

Machine Learning for Signal Processing Lecture 4: Optimization

Instructor: Bhiksha Raj (slides largely by Najim Dehak, JHU)

11-755/18-797

Course Projects

- Projects will be done by teams of students
 - Ideal team size: 4
 - Find yourself a team
 - If you wish to work alone, that is OK
 - But we will not require less of you for this
 - If you cannot find a team by yourselves, you will be assigned to a team
 - Teams will be listed on the website
 - All currently registered students will be put in a team eventually
- Will require background reading and literature survey
 - Learn about the problem

11755/18979

Projects

- Teams must be formed by 17th Tuesday
- Teams must send us a preliminary project proposal by 30th September 2019
 - Please send us proposals earlier, so that we can vet them
 - The later you start, the less time you will have to work on the project

11755/18979

Quality of projects

- Project must include aspects of signal analysis and machine learning
 - Prediction, classification or compression of signals
 - Using machine learning techniques
- Several projects from previous years have led to publications
 - Conference and journal papers
 - Best paper awards
 - Doctoral and Masters' dissertations

- Loop querier searching the rhythmic pattern
- Vision-based montecarlo localization for autonomous vehicle
- Beatbox to drum conversion
- City localization on flikr videos using only audio
- Facial landmarks based video frontalization and its application in face recognition
- Audioshop: Modifying and editing singing voice
- Predicting and classifying RF signal strength in an environment with obstacles
- Realtime detection of basketball players

- IMPROVING SPATIALIZATION ON HEADPHONES FOR STEREO MUSIC
- PREDICTING THE OUTCOME OF ROULETTE
- FACIAL REPLACEMENT IN VIDEOS
- ISOLATED SIGN WORD RECOGNITION SYSTEM
- ACCENTED ENGLISH DIALECT CLASSIFICATION
- BRAIN IMAGE CLASSIFIER
- FACIAL EXPRESSION RECOGNITION
- MOOD BASED CLASSIFICATION OF SONGS TO IDENTIFY ACOUSTIC FEATURES THAT ALLEVIATE DEPRESSION
- PERSON IDENTIFICATION THROUGH FOOTSTEP-INDUCED FLOOR VIBRATION
- DETECT HUMAN HEAD-ORIENTATION BASED ON CONVOLUTIONAL NEURAL NETWORK AND DEPTH CAMERA
- NEURAL NETWORK BASED SLUDGE VOLUME INDEX PREDICTION

- 8-BIT MUSIC NOTE IDENTIFICATION TURNING MARIO INTO METAL
- STREET VIEW HOUSE NUMBER RECOGNITION BASED ON CONVOLUTIONAL NEURAL NETWORKS
- TRAIN-BASED INFRASTRUCTURE MONITORING
- MANIFOLD INTERPOLATION OF X-RAY RADIOGRAPHS
- A SMARTPHONE BASED INDOOR POSITIONING SYSTEM AUGMENTED WITH INFRARED SENSING
- ROCK, PAPER, SCISSORS -- HAND GESTURE RECOGNITION
- LANGUAGE MODELS WITH SEMANTIC CONSTRAINTS
- LEARNING TO PREDICT WHERE A DRIVER LOOKS
- REAL TIME MONITORING OF STUDENT'S LEARNING PERFORMANCE

- Automotive vision localization
- Lyric recognition
- Imaging without a camera
- Handwriting recognition with a Kinect
- Gender classification of frontal facial images
- Deep neural networks for speech recognition
- Predicting mortality in the ICU
- Human action tagging
- Art Genre classification
- Soccer tracking
- Image manipulation using patch transforms
- Audio classification
- Foreground detection using adaptive mixture models

Projects from previous years: 2012

- Skin surface input interfaces
 - Chris Harrison
- Visual feedback for needle steering system
- Clothing recognition and search
- Time of flight countertop
 - Chris Harrison
- Non-intrusive load monitoring using an EMF sensor
 - Mario Berges
- Blind sidewalk detection
- Detecting abnormal ECG rhythms
- Shot boundary detection (in video)
- Stacked autoencoders for audio reconstruction
 - Rita Singh
- Change detection using SVD for ultrasonic pipe monitoring
- Detecting Bonobo vocalizations
 - Alan Black
- Kinect gesture recognition for musical control

11755/18979

Projects from previous years: 2011

- Spoken word detection using seam carving on spectrograms
 - Rita Singh
- Bioinformatics pipeline for biomarker discovery from oxidative lipidomics of radiation damage
- Automatic annotation and evaluation of solfege
- Left ventricular segmentation in MR images using a conditional random field
- Non-intrusive load monitoring
 - Mario Berges
- Velocity detection of speeding automobiles from analysis of audio recordings
- Speech and music separation using probabilistic latent component analysis and constant-Q transforms

11755/18979

Project Complexity

- Depends on what you want to do
- Complexity of the project will be considered in grading.
- Projects typically vary from cutting-edge research to reimplementation of existing techniques. Both are fine.
- Only caveat: The term "deep learning" must not relate to your project
 - Absolutely no DL/Nnets

Incomplete Projects

- Be realistic about your goals.
- Incomplete projects can still get a good grade if
 - You can demonstrate that you made progress
 - You can clearly show why the project is infeasible to complete in one semester
- Remember: You will be graded by peers

"Local" Projects...

- Several project ideas routinely proposed by various faculty/industry partners
 - Sarnoff labs, NASA, Mitsubishi, Adobe...
- Local faculty
 - Alan Black is usually good for a project or two
 - LP Morency has fantastic ideas on analysis of multimodal recordings of H-H (and H-C) communication
 - Roger Dannenberg is a world leader in computational music
 - Mario Berges has helped in the past
 - Rita Singh does nice work on speech forensics
 - Others...

Questions?

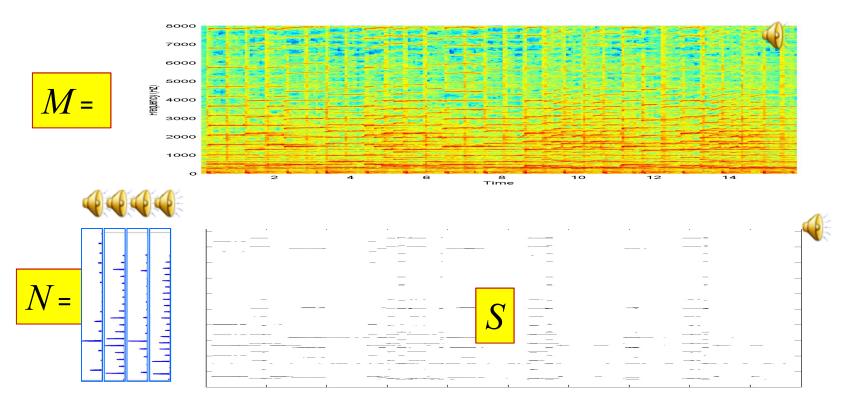
Index

- 1. The problem of optimization
- 2. Direct optimization
- 3. Descent methods
 - Newton's method
 - Gradient methods
- 4. Online optimization
- 5. Constrained optimization
 - Lagrange's method
 - Projected gradients
- 6. Regularization
- 7. Convex optimization and Lagrangian duals

Index

- 1. The problem of optimization
- 2. Direct optimization
- 3. Descent methods
 - Newton's method
 - Gradient methods
- 4. Online optimization
- 5. Constrained optimization
 - Lagrange's method
 - Projected gradients
- 6. Regularization
- 7. Convex optimization and Lagrangian duals

A problem we recently saw



• The projection matrix P is the matrix that minimizes the total error between the *projected* matrix S and the *original matrix* M

11-755/18-797

The projection problem

- S = PM
- For individual vectors in the spectrogram

$$-S_i = PM_i$$

Total projection error is

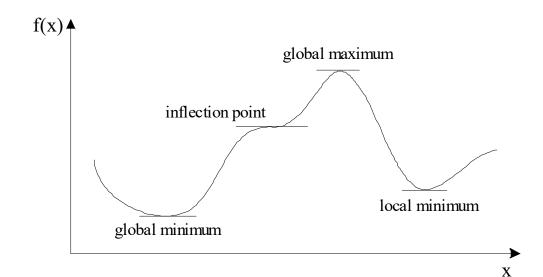
$$-E = \sum_{i} ||M_i - PM_i||^2$$

- The projection matrix projects onto the space of notes in N
 - -P = NC
- The problem of finding P: Minimize $E = \sum_i ||M_i PM_i||^2$ such that P = NC
- This is a problem of constrained optimization

Optimization

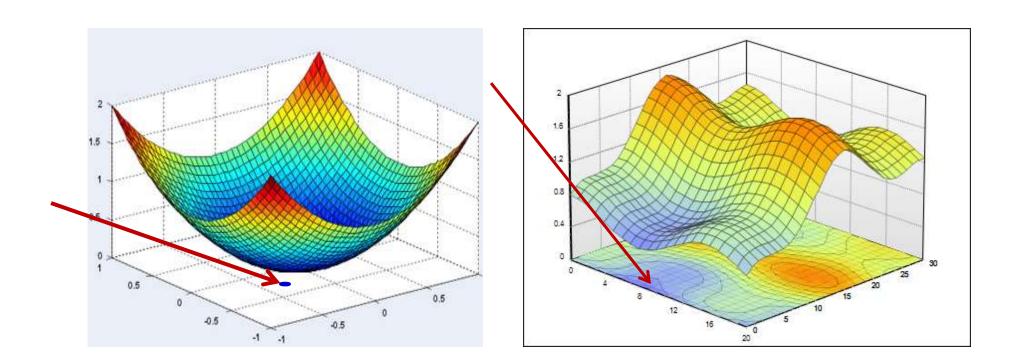
• Optimization is finding the "best" value of a function f(x) (which can be the best minimum)

$$\min_{x} f(x)$$



Examples of Optimization: Multivariate functions

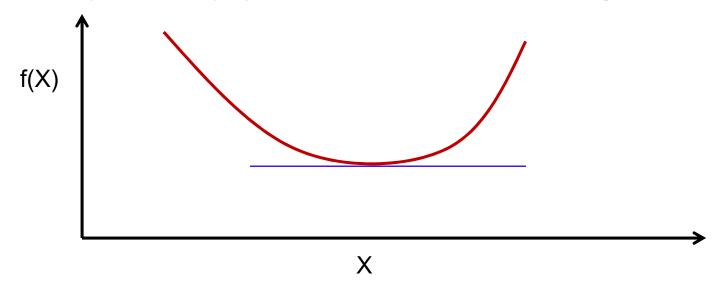
Find the optimal point in these functions



Index

- 1. The problem of optimization
- 2. Direct optimization
- 3. Descent methods
 - Newton's method
 - Gradient methods
- 4. Online optimization
- 5. Constrained optimization
 - Lagrange's method
 - Projected gradients
- 6. Regularization
- 7. Convex optimization and Lagrangian duals

Simple Approach: Turning Point

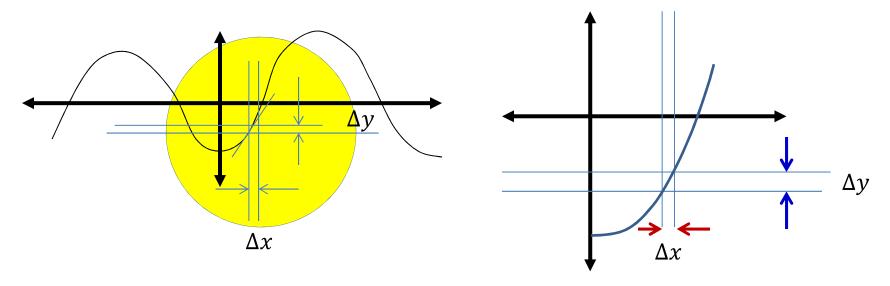


- The "minimum" of the function is always a "turning point"
 - Points where the function "turns" around
 - In every direction
 - For minima, the function increases on either side
- How to identify these turning points?

11-755/18-797

22

The "derivative" of a curve



• The derivative α_x of a curve is a multiplicative factor explaining how much y changes in response to a very small change in x

$$\Delta y = \alpha_x \Delta x$$

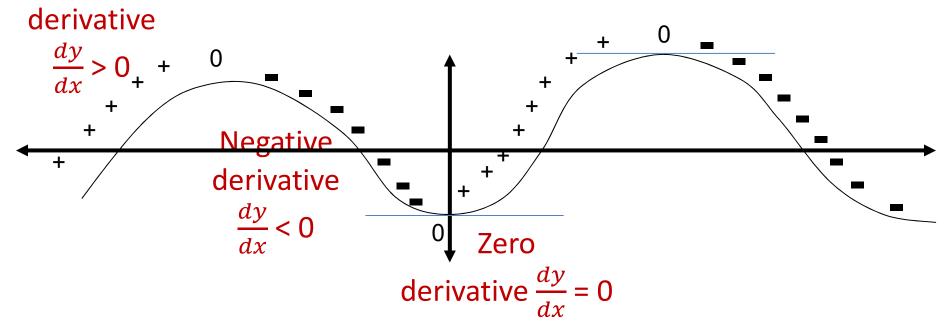
• For scalar functions of scalar variables, often expressed as $\frac{dy}{dx}$ or as f'(x)

$$\Delta y = \frac{dy}{dx} \Delta x \qquad \qquad \Delta y = f'(x) \Delta x$$

We have all learned how to compute derivatives in basic calculus

The derivative of a Curve

Positive



- In upward-rising regions of the curve, the derivative is positive
 - Small increase in X cause Y to increase
- In downward-falling regions, the derivative is negative
- At turning points, the derivative is 0
 - Assumption: the function is differentiable at the turning point

11-755/18-797

24

Geometrical application of Calculus to the derivative of a curve

• Find all values of x for which $f(x) = x^2 - 4x + 4$ is increasing, decreasing and stationary

Increasing

$$f(x) = x^{2} - 4x + 4$$

$$f'(x) = 2x - 4$$

$$2x - 4 > 0$$

$$2x > 4$$

$$x > 2$$

Decreasing

$$f(x) = x^{2} - 4x + 4$$

$$f'(x) = 2x - 4$$

$$2x - 4 < 0$$

$$2x < 4$$

$$x < 2$$

Stationary

$$f(x) = x^{2} - 4x + 4$$

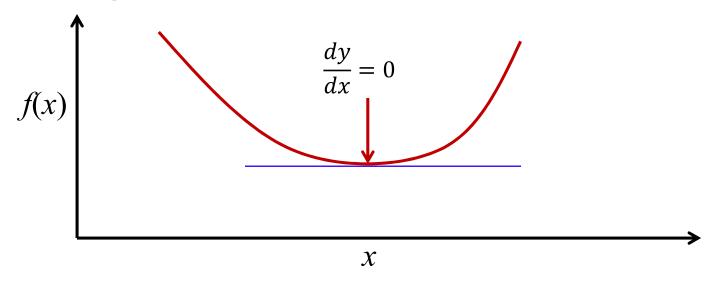
$$f'(x) = 2x - 4$$

$$2x - 4 = 0$$

$$2x = 4$$

$$x = 2$$

Finding the minimum of a function

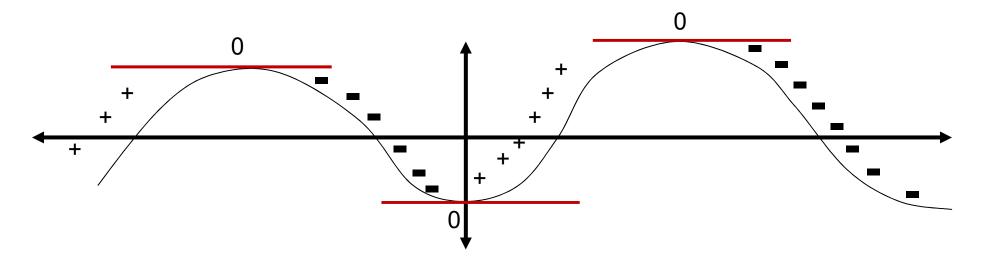


- Find the value x at which f'(x) = 0
 - Solve

$$\frac{df(x)}{dx} = 0$$

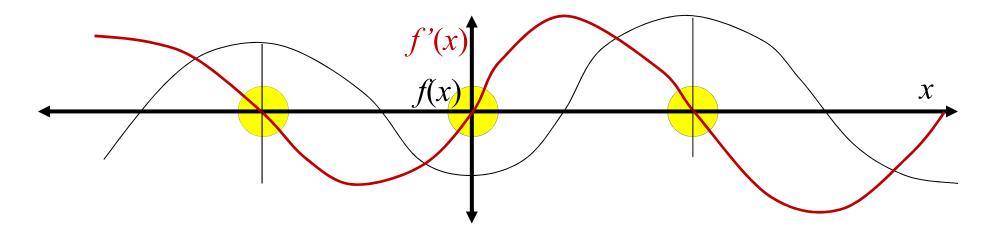
- The solution is a turning point
- But is it a minimum?

