
Linear Classifiers
(With slides from Najim Dehak)

109

1

Recap

• Classification and KNN..

2

MLSP
• Application of Machine Learning techniques to the

analysis of signals

• Modeling

– Classification: Model-Based vs instances-Based

3

Signal
Capture

Feature
Extraction

Channel
Modeling/Cla

ssification

sensor

Machine Learning
• Supervised: We are given input samples (X) and

output samples (y) of a function y = f(X). We would
like to “learn” f, and evaluate it on new data. Types:
– Classification: y is discrete (class labels).
– Regression: y is continuous, e.g. linear regression.

• Unsupervised: Given only samples X of the data, we
compute a function f such that y = f(X) is “simpler”.
– Clustering: y is discrete
– Y is continuous: Matrix factorization, Kalman filtering,

unsupervised neural networks.

4

Machine Learning
• Supervised:

– Is this image a cat, dog, car, house?
– How would this user score that restaurant?
– Is this email spam?
– Is this blob a supernova?

• Unsupervised
– Cluster some hand-written digit data into 10 classes.
– What are the top 20 topics in Twitter right now?
– Find and cluster distinct accents of people at Berkeley. (?)

5

Multi-class Image Classification

6

k-Nearest Neighbor classification
Given a query item:

Find k closest matches
in a labeled dataset ↓

7

k-Nearest Neighbor classification
Given a query item: Return the most
Find k closest matches Frequent label

8

k-Nearest Neighbor classification
k = 3 votes for “cat”

9

k-Nearest Neighbors
2 votes for cat,
1 each for Buffalo, Cat wins…
Deer, Lion

10

Nearest neighbor method

• Majority vote within the k nearest
neighbors

K= 1: blue
K= 3: green

new

11

Nearest neighbor method

• Weighted majority vote

K= 1: blue
K= 3: green

new

12

Nearest neighbor method
• Weighted majority vote within the k nearest neighbors
• Not all Ys are equally important

– Outliers and training instances far away from the “confusing”
regions don’t really inform

– Redundant training instances (very close to others) don’t
really add anything new

ଵ

∑ ఈ೔

೔∈ಿೖ(ೣ)

௜ ௜ ௜

௜∈ேೖ(௫)

s may be binary (useful vs. useless)

13

Nearest-Neighbor Classifiers
l Requires three things
– The set of stored records

– Distance Metric to compute
distance between records

– The value of k, number of
nearest neighbors to retrieve

l To classify new record:
– Compute distance to other

training records

– Identify k nearest neighbors

– Vote among nearest
neighbors

Unknown record

14

Definition of Nearest Neighbor

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points
that have the k smallest distance to x

15

1 nearest-neighbor
Voronoi Diagram

16

k-NN issues
The Data is the Model
• No training needed.
• Accuracy generally improves with more data.
• Matching is simple and fast (and single pass).
• Usually need data in memory, but can be run off disk.
Minimal Configuration:
• Only parameter is k (number of neighbors)
• Two other choices are important:

– Weighting of neighbors (e.g. inverse distance)
– Similarity metric

17

K-NN metrics
• Euclidean Distance: Simplest, fast to compute

• Cosine Distance: Good for documents, images, etc.

• Jaccard Distance: For set data:

• Hamming Distance: For string data:

K-NN metrics
• Manhattan Distance: Coordinate-wise distance

• Edit Distance: for strings, especially genetic data.

• Mahalanobis Distance: Normalized by the sample
covariance matrix – unaffected by coordinate
transformations.

19

Scalp EEG Acquisition

18 Bipolar Channels20

10-second EEGs: Seizure
Evolution

Normal Pre-Seizure

Seizure Onset Post-Seizure
Chaovalitwongse et al., Annals of Operations Research (2006)

21

K-Nearest Neighbor for seizure
detection

22

D(X,Y)

Time series distances: (1) Euclidean, (2) Dynamic Time Warping

Abnormal Normal

K = 3

Example: Digit Recognition

• Yann LeCunn – MNIST Digit Recognition

– Handwritten digits

– 28x28 pixel images: d = 784

– 60,000 training samples

– 10,000 test samples

Test Error Rate (%)

Linear classifier (1-layer NN) 12.0

K-nearest-neighbors, Euclidean 5.0

K-nearest-neighbors, Euclidean, deskewed 2.4

K-NN, Tangent Distance, 16x16 1.1

K-NN, shape context matching 0.67

1000 RBF + linear classifier 3.6

SVM deg 4 polynomial 1.1

2-layer NN, 300 hidden units 4.7

2-layer NN, 300 HU, [deskewing] 1.6

LeNet-5, [distortions] 0.8

Boosted LeNet-4, [distortions] 0.7

23

More generally: Supervised
classification

• A minor shift of gears..

