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Learning Representations: 
Problem so far

• Problem: Given a collection of data X, find a 
set of “bases” B, such that each vector xi can 
be expressed as a weighted combination of 
the bases
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Why is this important?

• With the right set of bases, the weights represent the data most effectively
– We can now use the weights to represent the data
– E.g. with notes as bases, the weights would be the score

• If the bases are agreed upon, we can also  communicate the information about the 
data most efficiently

– Just communicate the weights
– E.g. enough to store eigen face weights to reconstruct face
– E.g. just reading the score is sufficient for anyone to recreate music

3



What is the most accurate way to 
represent data

• If, instead of bases, we had a dictionary of all possible data
– A matrix that included every possible data vector as a column
– And the weights vector simply selected the correct data 

instance
– I.e. was one-sparse vector

଴

(actually a one-hot vector because the one non-zero entry of = 
1, i.e. ௜

 
௜ )
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What is the most accurate way to 
represent data

• If, instead of bases, we had a dictionary of all possible data
– A matrix that included every possible data vector as a column
– And the weights vector simply selected the correct data instance

• Problem: Infeasible to construct such a dictionary!
– Will require infinite entries

• And our 𝒘 vector too will require infinite bits to represent

– Alternately, will require storing the entire training data
• And will not be useful to represent data outside the training set 5
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Approximate representation with a 
dictionary

• Problem: Infeasible to construct a perfect dictionary
– Will require too many (potentially infinite) entries

• Solution: Can we instead construct a smaller finite dictionary such that all 
data can be approximated well by one of the entries in the dictionary?
– E.g. “The guy looks a lot like the 7th face in the dictionary”
– E.g.  The vector looks a lot like the 𝒊, the i-th entry in the dictionary.

• Questions:
– What do we mean by “looks a lot like”
– How do we construct the dictionary? 6
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Quantifying the error

• Different error metrics will result in different solutions
• Lets generically represent the error as 

଴ ௜

 

௜

• A common choice is the L2 error
ଶ
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Approximate representation with a 
dictionary

• Problem: Infeasible to construct a perfect dictionary
– Will require too many (potentially infinite) entries

• Solution: Can we instead construct a smaller finite dictionary such that all 
data can be approximated well by one of the entries in the dictionary?
– E.g. “The guy looks a lot like the 7th face in the dictionary”
– E.g.  The vector looks a lot like the 𝒊, the i-th entry in the dictionary.
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Learning the Dictionary
• are the data for which the dictionary is 

being learned
• is the matrix of dictionary vectors
• is a set of one-hot vectors
• Learning: Learn and to minimize total error on 

• If we’re only interested in learning the dictionary
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Learning the Dictionary

•

೔

• Generally does not have a closed form solution, but can 
solved with the following iteration that provably reduces 
error in each step
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Learning the Dictionary

•

೔

• Generally does not have a closed form solution, but can 
solved with the following iteration that provably reduces 
error in each step
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For this gives us the well-known 
K-means algorithm

Grouping by the dictionary entries they are 
assigned to ( ) results in clustering



So lets look at clustering

• From a more naïve, procedural perspective..
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Clustering
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Statistical Modelling and Latent 
Structure

• Much of statistical modelling attempts to identify latent structure in 
the data
– Structure that is not immediately apparent from the observed data
– But which, if known, helps us explain it better, and make predictions 

from or about it

• Clustering methods attempt to extract such structure from 
proximity
– First-level structure (as opposed to deep structure)

• We will see still other forms of latent structure discovery later in the 
course

16



How
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Clustering

• What is clustering
– Clustering is the determination of 

naturally occurring grouping of 
data/instances (with low within-
group variability and high between-
group variability)
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Clustering

• What is clustering
– Clustering is the determination of 

naturally occurring grouping of 
data/instances (with low within-
group variability and high between-
group variability)

• How is it done
– Find groupings of data such that the 

groups optimize a “within-group-
variability” objective function of 
some kind

20



Clustering

• What is clustering
– Clustering is the determination of 

naturally occurring grouping of 
data/instances (with low within-
group variability and high between-
group variability)

• How is it done
– Find groupings of data such that the 

groups optimize a “within-group-
variability” objective function of 
some kind

– The objective function used affects 
the nature of the discovered clusters

• E.g. Euclidean distance vs.
•
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Clustering