Turning Points



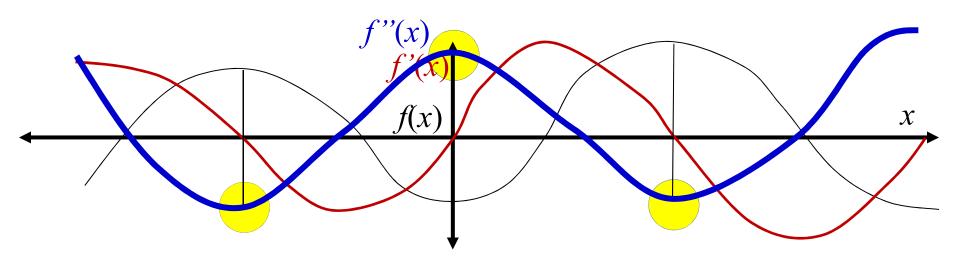
- Both maxima and minima have zero derivative
 - Both maxima and minima are turning points

Derivatives of a curve



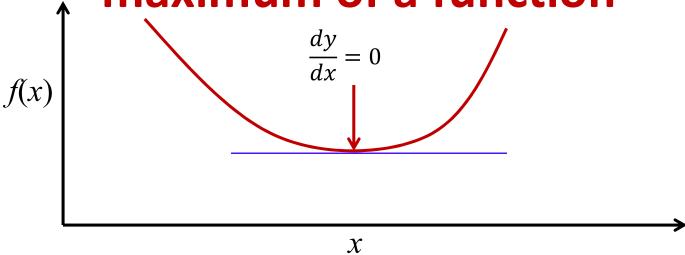
- Both maxima and minima are turning points
- Both maxima and minima have zero derivative

Derivative of the derivative of the curve



- Both maxima and minima are turning points
- Both maxima and minima have zero derivative
- The second derivative f''(x) is –ve at maxima and +ve at minima!
 - At maxima the derivative goes from +ve to –ve, so the derivative decreases as x increases
 - At minima the derivative goes from –ve to +ve and increases as x increases

Soln: Finding the minimum or maximum of a function



• Find the value x at which f'(x) = 0: Solve

$$\frac{df(x)}{dx} = 0$$

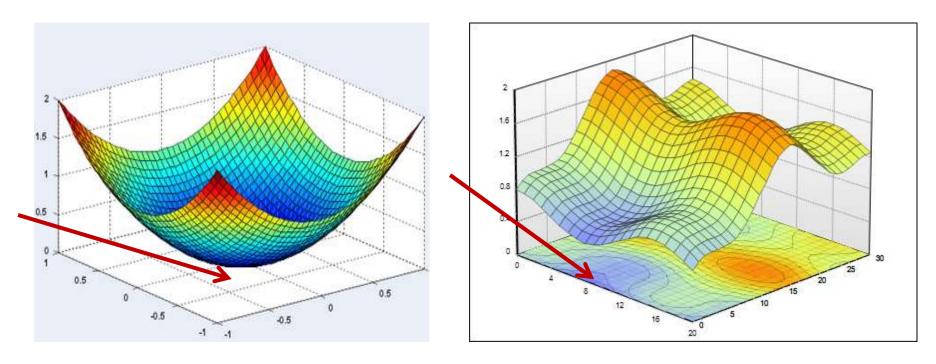
- The solution x_{soln} is a turning point
- Check the double derivative at x_{soln} : compute

$$f''(x_{soln}) = \frac{df'(x_{soln})}{dx}$$

• If $f''(x_{soln})$ is positive x_{soln} is a minimum, otherwise it is a maximum

11-755/18-797 30

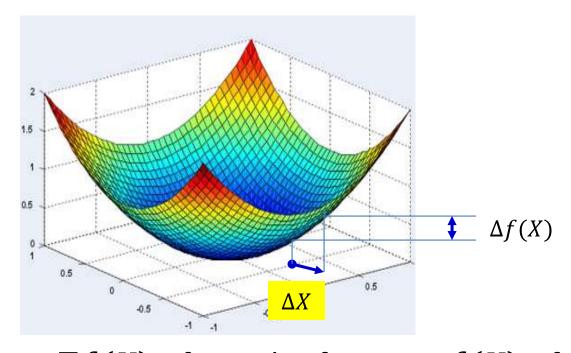
What about functions of multiple variables?



- The optimum point is still "turning" point
 - Shifting in any direction will increase the value
 - For smooth functions, miniscule shifts will not result in any change at all
- We must find a point where shifting in any direction by a microscopic amount will not change the value of the function

11-755/18-797 31

The Gradient of a scalar function



• The *Gradient* $\nabla f(X)$ of a scalar function f(X) of a multi-variate input X is a multiplicative factor that gives us the change in f(X) for tiny variations in X

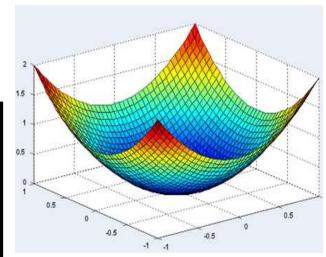
$$\Delta f(X) = \nabla f(X)^T \Delta X$$

11-755/18-797 32

Gradients of scalar functions with multi-variate inputs

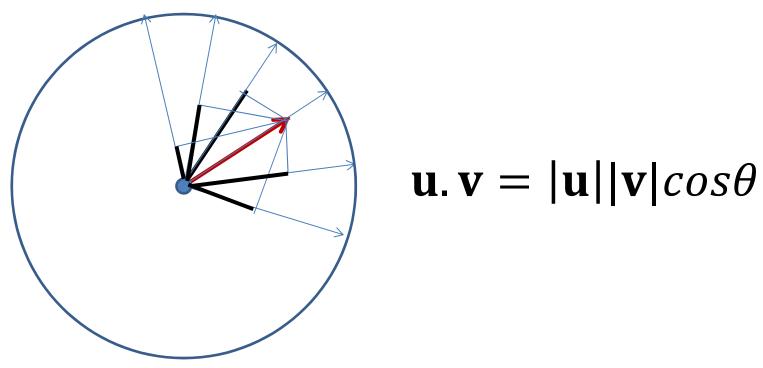
• Consider $f(X) = f(x_1, x_2, ..., x_n)$

$$\nabla f(X) = \begin{bmatrix} \frac{\partial f(X)}{\partial x_1} \\ \frac{\partial f(X)}{\partial x_2} \\ \vdots \\ \frac{\partial f(X)}{\partial x_n} \end{bmatrix}$$



Check:

A well-known vector property

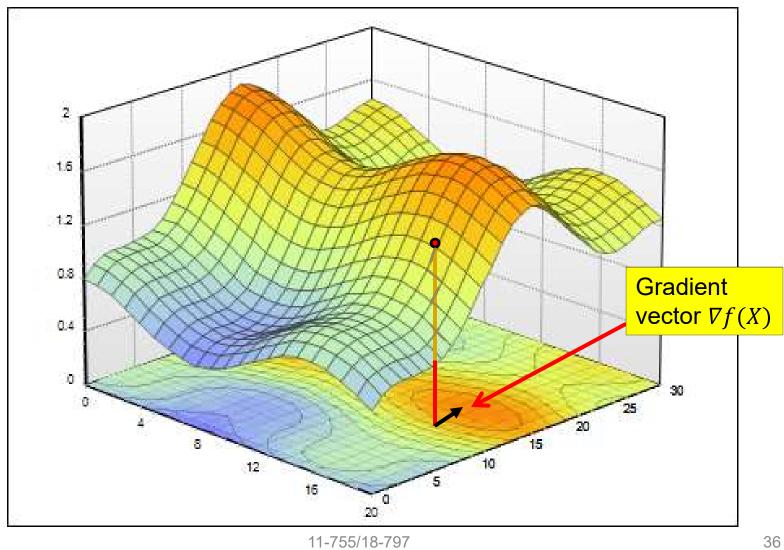


 The inner product between two vectors of fixed lengths is maximum when the two vectors are aligned

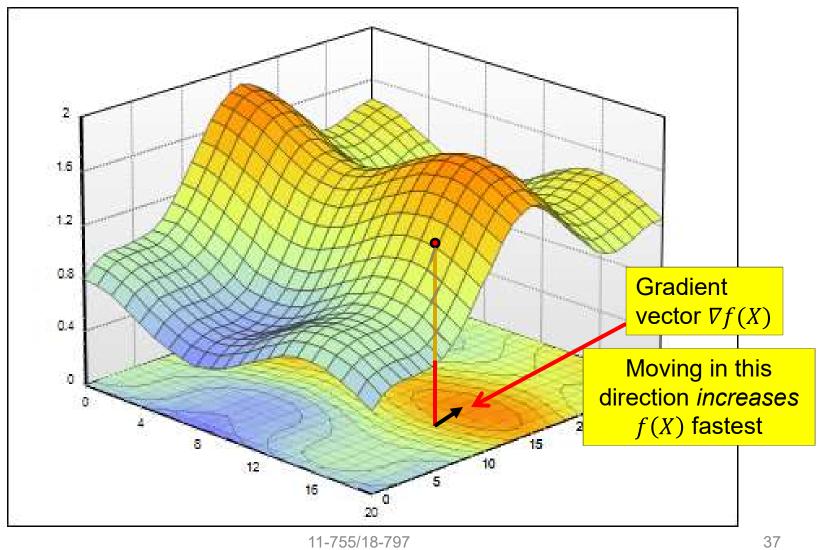
Properties of Gradient

- $\Delta f(X) = \nabla f(X)^T \Delta X$
 - The inner product between $\nabla f(X)$ and ΔX
- Fixing the length of ΔX
 - E.g. $|\Delta X| = 1$
- $\Delta f(X)$ is max if $\angle \nabla f(X)$, $\Delta X = 0$
 - The function f(X) increases most rapidly if the input increment ΔX is perfectly aligned to $\nabla f(X)$
- The gradient is the direction of fastest increase in f(X)

Gradient

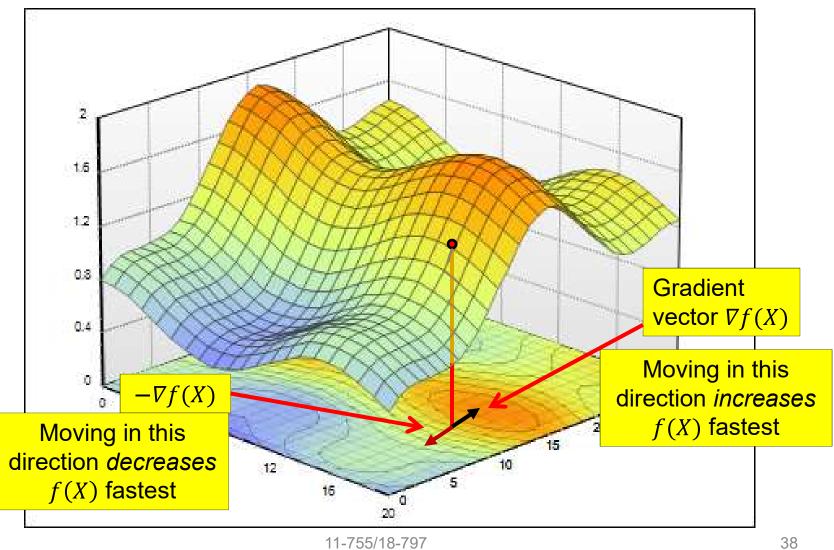


Gradient

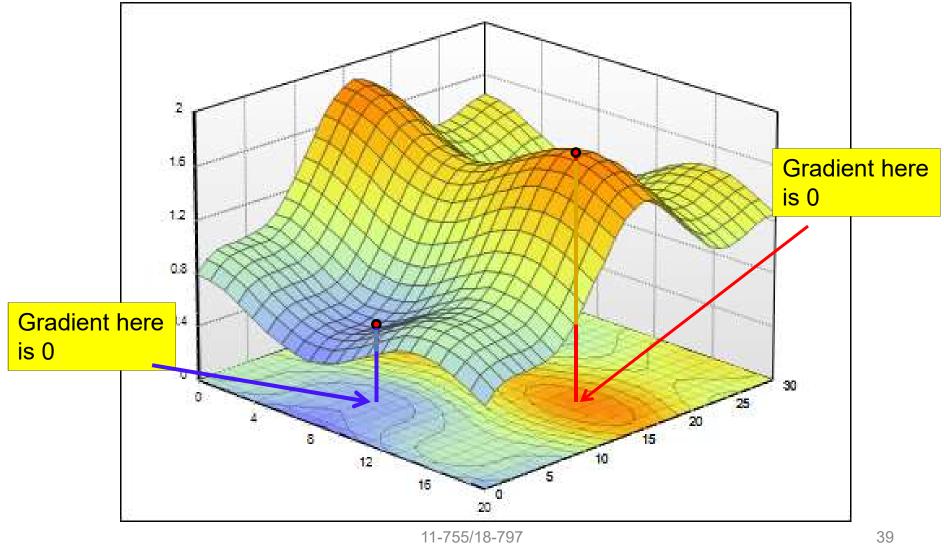


11-755/18-797

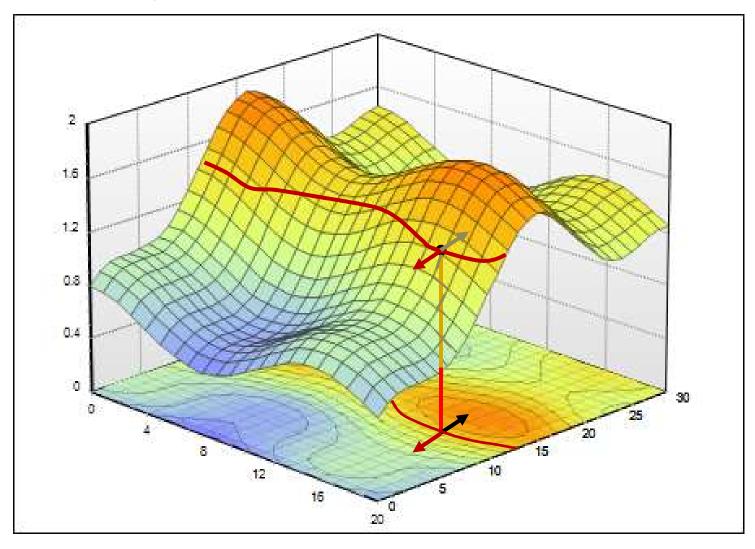
Gradient



Gradient

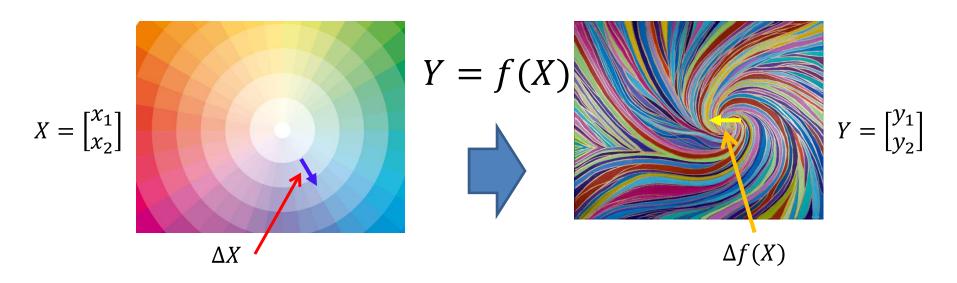


Properties of Gradient: 2



• The gradient vector $\nabla f(X)$ is perpendicular to the level curve

Derivatives of vector function of vector input



• The *Gradient* $\nabla f(X)$ of a *vector* function f(X) of a multi-variate input X is a multiplicative factor that gives us the change in f(X) for tiny variations in X

$$\Delta f(X) = \nabla f(X)^T \Delta X$$

11-755/18-797 41

"Gradient" of vector function of vector input

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$f(X) = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

$$\nabla f(X)^T = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \dots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \dots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial y_n}{\partial x_2} & \dots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$
 Properties and interpretations are similar to the case of scalar functions of vector inputs

Chain rule

- The gradient is based on derivatives
- The derivative of composed function f(g(x)) or $f \circ g$ can be very complicated to compute
- If $f \circ g$ is the composite of y = f(u) and u = g(x)Then $(f \circ g)' = f'_{at \ u = g(x)} \bullet g'_{at \ x}$ or $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$
- This is known as Chain rule

Example of chain rule

• Differentiate
$$h(x) = \left(\frac{8x - x^6}{x^3}\right)^{-\frac{4}{5}}$$

Simplification

$$h(x) = \left(\frac{8x - x^6}{x^3}\right)^{-\frac{4}{5}} = \left(\frac{8x - x^6}{x^3} - \frac{x^6}{x^3}\right)^{-\frac{4}{5}} = \left(8x^{-2} - x^3\right)^{-\frac{4}{5}}$$

Applying Chain rule

$$y = f(u) = (u)^{-\frac{4}{5}}$$
 $u = g(x) = 8x^{-2} - x^3$

Example of chain rule

Applying Chain rule

$$h(x) = \left(-\frac{4}{5}\right) \left(8x^{-2} - x^3\right)^{-\frac{4}{5}-1} \left(-8x^{-2} - x^3\right)'$$

$$h(x) = \left(-\frac{4}{5}\right) \left(8x^{-2} - x^3\right)^{-\frac{9}{5}} \left(-16x^{-3} - 3x^2\right)$$

