Machine Learning for Signal

Processing
Lecture 4: Optimization

Instructor: Bhiksha Raj
(slides largely by Najim Dehak, JHU)
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Course Projects

* Projects will be done by teams of students

— ldeal team size: 4
— Find yourself a team
— If you wish to work alone, that is OK

* But we will not require less of you for this

— If you cannot find a team by yourselves, you will be assigned to
a team

— Teams will be listed on the website
— All currently registered students will be put in a team eventually

* Will require background reading and literature survey

— Learn about the problem



Projects

* Teams must be formed by 17t Tuesday

 Teams must send us a preliminary project proposal by
30t September 2019
— Please send us proposals earlier, so that we can vet them

— The later you start, the less time you will have to work on the
project



Quality of projects

* Project must include aspects of signal analysis
and machine learning
— Prediction, classification or compression of signals
— Using machine learning techniques

e Several projects from previous years have led to
publications
— Conference and journal papers
— Best paper awards
— Doctoral and Masters’ dissertations



Projects from past years: 2015

Loop querier — searching the rhythmic pattern

Vision-based montecarlo localization for autonomous
vehicle

Beatbox to drum conversion
City localization on flikr videos using only audio

Facial landmarks based video frontalization and its
application in face recognition

Audioshop: Modifying and editing singing voice

Predicting and classifying RF signal strength in an
environment with obstacles

Realtime detection of basketball players



Projects from past years: 2014

IMPROVING SPATIALIZATION ON HEADPHONES FOR STEREO MUSIC
PREDICTING THE OUTCOME OF ROULETTE

FACIAL REPLACEMENT IN VIDEOS

ISOLATED SIGN WORD RECOGNITION SYSTEM

ACCENTED ENGLISH DIALECT CLASSIFICATION

BRAIN IMAGE CLASSIFIER

FACIAL EXPRESSION RECOGNITION

MOOD BASED CLASSIFICATION OF SONGS TO IDENTIFY ACOUSTIC
FEATURES THAT ALLEVIATE DEPRESSION

PERSON IDENTIFICATION THROUGH FOOTSTEP-INDUCED FLOOR
VIBRATION

DETECT HUMAN HEAD-ORIENTATION BASED ON CONVOLUTIONAL
NEURAL NETWORK AND DEPTH CAMERA

NEURAL NETWORK BASED SLUDGE VOLUME INDEX PREDICTION



Projects from past years: 2014

8-BIT MUSIC NOTE IDENTIFICATION - TURNING MARIO INTO METAL

STREET VIEW HOUSE NUMBER RECOGNITION BASED ON
CONVOLUTIONAL NEURAL NETWORKS

TRAIN-BASED INFRASTRUCTURE MONITORING
MANIFOLD INTERPOLATION OF X-RAY RADIOGRAPHS

A SMARTPHONE BASED INDOOR POSITIONING SYSTEM
AUGMENTED WITH INFRARED SENSING

ROCK, PAPER, SCISSORS -- HAND GESTURE RECOGNITION
LANGUAGE MODELS WITH SEMANTIC CONSTRAINTS

LEARNING TO PREDICT WHERE A DRIVER LOOKS

REAL TIME MONITORING OF STUDENT'S LEARNING PERFORMANCE



Projects from past years: 2013

Automotive vision localization

Lyric recognition

Imaging without a camera

Handwriting recognition with a Kinect
Gender classification of frontal facial images
Deep neural networks for speech recognition
Predicting mortality in the ICU

Human action tagging

Art Genre classification

Soccer tracking

Image manipulation using patch transforms
Audio classification

Foreground detection using adaptive mixture models



Projects from previous years: 2012

e Skin surface input interfaces
— Chris Harrison

* Visual feedback for needle steering system
* Clothing recognition and search

* Time of flight countertop
— Chris Harrison

* Non-intrusive load monitoring using an EMF sensor
— Mario Berges

* Blind sidewalk detection
* Detecting abnormal ECG rhythms
* Shot boundary detection (in video)
» Stacked autoencoders for audio reconstruction
— Rita Singh
* Change detection using SVD for ultrasonic pipe monitoring