• What is clustering
– Clustering is the determination of 

naturally occurring grouping of 
data/instances (with low within-
group variability and high between-
group variability)

• How is it done
– Find groupings of data such that the 

groups optimize a “within-group-
variability” objective function of 
some kind

– The objective function used affects 
the nature of the discovered clusters

• E.g. Euclidean distance vs.
• Distance from center
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Why Clustering

• Automatic grouping into “Classes”
– Different clusters may show different behavior

• Representation: Quantization
– All data within a cluster are represented by a 

single point

• Preprocessing step for other algorithms
– Indexing, categorization, etc.
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Finding natural structure in data

• Find natural groupings in data for further analysis
• Discover latent structure in data
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Some Applications of Clustering

• Image segmentation
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Representation: Quantization

• Quantize every vector to one of K (vector) values
• What are the optimal  K  vectors?  How do we find them?  How do 

we perform the quantization?
• LBG algorithm 26
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Quantization: Formally

• are the “representative” vectors of each cluster
• Restriction: only one of the is 1, the rest are 0

–
– is unit length and one-sparse
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Representation: BOW

• How to retrieve all music videos by this guy?
• Build a classifier

– But how do you represent the video?
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Representation: BOW

• Bag of words representations of 
video/audio/data
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Representation: Each number is the
#frames assigned to the codeword

30
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Obtaining “Meaningful” Clusters

• Two key aspects:
– 1. The feature representation used to characterize 

your data
– 2.  The “clustering criteria” employed
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Clustering Criterion

• The “Clustering criterion” actually has two 
aspects

• Cluster compactness criterion
– Measure that shows how “good” clusters are

• The objective function

• Distance of a point from a cluster
– To determine the cluster a data vector belongs to
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“Compactness” criteria for clustering

• Distance based measures
– Total distance between each 

element in the cluster and 
every other element in the 
cluster
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“Compactness” criteria for clustering

• Distance based measures
– Total distance between each 

element in the cluster and every 
other element in the cluster

– Distance between the two farthest 
points in the cluster

– Total distance of every element in 
the cluster from the centroid of the 
cluster

– Distance measures are often 
weighted Minkowski metrics
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Clustering: Distance from cluster

• How far is a data point from a 
cluster?
– Euclidean or Minkowski distance 

from the centroid of the cluster

– Distance from the closest point in 
the cluster

– Distance from the farthest point in 
the cluster

– Probability of data measured on 
cluster distribution
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Clustering: Distance from cluster

• How far is a data point from a 
cluster?
– Euclidean or Minkowski distance 

from the centroid of the cluster

– Distance from the closest point in 
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Clustering: Distance from cluster

• How far is a data point from a 
cluster?
– Euclidean or Minkowski distance 

from the centroid of the cluster

– Distance from the closest point in 
the cluster

– Distance from the farthest point in 
the cluster

– Probability of data measured on 
cluster distribution

– Fit of data to cluster-based 
regression
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Optimal clustering: Exhaustive enumeration

• All possible combinations of data must be evaluated
– If there are M data points, and we desire N clusters, the 

number of ways of separating M instances into N clusters is

– Exhaustive enumeration based clustering requires that the 
objective function (the “Goodness measure”) be evaluated 
for every one of these, and the best one chosen

• This is the only correct way of optimal clustering
– Unfortunately, it is also computationally unrealistic
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Not-quite non sequitur:  Quantization

• Linear quantization (uniform quantization):
– Each digital value represents an equally wide range of analog values
– Regardless of distribution of data
– Digital-to-analog conversion represented by a “uniform” table
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Not-quite non sequitur:  Quantization

• Non-Linear quantization:
– Each digital value represents a different range of analog values

• Finer resolution in high-density areas
• Mu-law / A-law assumes a Gaussian-like distribution of data

– Digital-to-analog conversion represented by a “non-uniform” table
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Non-uniform quantization

• If data distribution is not Gaussian-ish?
– Mu-law / A-law are not optimal
– How to compute the optimal ranges for quantization?

