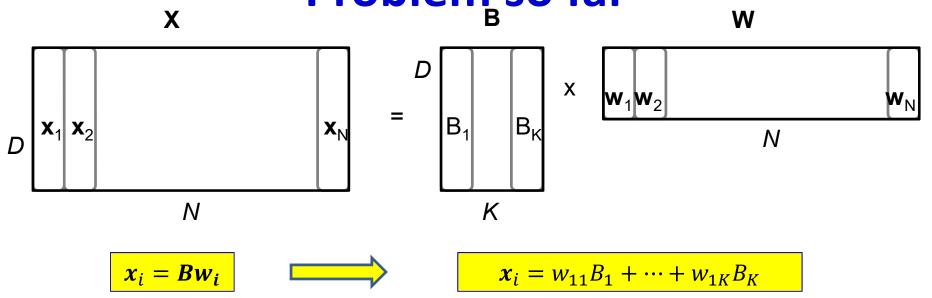


# Machine Learning for Signal Processing Quantization and Clustering

Bhiksha Raj



## Learning Representations: Problem so far

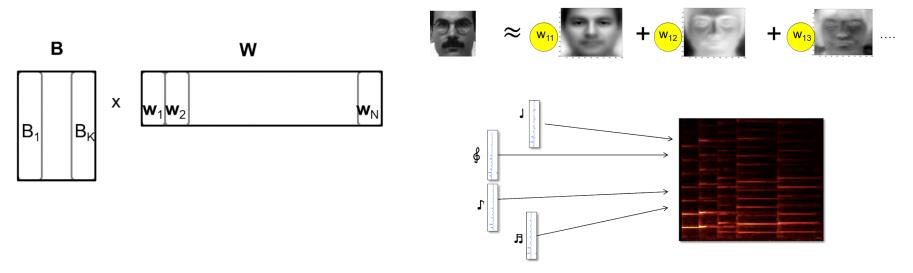


• **Problem:** Given a collection of data X, find a set of "bases" B, such that each vector  $x_i$  can be expressed as a weighted combination of the bases

11755/18797 2



## Why is this important?



- With the right set of bases, the weights represent the data most effectively
  - We can now use the weights to represent the data
  - E.g. with notes as bases, the weights would be the score
- If the bases are agreed upon, we can also communicate the information about the data most efficiently
  - Just communicate the weights
  - E.g. enough to store eigen face weights to reconstruct face
  - E.g. just reading the score is sufficient for anyone to recreate music



## What is the most accurate way to represent data

$$f = \sum_{i} w_i d_i$$

$$D \qquad w_k = 1, \ w_j = 0 \ for \ j \neq k$$



Selecting the kth face in the collection

- If, instead of bases, we had a dictionary of all possible data
  - A matrix that included every possible data vector as a column
  - And the weights vector simply selected the correct data instance
  - I.e. w was one-sparse vector

$$|\mathbf{w}|_0 = 1$$

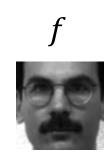
(actually a one-hot vector because the one non-zero entry of w = 1, i.e.  $\sum_i w_i = 1$ )



## What is the most accurate way to represent data

$$f = \sum_{i} w_i d_i$$

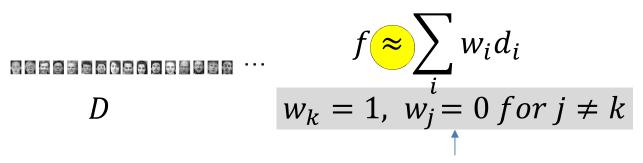
$$D \qquad w_k = 1, \ w_j = 0 \ for \ j \neq k$$



- If, instead of bases, we had a dictionary of all possible data
  - A matrix that included every possible data vector as a column
  - And the weights vector simply selected the correct data instance
- Problem: Infeasible to construct such a dictionary!
  - Will require infinite entries
    - And our **w** vector too will require infinite bits to represent
  - Alternately, will require storing the entire training data
    - And will not be useful to represent data outside the training set



## Approximate representation with a dictionary

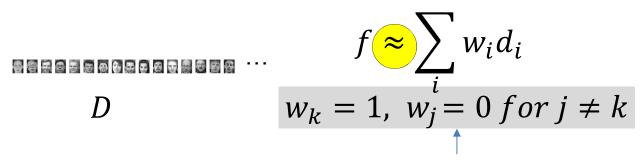




- Problem: Infeasible to construct a perfect dictionary
  - Will require too many (potentially infinite) entries
- Solution: Can we instead construct a smaller finite dictionary such that all data can be approximated well by one of the entries in the dictionary?
  - E.g. "The guy looks a lot like the 7<sup>th</sup> face in the dictionary"
  - E.g. The vector x looks a lot like the  $d_i$ , the i-th entry in the dictionary.
- Questions:
  - What do we mean by "looks a lot like"
  - How do we construct the dictionary?



## Approximate representation with a dictionary





- Problem: Infeasible to construct a perfect dictionary
  - Will require too many (potentially infinite) entries
- Solution: Can we instead construct a smaller finite dictionary such that all data can be approximated well by one of the entries in the dictionary?
  - E.g. "The guy looks a lot like the 7<sup>th</sup> face in the dictionary"
  - E.g. The vector x looks a lot like the  $d_i$ , the i-th entry in the dictionary.
- Questions:
  - What do we mean by "looks a lot like"
  - How do we construct the dictionary?



## Quantifying the error

$$D \qquad \qquad f \approx \sum_{i} w_i d_i$$

$$w_k = 1, \ w_j = 0 \ for \ j \neq k$$



Selecting the kth face in the collection

- Different error metrics will result in different solutions
- Lets generically represent the error as div()

$$\hat{f} = D\mathbf{w}, \quad |\mathbf{w}|_0 = 1, \sum_i w_i = 1$$

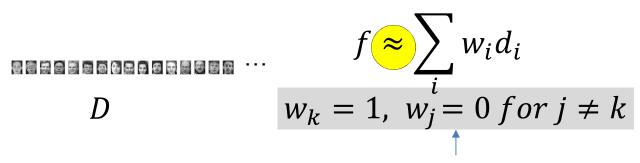
$$Error(f) = div(f, \hat{f})$$

A common choice is the L2 error

$$Error(f) = |f - \hat{f}|^2$$



## Approximate representation with a dictionary





- Problem: Infeasible to construct a perfect dictionary
  - Will require too many (potentially infinite) entries
- Solution: Can we instead construct a smaller finite dictionary such that all data can be approximated well by one of the entries in the dictionary?
  - E.g. "The guy looks a lot like the 7<sup>th</sup> face in the dictionary"
  - E.g. The vector x looks a lot like the  $d_i$ , the i-th entry in the dictionary.
- Questions:
  - What do we mean by "looks a lot like"
  - How do we construct the dictionary?



- $V = [V_1, V_2, V_3, ...]$  are the data for which the dictionary is being learned
- $\mathbf{D} = [d_1, d_2, ..., d_K]$  is the matrix of dictionary vectors
- $W = [w_1, w_2, w_3, ...]$  is a set of *one-hot* vectors
- Learning: Learn D and W to minimize total error on V

$$\widehat{\boldsymbol{D}}, \widehat{\boldsymbol{W}} = \underset{\boldsymbol{D}, \boldsymbol{W}}{\operatorname{argmin}} \ div(\boldsymbol{V}, \boldsymbol{D}\boldsymbol{W}) = \underset{\boldsymbol{D}, \boldsymbol{W}}{\operatorname{argmin}} \sum_{i} div(V_i, \boldsymbol{D}w_i),$$

$$s.t. w_i = one \ hot$$

If we're only interested in learning the dictionary

$$\widehat{\boldsymbol{D}} = \underset{\boldsymbol{D}}{\operatorname{argmin}} \min_{\boldsymbol{W}} \sum_{i} div(V_i, \boldsymbol{D}w_i), \quad s.t.w_i = one \ hot$$



•  $\widehat{\boldsymbol{D}} = \underset{\boldsymbol{D}}{\operatorname{argmin}} \min_{\boldsymbol{W}} \sum_{i} div(V_i, \boldsymbol{D} w_i)$ 

$$= \underset{\boldsymbol{D}}{\operatorname{argmin}} \sum_{i} \min_{\mathbf{w}_{i}} div(V_{i}, \boldsymbol{D}\mathbf{w}_{i})$$

