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Machine Learning for Signal
Processing
Regression and Prediction

Instructor: Bhiksha Raj
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Topics

Nearest neighbor regression and classification

Linear regression
— With an application to glitch elimination in sound
— And its relation to nearest-neighbor regression

Regression in kernel spaces

Kernel regression

Regularization..
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Nearest neighbor regression and classification

Linear regression

— With an application to glitch elimination in sound
— And its relation to nearest-neighbor regression

Kernel regression

Regularization..

Regression in kernel spaces
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The problems of classification and™
regression

e Classification: Given a feature X, determine
the class Y

— Given image features, classify if this is a face

* Regression: Given an input X, estimate
another feature Y

— Given height, age, gender, etc. of a person,
estimate weight

* |n reality both are the same problem:
— The class is simply a categorical feature
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Example-based estimation

* C(lassification:
— Have seen one or more people who are exactly 160cm,
50kg, and all are female

— Get a new test instance of a person who is exactly 160cm,
50kg. Is this person..
* Male?

* Female?

* Regression:

— Have seen one or more people who are exactly 160cm,
female, and their weight is more or less 50kg

— Get a new test instance of a 160cm female person. What is
your best guess for her weight?



Example-based estimation

Classification:

— Have seen one or more people who are exactly 160cm,
50kg, and all are female

— Have seen one or more people who are exactly 160cm,
female, and their weight is 50kg

— Get a new test instance of a 160cm female person. What is
your best guess for her weight?

MLSEP



Example based prediction

* Problem: the gray circle is
missing its color attribute.
Predict it e °

* Find the nearest training
Instance

— Based on observed feature X
* PredictY from it

— Y may be a class value or a
continuous valued estimator



MLSP
Nearest-neighbor based prediction

Problem: the gray circle is
missing its color attribute. °
Predict it e °

Find the nearest training
Instance

n
o aiffer= .
ontinuous valued estimator



Nearest-neighbor prediction

* Alternately, find the k closest training
Instances

— Called the k-nearest-neighbor method

* Predict desired attribute based on these k
closest neighbors

MLSP
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K-nearest neighbor prediction

* Problem: the gray circle

IS missing its color °
attribute. Predict it e °*
Predict as green
* Nearest neighbor o ° o
¢ ®
* K-nearest neighbor o
— Example for k=3 ./&redi“ asred
¢ O

10



MLSEP

Distance functions

How does one define the distance between two
instances?
— Some attributes may be numeric

— Other attributes may nominal

Numeric attributes: Usually the Euclidean distance
between attribute values is used

Nominal attributes: Usually a binary distance function —
distance is set to 1 if attribute values are different, O if
they are the same

Will assume numeric attributes for our signals..
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Distance on numeric features

o d(xq,x3) = [lxq — x2||2

w3y, xz) = X1 %,

d(xq,%;) = ——
X1 X2
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K-nearest neighbor prediction

* Find the K nearest neighbors

* Predict as the majority opinion

— But should we also consider the ¢
actual distance °
Predict as red
* Is a farther neighbor as important
as a closer one? ® o

— What about numeric prediction?

* No notion of “majority”

— No two neighbors may have the
same value for Y

Vadhnelasming or
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Weighted K-nearest neighbor

prediction
* Classification
— Score(class) =
z:i:(iEKNN)& class(i)=classw(xr xi) ®
o
— class(x) = argmax Score(class) °
class .
Predict as green
* Regression: °

®
— Y (x) = Xiexnn W, x)Y;

* The weight w(x, x;) is inversely related
to d(x, x;)
— If d(x, x;) increases, w(x, x;) decreases

14
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Weights of neighbors..

1
O\. d(xq,x2) = |lxg — x;]I? w(x,y) = d(x,y)
O W(xlle) — exp(_ad(xler))
\.

W(xlr xZ) = X1, Xy = xIxz
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Weighted K-nearest neighbor
prediction

e (Classification

— Score(class) =

z:i:(iEKNN)& class(i)=classw(xr xi) ®
o

— class(x) = argmax Score(class) °

class .
Predict as green

* Regression:
— Y(x) = Diexnn W, x;)Y;

WHY RESTRICT TO K
NEAREST NEIGHBORS?
Considering that distant
to d(x, x;) examples carry less weight

— If d(x, x;) increases, w(x, x;) decreases

* The weight w(x, x;) is inversely related
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Weighted example-based

prediction
* Classification
— Score(class) =
ii-class(i)=class W (%) X;)

— class(x) = argmax Score(class)
class

* Regression:
~Y(x) = 3, w(x, x)Y;

e All training instances invoked!

