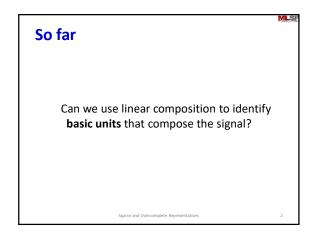
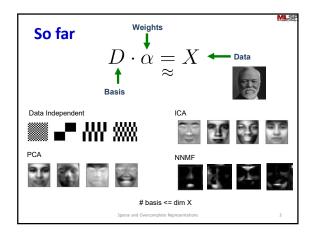
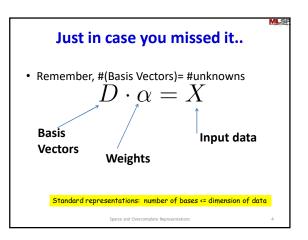
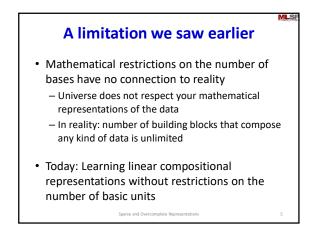
Machine Learning for Signal Processing Sparse and Overcomplete Representations

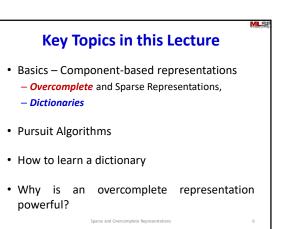
Bhiksha Raj (slides from Sourish Chaudhuri and Abelino Jimenez)

