluster

* Associate each point to the cluster with the
best regression

— Related to kernel methods
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Clustering..

* Many many other variants
— Many applications..

— Important: Appropriate choice of feature

* Appropriate choice of feature may eliminate need for kernel trick..

* Key Features:
— |dentifies latent structure in the distribution of the data

— Provides an L2-sense optimal quantized representation of
the data

* We will build on this in the next class