* Detecting Bonobo vocalizations
— Alan Black

* Kinect gesture recognition for musical control



Projects from previous years: 2011

* Spoken word detection using seam carving on spectrograms
— Rita Singh
* Bioinformatics pipeline for biomarker discovery from oxidative
lipidomics of radiation damage
 Automatic annotation and evaluation of solfege

* Left ventricular segmentation in MR images using a conditional
random field

* Non-intrusive load monitoring
— Mario Berges

* Velocity detection of speeding automobiles from analysis of audio
recordings

* Speech and music separation using probabilistic latent component
analysis and constant-Q transforms



Project Complexity

Depends on what you want to do
Complexity of the project will be considered in grading.

Projects typically vary from cutting-edge research to
reimplementation of existing techniques. Both are fine.

Only caveat : The term “deep learning” must not relate
to your project
— Absolutely no DL/Nnets



Incomplete Projects

* Be realistic about your goals.

* Incomplete projects can still get a good grade if
— You can demonstrate that you made progress

— You can clearly show why the project is infeasible
to complete in one semester

e Remember: You will be graded by peers



“Local” Projects..

e Several project ideas routinely proposed by various
faculty/industry partners

— Sarnoff labs, NASA, Mitsubishi, Adobe..
* Local faculty

— Alan Black is usually good for a project or two

— LP Morency has fantastic ideas on analysis of multimodal
recordings of H-H (and H-C) communication

— Roger Dannenberg is a world leader in computational music
— Mario Berges has helped in the past

— Rita Singh does nice work on speech forensics

— Others...



Questions?

11755/18979
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4.

Index

The problem of optimization
Direct optimization

Descent methods

— Newton’s method

—  Gradient methods
Online optimization
Constrained optimization

—  Lagrange’s method

—  Projected gradients
Regularization

Convex optimization and Lagrangian duals



Index

1. The problem of optimization
2. Direct optimization
3. Descent methods
— Newton’s method
—  Gradient methods
4. Online optimization
5. Constrained optimization
—  Lagrange’s method
—  Projected gradients
6. Regularization
7. Convex optimization and Lagrangian duals

11-755/18-797

16



A problem we recently saw
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* The projection matrix P is the matrix that minimizes
the total error between the projected matrix S and the
original matrix M
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The projection problem

S=PM

For individual vectors in the spectrogram

- S;=PM,

Total projection error is

- E = Y,IIM; — PM;|?

The projection matrix projects onto the space of notesin N
— P=NC

The problem of finding P : Minimize E = Y;||M; — PM;||* such
that P = NC

This is a problem of constrained optimization



Optimization

e Optimization is finding the “best” value of a function f(x)
(which can be the best minimum)

f(x) A

global maximum

min f( x ) inflection point
X

local minimum
global minimum




Examples of Optimization :
Multivariate functions

* Find the optimal point in these functions

.
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Index

1. The problem of optimization
2. Direct optimization
3. Descent methods
— Newton’s method
—  Gradient methods
4. Online optimization
5. Constrained optimization
—  Lagrange’s method
—  Projected gradients
6. Regularization
7. Convex optimization and Lagrangian duals

11-755/18-797
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Simple Approach: Turning Point

£(X)

* The “minimum” of the function is always a “turning point”

— Points where the function “turns” around

* In every direction

— For minima, the function increases on either side

 How to identify these turning points?

11-755/18-797
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The “derivative” of a curve

A

< / >
| N
S le— T

\4

The derivative a, of a curve is a multiplicative factor explaining how much y
changes in response to a very small change in x

Ay = a, Ax
: : d
For scalar functions of scalar variables, often expressed as d—i’ oras f'(x)
Ay = dyA Ay = f'(x)A
y = Ax y =1 (x)Ax

We have all learned how to compute derivatives in basic calculus

23
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<

The derivative of a Curve

Positive
derivative
dy > O+ + O A + [

dx - -
+ - +

+ . . | T [
/ derivative \.{ .
d
dx v Zero
... d
derivative == = 0
dx

* In upward-rising regions of the curve, the derivative is positive
— Small increase in X cause Y to increase