• Or the optimal table
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The Lloyd Quantizer

• Lloyd quantizer: An iterative algorithm for computing optimal 
quantization tables for non-uniformly distributed data

• Learned from “training” data
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Lloyd Quantizer

• Randomly initialize 
quantization points
– Right column entries of 

quantization table

• Assign all training points to the 
nearest quantization point

• Reestimate quantization 
points

• Iterate until convergence
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Lloyd Quantizer
• Randomly initialize 

quantization points
– Right column entries of 

quantization table

• Assign all training points to 
the nearest quantization 
point
– Draw boundaries

• Reestimate quantization 
points

• Iterate until convergence
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Generalized Lloyd Algorithm: K–means clustering
• K means is an iterative algorithm for clustering vector

data
– McQueen, J. 1967. “Some methods for classification and 

analysis of multivariate observations.” Proceedings of the Fifth 
Berkeley Symposium on Mathematical Statistics and Probability, 
281-297 

• General procedure:
– Initially group data into the required number of clusters 

somehow (initialization)

– Assign each data point to the closest cluster

– Once all data points are assigned to clusters, redefine clusters

– Iterate 
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K–means

• Problem: Given a set of data 
vectors, find natural clusters

• Clustering criterion is scatter: 
distance from the centroid

– Every cluster has a centroid
– The centroid represents the cluster

• Definition:  The centroid is the 
weighted mean of the cluster

– Weight = 1 for basic scheme
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K–means
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1. Initialize a set of centroids
randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
•

3. Put data point in the cluster of the 
closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points clustered, 
recompute cluster centroid

5. If not converged, go back to 2
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K–means
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K–means
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K-Means comments
• The distance metric determines the clusters

– In the original formulation, the distance is L2 distance
• Euclidean norm, wi = 1

– If we replace every x by mcluster(x), we get Vector 
Quantization

• K-means is an instance of generalized EM
• Not guaranteed to converge for all distance 

metrics
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Initialization
• Random initialization
• Top-down clustering

– Initially partition the data into two (or a small 
number of) clusters using K means

– Partition each of the resulting clusters into two 
(or a small number of) clusters, also using K 
means

– Terminate when the desired number of clusters 
is obtained
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K-Means for Top–Down clustering

68

1. Start with one cluster 

2. Split each cluster into two:
 Perturb centroid of cluster slightly  (by < 5%) to 

generate two centroids

3. Initialize K means with new set of 
centroids

4. Iterate Kmeans until convergence

5. If the desired number of clusters is not 
obtained, return to 2
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K-Means for Top–Down clustering
1. Start with one cluster 

2. Split each cluster into two:
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K-Means for Top–Down clustering
1. Start with one cluster 

2. Split each cluster into two:
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75



Non-Euclidean clusters

• Basic K-means results in good clusters in 
Euclidean spaces
– Alternately stated, will only find clusters that are 

“good” in terms of Euclidean distances

• Will not find other types of clusters
76



• For other forms of clusters we must modify the distance measure
– E.g. distance from a circle

• May be viewed as a distance in a higher dimensional space
– I.e Kernel distances
– Kernel K-means

• Other related clustering mechanisms:
– Spectral clustering

• Non-linear weighting of adjacency

– Normalized cuts.. 77

f([x,y]) -> [x,y,z]
x = x
y = y
z = a(x2 + y2)

Non-Euclidean clusters



• Transform the data into a synthetic higher-dimensional space where the 
desired patterns become natural clusters based on Euclidean distance
– E.g. the quadratic transform above

• Problem: What is the function/space?

• Problem: Distances in higher dimensional-space are more expensive to 
compute
– Yet only carry the same information in the lower-dimensional space 
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f([x,y]) -> [x,y,z]
x = x
y = y
z = a(x2 + y2)

The Kernel Trick



Distance in higher-dimensional space

• Transform data x through a possibly unknown 
function F(x) into a higher (potentially infinite) 
dimensional space
– z = F(x)

• The distance between two points is computed in 
the higher-dimensional space
– d(x1, x2) =  ||z1- z2||2 = ||F(x1) – F(x2)||2

• d(x1, x2) can be computed without computing z
– Since it is a direct function of x1 and x2
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Distance in higher-dimensional space

• Distance in lower-dimensional space: A combination of 
dot products
– ||z1- z2||2 = (z1- z2)T(z1- z2) = z1.z1 + z2.z2 -2 z1.z2

• Distance in higher-dimensional space
– d(x1, x2) =||F(x1) – F(x2)||2

= F(x1). F(x1) + F(x2). F(x2) -2 F(x1). F(x2)

• d(x1, x2) can be computed without knowing F(x) if:
– F(x1). F(x2) can be computed for any x1 and x2 without 

knowing F(.)
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The Kernel function