 Generally does not have a closed form solution, but can solved with the following iteration that provably reduces error in each step

$$\mathbf{w}_i = \underset{\mathbf{w}}{\operatorname{argmin}} \operatorname{div}(V_i, \mathbf{D}\mathbf{w})$$

$$\widehat{\boldsymbol{D}} = \underset{\boldsymbol{D}}{\operatorname{argmin}} \sum_{i} div(V_i, \boldsymbol{D} w_i)$$



•  $\widehat{D}$  = argmin min  $\sum_i div(V_i, D_{W_i})$ For  $div(.) = ||V_i - D_{W_i}||^2$  this gives us the well-known K-means algorithm

$$= \underset{\boldsymbol{D}}{\operatorname{argmin}} \sum_{i} \min_{\mathbf{w}_{i}} div(V_{i}, \boldsymbol{D}\mathbf{w}_{i})$$

 Generally does not have a closed form solution, but can solved with the following iteration that provably reduces error in each step

$$\mathbf{w}_i = \underset{\mathbf{w}}{\operatorname{argmin}} \operatorname{div}(V_i, \mathbf{D}\mathbf{w})$$

$$\widehat{\boldsymbol{D}} = \underset{\boldsymbol{D}}{\operatorname{argmin}} \sum_{i} div(V_i, \boldsymbol{D} w_i)$$



•  $\widehat{\boldsymbol{D}} = \operatorname{argmin} \min \sum_{i} \operatorname{div}(V_i, \boldsymbol{D} w_i)$ 

For  $div(.) = ||V_i - Dw_i||^2$  this gives us the well-known K-means algorithm

$$D \stackrel{\longleftarrow}{=} W_i$$

• Grouping  $V_i$  by the dictionary entries they are assigned to  $(w_i)$  results in clustering

error in each step

$$\mathbf{w}_i = \underset{\mathbf{w}}{\operatorname{argmin}} \operatorname{div}(V_i, \mathbf{D}\mathbf{w})$$

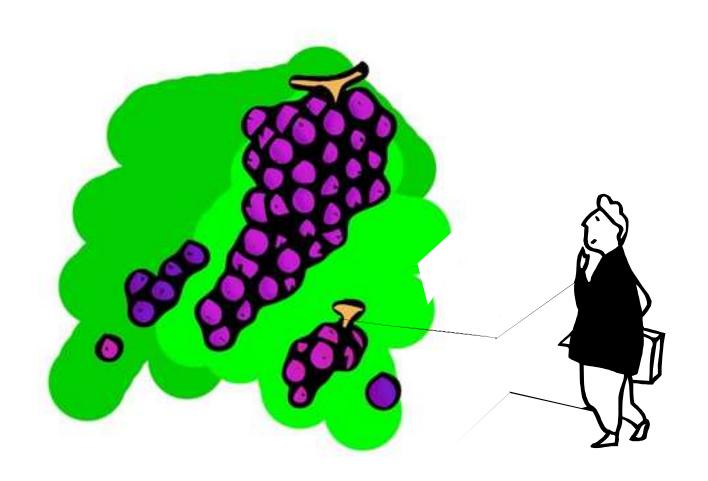
$$\widehat{\boldsymbol{D}} = \underset{\boldsymbol{D}}{\operatorname{argmin}} \sum_{i} div(V_i, \boldsymbol{D} w_i)$$



## So lets look at clustering

• From a more naïve, procedural perspective...







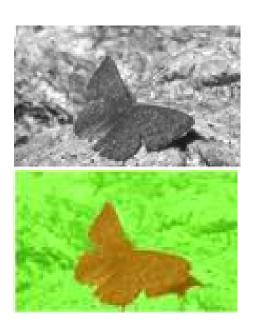
## Statistical Modelling and Latent Structure

- Much of statistical modelling attempts to identify *latent* structure in the data
  - Structure that is not immediately apparent from the observed data
  - But which, if known, helps us explain it better, and make predictions from or about it
- Clustering methods attempt to extract such structure from proximity
  - First-level structure (as opposed to deep structure)
- We will see still other forms of latent structure discovery later in the course



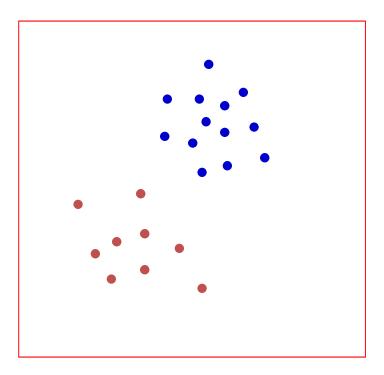
## How





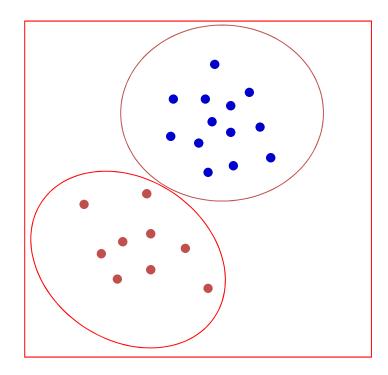


- What is clustering
  - Clustering is the determination of naturally occurring grouping of data/instances (with low withingroup variability and high betweengroup variability)





- What is clustering
  - Clustering is the determination of naturally occurring grouping of data/instances (with low withingroup variability and high betweengroup variability)



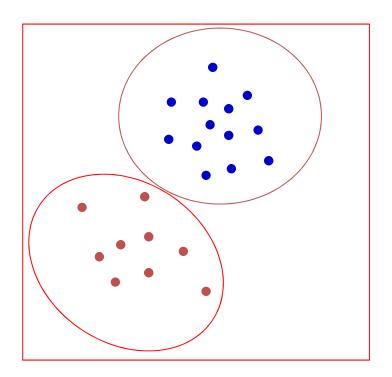


#### What is clustering

 Clustering is the determination of naturally occurring grouping of data/instances (with low withingroup variability and high betweengroup variability)

#### How is it done

 Find groupings of data such that the groups optimize a "within-groupvariability" objective function of some kind



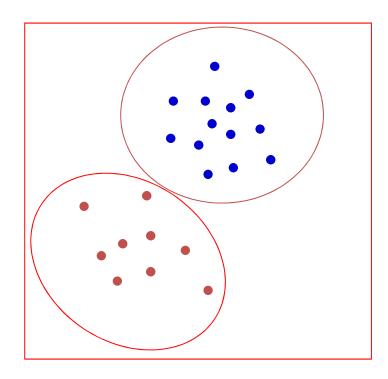


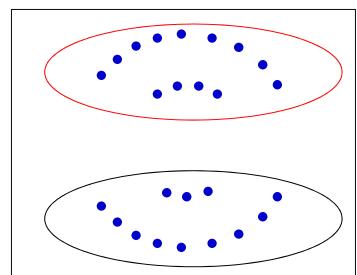
#### What is clustering

 Clustering is the determination of naturally occurring grouping of data/instances (with low withingroup variability and high betweengroup variability)

#### How is it done

- Find groupings of data such that the groups optimize a "within-groupvariability" objective function of some kind
- The objective function used affects the nature of the discovered clusters
  - E.g. Euclidean distance vs.