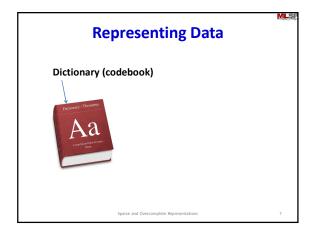


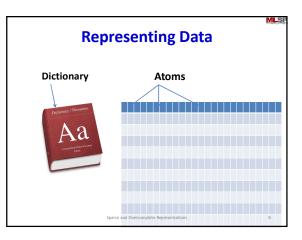


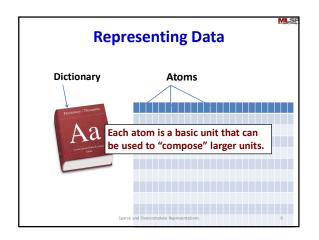


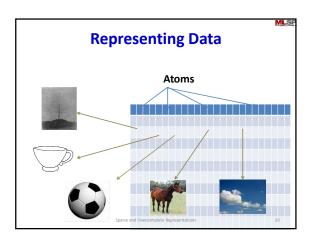


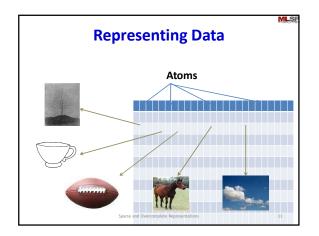


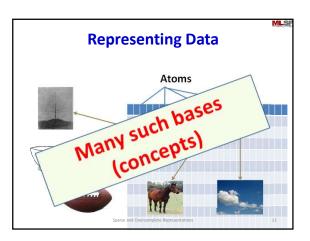


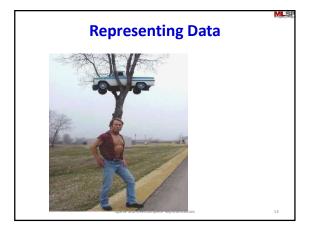


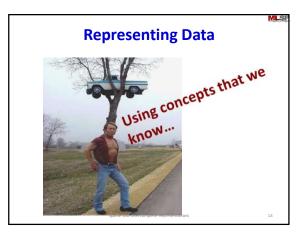


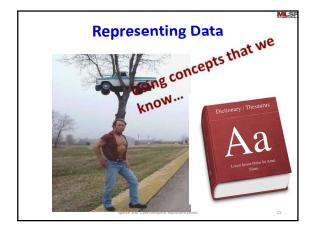


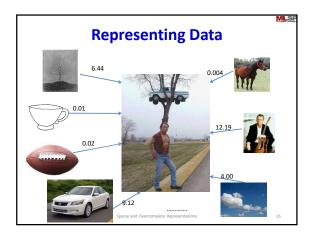


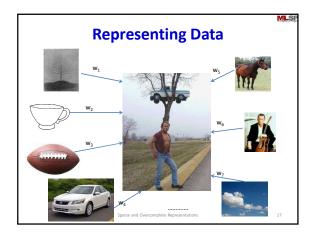


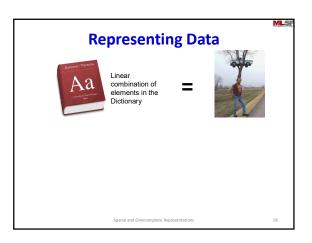


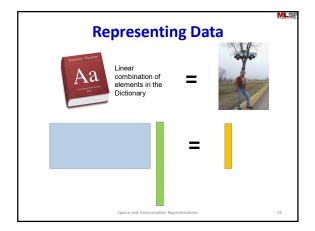


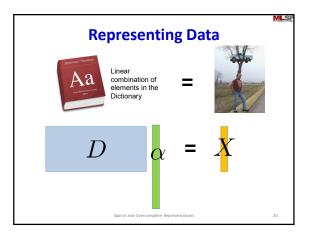


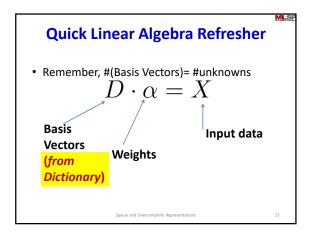


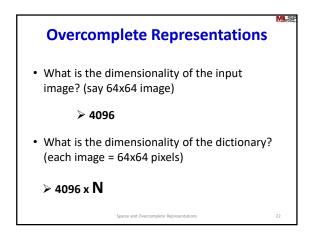


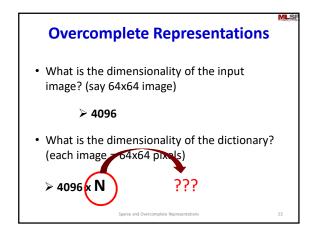


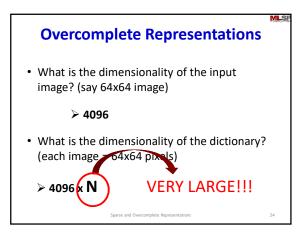


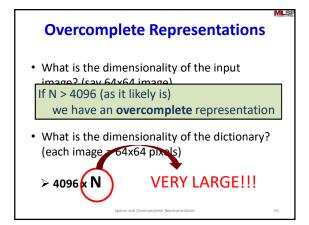


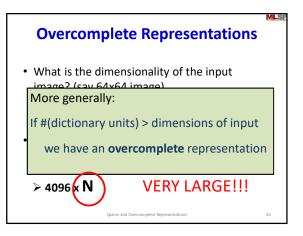


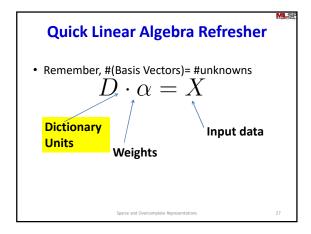


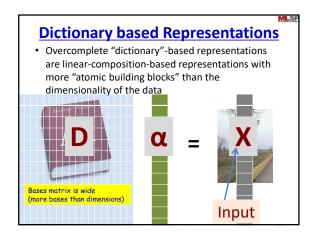


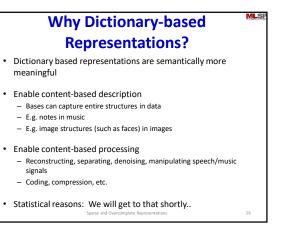