• Given a set of labelled training instances,
learn to classify a new test instance..
– (K)NN was only one method

24

Binary classification
Gender identification

25

Positive
Class Negative

Class
?

Supervised learning: A class
(category) label for each pattern in

the training set is provided.

Multidimensional Time Series
Classification in Medical Data

• Positive versus Negative

• Responsive versus Unresponsive

• Multidimensional Time Series
Classification

• Multisensor medical signals (e.g.,
EEG, ECG, EMG)

Norm
al Abnormal?

26

• the classifier assigns a feature vector x to class wi if

g
i
(x) > g

j
(x) for all j ¹ i

 An example
 Minimum-Error-Rate Classifier

 For two-category case,

1 2Decide if () 0; otherwise decide gw w>x

1 2() (|) (|)g p pw w x x x

Classification and discriminant functions

27

1 2() () ()g g g x x x

• Define a “discriminant function” 𝑖 for each class wi such that:

Discriminant Function
• It can be arbitrary functions of x, such as:

Nearest
Neighbor

Linear
Functions

() Tg b x w x

Nonlinear
Functions

28

The equation for a hyperplane

is the equation representing the
set of all vectors that are orthogonal to

29

The equation for a hyperplane

் is the equation representing plane that is
orthogonal to and a distance ௕

ௐ
from origin

– The set of all vectors that are a distance ௕

ௐ
from the blue plane 30

𝑏

𝑊

The equation for a hyperplane

• On the red plane any ௣
௕

ௐ

ௐ

ௐ

் ்
௣

ௐ೅ௐ

ௐ మ
31

𝑏

𝑊

Trivial proof:

𝑝

Any vector that is a distance 𝑑 from
the blue plane can be written as

𝑋 = 𝑋௣ + 𝑑
𝑊

𝑊
𝑋௣ is the projection of the vector
on the blue plane

ௐ

ௐ
is a unit vector in the direction of 𝑊

Distance from a hyperplane

• The distance of any ௧௘௦௧ from the plane
் is ௐ೅௑೟೐ೞ೟ି௕

ௐ

• This can be positive (in the direction of) or negative (opposite to) 32

𝑑
𝑊

𝑊

−𝑑
𝑊

𝑊

Sign of distance from hyperplane

• The sign of signifies which side of
the plane the point is on 33

𝑑
𝑊

𝑊

−𝑑
𝑊

𝑊

Linear Classifier

• The plane is a linear classifier
– The class is given by 34

𝑑
𝑊

𝑊

−𝑑
𝑊

𝑊

Linearly separable data

• Data where the two classes are separated by a hyperplane
– And classification can be performed by ்

௧௘௦௧ for
any separating hyperplane

35

2D illustration, linearly
separable data

• Classes are linearly separable
• Dots represent “training” instances
• Training problem: Given these training instances find a separating hyperplane

36

The separating hyperplane

• Problem: Given these training instances find a separating
hyperplane

• Many ways of finding this hyperplane
– Any number of solution algorithms are possible

37

A Simplifying Assumption

• Simplifying assumption: The separating hyperplane
always goes through origin
– Easily enforced by appending a constant 1 to every vector

38

A Simple Method: The
Perceptron Algorithm

• Initialize: Randomly initialize the hyperplane
– I.e. randomly initialize the normal vector
– Classification rule ்

– The random initial plane will make mistakes
39

-1(Red)
+1 (green)

Perceptron Algorithm

• Given training instances
௜ or

• Initialize
• Cycle through the training instances:
• While more classification errors

– For 𝑡𝑟𝑎𝑖𝑛

௜
்

௜

• If ௜ ௜

௜ ௜

40

Perceptron Algorithm: Summary

• Cycle through the training instances

• Only update on misclassified instances

• If instance misclassified:
– If instance is positive class

– If instance is negative class

41

Perceptron Algorithm

42

-1(Red)
+1 (green)