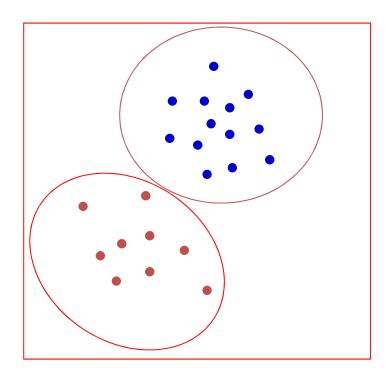


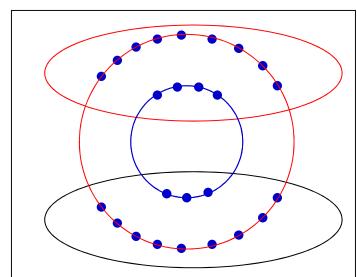
#### What is clustering

 Clustering is the determination of naturally occurring grouping of data/instances (with low withingroup variability and high betweengroup variability)

#### How is it done

- Find groupings of data such that the groups optimize a "within-groupvariability" objective function of some kind
- The objective function used affects the nature of the discovered clusters
  - E.g. Euclidean distance vs.
  - Distance from center





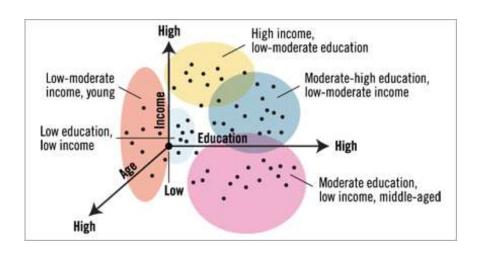


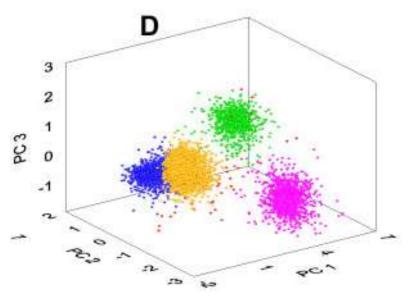
### **Why Clustering**

- Automatic grouping into "Classes"
  - Different clusters may show different behavior
- Representation: Quantization
  - All data within a cluster are represented by a single point
- Preprocessing step for other algorithms
  - Indexing, categorization, etc.



### Finding natural structure in data





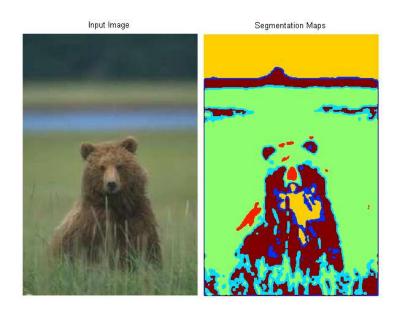
- Find natural groupings in data for further analysis
- Discover latent structure in data



## **Some Applications of Clustering**

Image segmentation



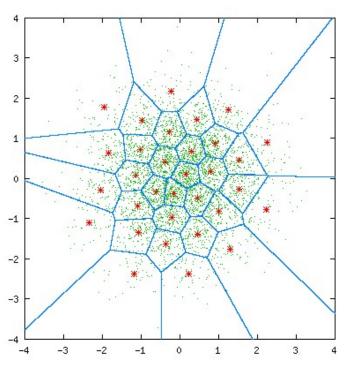


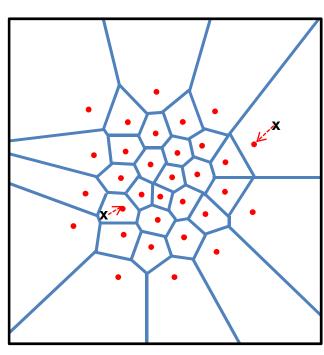


### Representation: Quantization

## TRAINING

QUANTIZATION





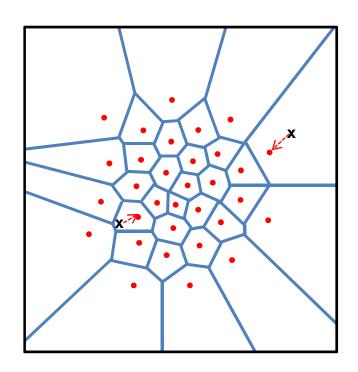
- Quantize every vector to one of K (vector) values
- What are the optimal K vectors? How do we find them? How do we perform the quantization?
- LBG algorithm



## **Quantization: Formally**

$$V = \sum_{i} w_i d_i$$

$$V = \mathbf{D}\mathbf{w} \qquad |\mathbf{w}| = 1 \\ |\mathbf{w}|_0 = 1$$



- $d_i$  are the "representative" vectors of each cluster
- Restriction: only one of the  $w_i$  is 1, the rest are 0

$$-\sum_i w_i = 0$$

w is unit length and one-sparse



## **Representation: BOW**



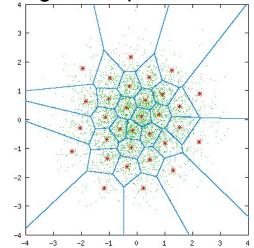
- How to retrieve all music videos by this guy?
- Build a classifier
  - But how do you represent the video?



## **Representation: BOW**

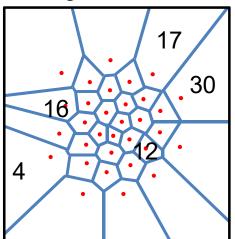


Training: Each point is a video frame



$$V_k = \mathbf{D}\mathbf{w}_k \quad f = \sum_k \mathbf{w}_k$$

Representation: Each number is the #frames assigned to the codeword



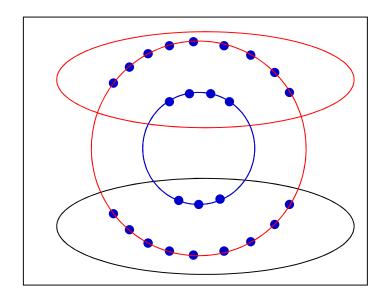
 Bag of words representations of video/audio/data



## **Obtaining "Meaningful" Clusters**

- Two key aspects:
  - The feature representation used to characterize your data
  - 2. The "clustering criteria" employed





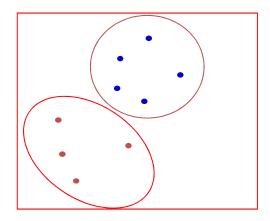


## **Clustering Criterion**

- The "Clustering criterion" actually has two aspects
- Cluster compactness criterion
  - Measure that shows how "good" clusters are
    - The objective function
- Distance of a point from a cluster
  - To determine the cluster a data vector belongs to

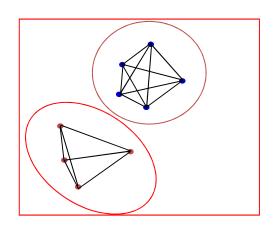


- Distance based measures
  - Total distance between each element in the cluster and every other element in the cluster



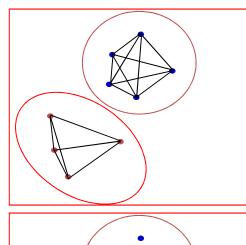


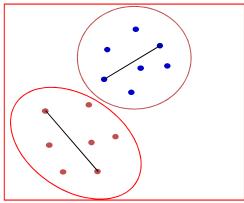
- Distance based measures
  - Total distance between each element in the cluster and every other element in the cluster





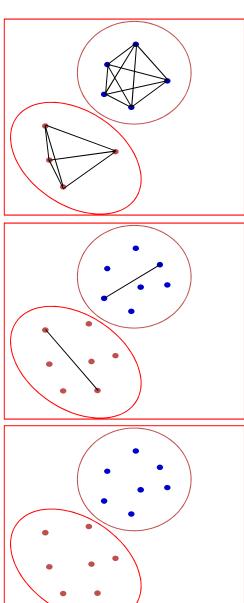
- Distance based measures
  - Total distance between each element in the cluster and every other element in the cluster
  - Distance between the two farthest points in the cluster





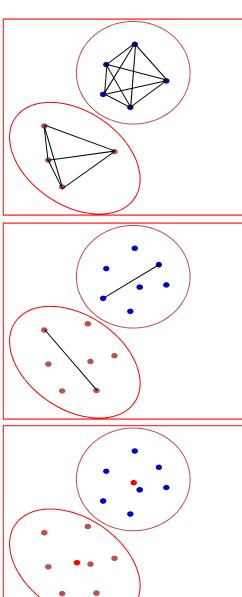


- Distance based measures
  - Total distance between each element in the cluster and every other element in the cluster
  - Distance between the two farthest points in the cluster
  - Total distance of every element in the cluster from the centroid of the cluster





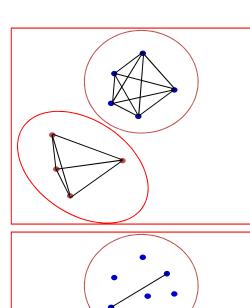
- Distance based measures
  - Total distance between each element in the cluster and every other element in the cluster
  - Distance between the two farthest points in the cluster
  - Total distance of every element in the cluster from the centroid of the cluster