MLSP
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Weights from numeric features

1
O\. d(xq,x2) = |lxg — x;]I? w(x,y) = d(x,y)
O W(xlle) — exp(_ad(xler))
\.
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NN prediction with inner-product™
weights

Yiest = z (x’trestxi)yi

LEtraining set

19
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Nearest Neighbor Classification

How?
— T — T
Scoregreen — z (xtestxi) Scorered - z (xtestxi)
lEgreen iered

Yiest = SCOTe€green > Score,qq? Green,
else Red

20
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Nearest Neighbor Regression

How?

Yiest = 2 (x;rrestxi)yi

[Etraining set

21
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Nearest Neighbor Regression

‘*.\.

Yiest = z (xzestxi)yi

[Etraining set

Simply stretching any axis changes the
inner products and, as a result, the relative
weights of the training instances.

Stretching an axis can change the answer!

\.\. How do we fix this? )
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Normalizing the axes

@ﬂ/
NS

4
=

* Normalize each axis by the inverse
standard deviation (of the training data)

— So that the variance is 1
 Compute the answer on the normalized
data
x=C%%

\.\'— Yiest = z(ytestyi)yi
[

23
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The whitening matrix

 Top: Skewed natural scatter
of a data set *

o
v

e Bottom: Scatter after
whitening via

1
x =C 2x

* Rotates and rescales the axes s |, *
to make scatter circular s =
(spherical) s |,

v

11755/18797 24
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Normalizing the axes

_—

)

4

W

* Normalize each ax
standard deviatior

— So that the varig
 Compute the ansy

data A4

T T e /
» —~_HOLD THIS THOUGHT

by the inverse
(of the training data)

ceisl

br on the normalized

x=C%%

\.\'— Yiest = z(/x\test/x\i)yi
[
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Lessons

e Classification are regression are two versions of the same
problem

— Predicting an attribute of a data instance based on other
attributes

* Nearest-neighbor based prediction: Predict the weighted
average value of desired attribute from all the training
instances

 Amazing fact they never told you: Every form of
prediction/classification/regression is actually just a variant
of weighted nearest-neighbor prediction
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Topics

* Nearest neighbor regression and classification
* Linear regression

— With an application to glitch elimination in sound
— And its relation to nearest-neighbor regression

* Regression in kernel spaces

* Kernel regression

* Regularization..
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 Can you spot the glitches? &)
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How to fix this problem?

e “Glitches” in audio
— Must be detected

— How?

e Then what?

e Glitches must be “fixed”

— Delete the glitch

* Results in a “hole”

— Fill in the hole
— How?

11755/18797

000000

000000

000000

000000

wwwwwwwww

wwwwwwwww

MLSEP

30



MLSEP

Interpolation..

WA pann

 “Extend” the curve on the left to “predict” the values in the
“blank” region

— Forward prediction

* Extend the blue curve on the right leftwards to predict the
blank region

— Backward prediction
* How?

— Regression analysis..

11755/18797 31
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Detecting the Glitch

“ 'i V“ 'A
\ {\ N |
HATS L
J\ |,‘
NS
|

OK / T NOTOK

* Regression-based reconstruction can be done
anywhere

e Reconstructed value will not match actual value

* Large error of reconstruction identifies glitches

11755/18797 32



MLSEP

What is a regression

* Analyzing relationship between variables
* Expressed in many forms
* Wikipedia
— Linear regression, Simple regression, Ordinary
least squares, Polynomial regression, General
linear model, Generalized linear model, Discrete

choice, Logistic regression, Multinomial logit,
Mixed logit, Probit, Multinomial probit, ....