After simplification 9

$$h(x) = \frac{4x^{5}(16+3x^{5})}{5(8-x^{5})^{\frac{9}{5}}}$$

• The derivative of vector $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ by a scalar y is given by $\begin{bmatrix} \frac{\partial x_1}{\partial y} \\ \frac{\partial x_2}{\partial y} \\ \vdots \\ \frac{\partial x_n}{\partial y} \end{bmatrix}$

$$\frac{\partial x}{\partial y} = \begin{vmatrix} \frac{\partial y}{\partial x_2} \\ \frac{\partial x}{\partial y} \\ \vdots \\ \frac{\partial x_n}{\partial y} \end{vmatrix}$$

• The derivative of scalar y by a vector $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ is given by $\begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_1} \end{bmatrix}$

$$\frac{\partial y}{\partial x_1}$$

$$\frac{\partial y}{\partial x_2}$$

$$\frac{\partial y}{\partial x_n}$$

• The derivative of vector x =is given by

by a vector
$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

$$\frac{\partial x_1}{\partial y_1} \quad \frac{\partial x_2}{\partial y_1} \quad \cdot \quad \cdot \quad \frac{\partial x_n}{\partial y_1}$$

$$\frac{\partial x_2}{\partial y} = \frac{\partial x_2}{\partial y_1} \quad \frac{\partial x_2}{\partial y_2} \quad \cdot \quad \cdot \quad \frac{\partial x_2}{\partial y_m}$$

$$\cdot \quad \cdot \quad \cdot \quad \cdot$$

$$\frac{\partial x_n}{\partial y_1} \quad \frac{\partial x_n}{\partial y_2} \quad \cdot \quad \cdot \quad \frac{\partial x_n}{\partial y_m}$$

$$\frac{\partial x_n}{\partial y_1} \quad \frac{\partial x_n}{\partial y_2} \quad \cdot \quad \cdot \quad \frac{\partial x_n}{\partial y_m}$$

$$\frac{\partial x_n}{\partial y_1} \quad \frac{\partial x_n}{\partial y_2} \quad \cdot \quad \cdot \quad \frac{\partial x_n}{\partial y_m}$$

• The derivative of matrix $X = \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,n} \\ x_{2,1} & x_{2,2} & \dots & x_{2,n} \\ \dots & \dots & \dots & \dots \\ x_{m,1} & x_{m,2} & \dots & x_{m,n} \end{bmatrix}$

by a scalar y is given by

$$\frac{\partial X_{1,1}}{\partial y} \quad \frac{\partial X_{1,2}}{\partial y} \quad \cdots \quad \frac{\partial X_{1,n}}{\partial y} \\
\frac{\partial X_{2,1}}{\partial y} \quad \frac{\partial X_{2,2}}{\partial y} \quad \cdots \quad \frac{\partial X_{2,n}}{\partial y} \\
\vdots \quad \vdots \quad \vdots \quad \vdots \\
\frac{\partial X_{m,1}}{\partial y} \quad \frac{\partial X_{m,2}}{\partial y} \quad \cdots \quad \frac{\partial X_{m,n}}{\partial y}$$

11-755/18-797

• The derivative a scalar y by a matrix

$$X = \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,n} \\ x_{2,1} & x_{2,2} & \dots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m,1} & x_{m,2} & \dots & x_{m,n} \end{bmatrix}$$
 is given by
$$\frac{\partial y}{\partial X} = \begin{bmatrix} \frac{\partial y}{\partial x_{1,1}} & \frac{\partial y}{\partial x_{1,2}} & \dots & \frac{\partial y}{\partial x_{1,n}} \\ \frac{\partial y}{\partial x_{2,1}} & \frac{\partial y}{\partial x_{2,2}} & \dots & \frac{\partial y}{\partial x_{2,n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial x_{m,1}} & \frac{\partial y}{\partial x_{m,2}} & \dots & \frac{\partial y}{\partial x_{m,n}} \end{bmatrix}$$

• The derivative of vector x of η elements by a matrix Y of size (p,q) is given by

$$\frac{\partial x}{\partial y_{1,1}} \quad \frac{\partial x}{\partial y_{1,2}} \quad \cdot \quad \frac{\partial x}{\partial y_{1,q}} \\
\frac{\partial x}{\partial y_{2,1}} \quad \frac{\partial x}{\partial y_{2,2}} \quad \cdot \quad \cdot \quad \frac{\partial x}{\partial y_{2,q}} \\
\cdot \quad \cdot \quad \cdot \quad \cdot \\
\frac{\partial x}{\partial y_{p,1}} \quad \frac{\partial x}{\partial y_{p,2}} \quad \cdot \quad \cdot \quad \frac{\partial x}{\partial y_{p,q}}$$

 $\frac{\partial x}{\partial Y} = \begin{bmatrix} \frac{\partial x}{\partial y_{1,1}} & \frac{\partial x}{\partial y_{1,2}} & \dots & \frac{\partial x}{\partial y_{1,q}} \\ \frac{\partial x}{\partial y_{2,1}} & \frac{\partial x}{\partial y_{2,2}} & \dots & \frac{\partial x}{\partial y_{2,q}} \\ \dots & \dots & \dots & \dots \\ \frac{\partial x}{\partial y_{p,1}} & \frac{\partial x}{\partial y_{p,2}} & \dots & \frac{\partial x}{\partial y_{p,q}} \end{bmatrix}$ $\frac{\partial x}{\partial y_{i,j}} \text{ Is the derivative of } x \text{ by the scalar } y_{i,j} \text{ which is an element of the matrix } y$

• The derivative of matrix X of size (m,n) by another matrix Y of size (p,q) is given by

$$\frac{\partial X}{\partial y_{1,1}} \quad \frac{\partial X}{\partial y_{1,2}} \quad \cdot \quad \cdot \quad \frac{\partial X}{\partial y_{1,q}} \\
\frac{\partial X}{\partial y_{2,1}} \quad \frac{\partial X}{\partial y_{2,2}} \quad \cdot \quad \cdot \quad \frac{\partial X}{\partial y_{2,q}} \\
\cdot \quad \cdot \quad \cdot \quad \cdot \\
\frac{\partial X}{\partial y_{p,1}} \quad \frac{\partial X}{\partial y_{p,2}} \quad \cdot \quad \cdot \quad \frac{\partial X}{\partial y_{p,q}}$$

 $\frac{\partial X}{\partial y_{i,j}}$ Is the derivative of the matrix X by the scalar $y_{i,j}$ which is an element of the matrix Y

Gradient Example

Compute the Gradient of the function

$$f(x_1, x_2, x_3) = 15x_1 + 2(x_2)^2 - 3x_1(x_3)$$

$$\nabla f(x_1, x_2, x_3) \coloneqq \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_3} \end{bmatrix}$$

$$\nabla f(x_1, x_2, x_3) \coloneqq \begin{bmatrix} 15 - 3(x_3)^2 & 6(x_2)^2 & -6x_1x_3 \end{bmatrix}$$

The Hessian

• The Hessian of a function $f(x_1, x_2, ..., x_n)$ is given by the second derivative

$$\nabla^{2} f(x_{1},...,x_{n}) := \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

11-755/18-797 54

Hessian Example

Compute the Hessian of the function

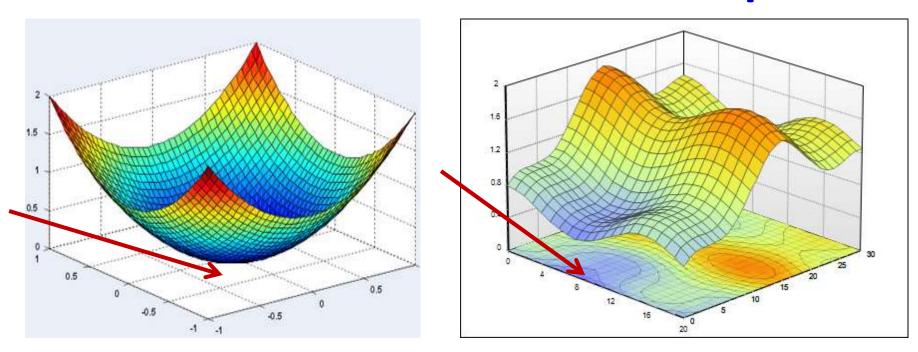
$$f(x_1, x_2, x_3) = 15x_1 + 2(x_2)^2 - 3x_1(x_3)$$

$$\nabla f(x_1, x_2, x_3) \coloneqq \begin{bmatrix} 15 - 3(x_3)^2 & 6(x_2)^2 & -6x_1x_3 \end{bmatrix}$$

$$\nabla^2 f(x_1, x_2, x_3) \coloneqq \begin{bmatrix} 0 & 0 & -6x_3 \\ 0 & 12x_2 & 0 \\ -6x_3 & 0 & -6x_1 \end{bmatrix}$$

Returning to direct optimization...

Finding the minimum of a scalar function of a multi-variate input



 The optimum point is a turning point – the gradient will be 0

Unconstrained Minimization of function (Multivariate)

1. Solve for the *X* where the gradient equation equals to zero

$$\nabla f(X) = 0$$

- 2. Compute the Hessian Matrix $\nabla^2 f(X)$ at the candidate solution and verify that
 - Hessian is positive definite (eigenvalues positive) -> to identify local minima
 - Hessian is negative definite (eigenvalues negative) -> to identify local maxima

Unconstrained Minimization of function (Example)

Minimize

$$f(x_1, x_2, x_3) = (x_1)^2 + x_1(1 - x_2) - (x_2)^2 - x_2x_3 + (x_3)^2 + x_3$$

Gradient

$$\nabla f = \begin{bmatrix} 2x_1 + 1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 + 1 \end{bmatrix}$$

Unconstrained Minimization of function (Example)

Set the gradient to null

$$\nabla f = 0 \Rightarrow \begin{bmatrix} 2x_1 + 1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 + 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Solving the 3 equations system with 3 unknowns

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$

Unconstrained Minimization of

- Compute the Hessian matrix $\nabla^2 f = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$
- Evaluate the eigenvalues of the Hessian matrix

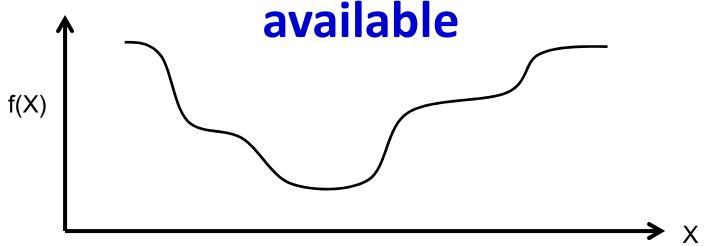
$$\lambda_1 = 3.414, \quad \lambda_2 = 0.586, \quad \lambda_3 = 2$$

- All the eigenvalues are positives => the Hessian matrix is positive definite
- The point $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$ is a minimum

Index

- 1. The problem of optimization
- 2. Direct optimization
- 3. Descent methods
 - Newton's method
 - Gradient methods
- 4. Online optimization
- 5. Constrained optimization
 - Lagrange's method
 - Projected gradients
- 6. Regularization
- 7. Convex optimization and Lagrangian duals

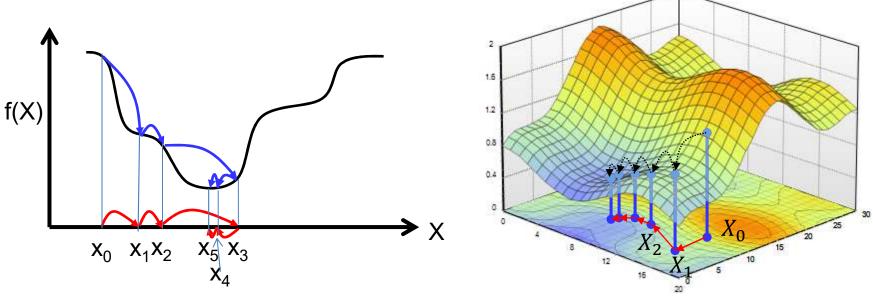
Closed Form Solutions are not always



- Often it is not possible to simply solve $\nabla f(X) = 0$
 - The function to minimize/maximize may have an intractable form
- In these situations, iterative solutions are used
 - Begin with a "guess" for the optimal X and refine it iteratively until the correct value is obtained

11-755/18-797 63

Iterative solutions



- Iterative solutions
 - Start from an initial guess X_0 for the optimal X
 - Update the guess towards a (hopefully) "better" value of f(X)
 - Stop when f(X) no longer decreases
- Problems:
 - Which direction to step in
 - How big must the steps be

11-755/18-797

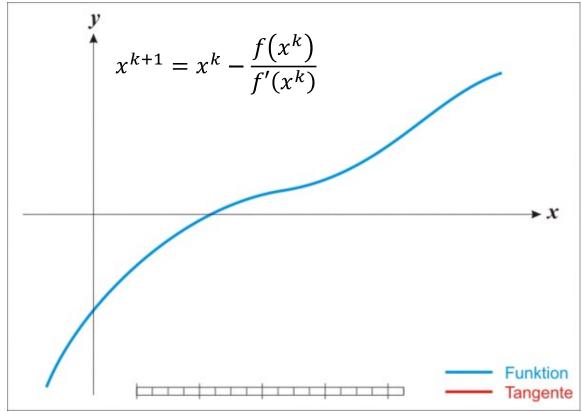
Descent methods

- Iterative solutions that attempt to "descend"
 the function in steps to arrive at the minimum
- Based on the first order derivatives (gradient) and in some cases the second order derivatives (Hessian).
 - Newton's method is based on both first and second derivatives
 - Gradient descent is based only on the first derivative

Descent methods

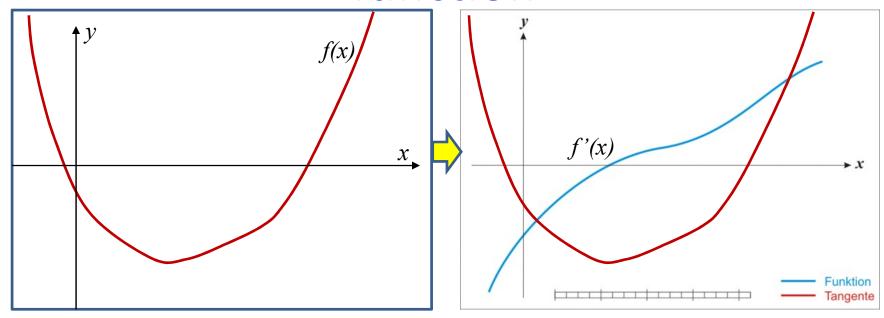
- Iterative solutions that attempt to "descend"
 the function in steps to arrive at the minimum
- Based on the first order derivatives (gradient) and in some cases the second order derivatives (Hessian).
 - Newton's method is based on both first and second derivatives
 - Gradient descent is based only on the first derivative

Newton's iterative method to find the zero of a function



- Newton's method to find the "zero" of a function
 - Initialize estimate
 - Approximate function by the tangent at initial value
 - Update estimate to location where tangent becomes 0

Newton's Method to optimize a function



- Apply Newton's method to the derivative of the function!
 - The derivative goes to 0 at the optimum
- Algorithm:
 - Initialize x_0
 - K^{th} iteration: Approximate f'(x) by the tangent at x_k
 - Find the location $x_{\text{intersect}}$ where the tangent goes to 0. Set $x_{k+1} = x_{\text{intersect}}$

Newton's method to minimize univariate functions

• Apply Newton's algorithm to find the zero of the derivative f'(x)

$$x^{k+1} = x^k - \frac{f'(x^k)}{f''(x^k)}$$

- k is the current iteration
- The iterations continue until we achieve the stopping criterion $|x^{k+1} x^k| < \epsilon$

Newton's method for multivariate functions

- 1. Select an initial starting point X^0
- 2. Evaluate the gradient $\nabla f(X^k)$ and Hessian $\nabla^2 f(X^k)$ at X^k
- 3. Calculate the new X^{k+1} using the following

$$X^{k+1} = X^k - [\nabla^2 f(X^k)]^{-1} \cdot \nabla f(X^k)$$

4. Repeat Steps 2 and 3 until convergence

Newton's Method example

- This is the same optimization problem we saw previously
- Minimize

$$f(x_1, x_2, x_3) = (x_1)^2 + x_1(1 - x_2) - (x_2)^2 - x_2x_3 + (x_3)^2 + x_3$$

Gradient

$$\nabla f = \begin{bmatrix} 2x_1 + 1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 + 1 \end{bmatrix}$$

Newton's Method example

• Initial Value of
$$X^0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

• The gradient for the vector X^0

$$\nabla f(0,0,0) = \begin{bmatrix} 0-0+1 \\ -0+0-0 \\ -0-0+1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Unconstrained Minimization of function (Example)

The Hessian matrix is

$$\nabla^2 f = \begin{vmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{vmatrix}$$