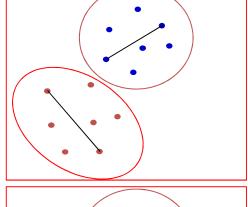


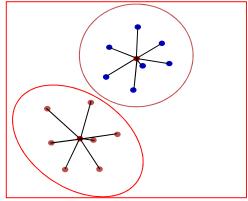


## "Compactness" criteria for clustering

- Distance based measures
  - Total distance between each element in the cluster and every other element in the cluster
  - Distance between the two farthest points in the cluster
  - Total distance of every element in the cluster from the centroid of the cluster







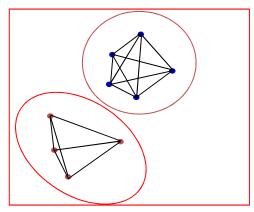


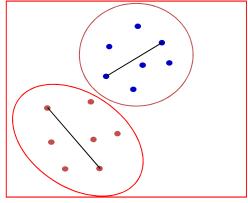
## "Compactness" criteria for clustering

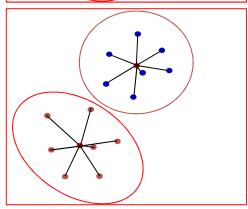
#### Distance based measures

- Total distance between each element in the cluster and every other element in the cluster
- Distance between the two farthest points in the cluster
- Total distance of every element in the cluster from the centroid of the cluster
- Distance measures are often weighted Minkowski metrics

$$dist = \sqrt[n]{w_1 |a_1 - b_1|^n + w_2 |a_2 - b_2|^n + \dots + w_M |a_M - b_M|^n}$$

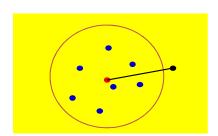






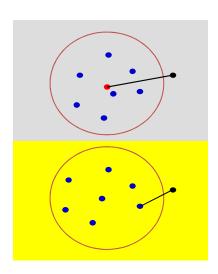


- How far is a data point from a cluster?
  - Euclidean or Minkowski distance from the centroid of the cluster



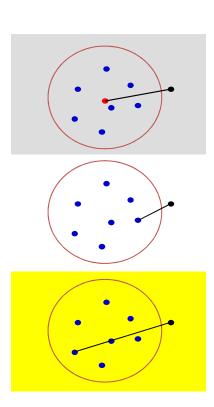


- How far is a data point from a cluster?
  - Euclidean or Minkowski distance from the centroid of the cluster
  - Distance from the closest point in the cluster



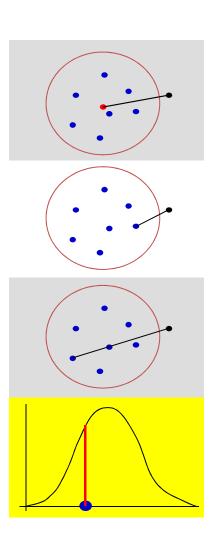


- How far is a data point from a cluster?
  - Euclidean or Minkowski distance from the centroid of the cluster
  - Distance from the closest point in the cluster
  - Distance from the farthest point in the cluster



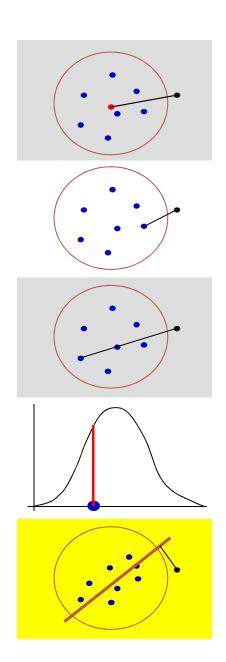


- How far is a data point from a cluster?
  - Euclidean or Minkowski distance from the centroid of the cluster
  - Distance from the closest point in the cluster
  - Distance from the farthest point in the cluster
  - Probability of data measured on cluster distribution





- How far is a data point from a cluster?
  - Euclidean or Minkowski distance from the centroid of the cluster
  - Distance from the closest point in the cluster
  - Distance from the farthest point in the cluster
  - Probability of data measured on cluster distribution
  - Fit of data to cluster-based regression





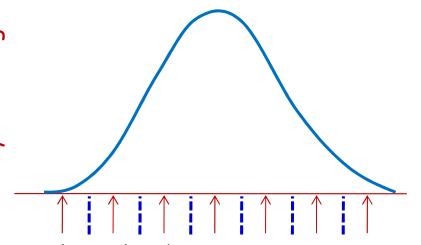
### **Optimal clustering: Exhaustive enumeration**

- All possible combinations of data must be evaluated
  - If there are M data points, and we desire N clusters, the number of ways of separating M instances into N clusters is

$$\frac{1}{M!} \sum_{i=0}^{N} (-1)^{i} \binom{N}{i} (N-i)^{M}$$

- Exhaustive enumeration based clustering requires that the objective function (the "Goodness measure") be evaluated for every one of these, and the best one chosen
- This is the only correct way of optimal clustering
  - Unfortunately, it is also computationally unrealistic

### Not-quite non sequitur: Quantization

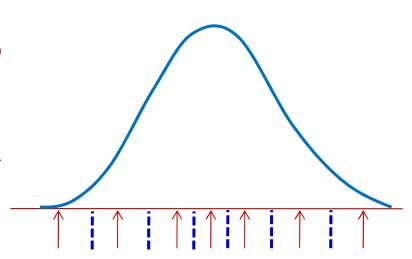


| Signal Value      | Bits | Mapped to |
|-------------------|------|-----------|
| S >= 3.75v        | 11   | 3 * const |
| 3.75v > S >= 2.5v | 10   | 2 * const |
| 2.5v > S >= 1.25v | 01   | 1 * const |
| 1.25v > S >= 0v   | 00   | 0         |

Analog value (arrows are quantization levels)

- Linear quantization (uniform quantization):
  - Each digital value represents an equally wide range of analog values
  - Regardless of distribution of data
  - Digital-to-analog conversion represented by a "uniform" table

### Not-quite non sequitur: Quantization



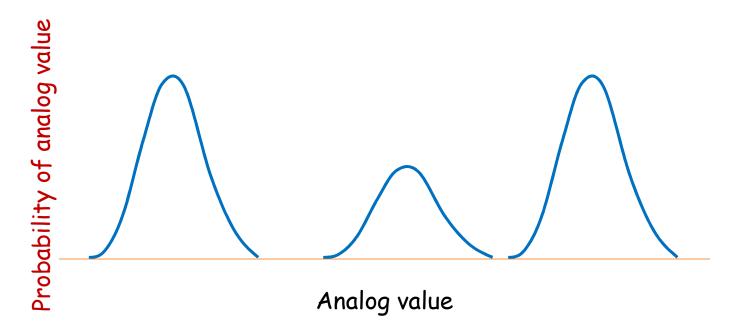
| Signal Value   | Bits | Mapped to |
|----------------|------|-----------|
| S >= 4v        | 11   | 4.5       |
| 4v > S >= 2.5v | 10   | 3.25      |
| 2.5v > S >= 1v | 01   | 1.25      |
| 1.0v > S >= 0v | 00   | 0.5       |

Analog value (arrows are quantization levels)

- Non-Linear quantization:
  - Each digital value represents a different range of analog values
    - Finer resolution in high-density areas
    - Mu-law / A-law assumes a Gaussian-like distribution of data
  - Digital-to-analog conversion represented by a "non-uniform" table



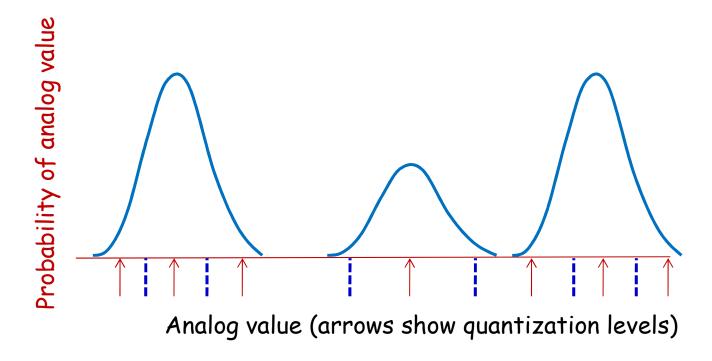
## Non-uniform quantization



- If data distribution is not Gaussian-ish?
  - Mu-law / A-law are not optimal
  - How to compute the optimal ranges for quantization?
    - Or the optimal table