* Generally a tool to predict variables



Regressions for prediction

e y=1(x;0)+e¢
» Different possibilities
— yis a scalar

* yis real
* y is categorical (classification)

— Yy is a vector

— X IS a vector
* X is a set of real valued variables
* X is a set of categorical variables
* X is a combination of the two

— 1(.) is a linear or affine function
— {(.) is a non-linear function
— 1(.) is a time-series model

MLSEP



A linear regression

15}

101

FHSREUI U YN SIS S S
X
e Assumption: relationship between variables is linear
— Alinear trend may be found relating x and y
— y = dependent variable
— X = explanatory variable
— Given x, y can be predicted as an affine function of x

11755/18797
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An imaginary regression..

http://pages.cs.wisc.edu/~kovar/hall.html| R

Check this shit out (Fig. 1). o » *
That's bonafide, 100%-real data, e e o
my friends. | took it myself over the 5o i “ >
course of two weeks. And this was not % o4 TS "* N
a leisurely two weeks, either; | busted S T . o

my ass day and night in order to provide il * B

you with nothing but the best data o 1@ 20 20 30 3
possible. Now, let's look a bit more i

closely at this data, remembering
that it is absolutely first-rate. Do you see the exponential dependence? | sure
don't. | see a bunch of crap.

Christ, this was such a waste of my time.

Banking on my hopes that whoever grades this will just look at the pictures, |
drew an exponential through my noise. | believe the apparent legitimacy is
enhanced by the fact that | used a complicated computer program to make the fit.
| understand this is the same process by which the top quark was discovered.



Linear Regressions

c y=alx+b+te
— e = prediction error

* Given a “training” set of {x, y} values: estimate a
and b

-y, =a'x;tb+te
—y,=a'x; thte
—y;=a'x; t bte;

* |faand b are well estimated, prediction error will be
small



MLSP

Vadhnelaseming o SgaProcesing Grug:

Linear Regression to a scalar

yi=a'x;tbte
=a'x,tbte,
y3=a'x3+b+e;

m Define:

y:[yl V2 y3] X=|:X11 X, X3...:| A = [aT b]

e=[e e, e;...]

* Rewrite
y=AX+e

11755/18797 38
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Learning the parameters
y=AX+e

}A’ — AX Assuming no error

* Given training data: several x,y

* Can define a “divergence”: D(y, V)
— Measures how much y differs fromy

— |deally, if the model is accurate this should be small

* Estimate a, b to minimize D(y, ¥)
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The prediction error as divergence

— oT
— T

m=ax,thte,
— oT

y3=axzth+te

y=a X+e =y+e e

D(y,y)=E=¢ +e; +e; +...
— (yl _aTxl _b)2 +()/2 _asz _b)2 +(y3 _aTX3 _b)2 T...

E=(y-AX)y-AX) =[y-AX|

* Define divergence as sum of the squared error in predicting y



Prediction error as divergence

4
»
sl
oL
1k
o
s .

* y=Ax+e

— e = prediction error

1

— Find the “slope” a such that the total squared
length of the error lines is minimized

11755/18797
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Solving a linear regression
y=AX+e

* Minimize squared error

E=|y-AX]]

A= ypinv(X)

11755/18797
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More Explicitly

y=ny el XXX
N

A=Yy pinv(X)

e X is wider thanitis tall
pinv(X) = X' (XX

A =yX' (XX’ J'

|

MLSP
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Regression in multiple dimensions

Yy =Ax; +b +e y; is a vector
Y =AX, tbte,

Y; = AX3 tbte; y; = j™ component of vector y;

a, =i row of A

* Also called multiple regression X b, = j® component of b

v
Vi = ax;t b +e

yi=AXi+b+ei |:> Yi2=azxi+b2+ei2
y

3= a3x;tbyte;

* Equivalent of saying:

 Fundamentally no different from N separate single
regressions

— But we can use the relationship between ys to our benefit
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Multiple Regression

X, X5 X
=y, ¥, ¥;--] X:{ll 12 13 } A:[A b]
E=[e e,e,..]
YZAX—I—E Frobenius norm
NI .2
D]V:ZHyi—Axi -y -Ax|

* Minimizing

A = Ypinv(X) = YX (XX J'



MLSP

Vadhnelaseming o SgaProcesing Grug:

Aside: The Frobenius norm

 The Frobenius norm is the square root of the

sum of the squares of all the components of

Ellr = | ) e,

N T
* The derivative of the squared Frobenius norm:

7.lY — AX||2 = 0 > A = YX(XXT)!

the matrix

11755/18797 46



A Different

/
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Perspective

/+

------

* yisanoisy reading of Ax
y = Ax+e

e Error eis Gaussian

e ~N(0,0°T)

* Estimate A from Yy — [Y1

Yo¥yl X=[X XX ]

11755/18797 47
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The Likelihood of the data

y =Ax+e e ~ N(0,0°T)

* Probability of observing a specificy, given x,
for a particular matrix A

P(y|x;A) = N(y; Ax,o"T)
e Probability of collection: FFARIK] ek X

P(Y|X;A) =] [ N(y;;Ax,,0°T)

l
* Assuming IID for convenience (not necessary)
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A Maximum Likelihood Estimate
y:ATX+e e~N(O,021) Y:[Y1 Y2'--y1v: X:[Xl X2"'XN]
— ! ex — Tx.2
P(Y|X)_H\/(2ﬂ02)l) p(20'2 HYZ A j

2

1ogP(Y|X;A):C—Z2(172

Y, — Axi

* Maximizing the log probability is identical to
minimizing the error

— ldentical to the least squares solution

A =YX (XX ' = Ypinv(X)
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Returning to Multiple Regression

Y=[y,y,V¥;...] Xz{l 1 1} A:[A b]

* Minimizing

A = Ypinv(X) = YX (XX J'
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Predicting an output

15}

10

20 210 10 20 30 40 50 60

* From a collection of training data, have learned A
* Given x for a new instance, but noty, what isy?
* Simple solution:

y =Ax+b

11755/18797 51



Applying it to our problem

Prediction by regression

Forward regression

000000

000000

Xe = A X T Xy X 7€

Backward regression

Xy = DXt boXyps. . bix ey

11755/18797
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Applying it to our problem

* Forward prediction

Xy

o

_xK+1_

pinv(X)x=a,

X Xio

X X3

O &
x=Xa, +e

Xk

X

t

-K

-1

M
1 P

t oo
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* Backward prediction

X k-1

Xk

MLSP
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Applying it to our problem

Xy X1

X1 X
_xK+1 xK

X =Xb, +e

pinv(X)X=b,

Xk

Xi_Kk-1

Xy

Maah
M

L
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Finding the burst

‘x ' l /
\ [ If II
li

* At eachtime
— Learn a “forward” predictor a,
— At each time, predict next sample x*'=2; a,; x
— Compute error: ferr,=|x-x " |?
— Learn a “backward” predict and compute backward error

* berr,

— Compute average prediction error over window, threshold

— If the error exceeds a threshold, identify burst

11755/18797
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Filling the hole

* Learn “forward” predictor at left edge of “hole”
— For each missing sample
— At each time, predict next sample x&' =%, a,,x
* Use estimated samples if real samples are not available
* Learn “backward” predictor at left edge of “hole”
— For each missing sample
— At each time, predict next sample x*'=%; b X,
* Use estimated samples if real samples are not available

* Average forward and backward predictions

11755/18797 56
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©
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Incrementally learning the regression

-1
A = YXT (XXT ) Requires knowledge of

all (x,y) pairs

 Can we learn A incrementally instead?
— As data comes in?

e The Widrow Hoff rule

Scalar prediction version

1 A n
™ =a'+n(y,-7)x, 5 =)x
e Note the structure =~ error
— Can also be done in batch mode!
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Predicting a value

A=YX'(XX]" §=Ax=YX (XX )'x

 What are we doing exactly?
— For the explanation we are assuming no “b” (X is 0 mean)
— Explanation generalizes easily even otherwise

C=Xxx'
1 1
m let x=C 2x and x_c2x
= Whitening x
m NO>CPO> s the whitening matrix for x

1 1

§=YX'C 2C 2x = YX'§,



Predicting a value

 What are we doing exactly?

MLSEP



Predicting a value

EORAEY

* Given training instances (x,,y;) fori = 1..N, estimate y
for a new test instance of x with unknowny :

* yissimply a weighted sum of they; instances from the
training data

* The weight of any y, is simply the inner product
between its corresponding x; and the new x

— With due whitening and scaling..