The inverse of the Hessian is needed as well

$$\left[\nabla^2 f \right]^{-1} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{3}{4} \end{bmatrix}$$

Newton's Method example

The new vector x after iteration 1 is as follow

$$X^{1} = X^{0} - \left[\nabla^{2} f(X^{0})\right]^{-1} \cdot \nabla f(X^{0})$$

$$X^{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{3}{4} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$X^{1} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$

Newton's Method example

• The updated value of the gradient for $x^1 = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$

$$\nabla f(-1,-1,-1) = \begin{bmatrix} 2+1+1 \\ -1+2-1 \\ -1-2+1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

 The Gradient is zero => The Newton method has converged

Newton's Method

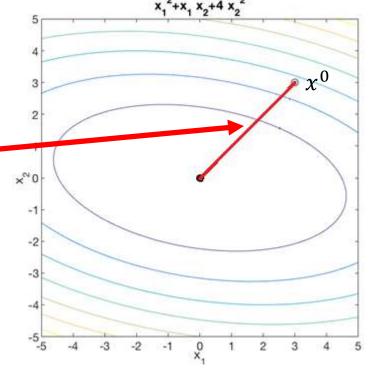
Newton's approach is based on the computation of both x₁²+x₁ x₂+4 x₂²

gradient and Hessian

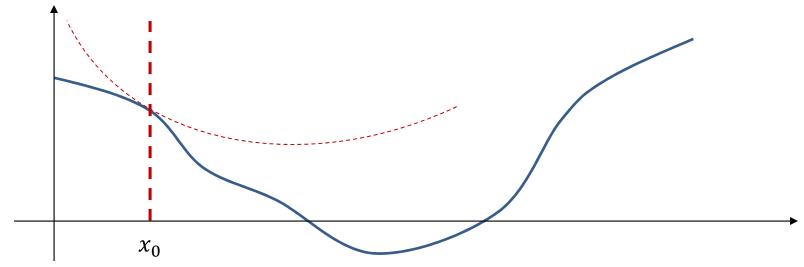
Fast to converge (few iterations)

Slow to compute

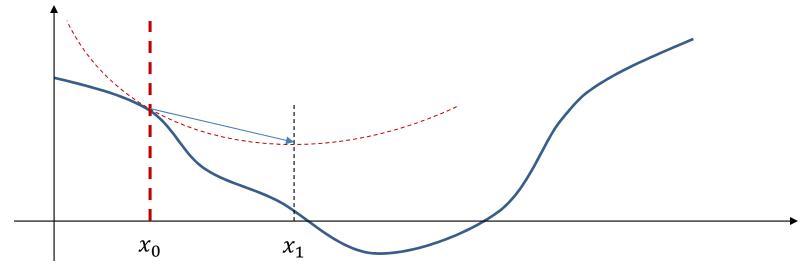
Newton's method (arrives at optimum in a single step)



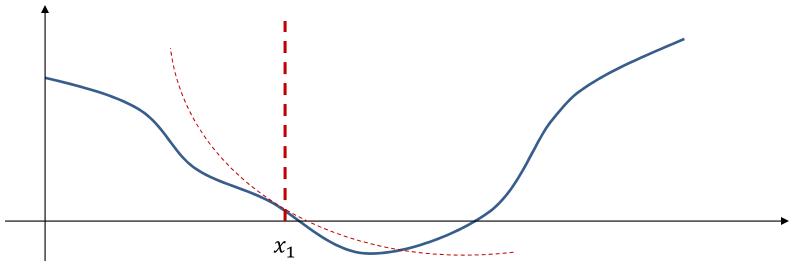
Can arrive at the optimal solution in a single step for a quadratic function



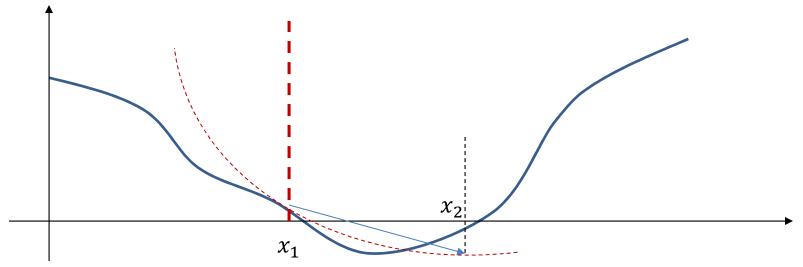
- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
 - Single step
- Repeat



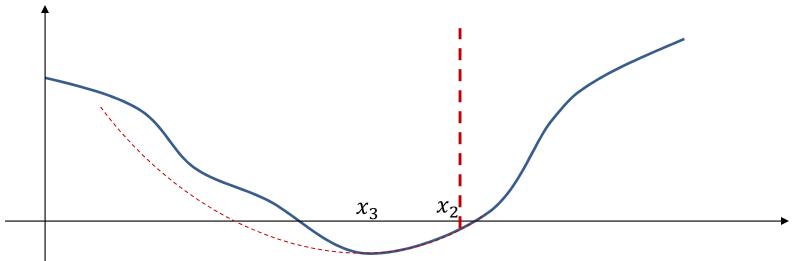
- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
 - Single step
- Repeat



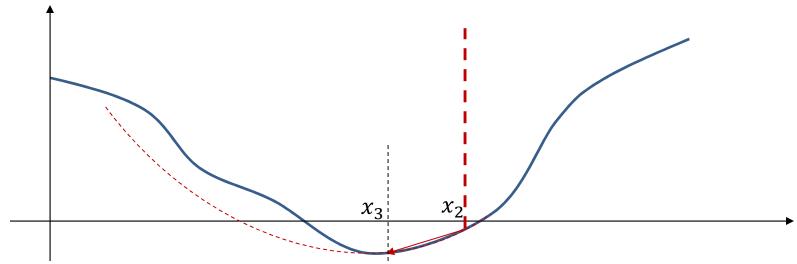
- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
 - Single step
- Repeat



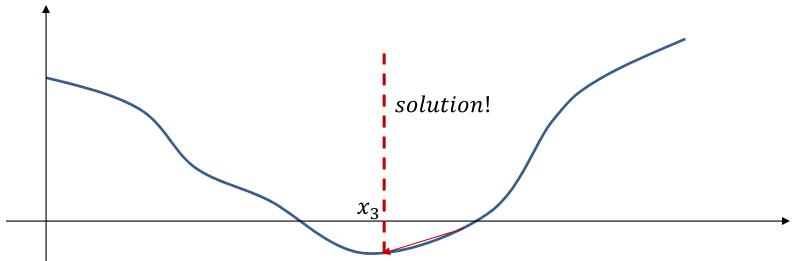
- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
 - Single step
- Repeat



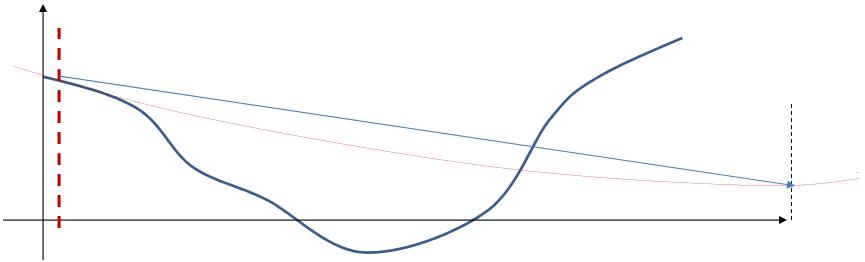
- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
 - Single step
- Repeat



- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
 - Single step
- Repeat



- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
 - Single step
- Repeat



- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
 - Single step
- Repeat
 - Can easily get lost if the initial point is poor

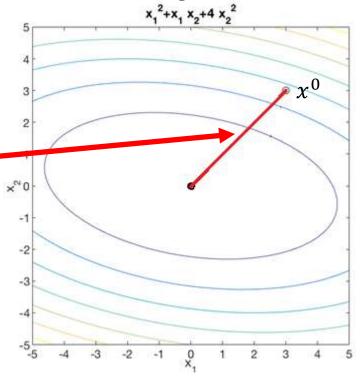
Newton's Method

Newton's approach is based on the computation of both gradient and

Fast to converge (few iterations)

Slow to compute

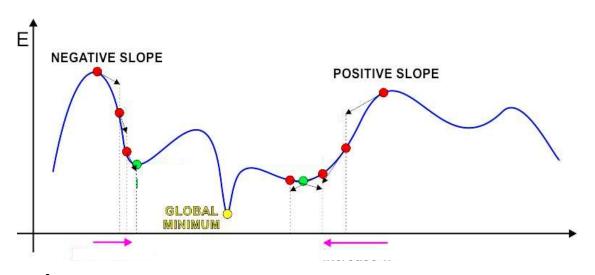
Newton's method (arrives at optimum in a single step)



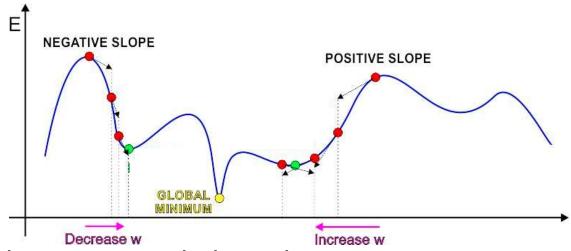
- Can be very efficient
- This method is very sensitive to the initial point
 - If the initial point is very far from the optimal point, the optimization process may not converge

Descent methods

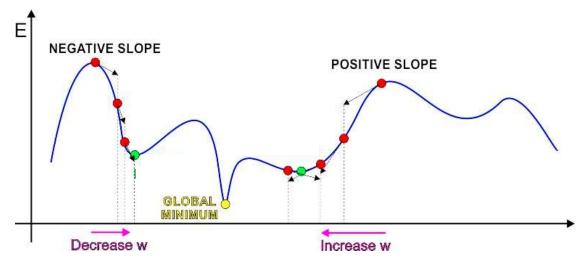
- Iterative solutions that attempt to "descend"
 the function in steps to arrive at the minimum
- Based on the first order derivatives (gradient) and in some cases the second order derivatives (Hessian).
 - Newton's method is based on both first and second derivatives
 - Gradient descent is based only on the first derivative



- Iterative solution:
 - Start at some point
 - Find direction in which to shift this point to decrease error
 - This can be found from the derivative of the function
 - A positive derivative → moving left decreases error
 - A negative derivative → moving right decreases error
 - Shift point in this direction



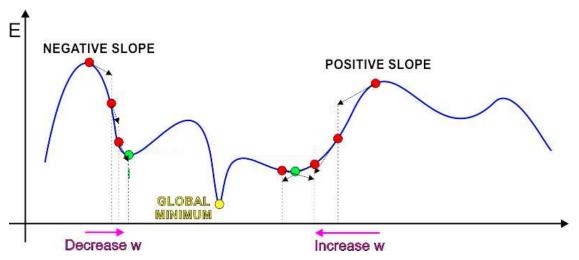
- Iterative solution: Trivial algorithm
 - Initialize x^0
 - While $f'(x^k) \neq 0$
 - If $sign(f'(x^k))$ is positive: $-x^{k+1} = x^k - step$
 - Else $-x^{k+1} = x^k + step$
 - But what must step be to ensure we actually get to the optimum?



- Iterative solution: Trivial algorithm
 - Initialize x^0
 - While $f'(x^k) \neq 0$

•
$$x^{k+1} = x^k - sign(f'(x^k))$$
. step

Identical to previous algorithm



- Iterative solution: Trivial algorithm
 - Initialize x_0
 - While $f'(x^k) \neq 0$
 - $x^{k+1} = x^k \eta^k f'(x^k)$
 - $-\eta^k$ is the "step size"
 - What must the step size be?

Gradient descent/ascent (multivariate)

- The gradient descent/ascent method to find the minimum or maximum of a function f iteratively
 - To find a maximum move in the direction of the gradient

$$x^{k+1} = x^k + \eta^k \nabla f(x^k)$$

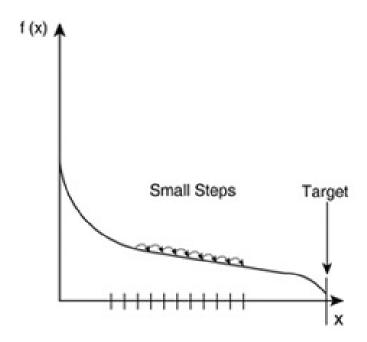
To find a minimum move exactly opposite the direction of the gradient

$$x^{k+1} = x^k - \eta^k \nabla f(x^k)$$

• What is the step size η^k

1. Fixed step size

- Fixed step size
 - Use fixed value for η^k



11-755/18-797 92

Influence of step size example (constant step size)

$$f(x_1, x_2) = (x_1)^2 + x_1 x_2 + 4(x_2)^2 \qquad x^{initial} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

$$\eta = 0.1$$

$$x_1^2 + x_1 x_2 + 4 x_2^2$$

$$x_2^2 + x_1 x_2 + 4 x_2^2$$

$$x_3^2 + x_1 x_2 + 4 x_2^2$$

$$x_4^2 + x_1 x_2 + 4 x_2^2$$

$$x_1^2 + x_1 x_2 + 4 x_2^2$$

$$x_1^2 + x_1 x_2 + 4 x_2^2$$

$$x_2^2 + x_1 x_2 + 4 x_2^2$$

Variable step size

Shrink step size by a constant factor each iteration:

$$\eta^k = \alpha \eta^{k-1}$$

- Where α < 1
- Gradient descent algorithm:
 - Initialize x^0 , η^0
 - While $f'(x^k) \neq 0$
 - $x^{k+1} = x^k \eta^k f'(x^k)$
 - $\eta^{k+1} = \alpha \eta^k$
 - k = k + 1

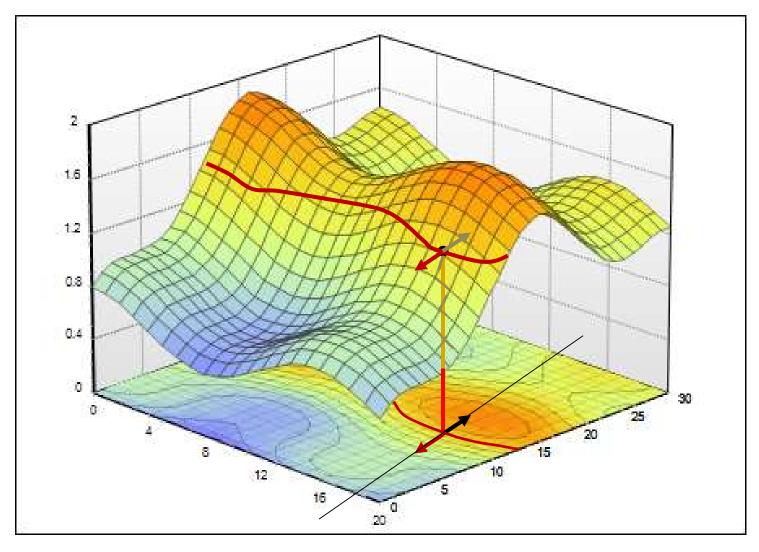
Optimal step size

- Finding the optimal step size is a challenge
- Ideally, step size changes with iteration
- Several algorithms to find optimal step size
 - On slides
 - Please read the slides, this will appear in the quiz

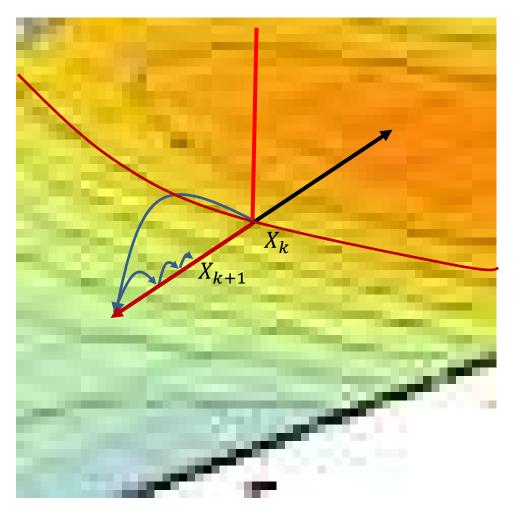
- Two parameters lpha (typically 0.5) and eta (typically 0.8)
- At each iteration, estimate step size as follows:
 - Set $\eta^k = 1$
 - Update $\eta^k = \beta \eta^k$ until

$$f(x^k - \eta^k \nabla f(x^k)) \le f(x^k) - \alpha \eta^k ||\nabla f(x^k)||^2$$

- Update $x^{k+1} = x^k \eta^k \nabla f(x^k)$
- Intuitively: At each iteration
 - Take a unit step size and keep shrinking it until we arrive at a place where the function $f\left(x^k \eta^k \nabla f(x^k)\right)$ actually decreases sufficiently w.r.t $f(x^k)$