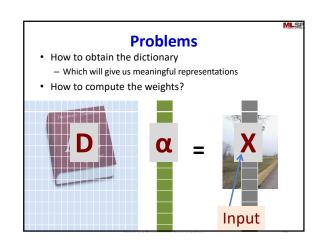


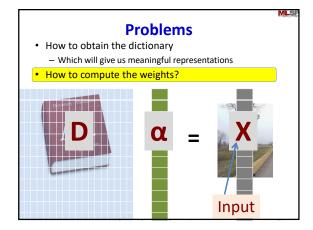


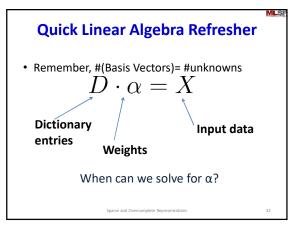


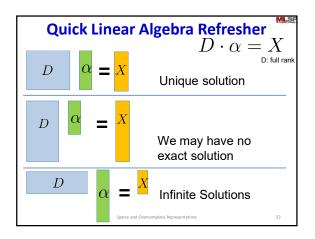


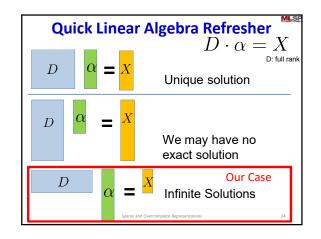


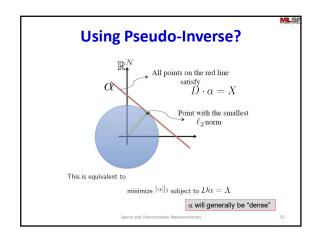


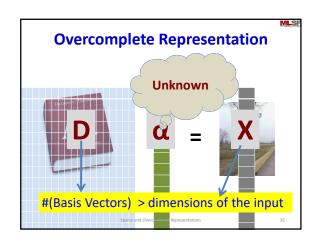


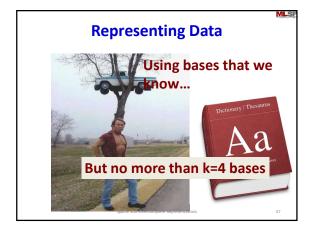


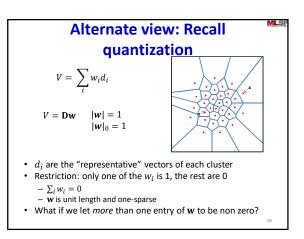












Overcompleteness and Sparsity

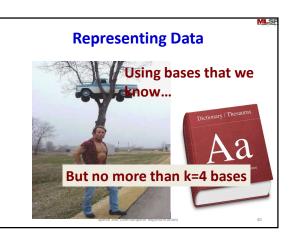
• To solve an overcomplete system of the type:

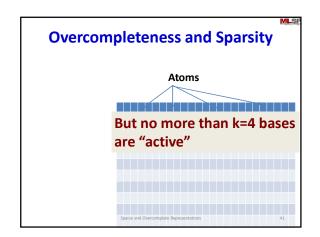
D.α = X

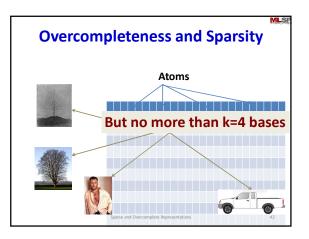
- Make assumptions about the data.
- Suppose, we say that X is composed of no more than a fixed number (k) of "bases" from D (k ≤ dim(X))

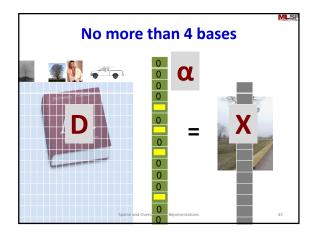
- The term "bases" is an abuse of terminology..

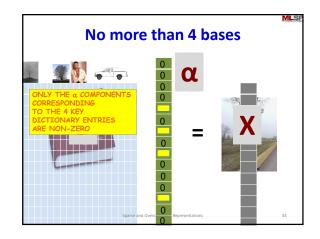
• Now, we can find the set of **k** bases that best fit the data point, **X**.