MLSEP



What are we doing: A different
perspective

§=Ax=YX'(XX")'x

 Assumes XX! is invertible
e What ifitis not

— Dimensionality of X is greater than number of
observations?

— Underdetermined

* |n this case X'X will generally be invertible

A=Y(X'X)'X"  §=Y(X'X]'Xx

MLSP

Vadhnelaseming o SgaProcesing Grop



High-dimensional regression

§=Y(X"X)'Xx

e XX isthe “Gram Matrix”

T T
X X XX,

T T
X XX,

y=YG 'X'x

X; X

X, Xy

T
Xy Xy

MLSP
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High-dimensional regression
y=YG 'X'x
* Normalize Y by the inverse of the gram matrix

Y =YG™

* Working our way down..

y:YXTX y:ZyHiXiTX



Linear Regression in High-dimensional™
Spaces

y = Z yixiTX Y -YG™!

* Given training instances (x,,y;) fori = 1..N, estimate y
for a new test instance of x with unknowny :

* yissimply a weighted sum of the normalized 'y,
instances from the training data
— The normalization is done via the Gram Matrix

* The weight of any y, is simply the inner product
between its corresponding x; and the new x



Topics

* Nearest neighbor regression and classification

* Linear regression
— With an application to glitch elimination in sound
— And its relation to nearest-neighbor regression

* Regression in kernel spaces
* Kernel regression

* Regularization..

11755/18797
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Relationships are not always linear

1.0 1.5

0.5

-0.5 0.0

-1.0

0 20 40 60 80 100 120

e How do we model these?
* Multiple solutions

11755/18797 67
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Non-linear regression

* Y= AQ(X)te
X = @(X) =[g(X) @,(X)... 0y (X)] 7
X = (X) =[@(x,) 0(x)) - @(x)]

B Y =AD(X)te
= Replace X with ®(X) in earlier equations for
solution

|
=]
> o
=]
w
S -
S

A =Y(0X)0(X) | d(X)’
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Problem

Y =AD(X)+e
m Replace X with ®(X) in earlier
equations for solution

A =Y(0X)0(X) | d(X)’

s O(X) may be in a very high-dimensional space

= The high-dimensional space (or the transform
®d(X)) may be unknown..

= Note: For any new instance x:

§ = AD(x)= Y(@X)D(X)" | d(X) 0(x)= YG'D(X) d(x)



The regression is in high dimensions

MLSP

* Linear regression: y = Z S",-Xl-TX Y =-YG™!

* High-dimensional regression

_(D(XI)T(D(XI) (D(Xz)T(D(Xz) (D(XI)T(D(XN)
(D(Xz)?q)(xl) (D(Xz)T.CD(Xz)

o,V olx,) B, FOlx,) -

Y =YG

ofx.f 0,

olx, Y @lx, )

y = Zl: y“i(D(Xi )T (D(X)



Doing it with Kernels

* High-dimensional regression with Kernels:

K(x,y)=0(x) ®(y)

_K(Xlaxl) K(Xlaxl) K(XIDXN)_
G- K(x,,x;) K(x,,x,) ... K(x,,xy)
_K(XN3X1) K(xy,x,) - K(XNaxN)_

* Regression in Kernel Hilbert Space..

YZY(}_1 f’ZZ'y"l.K(XZ.,X)

MLSEP



Topics

* Nearest neighbor regression and classification

* Linear regression
— With an application to glitch elimination in sound
— And its relation to nearest-neighbor regression

* Regression in kernel spaces
* Kernel regression

* Regularization..

11755/18797
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A different way of finding nonlinear ™~
relationships: Locally linear regression

* Previous discussion: Regression parameters are
optimized over the entire training set

 Minimize

T 2
Y —A'X, _bH

* Single global regression is estimated and applied to al
future x

e Alternative: Local regression
* learn a regression that is specific to x

11755/18797 73
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Being non-committal: Local

Regression

e Estimate the regression to
be applied to any x using
training instances near x

E = Z‘yi—ATxi—sz

X ; eneighborhood (x)

* The resultant regression has the form

y = Zw(x,x].)y].+e

X ; €neighborhood (X)

— Note : this regression is specific to x
* A separate regression must be learned for every x
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Local Regression

y = Zw(x,xj)yj+e

X ; eneighborhood (X)

But what is w()?