Keep shrinking step size till we find a good one



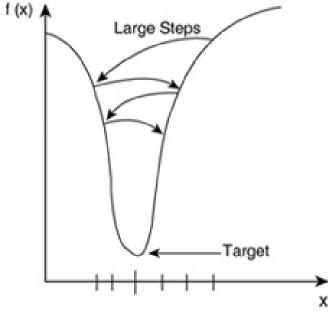
- Keep shrinking step size till we find a good one
- Update estimate to the position at the converged step size 98

- At each iteration, estimate step size as follows:
 - Set $\eta^k = 1$
 - Update $\eta^k = \beta \eta^k$ until

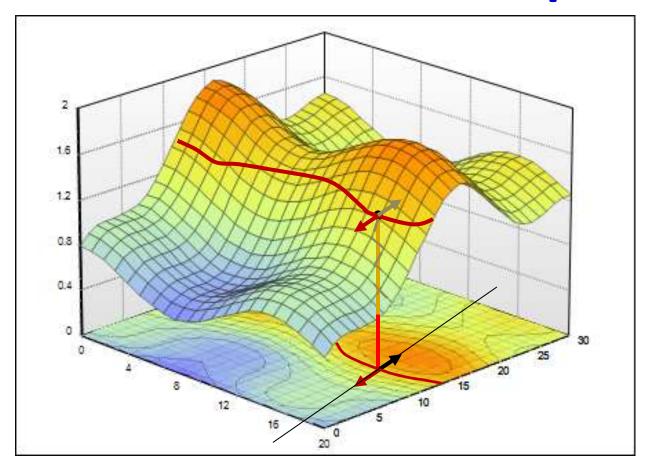
$$f(x^k - \eta^k \nabla f(x^k)) \le f(x^k) - \alpha \eta^k ||\nabla f(x^k)||^2$$

- Update $x^{k+1} = x^k - \eta^k \nabla f(x^k)$

• Figure shows actual evolution of x^k

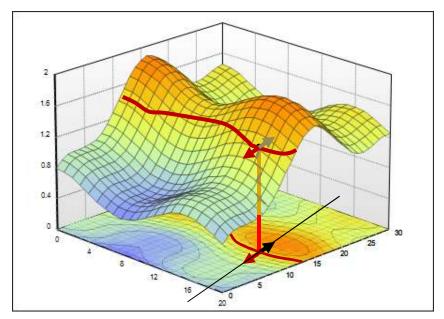


3. Full line search for step size



- At each iteration scan for η_k that minimizes $f\left(x^k \eta^k \nabla f(x^k)\right)$
- Update $x^k = x^k \eta^k \nabla f(x^k)$

3. Full line search for step size



- At each iteration scan for η_k that minimizes $f\left(x^k \eta^k \nabla f(x^k)\right)$
- Can be computed by solving

$$\frac{df\left(x^k - \eta^k \nabla f(x^k)\right)}{d\eta^k} = 0$$

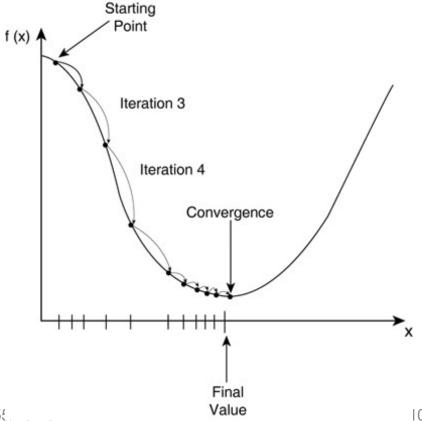
• Update $x^k = x^k - \eta^k \nabla f(x^k)$

Gradient descent convergence criteria

 The gradient descent algorithm converges when one of the following criteria is satisfied

$$\left| f(x^{k+1}) - f(x^k) \right| < \varepsilon_1$$

• Or $\|\nabla f(x^k)\| < \varepsilon_2$



11-75

102

- This is the same optimization problem as previously
- Minimize

$$f(x_1, x_2, x_3) = (x_1)^2 + x_1(1 - x_2) - (x_2)^2 - x_2x_3 + (x_3)^2 + x_3$$

Gradient

$$\nabla f = \begin{bmatrix} 2x_1 + 1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 + 1 \end{bmatrix}$$

initial vector

$$x^0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\nabla f(x^{0}) = \begin{bmatrix} 2 \cdot 0 + 1 - 0 \\ -0 + 2 \cdot 0 - 0 \\ -0 + 2 \cdot 0 + 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$x^{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} - \alpha^{0} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\alpha^{0} \\ 0 \\ -\alpha^{0} \end{bmatrix}$$

• Find the best step value α^0

$$f(x^{1}) = (-\alpha^{0})^{2} - \alpha^{0} + (-\alpha^{0})^{2} - \alpha^{0}$$
$$= 2(\alpha^{0})^{2} - 2(\alpha^{0})$$
$$\frac{\partial f(x^{1})}{\partial \alpha^{0}} = 4(\alpha^{0}) - 2$$

Set the derivative equal to zero

Set the derivative equal to zero
$$\frac{\partial f(x^1)}{\partial \alpha^0} = 4(\alpha^0) - 2 = 0 \Rightarrow \alpha^0 = \frac{1}{2} \qquad x^1 = \begin{bmatrix} -\alpha^0 \\ 0 \\ -\alpha^0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{bmatrix}$$
11-755/18-797

• Iteration 2

$$\nabla f(-\frac{1}{2}, 0, -\frac{1}{2}) = \begin{vmatrix} -1+1+0\\ \frac{1}{2}+0+\frac{1}{2}\\ 0-1+1 \end{vmatrix} = \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix}$$

$$x^{2} = \begin{bmatrix} -\frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{bmatrix} - \alpha^{1} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ -\alpha^{1} \\ -\frac{1}{2} \end{bmatrix}$$

$$f(x^{2}) = \frac{1}{4} - \frac{1}{2}(1 + \alpha^{1}) + (\alpha^{1})^{2} - \frac{1}{2}\alpha^{1} + \frac{1}{4} - \frac{1}{2}$$
$$= (\alpha^{1})^{2} - \alpha^{1} - \frac{1}{2}$$

$$\frac{\partial f(x^2)}{\partial \alpha^1} = 2(\alpha^1) - 1$$

$$\frac{\partial f(x^2)}{\partial \alpha^1} = 2(\alpha^1) - 1 = 0 \Rightarrow \alpha^1 = \frac{1}{2}$$

• Set the derivative equal to zero
$$\frac{\partial f(x^2)}{\partial \alpha^1} = 2(\alpha^1) - 1 = 0 \Rightarrow \alpha^1 = \frac{1}{2} \qquad x^2 = \begin{bmatrix} -\frac{1}{2} \\ -\alpha^1 \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$$

Iteration 3

$$7f(-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}) = \begin{vmatrix} -1+1+\frac{1}{2} \\ \frac{1}{2}-1+\frac{1}{2} \\ \frac{1}{2}-1+1 \end{vmatrix} = \begin{vmatrix} -1+1+\frac{1}{2} \\ \frac{1}{2}-1+1 \end{vmatrix}$$

Gradient descent example teration 3
$$\nabla f(-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}) = \begin{bmatrix} -1+1+\frac{1}{2} \\ \frac{1}{2}-1+\frac{1}{2} \\ \frac{1}{2}-1+1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{bmatrix}$$

$$x^{3} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} - \alpha^{2} \begin{bmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}(\alpha^{2}+1) \\ -\frac{1}{2} \\ -\frac{1}{2}(\alpha^{2}+1) \end{bmatrix}$$

$$x^{3} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} - \alpha^{2} \begin{bmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}(\alpha^{2}+1) \\ -\frac{1}{2} \\ -\frac{1}{2}(\alpha^{2}+1) \end{bmatrix}$$

$$x^{3} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} - \alpha^{2} \begin{bmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}(\alpha^{2}+1) \\ -\frac{1}{2} \\ -\frac{1}{2}(\alpha^{2}+1) \end{bmatrix}$$

$$x^{3} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} - \alpha^{2} \begin{bmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}(\alpha^{2}+1) \\ -\frac{1}{2} \\ -\frac{1}{2}(\alpha^{2}+1) \end{bmatrix}$$

$$f(x^3) = \frac{1}{2}(\alpha^2 + 1)^2 - \frac{3}{2}(\alpha^2 + 1) + \frac{1}{4}$$

$$\frac{\partial f(x^3)}{\partial \alpha^2} = (\alpha^2 + 1) - \frac{3}{2}$$

$$\frac{\partial f(x^3)}{\partial \alpha^2} = (\alpha^2 + 1) - \frac{3}{2} = 0 \Rightarrow \alpha^2 = \frac{1}{2} \quad x^3 = 0$$

• Iteration 4

$$\nabla f(-\frac{3}{4}, -\frac{1}{2}, -\frac{3}{4}) = \begin{vmatrix} 0\\ \frac{1}{2}\\ 0 \end{vmatrix}$$

$$x^{4} = \begin{bmatrix} -\frac{3}{4} \\ -\frac{1}{2} \\ -\frac{3}{4} \end{bmatrix} - \alpha^{3} \begin{bmatrix} 0 \\ \frac{1}{2} \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{3}{4} \\ -\frac{1}{2}(\alpha^{3} + 1) \\ -\frac{3}{4} \end{bmatrix}$$

$$f(x^4) = \frac{1}{4}(\alpha^3 + 1)^2 - \frac{3}{2}(\alpha^3) - \frac{3}{2}$$

$$\frac{\partial f(x^4)}{\partial \alpha^3} = \frac{1}{2}(\alpha^3 + 1) - \frac{9}{8}$$

• Set the derivative equal to zero
$$\frac{-3}{4} = \frac{1}{2}(\alpha^3 + 1) - \frac{9}{8} = 0 \Rightarrow \alpha^3 = \frac{5}{4} \quad x^4 = \begin{bmatrix} -\frac{1}{2}(\alpha^3 + 1) \\ -\frac{1}{2}(\alpha^3 + 1) \end{bmatrix} = \begin{bmatrix} -\frac{3}{4} \\ -\frac{9}{8} \\ -\frac{3}{4} \end{bmatrix}$$

• Iteration 5
$$\nabla f(-\frac{3}{4}, -\frac{9}{8}, -\frac{3}{4}) = \begin{bmatrix} -\frac{3}{4} \\ \frac{5}{8} \end{bmatrix}$$

$$x^{4} = \begin{bmatrix} -\frac{3}{4} \\ -\frac{9}{8} \\ -\frac{3}{4} \end{bmatrix} - \alpha^{4} \begin{bmatrix} \frac{5}{8} \\ -\frac{3}{4} \\ \frac{5}{8} \end{bmatrix} = \begin{bmatrix} -\frac{1}{4}(3 + \frac{5}{2}\alpha^{4}) \\ -\frac{3}{4}(\frac{3}{2} - \alpha^{4}) \\ -\frac{1}{4}(3 + \frac{5}{3}\alpha^{4}) \end{bmatrix}$$

$$f(x^5) = \frac{73}{32} (\alpha^4)^2 - \frac{43}{32} (\alpha^4) - \frac{51}{64}$$

$$\frac{\partial f(x^5)}{\partial \alpha^4} = \frac{73}{16} \alpha^4 - \frac{43}{32}$$

• Set the derivative equal to zero
$$\frac{\partial f(x^{5})}{\partial \alpha^{4}} = \frac{73}{16} \alpha^{4} - \frac{43}{32} = 0 \Rightarrow \alpha^{4} = \frac{43}{146}$$

$$x^{5} = \begin{bmatrix} -\frac{1091}{1168} \\ -\frac{66}{73} \\ -\frac{1091}{1168} \end{bmatrix}$$

$$x^{5} = \begin{bmatrix} -\frac{1091}{1168} \\ -\frac{66}{73} \\ -\frac{1091}{1168} \end{bmatrix}$$

• Verifying the stopping criteria $\|\nabla f(x^5)\|$

$$\nabla f(x^5) = \begin{array}{|c|c|}\hline 21\\\hline 584\\\hline 584\\\hline 21\\\hline 584\\\hline \\\hline 584\\\hline \end{array}$$

$$\|\nabla f(x^5)\| = \sqrt{\left(\frac{21}{584}\right)^2 + \left(\frac{35}{584}\right)^2 + \left(\frac{21}{584}\right)^2} = 0.0786$$

• $\|\nabla f(x^5)\| = 0.0786$ is very small. The stopping criteria is satisfied.

• The vector $x^5 = \begin{bmatrix} 1108 \\ -\frac{66}{73} \\ -\frac{1091}{1168} \end{bmatrix}$ can be taken as the

• The vector x^5 is very close to the optimal $\mathbf{minimum} \\
x^{optimal} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$ 11-7

$$\begin{vmatrix} \mathbf{1} \\ \mathbf{x}^{optimal} = \begin{vmatrix} -1 \\ -1 \\ -1 \end{vmatrix}$$

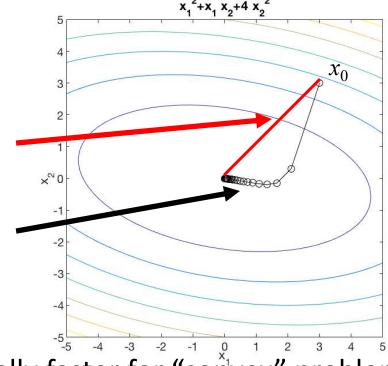
Gradient descent vs. Newton's

 Gradient descent is typically much slower to converge than Newton's

But much faster to compute

Newton's method

Gradient descent



- Newton's method is exponentially faster for "convex" problems
 - Although derivatives and Hessians may be hard to derive
 - May not converge for non-convex problems

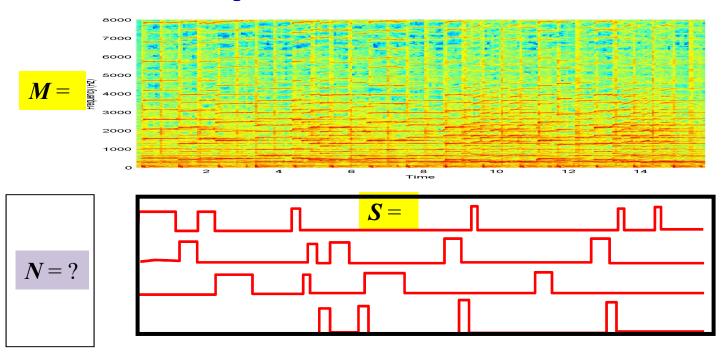
Index

- 1. The problem of optimization
- 2. Direct optimization
- 3. Descent methods
 - Newton's method
 - Gradient methods
- 4. Online optimization
- 5. Constrained optimization
 - Lagrange's method
 - Projected gradients
- 6. Regularization
- 7. Convex optimization and Lagrangian duals

Online Optimization

- Often our objective function is an error
- The error is the *cumulative* error from many signals
 - $\text{ E.g. } E(W) = \sum_{x} ||y f(x, W)||^{2}$
- Optimization will find the W that minimizes total error across all \boldsymbol{x}
- What if wanted to update our parameters after each input x instead of waiting for all of them to arrive?