* In downward-falling regions, the derivative is negative

* At turning points, the derivative is 0
— Assumption: the function is differentiable at the turning point

11-755/18-797
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Geometrical application of Calculus
to the derivative of a curve

e Find all values of x for which f(x) = x? —4x + 4 is
increasing, decreasing and stationary

Increasing

f(x)=x"—-4x+4
f'x)=2x-4
2x-4>0

2x >4

X>2

Decreasing

f(x)=x"-4x+4
f'x)=2x-4
2x-4<0

2x <4

X <2

11-755/18-797

Stationary

f(x)=x"—4x+4
ffx)=2x-4
2x-4=0

2x =4

X =2

25



Finding the minimum of a function

A

dy
g_o

fx)

X

* Find the value x at which f'(x) =0
— Solve

af e _

dx
 The solution is a turning point

e Butisita minimum?

11-755/18-797
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Turning Points

e Both maxima and minima have zero derivative

— Both maxima and minima are turning points

11-755/18-797 27



Derivatives of a curve

* Bot
e Bot

N Maxima anc

N Maxima anc

minima are turning points

minima have zero derivative

11-755/18-797 28



Derivative of the derivative of the
curve

 Both maxima and minima are turning points
e Both maxima and minima have zero derivative

 The second derivative f”(x) is —ve at maxima and +ve at minimal!

— At maxima the derivative goes from +ve to —ve, so the derivative
decreases as x increases
— At minima the derivative goes from —ve to +ve and increases as x

increases
29

11-755/18-797



Soln: Finding the minimum or
. maximum of a function

f(x)

>
X
Find the value x at which f'(x) =0: Solve
dfeo _
dx

The solution x,;5, is a turning point
Check the double derivative at x¢,;,, : compute

df’ soln
f”(xsoln) — ! (C)lcx in)

If " (X5011,) iS pOSitive Xg,1,, iS @ minimum, otherwise it is a maximum
11-755/18-797
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What about functions of multiple

variables?
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* The optimum point is still “turning” point
— Shifting in any direction will increase the value
— For smooth functions, miniscule shifts will not result in any change at all
We must find a point where shifting in any direction by a microscopic
amount will not change the value of the function
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The Gradient of a scalar function

#

i
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The Gradient Vf (X) of a scalar function f(X) of a
multi-variate input X is a multiplicative factor that

gives us the change in f(X) for tiny variations in X

AF(X) = VFXO)TAX

11-755/18-797
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Gradients of scalar functions with
multi-variate inputs

e Consider f(X) = f(xq, X9, v, Xp)

0f (X)
0x4
of (X)
ViX) =] ax,
of (X)
0x,,
e Check:
Afa(X)X: Vf(X);AXX iy
= %Axl + %Z)sz + -+ %Axn



A well-known vector property

u.v = |ul|v|cosB

* The inner product between two vectors of
fixed lengths is maximum when the two
vectors are aligned

11-755/18-797 34



Properties of Gradient

Af(X) = Vf(X)TAX
— The inner product between Vf(X) and AX

Fixing the length of AX
— E.g. |AX| =1
Af(X)ismaxif ZVf(X),AX =0

— The function f(X) increases most rapidly if the input
increment AX is perfectly aligned to Vf (X)

The gradient is the direction of fastest increase in f(X)

11-755/18-797 35




lent

Grad

Gradient
_ vector Vf(X)

36
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Gradient
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e vector Vf(X)

Gradient

Moving in this
direction increases
f(X) fastest

11-755/18-797
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Gradient

2 i I
6 L=
12 I o . i e
F :
Gradient
oa Ly _ vector Vf (X)
: i, I I
| - - T | . . .
. |q e = Moving in this
. ] —VIX) - - | direction increases
Moving in this e f(X) fastest
direction decreases | i ——. = _—"
f(X) fastest 15 = °
| 20
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Gradient