— For linear regression d() is an inner product

More generic form: Choose d() as a function of the
distance between x and X;

If w() falls off rapidly with [x and x;| the
“neighbhorhood” requirement can be relaxed

y = Zw(x,xj)yj +e

all
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Kernel Regression: d() = K()

ZKh(X_Xi)yz'
- ZKh(X_Xi)

* Typical Kernel functions: Gaussian, Laplacian, other
density functions

— Must fall off rapidly with increasing distance between x
and X;

* Regressionis local to every x : Local regression

* Actually a non-parametric MAP estimator of y
— But first.. MAP estimators:;



Topics

* Nearest neighbor regression and classification

* Linear regression
— With an application to glitch elimination in sound
— And its relation to nearest-neighbor regression

* Regression in kernel spaces
* Kernel regression
* Regularization..

11755/18797
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Returning to Linear Regression

Model: | Without outliers

y=Ax+D 4 :
A, b = argmin(Y — (Ax + b))? 3/
Ab sl

* The problem with fitting a linear model to
minimize L2 error

— Highly sensitive to outliers
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Returning to Linear Regression

/ With a single
1 outlier

Model: R _
y=Ax+b

A, b = argmin(Y — (Ax + b))?
Ab

* The problem with fitting a linear model to
minimize L2 error

— Highly sensitive to outliers
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A problem with regressions

%
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* Least-squares fit is sensitive

— Erroris squared

A =YX (xX"J'

— Small variations in data = large variations in weights

— Outliers affect it adversely

e Unstable

— |f dimension of X >= no. of instances

« (XXT)is not invertible

11755/18797
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Conservative solution

e Default: Y is extremely sensitive to X

— Results in large changes in regression estimate in response to small
changes in input

* Alternate default assumption: Y does not depend on X
— Prediction is just a horizontal lineatY = 0
— Useless

* Conservative Compromise: Y is weakly related to X
— Large increments in X result in small incrementsinY

— Willing to change opinion if we see a large number of instances where
a large increment in X resulted in a large changeinY

* Seeing just a few instances will not satisfy us
— Reduced sensitivity to outliers
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The Believer’s Linear Regression

Model: _
y=Ax+b+err

A, b = argmin(Y — (Ax + b))?
Ab

7

>

v

* Response of standard regression given only two
training instances

— Belief: Observed data tell the entire truth

* Model completely fit to trends in data
* Asingle pointis a trend
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The Disbeliever’s Linear -
Regression

Model:
y =err

Alternately stated:
y=Ax+ b+ err

A=b=0 >—»

 All data are noise

— The truth is that Y is a zero-mean random variable

— The observed data are outcomes of noise
variations
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The Conservative Regression

Model:
y=Ax+b+err

Strong belief that A and b are close to 0

e After seeing only one point..
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The Conservative Regression

Model:
y=Ax+b+err

Strong belief that A and b are close to 0

* The data provide evidence, but belief in the
default is strong
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The Conservative Regression

Model:
y=Ax+b+err

Strong belief that A and b are close to 0

e ——— H

A, b—argmlnz:llyl—(Ax + b)||? + 1(A% + b?), A>0

 Minimize the error of prediction by the model

e But also insist that A and b be as small as possible
— A gives measure of “insistence” that A and b be small
— Externally set
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The Conservative Regression

Model:
y=AX + err
O
Strong belief that A is close to 0 °
Using the augmented x notation
(padding x with a 1) to include ——
bias term — >
A =argmin ) lly — AR/ + 214, 1> 0
A .
l

 Minimize the error of prediction by the model

e But also insist that A should be as small as possible
— A gives measure of “insistence” that A must be small
— Externally set
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Simple solution

Conventional solution:
A= argmin”Y — Af(”lz:
4 -1
A = YX(XX")

With regularization

A

A = argmin||Y — A)?”IZ: + 1A%
A

Also called Tikhonov Reqularization or Ridge regression

Minmization gives us
A=YX(XXT+ A1)