A problem we saw



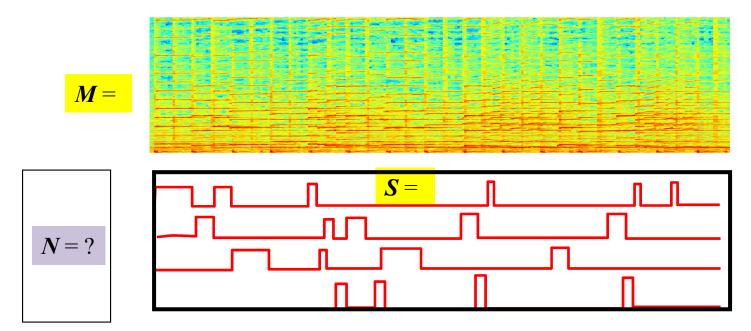
• Given the $music\ M$ and the $score\ S$ of only four of the notes, but not the notes themselves, find the notes

$$M = NS \implies N = MPinv(S)$$

11-755/18-797 119

120

The Actual Problem



- Given the $music\ M$ and the $score\ S$ find a matrix N such the error of reconstruction
 - $-E = \sum_{i} ||M_i \mathbf{N}S_i||^2$

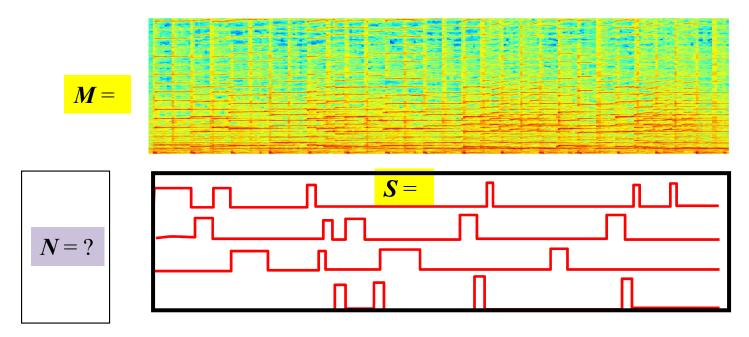
is minimized

- This is a standard optimization problem
- The solution gives us N = MPinv(S)

11-755/18-797

121

The Actual Problem



- Given the $music\ M$ and the $score\ S$ find a matrix N such the error of reconstruction
 - $-E = \sum_{i} ||M_i \mathbf{N}S_i||^2$

is minimized

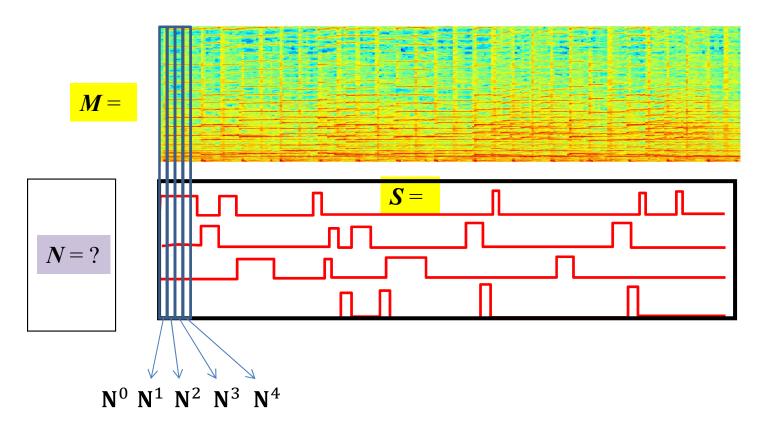
- This is a standard optimization problem
- The solution gives us N = MPinv(S)

11-755/18-797

This requires "seeing" all

of M and S to estimate N

Online Updates



- What if we want to update our estimate of the notes after every input
 - After observing each vector of music and its score
 - A situation that arises in many similar problems

11-755/18-797 122

Incremental Updates

- Easy solution: To obtain the k^{th} estimate \mathbf{N}^k , minimize the error on the k^{th} input
 - The error on the kth input is:

$$E_k = M_K - \mathbf{N}S_K$$

– The squared error is:

$$L_k = E_K^2 = ||M_K - \mathbf{N}S_K||^2$$

Differentiating it gives us

$$\nabla \mathbf{N} = 2(M_K - \mathbf{N}S_K)S_K^T = 2E_K S_K^T$$

Update the parameter to move in the direction of this update

$$\mathbf{N}^{k+1} = \mathbf{N}^k + \eta E_K S_K^T$$

 η must typically be very small to prevent the updates from being influenced entirely by the latest observation

Online update: Non-quadratic functions

The earlier problem has a *linear* predictor as the underlying model

$$\widehat{M}_k = \mathbf{N}S_k$$

We often have non-linear predictors

$$\hat{Y}_k = g(\mathbf{W}X_k)$$

$$E_k = Y_k - g(\mathbf{W}X_k)$$

- The derivative of the squared error E_K^2 w.r.t ${\bf W}$ is often ugly or intractable
- For such problems we will still use the following generalization of the online update rule for linear predictors

$$\mathbf{W}^{k+1} = \mathbf{W}^k + \eta E_k X_k^T$$

- This is the Widrow-Hoff rule
 - Based on quadratic Taylor series approximation of g(.)

124

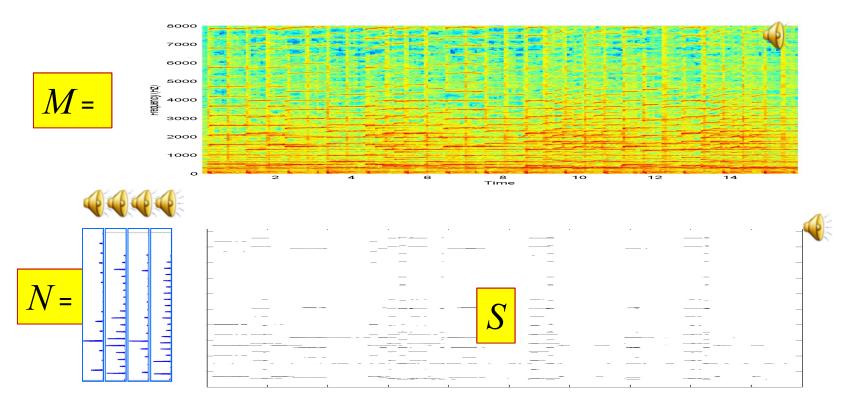
Index

- 1. The problem of optimization
- 2. Direct optimization
- 3. Descent methods
 - Newton's method
 - Gradient methods
- 4. Online optimization
- 5. Constrained optimization
 - Lagrange's method
 - Projected gradients
- 6. Regularization
- 7. Convex optimization and Lagrangian duals

11-755/18-797

125

A problem we recently saw



• The projection matrix P is the matrix that minimizes the total error between the *projected* matrix S and the *original matrix* M

11-755/18-797 126

CONSTRAINED optimization

- Recall the projection problem:
- Find P such that we minimize

$$E = \sum_{i} ||M_i - PM_i||^2$$

 AND such that the projection is composed of the notes in N

$$P = NC$$

This is a problem of constrained optimization

11-755/18-797 127

Optimization problem with constraints

• Finding the minimum of a function $f: \Re^N \longrightarrow \Re$ subject to constraints

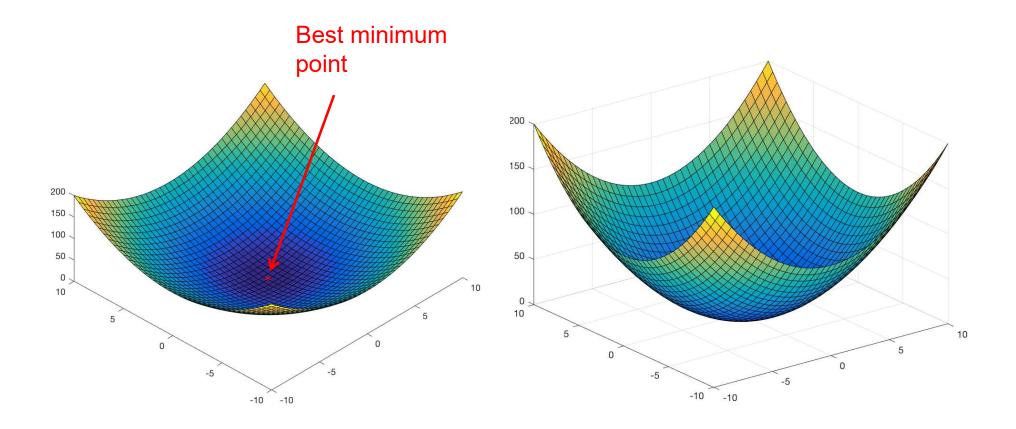
$$\min_{x} f(x)$$
s.t. $g_{i}(x) \le 0$ $i = \{1,...,k\}$

$$h_{j}(x) = 0$$
 $j = \{1,...,l\}$

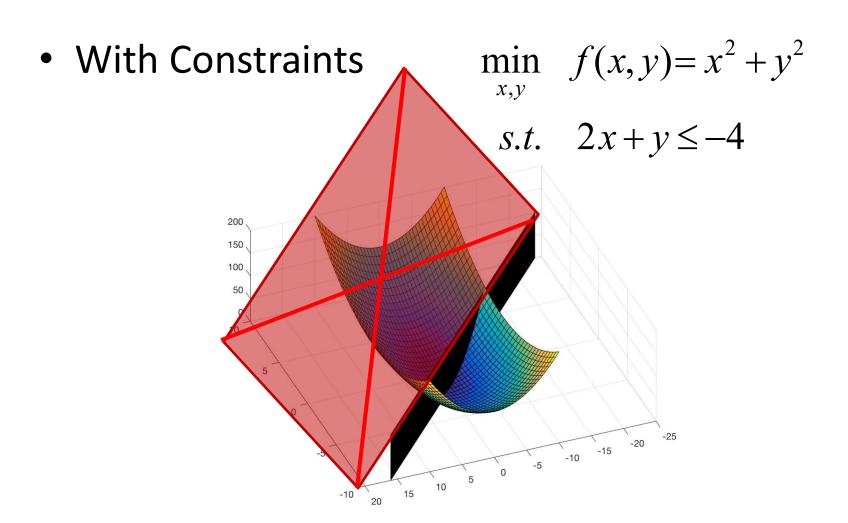
Constraints define a feasible region, which is nonempty

Optimization without constraints

• No Constraints $\min_{x} f(x, y, z) = x^{2} + y^{2}$



Optimization with constraints



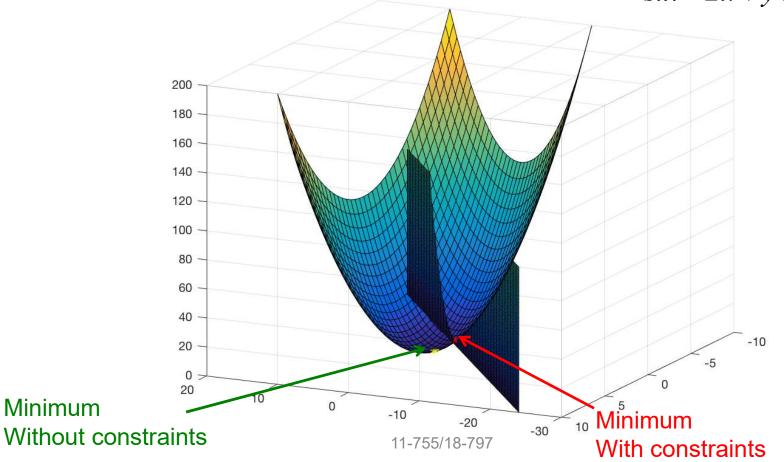
Optimization with constraints

Minima w/ and w/o constraints

$$\min_{x,y} f(x,y) = x^2 + y^2$$

131

$$s.t. \quad 2x + y \le -4$$

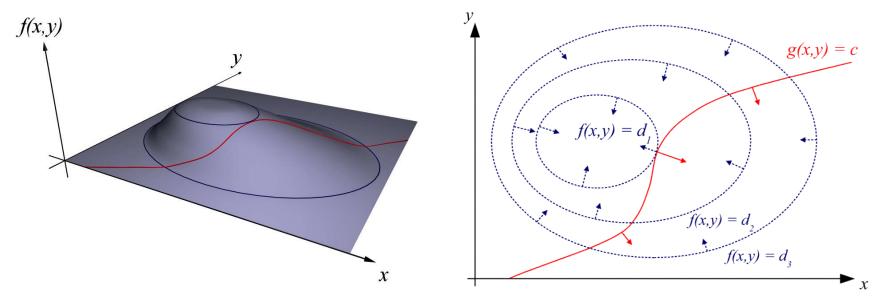


Solving for constrained optimization: the method of Lagrangians

• Consider a function f(x, y) that must be maximized w.r.t (x, y) subject to

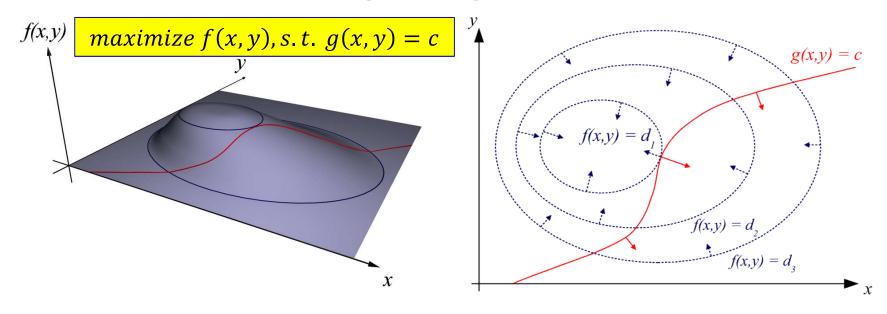
$$g(x,y) = c$$

 Note, we're using a maximization example to go with the figures that have been obtained from Wikipedia

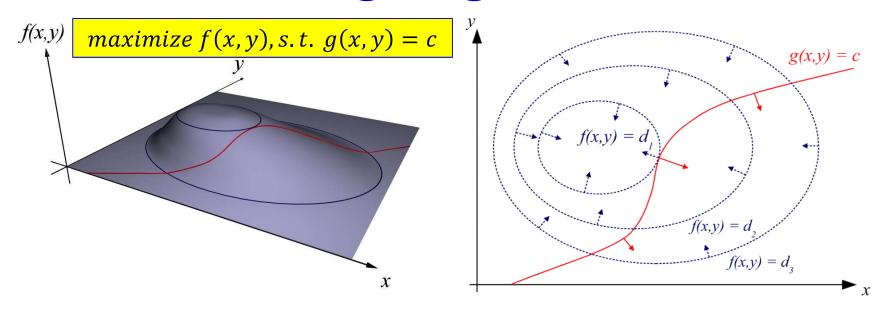


- Purple surface is f(x, y)
 - Must be maximized
- Red curve is constraint g(x, y) = c
 - All solutions must line on this curve
- Problem: Find the position of the largest f(x, y) on the red curve!

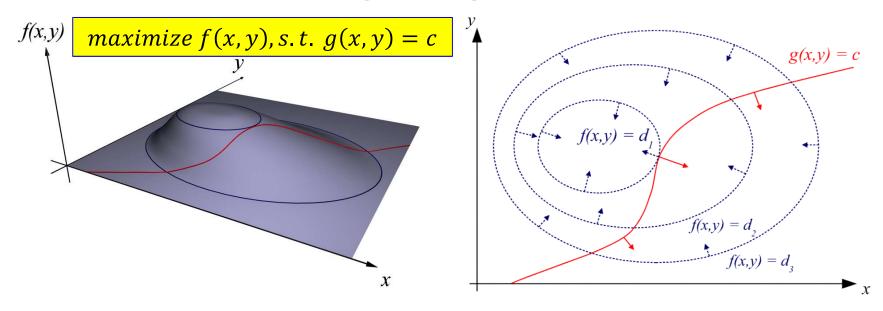
11-755/18-797 133



- Dotted lines are constant-value contours f(x, y) = C
 - -f(x,y) has the same value C at all points on a contour
- The constrained optimum will be at the point where the highest constant-value contour touches the red curve
 - It will be tangential to the red curve



- The constrained optimum is where the highest constant-value contour is tangential to the red curve
- The gradient of f(x,y) = C will be parallel to the gradient of g(x,y) = c



At the optimum

$$\nabla f(x,y) = \lambda \nabla g(x,y)$$
$$g(x,y) = c$$

• Find (x, y) that satisfies both above conditions

$$\nabla f(x,y) = \lambda \nabla g(x,y)$$
$$g(x,y) = c$$

- Find (x, y) that satisfies both above conditions
- Combine the above two into one equation

$$L(x, y, \lambda) = f(x, y) - \lambda(g(x, y) - c)$$

- Optimize it for (x, y, λ)
- Solving for (x, y),

$$\nabla_{x,y}L(x,y,\lambda)=0 \implies \nabla f(x,y)=\lambda \nabla g(x,y)$$

• Solving for λ

$$\frac{\partial L(x, y, \lambda)}{\partial \lambda} = 0 \qquad \Longrightarrow \qquad g(x, y) = c$$

$$\nabla f(x,y) = \lambda \nabla g(x,y)$$
$$g(x,y) = c$$

- Find (x, y) that satisfies both above conditions
- Combine the above two into one equation

$$L(x, y, \lambda) = f(x, y) - \lambda(g(x, y) - c)$$

Optimize it for (x, y, λ)

Formally:

to maximize f(x, y): $\max_{x,y} \left(\min_{\lambda} L(x, y, \lambda) \right)$ to minimize f(x, y): $\min_{x,y} \left(\max_{\lambda} L(x, y, \lambda) \right)$

Generalizes to inequality constraints

Optimization problem with constraints

$$\min_{x} f(x)$$

$$s.t.g_{i}(x) \le 0 \ i = \{1,...,k\}$$

$$h_{i}(x) = 0 \ j = \{1,...,l\}$$

• Lagrange multipliers $\lambda_i \ge 0, \nu \in \Re$

$$L(x, \lambda, \nu) = f(x) + \sum_{i=1}^{k} \lambda_i g_i(x) + \sum_{j=1}^{l} \nu_j h_j(x)$$

The necessary condition

$$\nabla L(x, \lambda, \nu) = 0 \Leftrightarrow \frac{\partial L}{\partial x} = 0, \frac{\partial L}{\partial \lambda} = 0, \frac{\partial L}{\partial \nu} = 0$$

Generalizes to inequality constraints

• Optimization problem with cor-

 $\min_{x} f(x)$ $s.t.g_{i}(x) \le 0 \ i = \{1,...$ $h_{i}(x) = 0 \ j = \{1,...$

Maximize w.r.t λ

If constraint is not satisfied this term can be made to go to inf with high choice of λ

 $h_j(x) = 0$ $j = \{1, ... \}$ Minimizing the loss while maximizing λ forces constraint to be satisfied and λ to go to 0

• Lagrange multipliers $\lambda_i \geq 0, \nu \in \Re$

$$L(x, \lambda, \nu) = f(x) + \sum_{i=1}^{k} \lambda_i g_i(x) + \sum_{j=1}^{l} \nu_j h_j(x)$$