Initialization

Perceptron Algorithm

43

-1(Red)
+1 (green)

Misclassified positive instance

Perceptron Algorithm

44

-1(Red)
+1 (green)

Perceptron Algorithm

45

Updated weight vector

Perceptron Algorithm

46

-1(Red)+1 (green)

Updated hyperplane

Convergence of Perceptron
Algorithm

• Guaranteed to converge

– After no more than
మ

మ misclassifications

is length of longest training point
is the best case closest distance of a training

point from the classifier
• I.e the largest distance to the closest training

instance to any appropriate classifier

47

Problems with perceptron
algorithm

• Final solution depends on order of processing of inputs
– Can get different solutions for the same initial vector by

changing the order in which instances are considered
48

-1(Red)
+1 (green)

Misclassified negative instance

Problems with perceptron
algorithm

• Final solution depends on order of processing of inputs
– Can get different solutions for the same initial vector by

changing the order in which instances are considered
49

Problems with perceptron
algorithm

• Final solution depends on order of processing of inputs
– Can get different solutions for the same initial vector
– No assurance about whether this solution will work for new

test data 50

-1(Red)+1 (green)

Problems with perceptron
algorithm

• Final solution depends on order of processing of inputs
– Can get different solutions for the same initial vector
– No assurance about whether this solution will work for new

test data 51

Figure relaxes the
simplifying

assumption that
the classifier runs

through origin

Convergence of Perceptron
Algorithm

• Guaranteed to converge

– After no more than ோ
మ

ఊమ misclassifications

is length of longest training point
is the best case closest distance of a training point from

the classifier
• I.e the largest distance to the closest training instance to any

appropriate classifier

• Although the number of iterations is bounded by the
distance of a “best-case” classifier, no guarantee that
we will actually find this best-case classifier
– Algorithm stops updating after perfect training classification

52

Modification of perceptron to
find margin

• Instead of updating only on misclassified
instances, update on any vector within 0.5g
of boundary

• Guaranteed to converge
• Problem – you specify g.

– Overall optimality not guaranteed
– But still, a pretty good algorithm

53

Enter: Support Vector Machines

• Find a classifier that is maximally distant from
the closest instances from either class

54

A Better Approach

• Any linear classifier has some closest instances
• These instances will be at some distance from the boundary
• Changing the classifier will change both, the closest instance, and their

distance from the boundary
55

Returning to the Perceptron
algorithm

• Guaranteed to converge

– After no more than ோ
మ

ఊమ misclassifications

– is length of longest training point
– is the best case closest distance of a training point from

the classifier
• I.e the largest distance to the closest training instance to any

appropriate classifier

• No guarantee that we will actually find this best-case
classifier
– Algorithm stops updating after perfect training classification

• Can we actually make it find this best case classifier

56

A Better Approach

• Search through all classifiers such that the distance to the closest points is
maximized
– Very conservative
– Focuses on worst-case scenario
– Maximizes the chance that the classifier will work well on new unseen data

57

A Better Approach

58

• Search through all classifiers such that the distance to the closest points is
maximized
– Very conservative
– Focuses on worst-case scenario
– Maximizes the chance that the classifier will work well on new unseen data

A Better Approach

59

• Search through all classifiers such that the distance to the closest points is
maximized
– Very conservative
– Focuses on worst-case scenario
– Maximizes the chance that the classifier will work well on new unseen data

Support Vector Machine

60

• Search through all classifiers such that the distance to the closest points is
maximized
– Very conservative
– Focuses on worst-case scenario
– Maximizes the chance that the classifier will work well on new unseen data

Support Vector Machine

• Find the classifier such that the distance to the closest points is maximized
• I.e. solve two problems: find the closest points, and the classifier, such that the

distance is maximum
– Position the classifier in the middle so that the distance to the closest green = distance to the

closest red

• Is this a combinatorial optimization problem?? 61

Solution Approach

• For any hyperplane (linear classifier)
• Choose two hyperplanes and

– The distance of these hyperplanes from the classifier is 1/
– The total distance between the hyperplanes is 2/