Gradient here

is O

= n..w.... e
"
| o
i -
L - - | - L]
| T

Gradient here !4

is O

39

11-755/18-797



Properties of Gradient: 2

* The gradient vector Vf(X) is perpendicular to the level curve

40



Derivatives of vector function of
vector input

Af (X)

* The Gradient Vf(X) of a vector function f(X) of a
multi-variate input X is a multiplicative factor that
gives us the change in f(X) for tiny variations in X

Af(X) = VF(X)TAX

11-755/18-797 41



“Gradient” of vector function of

V(X)) =

M W
ox, Ox,
N, N,
ox, Ox,
¥, .,
ox, Ox,

J(X)=

oY

Ox

n

oy,

Ox

n

oy

ox,

11-755/18-797

vector input

Vi
%)

Vm _

Properties and interpretations
are similar to the case of
scalar functions of vector
inputs
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Chain rule

The gradient is based on derivatives

The derivative of composed function f(g(x)) or
fegcan be very complicated to compute

If f°¢& is the composite of y=/(w) and u=g(x)

h / / / dy—dydu
T en (fog) =f;ltu=g(x).gatx or dx du dx

This is known as Chain rule




Example of chain rule

8x—x° | 3
* Differentiate h(x)=[ > 3x j
X

* Simplification
4 4

8x—x° |5 [8x x6j5 P
h(x)= = — =(8x " —Xx

* Applying Chain rule

4
5

y=f(u)=(u)



Example of chain rule

* Applying Chain rule

4

h(x)= (—gj(sz —x3)_ ) (—8x 7 —x’)'

h(x)= (—%j(sz — x3)_Z (—16x~ —=3x7%)

e After simplification
; 5
h(x):4x (16+3x7)

9

5(8—x°)3




Vector and Matrix derivatives

* The derivative of vectorx=| . |byascalar yis

given by o
£
ox,

oy

Ox

Ox

11-755/18-797



Vector and Matrix derivatives

* The derivative of scalar y by a vector x=
given by

@ X,
ox,
&
Ox,

P
ox,

11-755/18-797




Vector and Matrix derivatives

e The derivative of vector x=

Is given by

Ox, Ox,
oy
Oox, Ox,
0y,
ox, Ox,
0y,

Dy a vector y=

i
Y

Y




Vector and Matrix derivatives

X X - o X,
. . . Xor Xop - o Xy,
* The derivative of matrix x-=
xm,l xm,2 xmn
by a scalar y is given by _ '
ox,,  Ox, Ox,
a oy oy
Ox,, 0x,, Oox,
0 %) 0
ai(: 34 Y 4
ay . .
ox,, Ox,, ox,,
dy Oy dy

11-755/18-797
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Vector and Matrix derivatives

* The derivative a scalar y by a matrix

xm,Z

dy 0y
a 8x1’1 6x1,2
H oy Oy
X X1 axz,z
IS given by j—;=
X dy 0y
. ox,, Ox,,

11-755/18-797
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Vector and Matrix derivatives

e The derivative of vector x of 7, elements
by a matrix Y of size (p,q) is given by

i ox ox ox |
oy v, Oy, . .
G % 2% |sthe derivative of
ox ox ox 6
T Yii the vector x by the
x ° °
ov | scalar v.; which is
o ox  Ox an element of the
ay . 8)/ .2 8)’ p.q .
matrix vy




Vector and Matrix derivatives

* The derivative of matrix X of size (m,») by

another matrix Y of size (p,q) is given by
oX o0X oX
a 1,1 a 1,2 a 1 M :
o “ 9X s the derivative of
oX o0X oX P .
R Yij the matrix x by the
oy | scalar ».; which is
ox ox X an element of the
aypl 8)’;7,2 8ypq .
matrix y




Gradient Example

* Compute the Gradient of the function
S (xp, x5, x5)=15x, +2(X2)2 —3x,(x;)

Vi(x),X,,%;) =

Vf(xla xz» X3) =

o o o
ox, Ox, Ox,

15-3(x;)> 6(x,)° —6x,x, }



The Hessian

* The Hessian of a function f (x4, X5, ..., Xy,) is
given by the second derivative