• A kernel function K(x1,x2) is a function such that:
– K(x1,x2) = F(x1). F(x2) 

• Once such a kernel function is found, the distance 
in higher-dimensional space can be found in 
terms of the kernels
– d(x1, x2) =||F(x1) – F(x2)||2

= F(x1). F(x1) + F(x2). F(x2) -2 F(x1). F(x2)
= K(x1,x1) + K(x2,x2) - 2K(x1,x2)

• But what is K(x1,x2)?
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A property of the dot product

• For any vector v, vTv = ||v||2 >= 0
– This is just the length of v and is therefore non-

negative

• For any vector u = Si ai vi,  ||u||2 >=0
=> (Si ai vi)T(Si ai vi) >= 0
=> Si Sj ai aj vi .vj >= 0

• This holds for ANY real {a1, a2, …}

82



The Mercer Condition

• If z = F(x) is a high-dimensional vector derived 
from x then for all real {a1, a2, …} and any set  {z1, 
z2, … } = {F(x1), F(x2),…}
– Si Sj ai aj zi .zj >= 0
– Si Sj ai aj F(xi).F(xj)   >= 0

• If K(x1,x2) = F(x1). F(x2)
> Si Sj ai aj K(xi,xj)   >= 0

• Any function K() that satisfies the above condition 
is a valid kernel function
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The Mercer Condition
• K(x1,x2) = F(x1). F(x2)

> Si Sj ai aj K(xi,xj)   >= 0

• A corollary: If any kernel K(.) satisfies the Mercer 
condition 
d(x1, x2) = K(x1,x1) + K(x2,x2) - 2K(x1,x2) 
satisfies the following requirements for a 
“distance”
– d(x,x) = 0
– d(x,y) >= 0
– d(x,w) + d(w,y) >= d(x,y)
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Typical Kernel Functions
• Linear: K(x,y) = xTy + c

• Polynomial K(x,y) = (axTy + c)n

• Gaussian: K(x,y) = exp(-||x-y||2/s2)

• Exponential: K(x,y) =  exp(-||x-y||/l)

• Several others
– Choosing the right Kernel with the right 

parameters for your problem is an artform
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• Perform the K-mean in the Kernel space
– The space of z = F(x)

• The algorithm..
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K(x,y)= (xT y + c)2

Kernel K-means



The mean of a cluster

• The average value of the points in the cluster computed in the 
high-dimensional space

• Alternately the weighted average
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The mean of a cluster

• The average value of the points in the cluster computed in the 
high-dimensional space

• Alternately the weighted average
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RECALL: We may never actually be able to compute this mean because 
F(x) is not known 



K–means

• Initialize the clusters with a 
random set of K points

– Ncluster is no. of points in cluster

• For each data point x, find the closest cluster
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K–means
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1. Initialize a set of clusters 
randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
•

3. Put data point in the cluster of the 
closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points clustered, 
recompute cluster centroid

5. If not converged, go back to 2
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K–means
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K–means
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K–means
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K–means
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K–means
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K–means
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K–means
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K–means
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K–means
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K–means
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• We do not explicitly compute the
means

• May be impossible – we do not 
know the high-dimensional 
space

• We only know how to compute 
inner products in it



Kernel K–means
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How many clusters?

• Assumptions:
– Dimensionality of kernel space > no. of clusters

– Clusters represent separate directions in Kernel spaces

• Kernel correlation matrix K
– Kij = K(xi,xj)

• Find Eigen values L and Eigen vectors e of kernel 
matrix
– No. of clusters = no. of dominant li (1Tei) terms
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Spectral Methods

• “Spectral” methods attempt to find “principal” 
subspaces of the high-dimensional kernel space

• Clustering is performed in the principal subspaces
– Normalized cuts
– Spectral clustering

• Involves finding Eigenvectors and Eigen values of 
Kernel matrix

• Fortunately, provably analogous to Kernel K-
means
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Other clustering methods
• Regression based clustering
• Find a regression representing each cluster
• Associate each point to the cluster with the 

best regression
– Related to kernel methods
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Clustering..

• Many many other variants
– Many applications..

– Important: Appropriate choice of feature
• Appropriate choice of feature may eliminate need for kernel trick..

• Key Features: 
– Identifies latent structure in the distribution of the data

– Provides an L2-sense optimal quantized representation of 
the data

• We will build on this in the next class
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