62

1/

Solution Approach

• Constraint: Perfect classification with a margin
• Choose the hyperplanes such that

– All positive points are on the positive side of the positive hyperplane
– All negative points are on the negative side of the negative hyperplane

63

2/

Solution Approach

• The distance between the hyperplanes is ଶ

ௐ

• Find the (and) such that this is maximized, while maintaining the
constraint that all training points are on the “outside” of the appropriate
hyperplane

64

Solution Approach

• The distance between the hyperplanes is ଶ

ௐ

• Find the (and) such that this is maximized, while maintaining the
constraint that all training points are on the “outside” of the appropriate
hyperplane

65

Expanding the gap by
decreasing the length of

Solution Approach

• The distance between the hyperplanes is ଶ

ௐ

• Find the (and) such that this is maximized, while maintaining the
constraint that all training points are on the “outside” of the appropriate
hyperplane

66

Expanding the gap by
changing the direction of

Solution Approach

• The distance between the hyperplanes is ଶ

ௐ

• Find the (and) such that this is maximized, while maintaining the
constraint that all training points are on the “outside” of the appropriate
hyperplane

67

Solution Approach

• The distance between the hyperplanes is ଶ

ௐ

• Maximize this distance. I.e. ..
• Minimize such that

– all training points are on the “outside” of the appropriate hyperplane 68

Solution Approach

• The distance between the hyperplanes is ଶ

ௐ

• Maximize this distance. I.e. ..
• Minimize 𝟐 such that

– all training points are on the “outside” of the appropriate hyperplane
69

Decreasing the length of
will expand the gap between
the boundary planes

Rotating it will also increase
this length

Must find a formalism that
explores both options
simultaneously

Lets formalize this

• Constraint: Ensuring that all training instances
are on the proper side of their respective
hyperplanes

• For positive training instances :

• For negative instances

• Generically stated, for all instances we want

70

Solution Formalism

• Minimize such that
• For all training instances

• Formally

71

Solving the optimization

• This is a quadratic programming problem!

• A variety of techniques can be applied
– Interior point methods, active set methods, gradient descent,

conjugate gradient
– The objective function is convex, QP will find the (near) optimal

solution

• Most useful solution is based on Lagrangian duals
– Later..

72

The solution

• Maximizes the margin
• This is a max-margin classifier
• The boundary samples are called support vectors

– All the information about the classifier is in these support vectors
73

Challenges

• What if the classes are not linearly separable

• What if the classes are not linearly separable?

• What if the classes are not linearly separable?

74

What if they are not separable?

• What if the data are not separable?

75

Original Problem

• This is a quadratic programming problem!

• Maximize the distance between the planes
• Subject to the constraint that all training data

instances are on the “correct” side of the plane
• When data are not linearly separable, this

constraint can never be satisfied
76

Introducing the slack variable

• What if the data are not separable?

77

Introducing the slack variable

• For every training instance, introduce a slack variable
• The slack variable is the maximum distance you have to

shift the boundary plane to move the point to the
“correct” side

78

Introducing the slack variable

• For every training instance, introduce a slack variable
• The slack variable is the reverse distance from the margin

plane of the training instance
– This will be non-zero only for some instances
– Ideally this should be minimum 79

1

2

Introducing the slack variable

• The total length of slack variables varies with the boundary
• If you push the boundaries too far you will have a greater

length of slack variable
– Which contradicts our desire that they should be minimum

80

Introducing the slack variable

• If they are very close, only the inseparable points
will have non-zero slack variable
– The minimum slack value is when the margin planes

coincide with the linear classifier
81

Introducing the slack variable

• If they are very close, only the inseparable points will have non-zero
slack variable
– The minimum slack value is when the margin planes coincide with the

linear classifier

• For linearly separable classes, if the boundary planes are close
enough, the total slack length will be 0 82

Introducing the slack variable

• Problem: If they are too close, the planes
violate our desire to maximize the margin

83

Introducing the slack variable

• Contradicting requirements..

84

But this contradicts our objective
that the distance between the
planes must be maximized

Need: Push the margin planes close
together to minimize total slack

New Objective

• Simultaneously
– Maximize distance between planes

– Minimize total slack length
85

Quantifying Slack Length

• We need a formula for the total slack length
first..