62_f o f o' f
ox;  oxox,  Ox0Ox,
of of o f
Ox,0x,  Ox:  Ox,0x,
V2 f(x,.nX,) =
of o f 82_f
ox ox, oxox,  Ox




Hessian Example

 Compute the Hessian of the function
S (xp, x5, x5)=15x, +2(X2)2 —3x,(x;)

Vf(xl,xz,x3)::[ 15—3(x3)2 6(x2)2 —6x,x, }

0 0 —b6bx,
Vif(x,x,,x)= 0 12x, 0
—-6x, 0 —6bx,




Returning to direct optimization...
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Finding the minimum of a scalar
function of a multi-variate input

* The optimum point is a turning point — the
gradient will be 0
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Unconstrained Minimization of
function (Multivariate)

1. Solve for the X where the gradient equation equals to
Zero

VI (X)=0

2. Compute the Hessian Matrix 74 f (X) at the candidate
solution and verify that

— Hessian is positive definite (eigenvalues positive) ->to
identify local minima

— Hessian is negative definite (eigenvalues negative) -> to
identify local maxima



Unconstrained Minimization of
function (Example)

* Minimize
f(x1axzax3): (xl)z "‘xl(l_xz)_(xz)z — XX, +(x3)2 T X5

e Gradient

2x,+1-x,

V=l —x+2x,—x,

—x, +2x; +1

11-755/18-797



Unconstrained Minimization of
function (Example)

e Set the gradient to null
2x+1-x, || o
Vi=0=>| —x,+2x,—-x; |=| 0
—x,+2x,+1 | | O

* Solving the 3 equations system with 3 unknowns




Unconstrained Minimization of

function (Example)

2

Compute the Hessian matrix y2¢-| _j

0

—1
2
—1

0
-1
2

Evaluate the eigenvalues of the Hessian matrix
A =3414, 1,=0.586, 1,=2

All the eigenvalues are positives => the Hessian
matrix is positive definite

The point x=

IS 2@ minimum




Index

1. The problem of optimization
2. Direct optimization
3. Descent methods
— Newton’s method
—  Gradient methods
4. Online optimization
5. Constrained optimization
—  Lagrange’s method
—  Projected gradients
6. Regularization
7. Convex optimization and Lagrangian duals

11-755/18-797
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Closed Form Solutions are not always
A available

f(X)

> X

» Often it is not possible to simply solve Vf(X) = 0

— The function to minimize/maximize may have an
intractable form

* In these situations, iterative solutions are used

— Begin with a “guess” for the optimal X and refine it
iteratively until the correct value is obtained



Iterative solutions

f(X)

Sg > X

Xy XqXo xﬁx3
4

* |terative solutions
— Start from an initial guess X, for the optimal X
— Update the guess towards a (hopefully) “better” value of f(X)
— Stop when f(X) no longer decreases
* Problems:
— Which direction to step in
— How big must the steps be

11-755/18-797 64



Descent methods

* |terative solutions that attempt to “descend”
the function in steps to arrive at the minimum

* Based on the first order derivatives (gradient)
and in some cases the second order
derivatives (Hessian).

— Newton’s method is based on both first and
second derivatives

— Gradient descent is based only on the first
derivative



Descent methods

* |terative solutions that attempt to “descend”
the function in steps to arrive at the minimum

* Based on the first order derivatives (gradient)
and in some cases the second order
derivatives (Hessian).