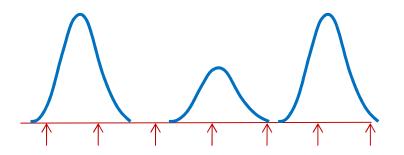


## **The Lloyd Quantizer**



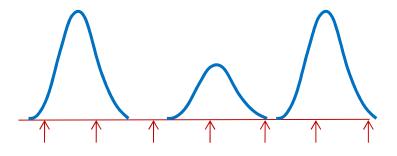
- Lloyd quantizer: An iterative algorithm for computing optimal quantization tables for non-uniformly distributed data
- Learned from "training" data

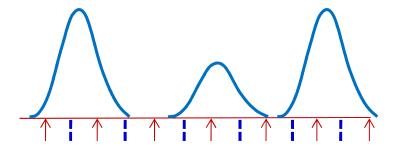




- Randomly initialize quantization points
  - Right column entries of quantization table

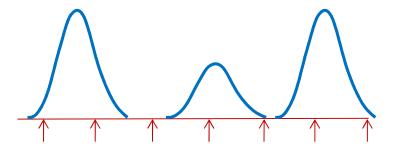


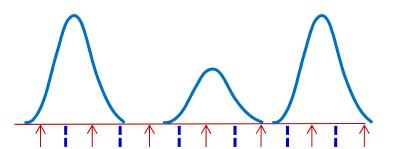


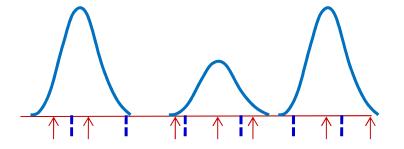


- Randomly initialize quantization points
  - Right column entries of quantization table
- Assign all training points to the nearest quantization point
  - Draw boundaries



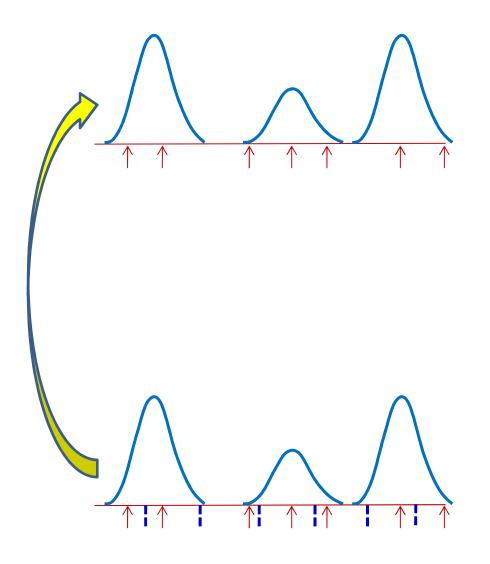






- Randomly initialize quantization points
  - Right column entries of quantization table
- Assign all training points to the nearest quantization point
  - Draw boundaries
- Reestimate quantization points





- Randomly initialize quantization points
  - Right column entries of quantization table
- Assign all training points to the nearest quantization point
  - Draw boundaries
- Reestimate quantization points
- Iterate until convergence



### **Generalized Lloyd Algorithm: K-means clustering**

- K means is an iterative algorithm for clustering vector data
  - McQueen, J. 1967. "Some methods for classification and analysis of multivariate observations." Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 281-297

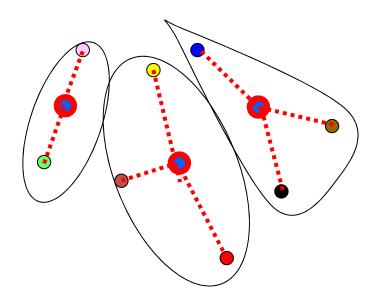
#### General procedure:

- Initially group data into the required number of clusters somehow (initialization)
- Assign each data point to the closest cluster
- Once all data points are assigned to clusters, redefine clusters
- Iterate



### **K**–means

- Problem: Given a set of data vectors, find natural clusters
- Clustering criterion is scatter: distance from the centroid
  - Every cluster has a centroid
  - The centroid represents the cluster
- Definition: The centroid is the weighted mean of the cluster
  - Weight = 1 for basic scheme



$$m_{cluster} = \frac{1}{\sum_{i \in cluster}} \sum_{i \in cluster} w_i x_i$$

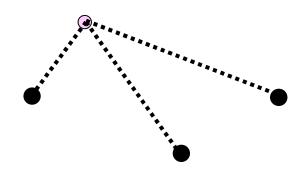


1. Initialize a set of centroids randomly



### **K**–means

- Initialize a set of centroids randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster
  - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$





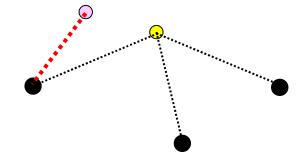
- 1. Initialize a set of centroids randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster

**S**\*\*\*\*\*\*

- $d_{cluster} = \mathbf{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
  - Cluster for which d<sub>cluster</sub> is minimum



- 1. Initialize a set of centroids randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster
  - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$



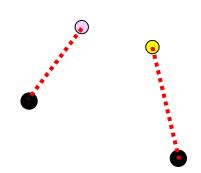
- 3. Put data point in the cluster of the closest centroid
  - Cluster for which d<sub>cluster</sub> is minimum



- Initialize a set of centroids randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster
  - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$

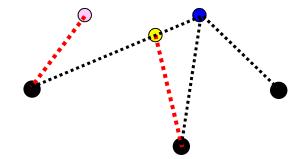


Cluster for which d<sub>cluster</sub> is minimum





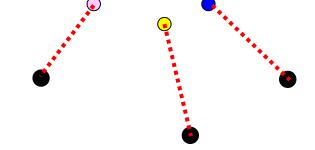
- 1. Initialize a set of centroids randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster
  - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$



- 3. Put data point in the cluster of the closest centroid
  - Cluster for which d<sub>cluster</sub> is minimum



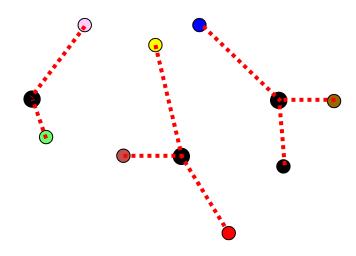
- 1. Initialize a set of centroids randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster
  - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$



- 3. Put data point in the cluster of the closest centroid
  - Cluster for which **d**<sub>cluster</sub> is minimum



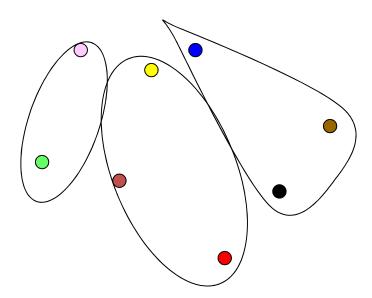
- Initialize a set of centroids randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster
  - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
  - Cluster for which **d**<sub>cluster</sub> is minimum





### **K**–means

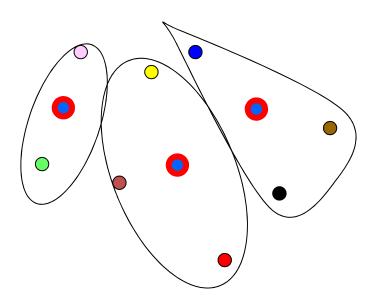
- 1. Initialize a set of centroids randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster
  - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
  - Cluster for which d<sub>cluster</sub> is minimum





- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
  - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
  - Cluster for which d<sub>cluster</sub> is minimum
- 4. When all data points are clustered, recompute centroids

$$m_{cluster} = \frac{1}{\sum_{i \in cluster} W_i} \sum_{i \in cluster} W_i x_i$$

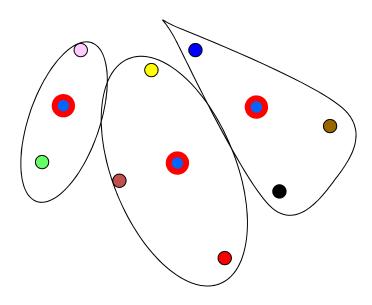




- Initialize a set of centroids randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster
  - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
  - Cluster for which d<sub>cluster</sub> is minimum
- 4. When all data points are clustered, recompute centroids

$$m_{cluster} = \frac{1}{\sum_{i \in cluster} w_i} \sum_{i \in cluster} w_i x_i$$