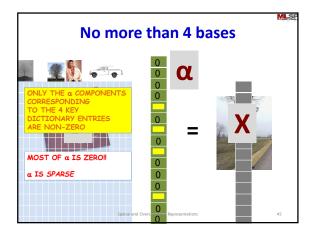


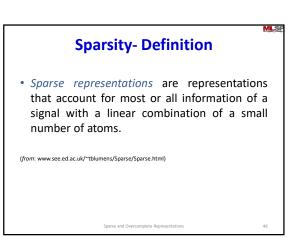


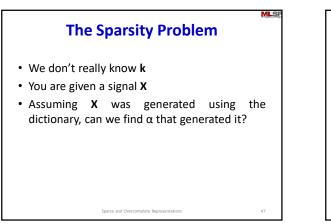


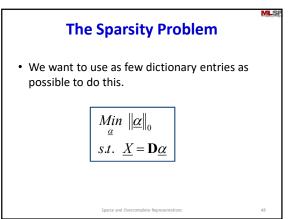


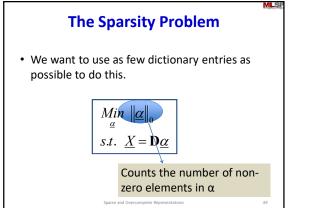


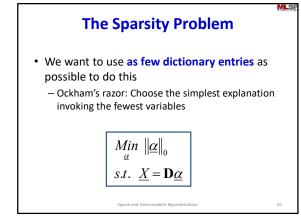


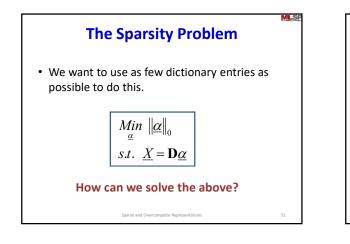


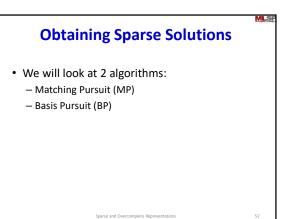


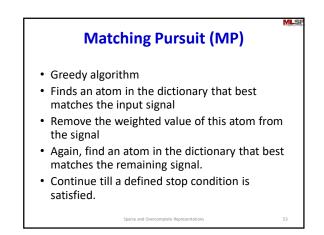


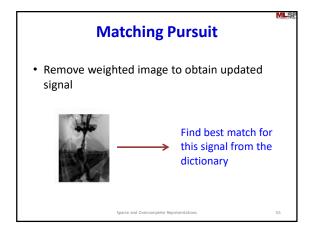


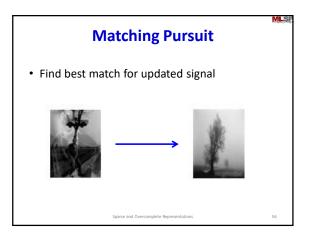


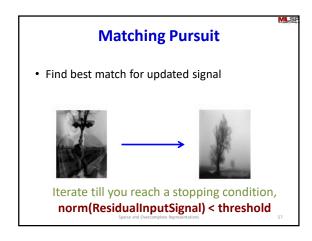


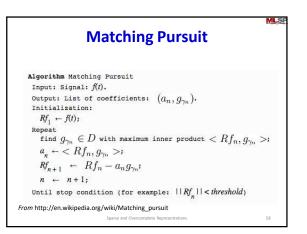


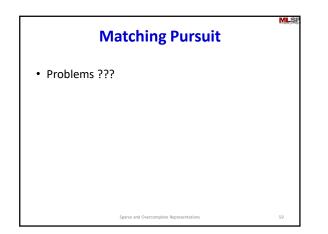


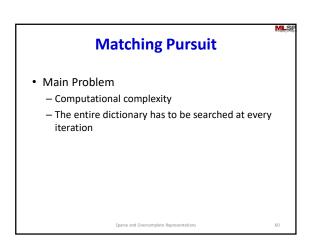


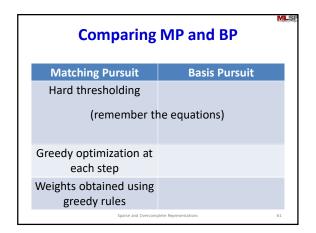


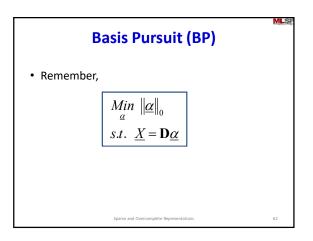


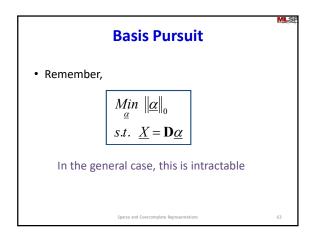


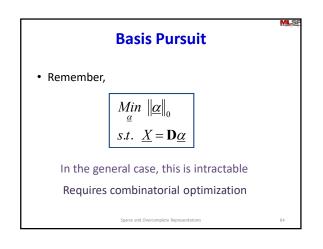


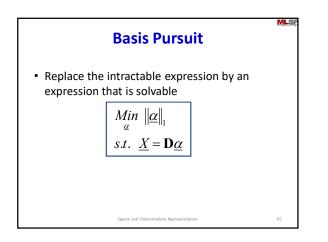