The necessary condition

$$\nabla L(x, \lambda, \nu) = 0 \Leftrightarrow \frac{\partial L}{\partial x} = 0, \frac{\partial L}{\partial \lambda} = 0, \frac{\partial L}{\partial \nu} = 0$$

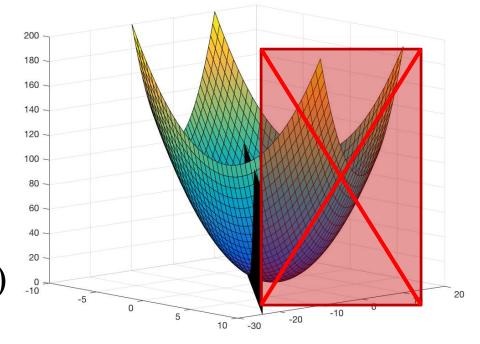
Lagrange multiplier example

$$\min_{x,y} f(x,y) = x^2 + y^2$$

$$s.t. 2x + y \le -4$$

Lagrange multiplier

$$L = x^2 + y^2 + \lambda(2x + y + 4)$$



Evaluate

$$\nabla L(x, \lambda, \nu) = 0 \Leftrightarrow \frac{\partial L}{\partial x} = 0, \frac{\partial L}{\partial \lambda} = 0, \frac{\partial L}{\partial \nu} = 0$$

11-755/18-797

Lagrange multiplier example

Critical point

$$\frac{\partial L}{\partial x} = 2x + 2\lambda = 0$$

$$\frac{\partial L}{\partial y} = 2y + \lambda = 0$$

$$\frac{\partial L}{\partial \lambda} = 2x + y + 4 = 0$$

$$x = -\lambda$$

$$y = -\frac{\lambda}{2}$$

$$2x + y + 4 = 0$$

• Critical point
$$\frac{\partial L}{\partial x} = 2x + 2\lambda = 0$$

$$\frac{\partial L}{\partial y} = 2y + \lambda = 0$$

$$\frac{\partial L}{\partial \lambda} = 2x + y + 4 = 0$$

$$\frac{\partial L}{\partial \lambda} = 2x + y + 4 = 0$$

$$x = -\lambda$$

$$y = -\frac{\lambda}{2}$$

$$2x + y + 4 = 0$$

$$\lambda = \frac{8}{5}$$

$$x = -\frac{8}{5}$$

$$\lambda = \frac{8}{5}$$

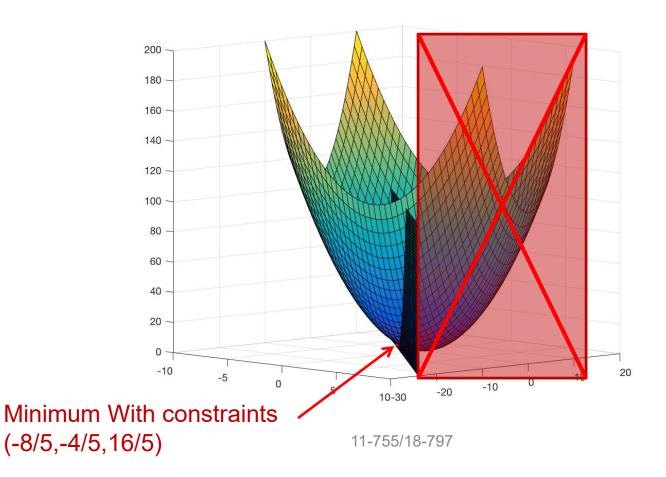
$$x = -\frac{6}{5}$$
$$y = -\frac{4}{2}$$

Optimization with constraints

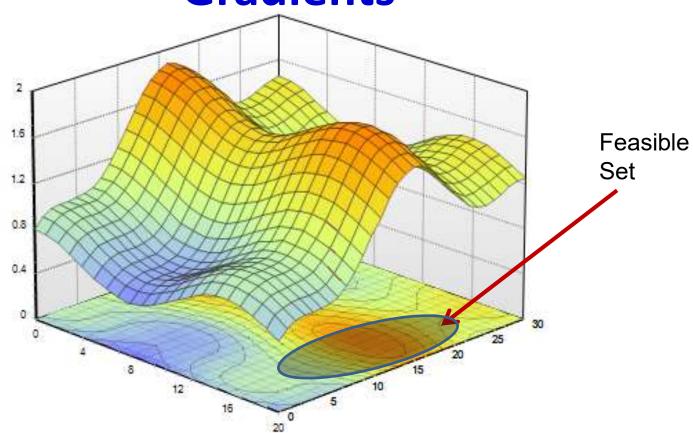
Lagrange Multiplier results

$$\min_{x,y} f(x,y) = x^2 + y^2$$
s.t. $2x + y \le -4$

143

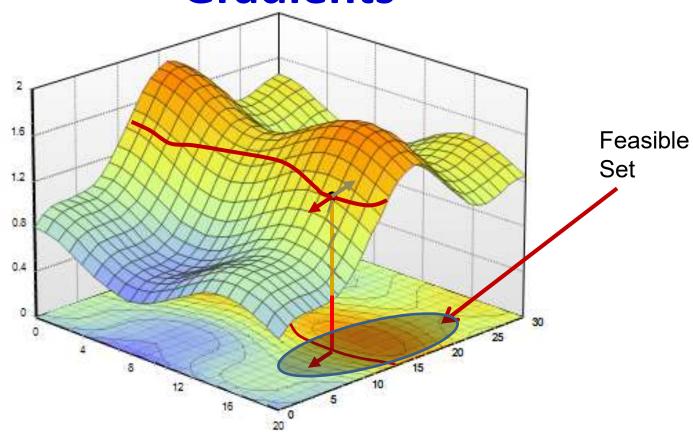


An Alternate Approach: Projected Gradients

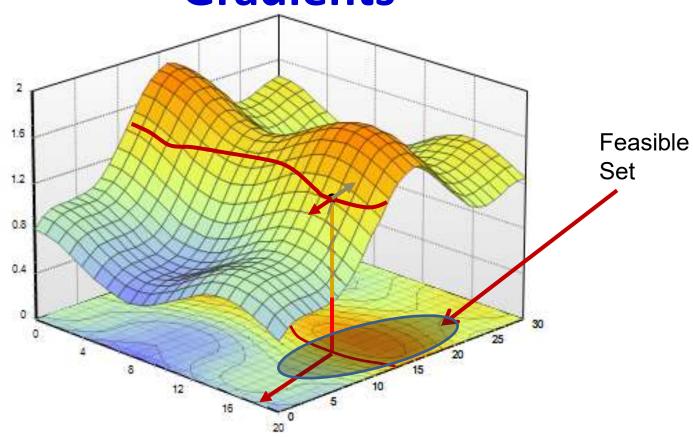


- The constraints specify a "feasible set"
 - The region of the space where the solution can lie

11-755/18-797 144

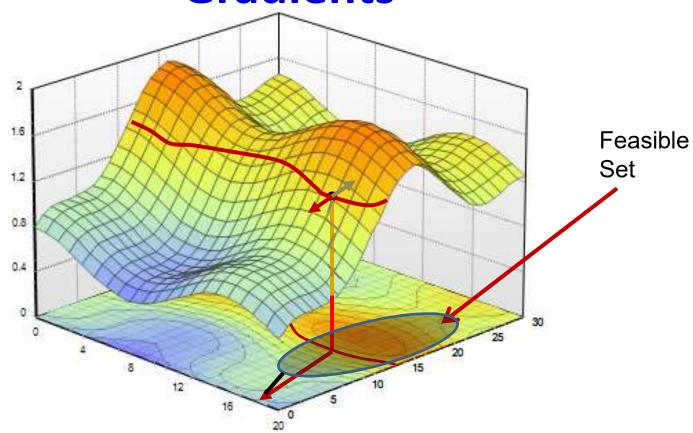


- From the current estimate, take a step using the conventional gradient descent approach
 - If the update is inside the feasible set, no further action is required

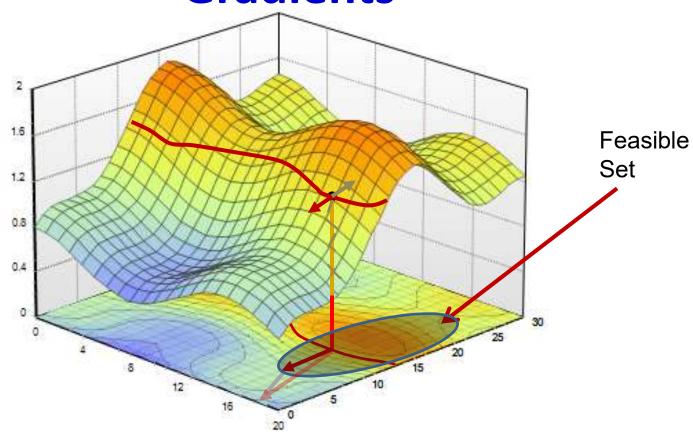


• If the update falls outside the feasible set,

11-755/18-797



- If the update falls outside the feasible set,
 - find the closest point to the update on the boundary of the feasible set



- If the update falls outside the feasible set,
 - find the closest point to the update on the boundary of the feasible set
 - And move the updated estimate to this new point

11-755/18-797

148

The method of projected gradients

$$\min_{x} f(x)$$

$$s.t.g_{i}(x) \le 0 i = \{1,...,k\}$$

- The constraints specify a "feasible set"
 - The region of the space where the solution can lie
- Update current estimate using the conventional gradient descent approach
 - If the update is inside the feasible set, no further action is required
 - If the update falls outside the feasible set,
 - find the closest point to the update on the boundary of the feasible set
 - And move the updated estimate to this new point
- The closest point "projects" the update onto the feasible set
- For many problems, however, finding this "projection" can be difficult or intractable

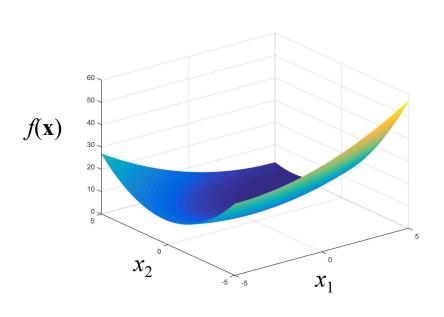
Index

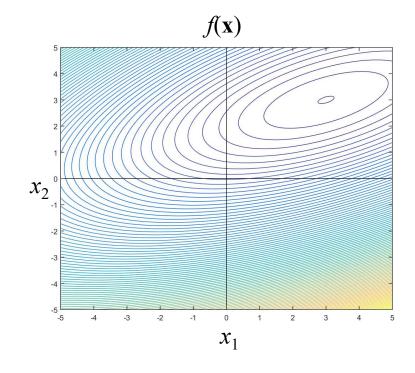
- 1. The problem of optimization
- 2. Direct optimization
- 3. Descent methods
 - Newton's method
 - Gradient methods
- 4. Online optimization
- 5. Constrained optimization
 - Lagrange's method
 - Projected gradients
- 6. Regularization
- 7. Convex optimization and Lagrangian duals

Regularization

- Sometimes we have additional "regularization" on the parameters
 - Note these are not hard constraints
- E.g.
 - Minimize f(X) while requiring that the length $||X||^2$ is also minimum
 - Minimize f(X) while requiring that $|X|_1$ is also minimal
 - Minimize f(X) such that g(X) is maximum
- We will encounter problems where such requirements are logical

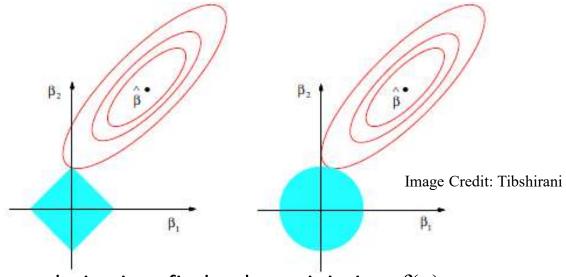
Contour Plot of a Quadratic Objective





- Left: Actual 3D plot
 - $\mathbf{x} = [x_1, x_2]$
- Right: constant-value contours
 - Innermost contour has lowest value
- Unconstrained/unregularized solution: The center of the innermost contour

Examples of regularization

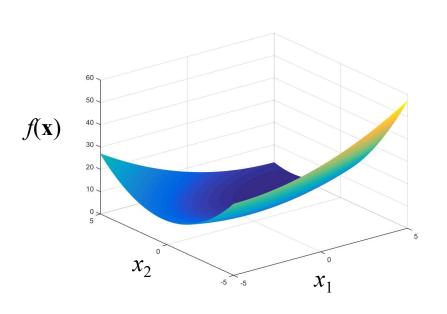


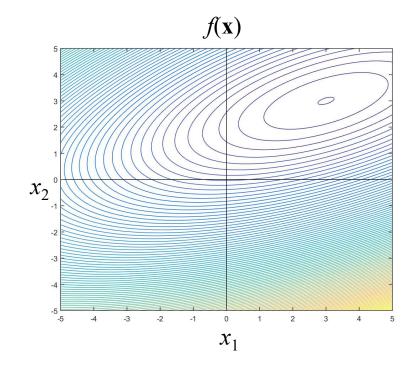
- Left: " L_1 " regularization, find x that minimizes f(x)
 - \circ Also minimize $|\mathbf{x}|_1$
 - $|\mathbf{x}|_1 = \text{const is a diamond}$
 - o Find x that also minimizes "diameter" of diamond
- Right: "L₂" or Tikhonov regularization
 - o Also minimize $||\mathbf{x}||^2$
 - $\circ ||\mathbf{x}||^2 = \text{const is a circle (sphere)}$
 - \circ Find x that also minimizes "diameter" of circle

Regularization

- The problem: multiple simultaneous objectives
 - Minimize f(X)
 - Also minimize $g_1(X)$, $g_2(X)$, ...
 - These are "regularizers"
- Solution: Define
 - $-L(X) = f(X) + \lambda_1 g_1(X) + \lambda_2 g_2(X) + \cdots$
 - $-\lambda_1,\lambda_2$ etc are regularization parameters. These are set and not estimated
 - Unlike Lagrange multipliers
 - Minimize L(X)

Contour Plot of a Quadratic Objective



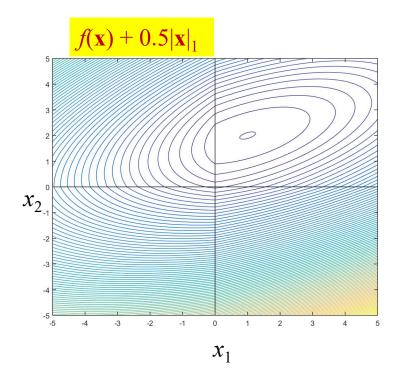


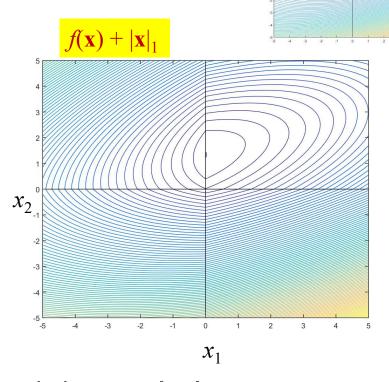
Left: Actual 3D plot

$$-\mathbf{x} = [x_1, x_2]$$

- Right: equal-value contours of $f(\mathbf{x})$
 - Innermost contour has lowest value

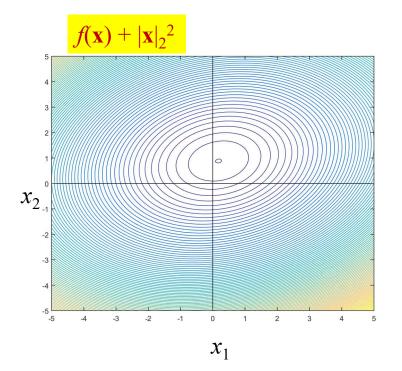
With L₁ regularization

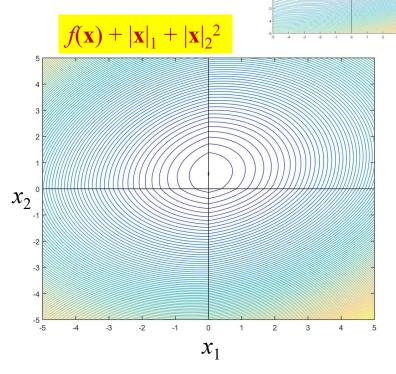




- L₁ regularized objective $f(\mathbf{x}) + \lambda |\mathbf{x}|_1$, for different values of regularization parameter λ
 - Note: Minimum value occurs on x_1 axis for $\lambda = 1$
 - "Sparse" solution