5. If not converged, go back to 2





### **K-Means comments**

- The distance metric determines the clusters
  - In the original formulation, the distance is L<sub>2</sub> distance
    - Euclidean norm, w<sub>i</sub> = 1

$$\mathbf{distance}_{cluster}(x, m_{cluster}) = \parallel x - m_{cluster} \parallel_2$$

$$m_{cluster} = \frac{1}{N_{cluster}} \sum_{i \in cluster} x_i$$

- If we replace every x by  $m_{\text{cluster}}(x)$ , we get *Vector Quantization*
- K-means is an instance of generalized EM
- Not guaranteed to converge for all distance metrics

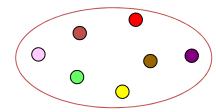


### **Initialization**

- Random initialization
- Top-down clustering
  - Initially partition the data into two (or a small number of) clusters using K means
  - Partition each of the resulting clusters into two (or a small number of) clusters, also using K means
  - Terminate when the desired number of clusters is obtained

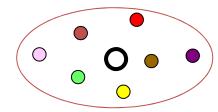


Start with one cluster



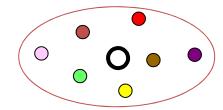


Start with one cluster





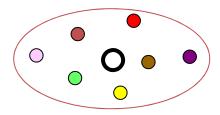
Start with one cluster

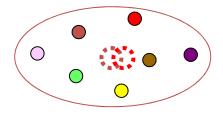


- 2. Split each cluster into two:
  - Perturb centroid of cluster slightly (by < 5%) to generate two centroids



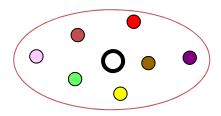
- Start with one cluster
- 2. Split each cluster into two:
  - Perturb centroid of cluster slightly (by < 5%) to generate two centroids

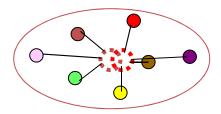






- Start with one cluster
- 2. Split each cluster into two:
  - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
- 3. Initialize K means with new set of centroids

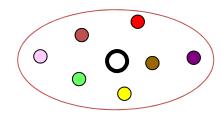


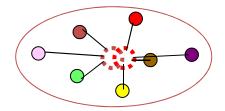


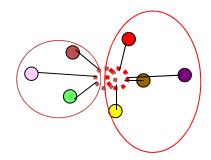


## K-Means for Top-Down clustering

- Start with one cluster
- Split each cluster into two:
  - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
- 3. Initialize K means with new set of centroids
- 4. Iterate Kmeans until convergence



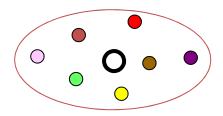


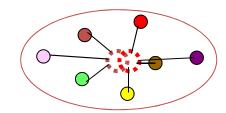


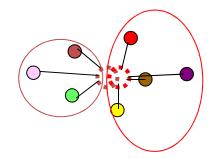


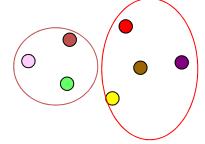
## K-Means for Top-Down clustering

- 1. Start with one cluster
- 2. Split each cluster into two:
  - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
- 3. Initialize K means with new set of centroids
- 4. Iterate Kmeans until convergence





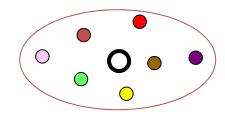


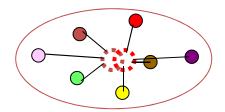


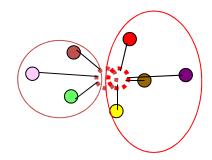


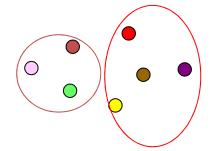
## K-Means for Top-Down clustering

- 1. Start with one cluster
- 2. Split each cluster into two:
  - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
- 3. Initialize K means with new set of centroids
- 4. Iterate Kmeans until convergence
- 5. If the desired number of clusters is not obtained, return to 2



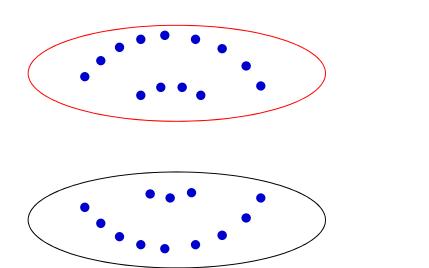


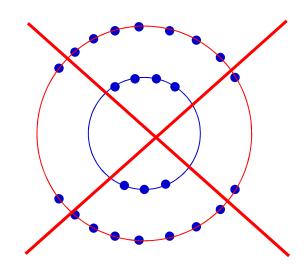






#### **Non-Euclidean clusters**

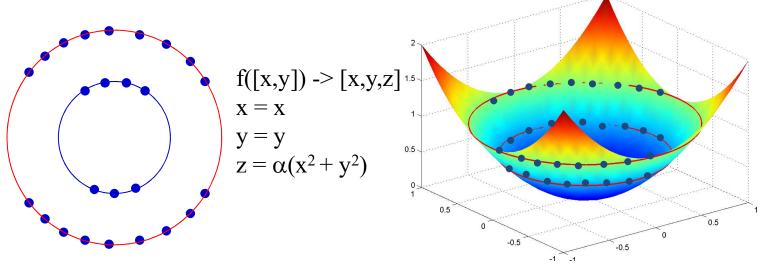




- Basic K-means results in good clusters in Euclidean spaces
  - Alternately stated, will only find clusters that are "good" in terms of Euclidean distances
- Will not find other types of clusters

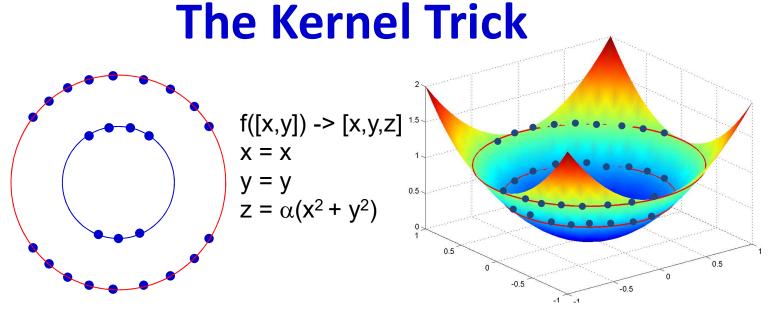


### **Non-Euclidean clusters**



- For other forms of clusters we must modify the distance measure
  - E.g. distance from a circle
- May be viewed as a distance in a higher dimensional space
  - I.e Kernel distances
  - Kernel K-means
- Other related clustering mechanisms:
  - Spectral clustering
    - Non-linear weighting of adjacency
  - Normalized cuts...





- Transform the data into a synthetic higher-dimensional space where the desired patterns become natural clusters based on *Euclidean* distance
  - E.g. the quadratic transform above
- Problem: What is the function/space?
- Problem: Distances in higher dimensional-space are more expensive to compute
  - Yet only carry the same information in the lower-dimensional space



## Distance in higher-dimensional space

• Transform data x through a possibly unknown function  $\Phi(x)$  into a higher (potentially infinite) dimensional space

$$-z = \Phi(x)$$

 The distance between two points is computed in the higher-dimensional space

$$-d(\mathbf{x}_1, \mathbf{x}_2) = ||\mathbf{z}_1 - \mathbf{z}_2||^2 = ||\Phi(\mathbf{x}_1) - \Phi(\mathbf{x}_2)||^2$$

- $d(\mathbf{x}_1, \mathbf{x}_2)$  can be computed without computing  $\mathbf{z}$ 
  - Since it is a direct function of  $\mathbf{x}_1$  and  $\mathbf{x}_2$



### Distance in higher-dimensional space

 Distance in lower-dimensional space: A combination of dot products

- 
$$||\mathbf{z}_1 - \mathbf{z}_2||^2 = (\mathbf{z}_1 - \mathbf{z}_2)^{\mathsf{T}}(\mathbf{z}_1 - \mathbf{z}_2) = \mathbf{z}_1 \cdot \mathbf{z}_1 + \mathbf{z}_2 \cdot \mathbf{z}_2 - 2 \mathbf{z}_1 \cdot \mathbf{z}_2$$