86

Quantifying Slack Length

• The positive margin plane is given by

• ்

• This plane is at a distance is ଵ

ௐ
from the decision boundary on the

positive side of the decision plane (in the direction of)
– Ideally all positive training points would be to the right of it

87

Quantifying Slack Length

• The (unnormalized) distance of any from this plane

• This will be negative for instances on the “wrong” side (in
the direction away from), but positive for those on the
“right” side 88

Quantifying Slack Length

• The negated (unnormalized) distance of any from this plane
்

• This will be positive for instances on the wrong side of the margin
plane, but negative for instances on the right side of it 89

Quantifying Slack Length

• We do not care about the actual distance of instances
to the right of the plane

• So the slack value of any point is

90

Quantifying Slack Length

• The negative margin plane is given by

– Ideally all negative training points would be to the left
of it 91

Quantifying Slack Length

• The (unnormalized) distance of any from this plane

• This will be positive for vectors on the “wrong” side,
but negative for vectors on the right side

92

Quantifying Slack Length

• We do not care about the actual distance of instances to
the left of the plane

• So the slack value of any point is

93

Quantifying Slack Length

• Combining the following for negative
instances

94

Quantifying Slack Length

• And the following for positive instances

95

Quantifying Slack Length

• Generic Slack length for any point

• This is also called a hinge loss
96

Total Slack Length

• Total slack length for all training instances

• This must be minimized

97

Overall Optimization

• Minimize to maximize the distance
between margin planes

• Minimize total slack length to minimize the
distance of misclassified instances to margin
planes

– This will make the margin planes closer

• The two objectives must be traded off..
98

Support Vector Machine for
Inseparable data

• Minimize

• is a “regularization” parameter that decides the
relative importance of the two terms

• This is just a regular optimization problem that can be
solved through gradient descent

99

Support Vector Machine for
Inseparable data

• is typically set using held-out training data
– Train the classifier for various values of

– Test each of these classifiers on some held-out portion of
the training data that was not included in training the SVM

– Pick the for which the classifier gave best performance

– Retrain the SVM using the entire training data and this

• Frequently, instead of a single held-out set, is set
through K-fold cross validation

100

Equivalent Slack Formalism

• Subject to

• This is a quadratic programming problem
• Slack parameter is determined through

held-out data as earlier (or through K-fold
cross-validation)

101

How to deal with non-linear
boundaries?

• First some math..

102

Recall: The Lagrange Method

• Optimize subject to

11-755/18-797 103

to maximize :

to minimize :

Optimization with inequality
constraints

• Optimization problem with constraints

• Lagrange multipliers

• The optimization problem

11-755/18-797 104

L(x,l,n)  f (x) ligi

i1

k

å (x) n jhj (x)
j1

l

å
li ³ 0,n Î Â

 
 ljxh

kixgts

xf

j

i

x

,...,1 ,0)(

,...,1 ,0)(..

)(min




Revisiting the linearly separable
case

• This is a quadratic programming problem!

• Can be stated using Lagrangians as

105

Linearly separable case:
Lagrangian formalism

• Can be stated using Lagrangians as

• The optimum satisfies the Karush Kuhn-Tucker
conditions, hence we can rewrite it as

106

Linearly separable case:
Lagrangian formalism

• Under the KKT conditions

• Taking the deriviative w.r.t and setting to 0,
we get

107

Linearly separable case:
Lagrangian formalism

• Under the KKT conditions

• Taking the deriviative w.r.t and setting to 0,
we get

108

Linearly separable case:

• Restating (and ignoring the factor of 2)

• Since the last term is 0

=0
109

Large Margin Linear Classifier with Slack

 Formulation: (Lagrangian Dual Problem)

1 1 1

1
maximize

2

n n n
T

i i j i j i j
i i j

y y  
  

å åå x x

such that

0 i C 

1

0
n

i i
i

y


å

110

The usual simple SVM can also be
solved through the ugly form

• This is for the linear case. Note that the optimization is in terms of
௜
்

௝

• Also ௜ ௜ ௜

௜

• So the classifier on any test instance has the form:

௜ ௜ ௧௘௦௧
்

௜

௜

111

=0

The SVM as KNN classification

• This is for the linear case. Note that the optimization is in terms of
௜
்

௝

• Also ௜ ௜ ௜

௜

• So the classifier on any test instance has the form:

௜ ௜ ௧௘௦௧
்

௜

௜

112

=0
Weighted-nearest neighbor classifier

The SVM as KNN classification

• This is for the linear case. Note that the optimization is in terms of
௜
்

௝

• Also ௜ ௜ ௜

௜

• So the classifier on any test instance has the form:

௜ ௜ ௧௘௦௧
்

௜

௜

113

=0
Weighted-nearest neighbor classifier

Total weighted accuracy on training data

L1 norm of 

The Kernel Trick

• This is for the linear case. Note that the optimization is in terms of
௜
்

௝

• Also ௜ ௜ ௜

௜

• So the classifier on any test instance has the form:

௜ ௜ ௧௘௦௧
்

௜

௜

114

=0

The Kernel Trick

• For classification:

115

=0

The Kernel Trick

• For classification:

116

=0

This is a quadratic
programming

problem

Nonlinear SVMs: The Kernel Trick

 Linear kernel:

2

2
(,) exp()

2
i j

i jK



 
x x

x x

(,) T
i j i jK x x x x

(,) (1)T p
i j i jK  x x x x

0 1(,) tanh()T
i j i jK   x x x x

 Examples of commonly-used kernel functions:

 Polynomial kernel:

 Gaussian (Radial-Basis Function (RBF)) kernel:

 Sigmoid:

 In general, functions that satisfy Mercer’s condition can be kernel
functions.

117

Nonlinear SVM: Optimization
 Formulation: (Lagrangian Dual Problem)

1 1 1

1
maximize (,)

2

n n n

i i j i j i j
i i j

y y K  
  

å åå x x

such that 0 i C 

1

0
n

i i
i

y


å

 The solution of the discriminant function is

SV

() (,)i i
i

g K b
Î

 åx x x

 The optimization technique is the same.

118

Support Vector Machine: Algorithm

• 1. Choose a kernel function

• 2. Choose a value for C

• 3. Solve the quadratic programming problem
(many software packages available)

• 4. Construct the discriminant function from the
support vectors

119

Some Issues
• Choice of kernel

- Gaussian or polynomial kernel is default
- if ineffective, more elaborate kernels are needed
- domain experts can give assistance in formulating appropriate similarity
measures

• Choice of kernel parameters
- e.g. σ in Gaussian kernel
- σ is the distance between closest points with different classifications
- In the absence of reliable criteria, applications rely on the use of a

validation set or cross-validation to set such parameters.

• Optimization criterion – Hard margin v.s. Soft margin
- a lengthy series of experiments in which various parameters are tested

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt 120

Summary: Support Vector Machine

• 1. Large Margin Classifier
– Better generalization ability & less over-fitting

• 2. The Kernel Trick
– Map data points to higher dimensional space in

order to make them linearly separable.
– Since only dot product is used, we do not need to

represent the mapping explicitly.

121

Multi-class generalization Pairwise

122

Multi-class generalization One-vs-all

123

Support Vector Machine for seizure
detection

Feature 1

Feature 2

Feature 3

Pre-Seizure

Normal

124

Example: Digit Recognition

• Yann LeCunn – MNIST Digit Recognition
– Handwritten digits
– 28x28 pixel images: d = 784
– 60,000 training samples
– 10,000 test samples

• Nearest neighbour is competitive

Test Error Rate (%)

Linear classifier (1-layer NN) 12.0

K-nearest-neighbors, Euclidean 5.0

K-nearest-neighbors, Euclidean, deskewed 2.4

K-NN, Tangent Distance, 16x16 1.1

K-NN, shape context matching 0.67

1000 RBF + linear classifier 3.6

SVM deg 4 polynomial 1.1

2-layer NN, 300 hidden units 4.7

2-layer NN, 300 HU, [deskewing] 1.6

LeNet-5, [distortions] 0.8

Boosted LeNet-4, [distortions] 0.7

125

Linear Classifiers: Conclusion

• Simple linear classifiers can be surprisingly
effective
– Particularly when trained to maximize a margin

• Whereupon the “simple” arithmetic magically becomes
complicated

• Kernel trick enables classification of even non-
linear problems

• Most commonly used classifier, still

126