L₂ and L₁-L₂regularization

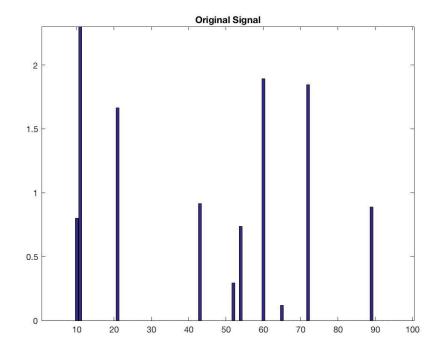




- L₂ regularized objective $f(\mathbf{x}) + \lambda ||\mathbf{x}||^2$ results in "shorter" optimum
- L₁-L₂ regularized objective results in sparse, short optimum
 - $-\lambda = 1$ for both regularizers in example

Regularization

- Sparse signal reconstruction
 - Minimum Square Error
- Signal \hat{x} of length 100
- 10 non-zero components



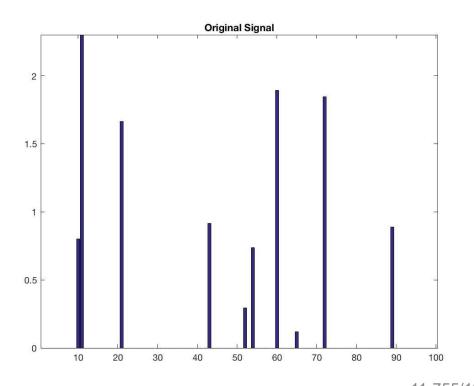
Reconstructing the original signal from noisy 50 measurements

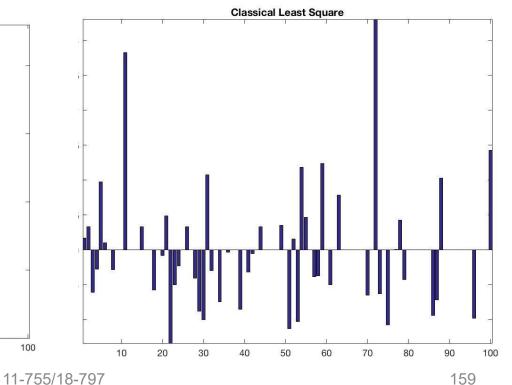
$$b = A\hat{x} + \varepsilon$$

Signal reconstruction **Minimum Square Error**

- Signal reconstruction
- Least square problem $\min \|Ax b\|_2^2$

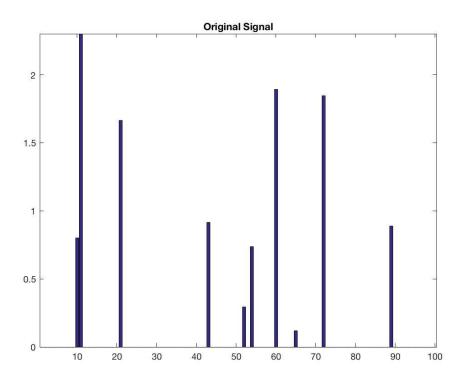
$$\min \left\| Ax - b \right\|_2^2$$

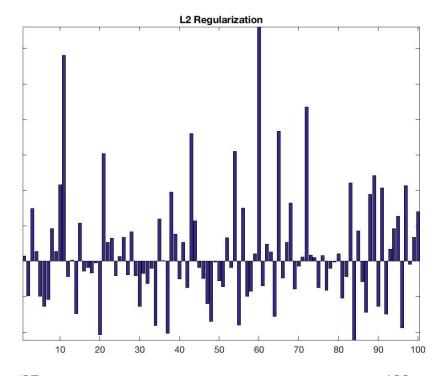




L2-Regularization

- Signal reconstruction
- Least squares problem $\min ||Ax b||_2^2 + \gamma ||x||_2^2$



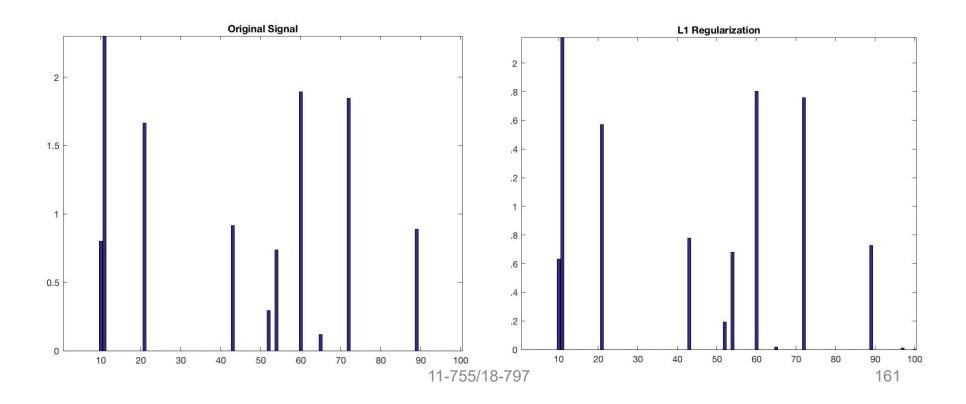


11-100110-197

160

L1-Regularization

- Signal reconstruction
- Least square problem $\min ||Ax b||_2^2 + \gamma ||x||_1$



Index

- 1. The problem of optimization
- 2. Direct optimization
- 3. Descent methods
 - Newton's method
 - Gradient methods
- 4. Online optimization
- 5. Constrained optimization
 - Lagrange's method
 - Projected gradients
- 6. Regularization
- 7. Convex optimization and Lagrangian duals

11-755/18-797

Convex optimization Problems

- An convex optimization problem is defined by
 - convex objective function
 - Convex inequality constraints f_i
 - Affine equality constraints h_j

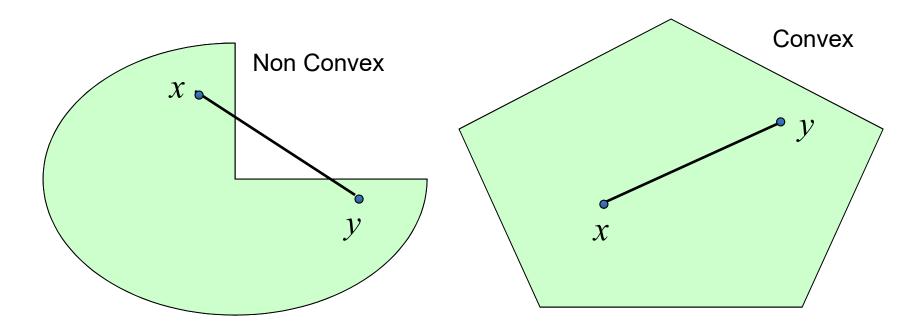
$$\min_{x} f_0(x) \quad (convex function)$$

$$s.t. \ f_i(x) \le 0 \ (convex sets)$$

$$h_i(x) = 0 \ (Affine)$$

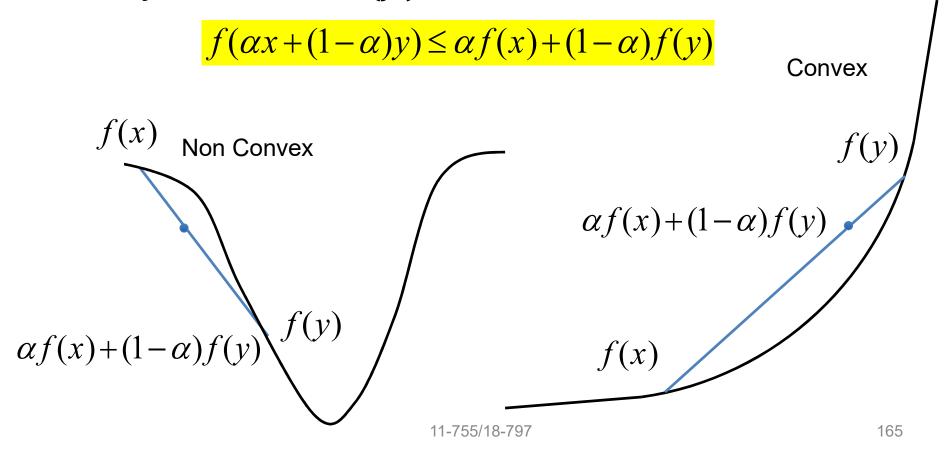
Convex Sets

• a set $C \in \mathbb{R}^n$ is convex, if for each $x, y \in C$ and $\alpha \in [0,1]$ then $\alpha x + (1-\alpha)y \in C$



Convex functions

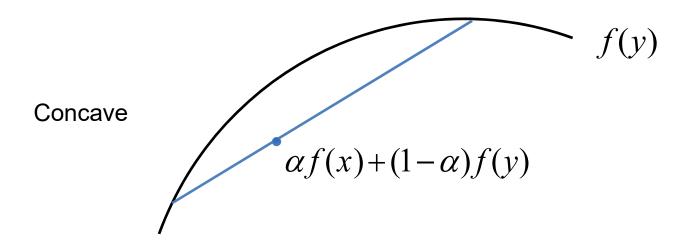
• A function $f: \mathbb{R}^N \longrightarrow \mathbb{R}$ is convex if for each $x, y \in domain(f)$ and $\alpha \in [0,1]$



Concave functions

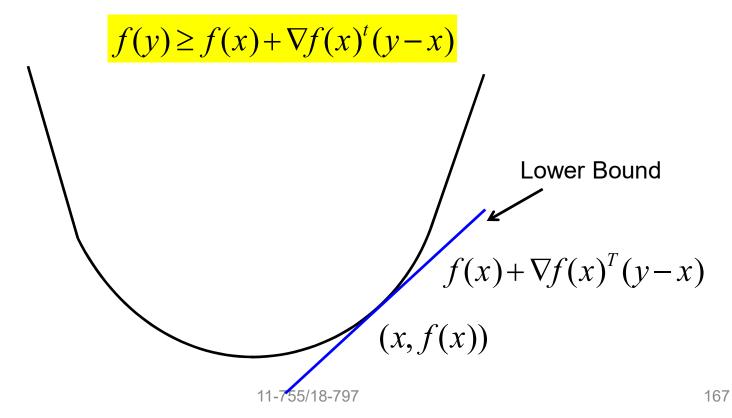
• A function $f: \mathbb{R}^N \longrightarrow \mathbb{R}$ is convex if for each $x, y \in domain(f)$ and $\alpha \in [0,1]$

$$f(\alpha x + (1 - \alpha)y) \ge \alpha f(x) + (1 - \alpha)f(y)$$



First order convexity conditions

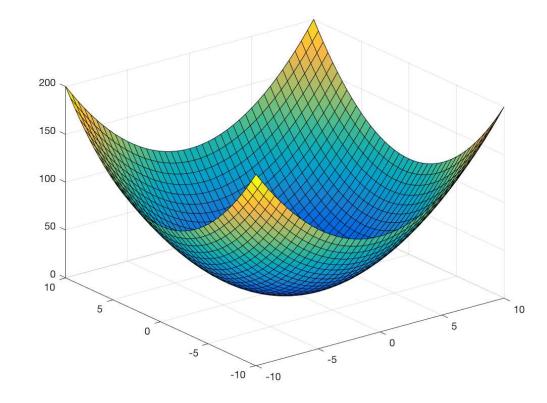
• A differentiable function $f: \mathbb{R}^N \longrightarrow \mathbb{R}$ is convex if and only if for $x,y \in domain(f)$ the following condition is satisfied



Second order convexity conditions

• A twice-differentiable function $f: \mathcal{R}^N \longrightarrow \mathcal{R}$ is convex if and only if for all $x, y \in domain(f)$ the Hessian is superior or equal to zero

$$\nabla^2 f(x) \ge 0$$



Properties of Convex Optimization

- For convex objectives over convex feasible sets, the optimum value is unique
 - There are no local minima/maxima that are not also the global minima/maxima
- Any gradient-based solution will find this optimum eventually
 - Primary problem: speed of convergence to this optimum

Optimization problem with constraints

$$\min_{x} f(x)$$
s.t. $g_{i}(x) \le 0$ $i = \{1,...,k\}$

$$h_{j}(x) = 0$$
 $j = \{1,...,l\}$

• Lagrange multipliers $\lambda_i \geq 0, \, \nu \in \mathfrak{R}$

$$L(x, \lambda, \nu) = f(x) + \sum_{i=1}^{k} \lambda_i g_i(x) + \sum_{j=1}^{l} \nu_j h_j(x)$$

The Dual function

$$\inf_{x} L(x, \lambda, \nu) = \inf_{x} \left\{ f(x) + \sum_{i=1}^{k} \lambda_{i} g_{i}(x) + \sum_{j=1}^{l} \nu_{j} h_{j}(x) \right\}$$

The Original optimization problem

$$\min_{x} \left\{ \sup_{\lambda \geq 0, \nu} L(x, \lambda, \nu) \right\}$$

The Dual optimization

$$\max_{\lambda \geq 0, \nu} \left\{ \inf_{x} L(x, \lambda, \nu) \right\}$$

Property of the Dual for convex function

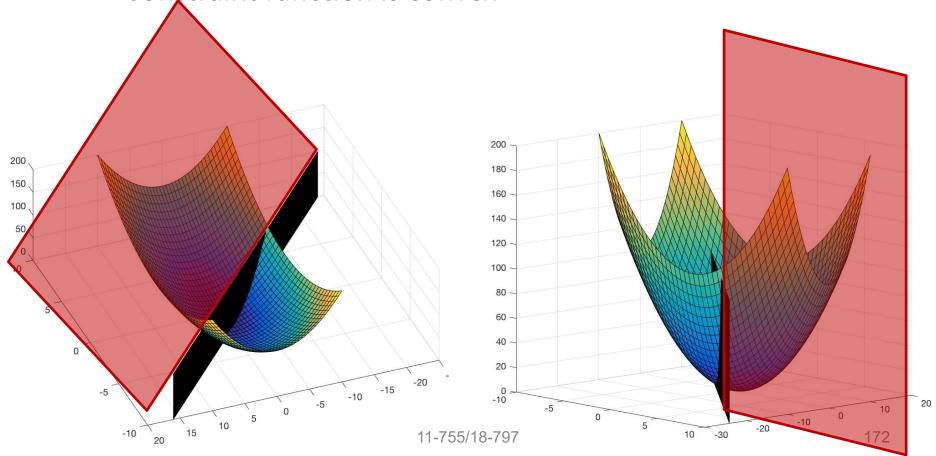
$$\sup_{\lambda \ge 0, \nu} \left\{ \inf_{x} L(x, \lambda, \nu) \right\} = f(x^*)$$

- Previous Example
 - -f(x,y) is convex

Constraint function is convex

$$\min_{x,y} f(x,y) = x^2 + y^2$$

s.t.
$$2x + y \le -4$$



Primal system

$$\min_{x,y} f(x,y) = x^2 + y^2$$
s.t.
$$2x + y \le -4$$

Lagrange Multiplier

$$L = x^{2} + y^{2} + \lambda(2x + y - 4)$$

$$\frac{\partial L}{\partial x} = 2x + 2\lambda = 0 \Rightarrow x = -\lambda$$

$$\frac{\partial L}{\partial y} = 2y + \lambda = 0 \Rightarrow y = -\frac{\lambda}{2}$$

Dual system

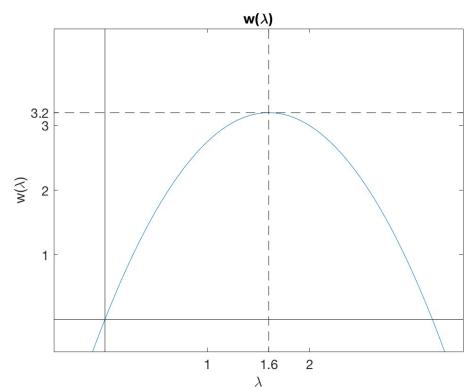
$$\max_{\lambda} w(\lambda) = \frac{5}{4} \lambda^2 + 4\lambda$$
s.t. $\lambda \ge 0$

Property

$$w(\lambda^*) = f(x^*, y^*)$$

Dual system

$$\max_{\lambda} w(\lambda) = \frac{5}{4} \lambda^2 + 4\lambda$$
s.t. $\lambda \ge 0$



- Concave function
 - Convex function become concave function in dual problem

$$\frac{\partial w}{\partial x} = -\frac{5}{2}\lambda + 4 = 0 \Rightarrow \lambda^* = \frac{8}{5}$$

Primal system

$$\min_{x,y} f(x,y) = x^2 + y^2$$
s.t.
$$2x + y \le -4$$

Dual system

$$\max_{\lambda} w(\lambda) = \frac{5}{4} \lambda^2 + 4\lambda$$

$$s.t. \ \lambda \ge 0$$

• Evaluating $w(\lambda^*) = f(x^*, y^*)$

$$x^* = -\frac{8}{5}, y^* = -\frac{4}{5}$$

$$f(x^*, y^*) = \left(-\frac{8}{5}\right)^2 + \left(-\frac{4}{5}\right)^2$$

$$f(x^*, y^*) = \frac{16}{5}$$

$$\lambda^* = \frac{8}{5}$$

$$w(\lambda^*) = -\frac{5}{4} \left(\frac{8}{5}\right)^2 + \frac{32}{5}$$

$$w(\lambda^*) = \frac{16}{5}$$