Distance in higher-dimensional space

$$- d(\mathbf{x}_1, \, \mathbf{x}_2) = ||\Phi(\mathbf{x}_1) - \Phi(\mathbf{x}_2)||^2$$
  
=  $\Phi(\mathbf{x}_1) \cdot \Phi(\mathbf{x}_1) + \Phi(\mathbf{x}_2) \cdot \Phi(\mathbf{x}_2) - 2 \Phi(\mathbf{x}_1) \cdot \Phi(\mathbf{x}_2)$ 

- $d(\mathbf{x}_1, \mathbf{x}_2)$  can be computed without knowing  $\Phi(\mathbf{x})$  if:
  - $\Phi(\mathbf{x}_1)$ .  $\Phi(\mathbf{x}_2)$  can be computed for any  $\mathbf{x}_1$  and  $\mathbf{x}_2$  without knowing  $\Phi(.)$



### The Kernel function

- A kernel function  $K(\mathbf{x}_1, \mathbf{x}_2)$  is a function such that:
  - $-K(\mathbf{x}_{1},\mathbf{x}_{2}) = \Phi(\mathbf{x}_{1}). \Phi(\mathbf{x}_{2})$
- Once such a kernel function is found, the distance in higher-dimensional space can be found in terms of the kernels

$$-d(\mathbf{x}_{1}, \mathbf{x}_{2}) = ||\Phi(\mathbf{x}_{1}) - \Phi(\mathbf{x}_{2})||^{2}$$

$$= \Phi(\mathbf{x}_{1}) \cdot \Phi(\mathbf{x}_{1}) + \Phi(\mathbf{x}_{2}) \cdot \Phi(\mathbf{x}_{2}) - 2 \Phi(\mathbf{x}_{1}) \cdot \Phi(\mathbf{x}_{2})$$

$$= K(\mathbf{x}_{1}, \mathbf{x}_{1}) + K(\mathbf{x}_{2}, \mathbf{x}_{2}) - 2K(\mathbf{x}_{1}, \mathbf{x}_{2})$$

• But what is  $K(\mathbf{x}_1, \mathbf{x}_2)$ ?



# A property of the dot product

- For any vector  $\mathbf{v}$ ,  $\mathbf{v}^T\mathbf{v} = ||\mathbf{v}||^2 >= 0$ 
  - This is just the length of v and is therefore nonnegative
- For any vector  $\mathbf{u} = \Sigma_i a_i \mathbf{v}_i$ ,  $||\mathbf{u}||^2 >= 0$   $= > (\Sigma_i a_i \mathbf{v}_i)^T (\Sigma_i a_i \mathbf{v}_i) >= 0$  $= > \Sigma_i \Sigma_j a_i a_j \mathbf{v}_i . \mathbf{v}_j >= 0$
- This holds for ANY real  $\{a_1, a_2, ...\}$



### **The Mercer Condition**

- If  $\mathbf{z} = \Phi(\mathbf{x})$  is a high-dimensional vector derived from  $\mathbf{x}$  then for all real  $\{a_1, a_2, ...\}$  and any set  $\{\mathbf{z}_1, \mathbf{z}_2, ...\} = \{\Phi(\mathbf{x}_1), \Phi(\mathbf{x}_2), ...\}$  $-\Sigma_i \Sigma_j a_i a_j \mathbf{z}_i .\mathbf{z}_j >= 0$  $-\Sigma_i \Sigma_i a_i a_i \Phi(\mathbf{x}_i) .\Phi(\mathbf{x}_i) >= 0$
- If  $K(\mathbf{x}_1, \mathbf{x}_2) = \Phi(\mathbf{x}_1)$ .  $\Phi(\mathbf{x}_2)$ =>  $\sum_i \sum_j \mathbf{a}_i \mathbf{a}_j K(\mathbf{x}_i, \mathbf{x}_j)$  >= 0
- Any function K() that satisfies the above condition is a valid kernel function



### **The Mercer Condition**

- $K(\mathbf{x}_1, \mathbf{x}_2) = \Phi(\mathbf{x}_1)$ .  $\Phi(\mathbf{x}_2)$ =>  $\Sigma_i \Sigma_j a_i a_j K(\mathbf{x}_i, \mathbf{x}_j) >= 0$
- A corollary: If any kernel K(.) satisfies the Mercer condition

 $d(\mathbf{x}_1, \mathbf{x}_2) = K(\mathbf{x}_1, \mathbf{x}_1) + K(\mathbf{x}_2, \mathbf{x}_2) - 2K(\mathbf{x}_1, \mathbf{x}_2)$  satisfies the following requirements for a "distance"

- $-d(\mathbf{x},\mathbf{x})=0$
- $-d(\mathbf{x},\mathbf{y}) >= 0$
- $-d(\mathbf{x},\mathbf{w})+d(\mathbf{w},\mathbf{y})>=d(\mathbf{x},\mathbf{y})$

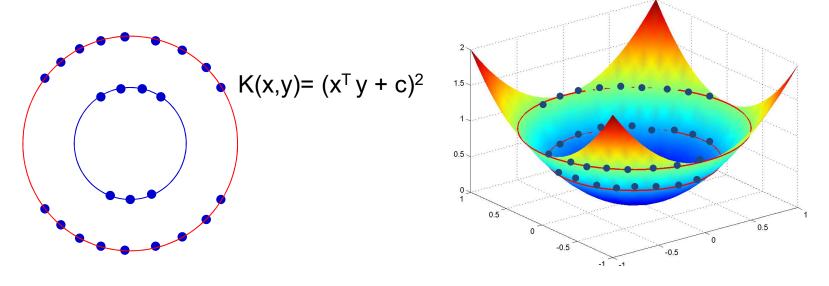


# **Typical Kernel Functions**

- Linear:  $K(x,y) = x^Ty + c$
- Polynomial  $K(x,y) = (ax^Ty + c)^n$
- Gaussian:  $K(x,y) = \exp(-||x-y||^2/\sigma^2)$
- Exponential:  $K(\mathbf{x}, \mathbf{y}) = \exp(-||\mathbf{x} \mathbf{y}||/\lambda)$
- Several others
  - Choosing the right Kernel with the right parameters for your problem is an artform



**Kernel K-means** 



- Perform the K-mean in the Kernel space
  - The space of  $z = \Phi(x)$
- The algorithm..



#### The mean of a cluster

 The average value of the points in the cluster computed in the high-dimensional space

$$m_{cluster} = \frac{1}{N_{cluster}} \sum_{i \in cluster} \Phi(x_i)$$

Alternately the weighted average

$$m_{cluster} = \frac{1}{\sum_{i \in cluster}} \sum_{i \in cluster} w_i \Phi(x_i) = C \sum_{i \in cluster} w_i \Phi(x_i)$$



#### The mean of a cluster

 The average value of the points in the cluster computed in the high-dimensional space

$$m_{cluster} = \frac{1}{N_{cluster}} \sum_{i \in cluster} \Phi(x_i)$$

RECALL: We may never actually be able to compute this mean because  $\Phi(x)$  is not known

Alternately the weighted average

$$m_{cluster} = \frac{1}{\sum_{i \in cluster}} \sum_{i \in cluster} w_i \Phi(x_i) = C \sum_{i \in cluster} w_i \Phi(x_i)$$



- Initialize the clusters with a random set of K points
  - $N_{cluster}$  is no. of points in cluster

$$m_{cluster} = \frac{1}{N_{cluster}} \sum_{i \in cluster} \Phi(x_i)$$

For each data point x, find the closest cluster

$$cluster(x) = \min_{cluster} d(x, cluster) = \min_{cluster} \|\Phi(x) - m_{cluster}\|^2$$

$$d(x, cluster) = \|\Phi(x) - m_{cluster}\|^2 = \left(\Phi(x) - \frac{1}{N_{cluster}} \sum_{i \in cluster} \Phi(x_i)\right)^T \left(\Phi(x) - \frac{1}{N_{cluster}} \sum_{i \in cluster} \Phi(x_i)\right)$$

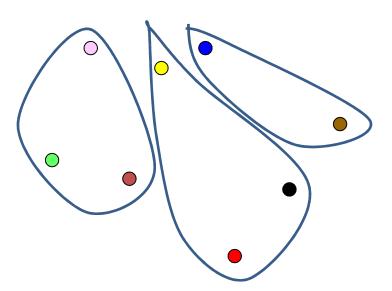
$$= \left(\Phi(x)^T \Phi(x) - \frac{2}{N_{cluster}} \sum_{i \in cluster} \Phi(x)^T \Phi(x_i) + \frac{1}{N_{cluster}^2} \sum_{i \in cluster} \sum_{j \in cluster} \Phi(x_i)^T \Phi(x_j)\right)$$

$$= K(x,x) - \frac{2}{N_{cluster}} \sum_{i \in cluster} K(x,x_i) + \frac{1}{N_{cluster}^2} \sum_{i \in cluster} \sum_{j \in cluster} K(x_i,x_j)$$

Computed entirely using only the kernel function!