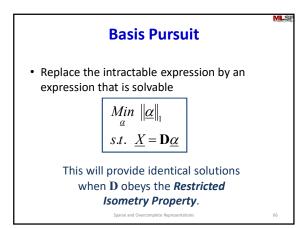


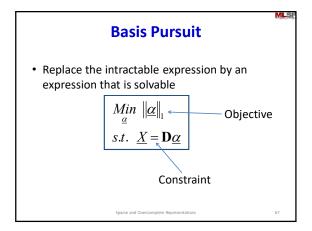


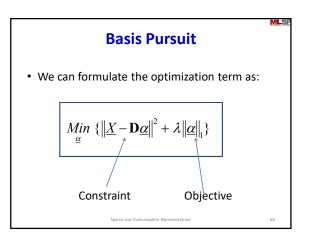


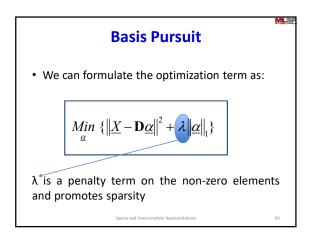


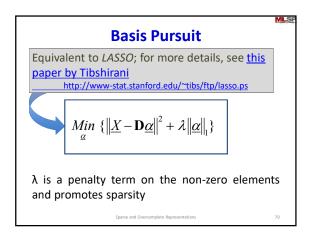


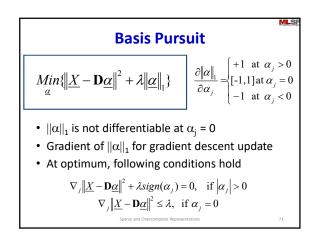


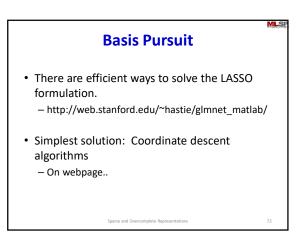


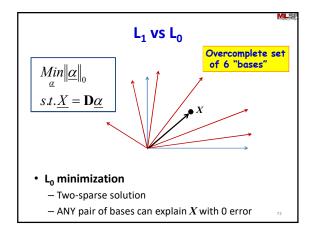


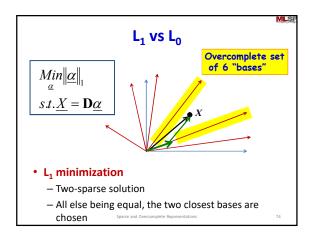




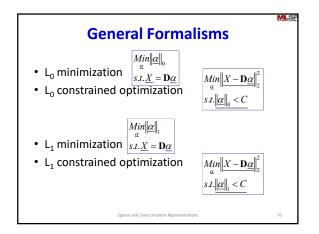


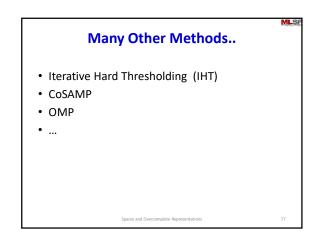


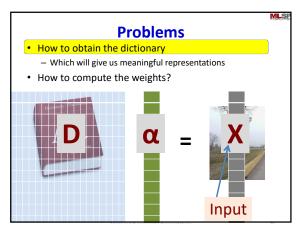


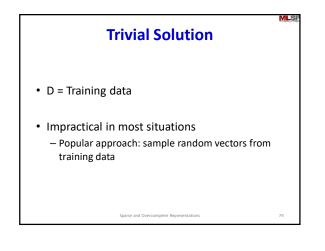


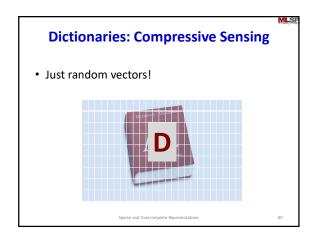
Comparing MP and BP	
Matching Pursuit	Basis Pursuit
Hard thresholding	Soft thresholding
(remember tl	ne equations)
Greedy optimization at each step	Global optimization
Weights obtained using greedy rules	Can force N-sparsity with appropriately **** former chosen weights 75