This is exactly the same as conventional estimation, with additional
diagonal loading of the correlation matrix of X

— Can be alternately explained as “stabilizing” the correlation matrix, for

inversion
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Other forms of regularization: L1
regularization

An alternate regularization
~ _ ~n2
A= argmln”Y — AX||F + A|A|4
A

The one-norm|A|;sums the magnitude of components of 4

— The minimization causes A to be sparse

No closed form solution

— Quadratic programming solutions required

Dual formulation

A= argmin”Y - A)?”IZ: subjectto |A|; <t
A

“LASSO” — Least absolute shrinkage and selection operator
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Regularization
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Map Estimation

A Maximum Likelihood Estimator maximizes

P(data | parameters)

A Maximum A Posteriori Estimator maximizes

P(parameters | data)

P(data | parameters) - P(parameters
P(data)

P(parameters | data) =
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MAP estimate priors

{A} A 2-D Laplace p.d.f. 1

_M
1.

b

0.158

0.5

0.108

0.053

o.oom
-4 0

* Left: Gaussian Prior on W
* Right: Laplacian Prior
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MAP estimate of weights
dL = (2a"XX" +2yX” + 20l Jda = 0

a=(XX"+0l) XY’

e Equivalent to diagonal loading of correlation matrix

— Improves condition number of correlation matrix

* Can be inverted with greater stability
— Will not affect the estimation from well-conditioned data
— Also called Tikhonov Regularization

* Dual form: Ridge regression

« MAP estimate of weights
— Not to be confused with MAP estimate of Y

MLSEP



MAP estimation of weights with
Laplacian prior

* Assume weights drawn from a Laplacian
— P(a) = L'exp(-L'|al;)
* Maximum a posteriori estimate

a=argmax, C'—(y—a’X)" (y—a'X)" —1"|a|

* No closed form solution

— Quadratic programming solution required
* Non-trivial

MLSP
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MAP estimation of weights with
Laplacian prior

* Assume weights drawn from a Laplacian
— P(a) = Mlexp(-A'[a];)
* Maximum a posteriori estimate

a=argmax, C'—(y—a’X)" (y—a'X)" —1"'|a|

* Identical to L, regularized least-squares
estimation

MLSP
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L,-regularized LSE

a=argmax, C'—(y—a'X)" (y—a'X)" —1"'|a|

No closed form solution
— Quadratic programming solutions required

* Dual formulation

a=argmax, C'—(y—a'X)  (y—a'X)" subject to ‘3‘1 <t

“LASSO” — Least absolute shrinkage and
selection operator

MLSEP



LASSO Algorithms

Various convex optimization algorithms

LARS: Least angle regression
Pathwise coordinate descent..

Matlab code available from web

MLSP
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Regularized least squares
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Image Credit: Tibshirani

B, B,

e Regularization results in selection of suboptimal (in
least-squares sense) solution

— One of the loci outside center
* Tikhonov regularization selects shortest solution
* L, regularization selects sparsest solution
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Next up..

* Classification with linear regression models

— AKA linear classifiers

11755/18797
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LASSO and Compressive Sensing |

Given Y and X, estimate sparse a
LASSO:

— X = explanatory variable

— Y =dependent variable

— a = weights of regression
CS:

— X = measurement matrix

— Y = measurement

— a=data
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An interesting problem: Predicting
War!

e Economists measure a number of social
indicators for countries weekly
— Happiness index
— Hunger index
— Freedom index
— Twitter records

e Question: Will there be a revolution or war next
week?



MLSP

An interesting problem: Predicting

War!
* |ssues:
— Dissatisfaction builds up — not an instantaneous
phenomenon
e Usually

— War / rebellion build up much faster
e Often in hours

* Important to predict
— Preparedness for security
— Economic impact
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Predicting War
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Given wk1 wk2 wk3 wkd wk5wké wk7wk8
— Sequence of economic indicators for each week
— Sequence of unrest markers for each week

* At the end of each week we know if war happened or not
that week

* Predict probability of unrest next week

— This could be a new unrest or persistence of a current
one
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Predicting Time Series

* Need time-series models

e HMMs — later in the course

11755/18797
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