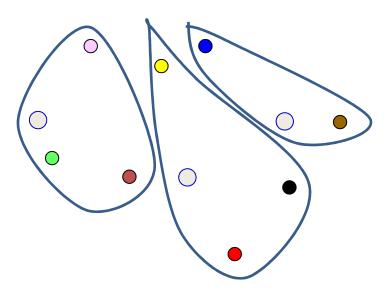
1. Initialize a set of *clusters* randomly





### **K**–means

1. Initialize a set of *clusters* randomly

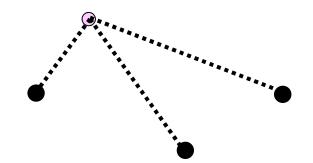


The centroids are virtual: we don't actually compute them explicitly!

$$m_{cluster} = \frac{1}{\sum_{i \in cluster} w_i} \sum_{i \in cluster} w_i x_i$$



- Initialize a set of clusters randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster
  - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$



$$d_{cluster} = K(x, x) - 2C \sum_{i \in cluster} w_i K(x, x_i) + C^2 \sum_{i \in cluster} \sum_{j \in cluster} w_i w_j K(x_i, x_j)$$



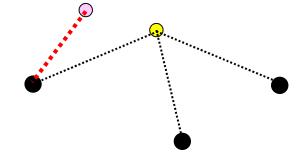
- 1. Initialize a set of clusters randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster



- $d_{cluster} = \mathbf{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
  - Cluster for which d<sub>cluster</sub> is minimum



- 1. Initialize a set of clusters randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster
  - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$



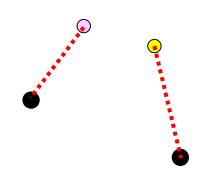
- 3. Put data point in the cluster of the closest centroid
  - Cluster for which d<sub>cluster</sub> is minimum



- 1. Initialize a set of clusters randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster
  - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$



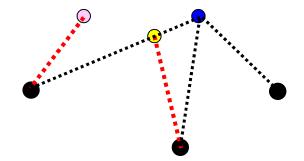
Cluster for which d<sub>cluster</sub> is minimum





#### **K**–means

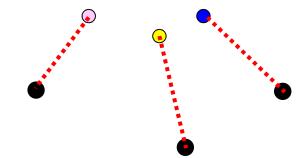
- 1. Initialize a set of clusters randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster
  - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$



- 3. Put data point in the cluster of the closest centroid
  - Cluster for which d<sub>cluster</sub> is minimum



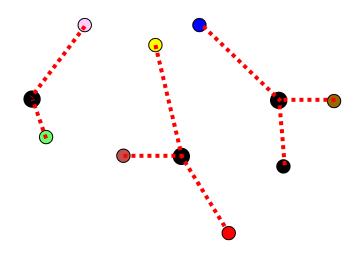
- 1. Initialize a set of clusters randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster
  - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$



- 3. Put data point in the cluster of the closest centroid
  - Cluster for which **d**<sub>cluster</sub> is minimum



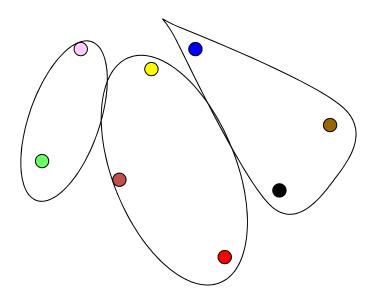
- 1. Initialize a set of clusters randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster
  - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
  - Cluster for which d<sub>cluster</sub> is minimum





#### **K**–means

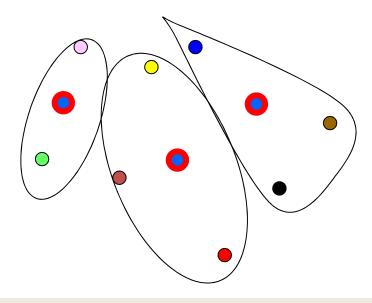
- 1. Initialize a set of clusters randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster
  - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
  - Cluster for which d<sub>cluster</sub> is minimum





- 1. Initialize a set of clusters randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster
  - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
  - Cluster for which d<sub>cluster</sub> is minimum
- 4. When all data points are clustered, recompute centroids

$$m_{cluster} = \frac{1}{\sum_{i \in cluster} w_i} \sum_{i \in cluster} w_i x_i$$



- We do not explicitly compute the means
- May be impossible we do not know the high-dimensional space
- We only know how to compute inner products in it

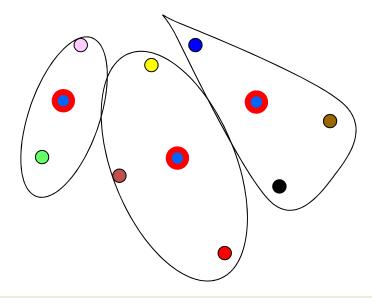


#### **Kernel K-means**

- 1. Initialize a set of clusters randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster
  - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
  - Cluster for which d<sub>cluster</sub> is minimum
- 4. When all data points are clustered, recompute centroids

$$m_{cluster} = \frac{1}{\sum_{i \in cluster} W_i} \sum_{i \in cluster} W_i x_i$$

5. If not converged, go back to 2



- We do not explicitly compute the means
- May be impossible we do not know the high-dimensional space
- We only know how to compute inner products in it



# **How many clusters?**

- Assumptions:
  - Dimensionality of kernel space > no. of clusters
  - Clusters represent separate directions in Kernel spaces
- Kernel correlation matrix K
  - $-\mathbf{K}_{ij} = \mathbf{K}(\mathbf{x}_i, \mathbf{x}_j)$
- Find Eigen values  $\Lambda$  and Eigen vectors  ${\bf e}$  of kernel matrix
  - No. of clusters = no. of dominant  $\lambda_i$  (1<sup>T</sup> $e_i$ ) terms



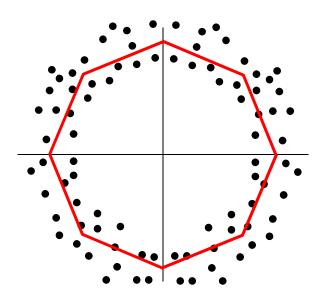
# **Spectral Methods**

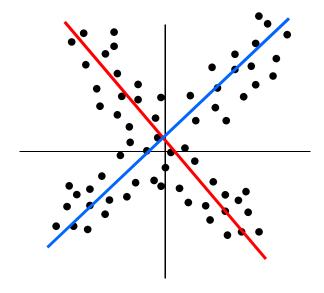
- "Spectral" methods attempt to find "principal" subspaces of the high-dimensional kernel space
- Clustering is performed in the principal subspaces
  - Normalized cuts
  - Spectral clustering
- Involves finding Eigenvectors and Eigen values of Kernel matrix
- Fortunately, provably analogous to Kernel Kmeans



# Other clustering methods

- Regression based clustering
- Find a regression representing each cluster
- Associate each point to the cluster with the best regression
  - Related to kernel methods







# Clustering...

- Many many other variants
  - Many applications...
  - Important: Appropriate choice of feature
    - Appropriate choice of feature may eliminate need for kernel trick...
- Key Features:
  - Identifies latent structure in the distribution of the data
  - Provides an L2-sense optimal quantized representation of the data
    - We will build on this in the next class