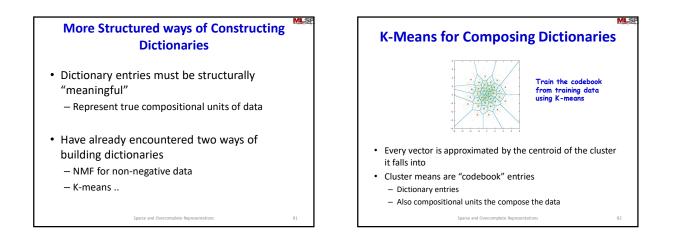


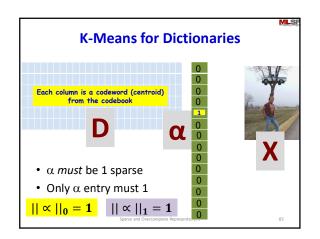


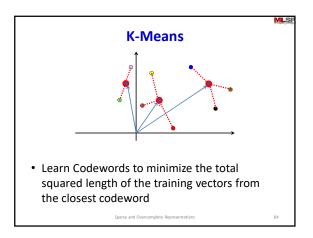


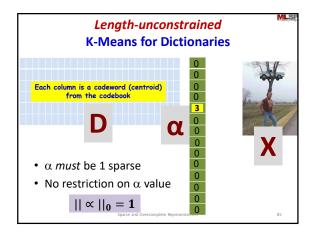


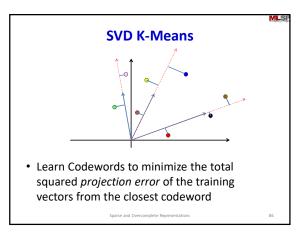


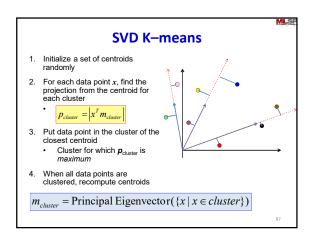


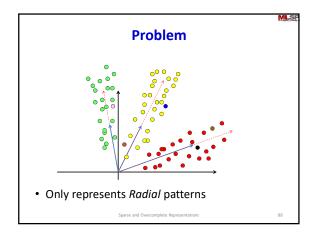


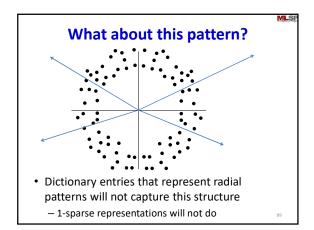


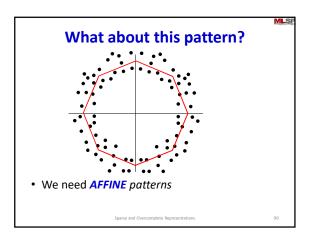


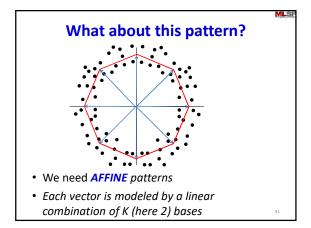


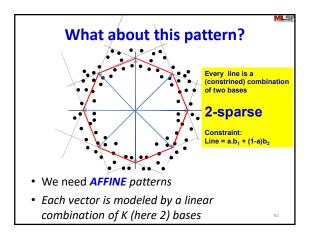


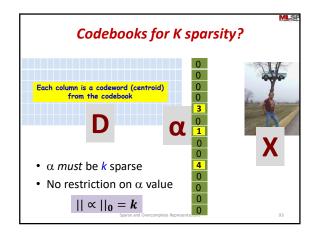


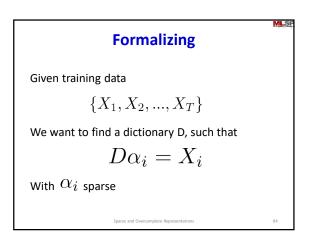


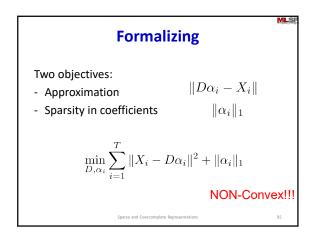


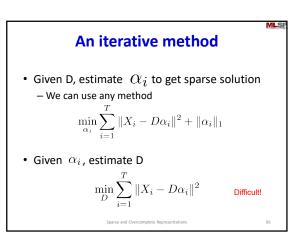


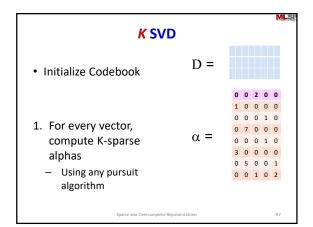


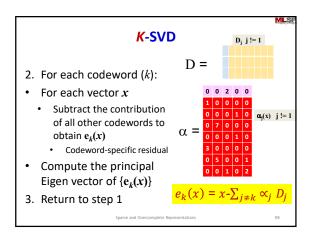


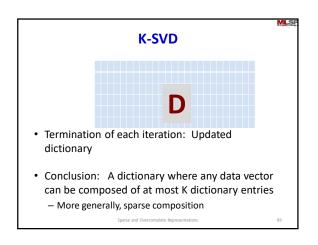


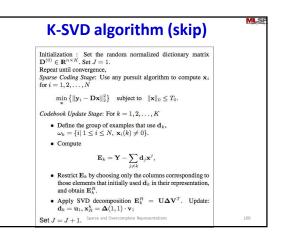


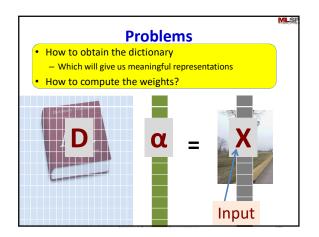


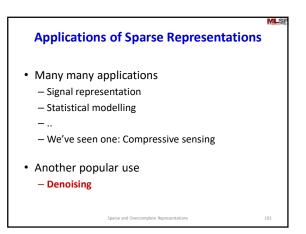




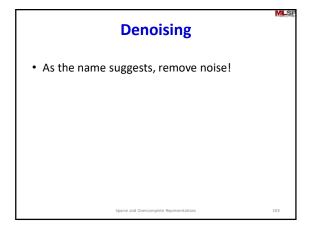






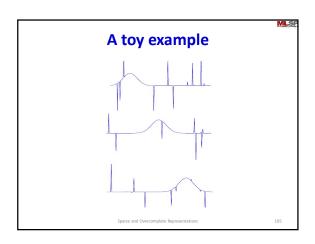


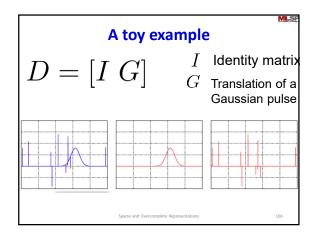
104

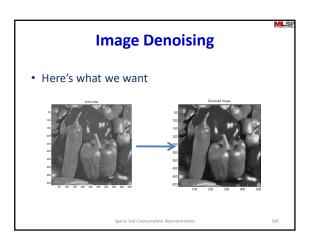


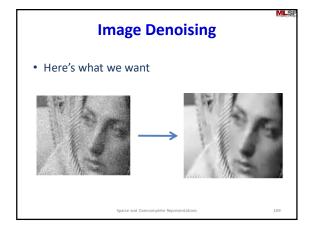
Denoising

- As the name suggests, remove noise!
- We will look at image denoising as an example



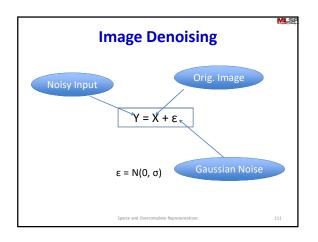


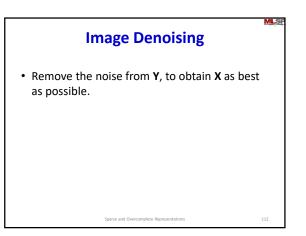


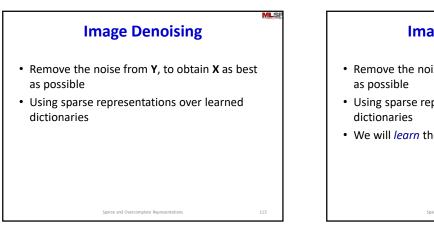


The Image Denoising Problem

- Given an image
- Remove Gaussian additive noise from it







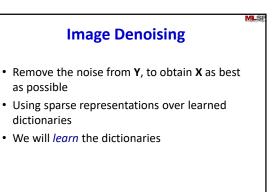
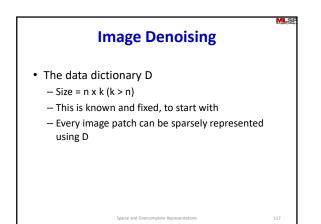


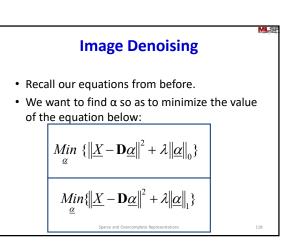
Image Denoising

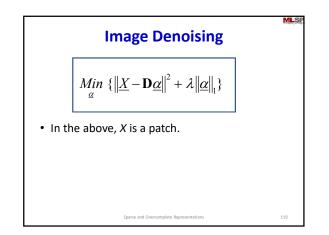
- Remove the noise from **Y**, to obtain **X** as best as possible
- Using sparse representations over learned dictionaries
- We will *learn* the dictionaries
- What data will we use? The corrupted image itself!

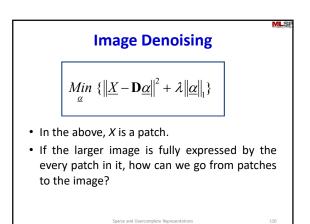
Image Denoising

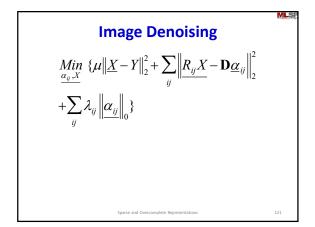
- We use the data to be denoised to learn the dictionary.
- Training and denoising become an iterated process.
- We use image patches of size $\sqrt{n} \times \sqrt{n}$ pixels (i.e. if the image is 64x64, patches are 8x8)

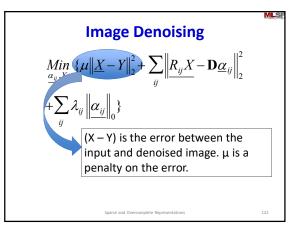


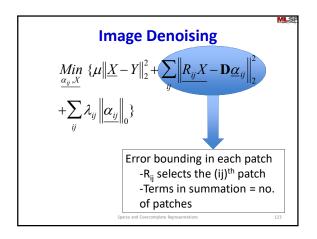


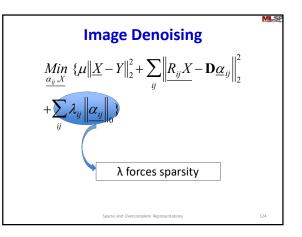


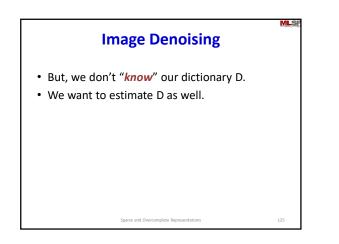


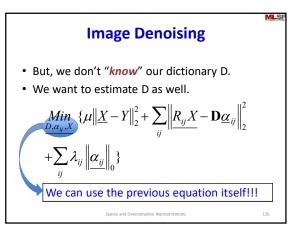


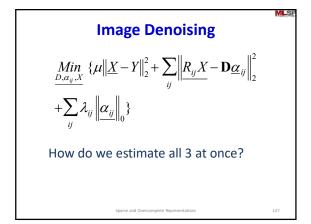


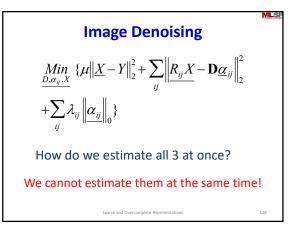


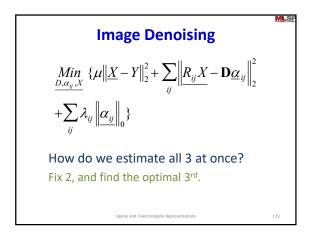


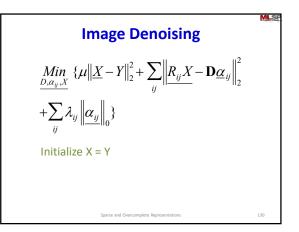


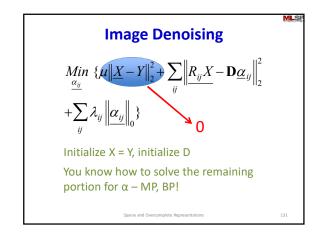


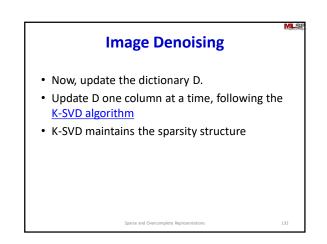




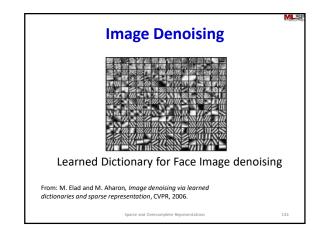


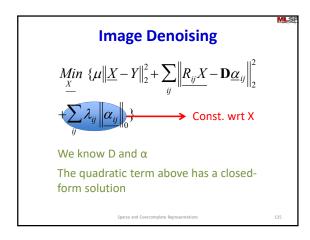


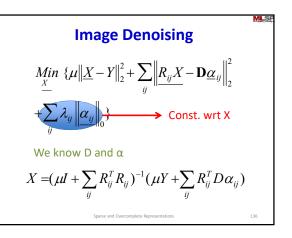


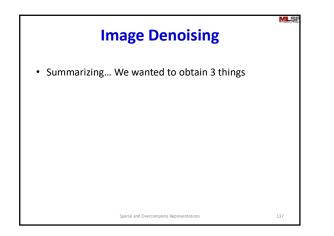


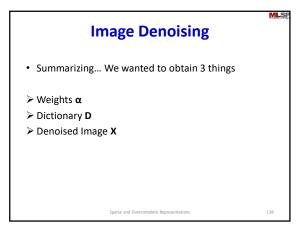
- Now, update the dictionary D.
- Update D one column at a time, following the <u>K-SVD algorithm</u>
- K-SVD maintains the sparsity structure
- Iteratively update $\boldsymbol{\alpha}$ and \boldsymbol{D}









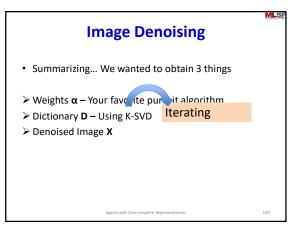


MLSP

142

Image Denoising

- Summarizing... We wanted to obtain 3 things
- > Weights α Your favorite pursuit algorithm
- Dictionary D Using K-SVD
- Denoised Image X



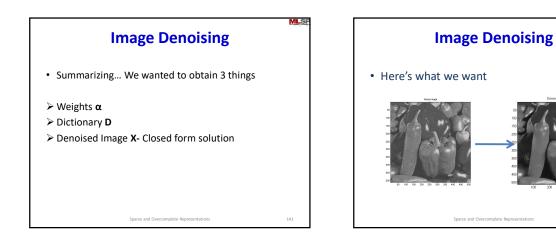


Image Denoising

Sparse and Ov

· Here's what we want