— Newton’s method is based on both first and
second derivatives

— Gradient descent is based only on the first
derivative




Newton’s iterative method to find the
zero of a function

A R+ _ xk B f(xk)

F)

X

/ = Funktion

I O O N S O N IO O A O N B Tangente |

 Newton’s method to find the “zero” of a function
— Initialize estimate
— Approximate function by the tangent at initial value
— Update estimate to location where tangent becomes 0
— lterate 11-755/18-797 67



Newton’s Method to optimize a

function

17 ) “

\ x, B \ /6

/

Funktion

e Tangente

 Apply Newton’s method to the derivative of the function!
— The derivative goes to 0 at the optimum
e Algorithm:
— Initialize x,
— Kt iteration: Approximate /”’(x) by the tangent at x,
— Find the location x:

tersec

. Where the tangent goes to 0. Setx, ., = x

intersect

— |terate 11-755/18-797 68



Newton’s method to minimize
univariate functions

* Apply Newton’s algorithm to find the zero of
the derivative f'(x)

ek f’(xk)
f"(xk)

 kisthe currentiteration

e The iterations continue until we achieve the
stopping criterion |[x*t1 — x¥| < €



Newton’s method for multivariate
functions

. Select an initial starting point X°

. Evaluate the gradient Vf(Xk) and Hessian
72f(X*)at X*

. Calculate the new X**1 using the following
Xk+1 _ Xk _[VZf(Xk)Tlvf(Xk)

. Repeat Steps 2 and 3 until convergence



Newton’s Method example

* This is the same optimization problem we saw
previously

* Minimize
J(x,x,,xy)= (x1)2 +x1(1_x2)_(x2)2 — X X3 +(x3)2 T X5

e Gradient - .
2x,+1-x,

V= —x+2x,—x,

—x, +2x; +1




Newton’s Method example

o
e |nitial Value of X° = |0
0.

* The gradient for the vector X°

0-0+1 1
V£(0,0,0)=| -0+0-0 |=| O
—0-0+1 1




Unconstrained Minimization of

function (Example)

e The Hessian matrix is

Vif =

2
—1
0

—1
2
—1

0
-1
2

 The inverse of the Hessian is needed as well

A

2
-1
0

—1
2
-1

0
-1
2

3

4
1
2
1
4

1

[

Blw N|— N




Newton’s Method example

e The new vector x after iteration 1 is as follow

X' =x" -V rx[ v
311
0] |4 2 41
1 1 1
X' =lol-|= 1 =0
2 2
001 1 3h
4 2 4




Newton’s Method example

* The updated value of the gradient for x'=

Vi(=1,-1,—1)=

2+1+1
—1+2-1

—1-2+1

0
0
0

e The Gradient is zero => The Newton method

has converged




Newton’s Method

* Newton’s approach is based on the computation of both

x1_+:1 :-.t?+4 JFE

gradient and Hessian : |
— Fast to converge (few iterations) " |
3|- o0

— Slow to compute | |
N |

(arrives at optimum <o \ 1

in a single step) A} Y, I

.3 '

|

> . |

5 -4 a4 -2 o1 2 3 4 5

e Can arrive at the optimal solution in a single step for a quadratic
function
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Newton’s method: generic case

Approximates function by a quadratic Taylor series at the current
estimate

Solves for the optimum of the quadratic approximation
— Single step
Repeat

11-755/18-797
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Newton’s method: generic case

Approximates function by a quadratic Taylor series at the current
estimate

Solves for the optimum of the quadratic approximation
— Single step
Repeat
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Newton’s method: generic case

Approximates function by a quadratic Taylor series at the current
estimate

Solves for the optimum of the quadratic approximation
— Single step
Repeat

11-755/18-797

v

79



Newton’s method: generic case

Approximates function by a quadratic Taylor series at the current
estimate

Solves for the optimum of the quadratic approximation
— Single step
Repeat
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Newton’s method: generic case

Approximates function by a quadratic Taylor series at the current
estimate

Solves for the optimum of the quadratic approximation
— Single step
Repeat

11-755/18-797
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Newton’s method: generic case

|
|
|
|
|
|
|
|
2

Approximates function by a quadratic Taylor series at the current
estimate

Solves for the optimum of the quadratic approximation
— Single step
Repeat

11-755/18-797
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Newton’s method: generic case

|
|
: solution!
|
|
|
|

X3

~N—

Approximates function by a quadratic Taylor series at the current
estimate

Solves for the optimum of the quadratic approximation
— Single step
Repeat
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Newton’s method: generic case

v

N~ __—

* Approximates function by a quadratic Taylor series at the current estimate
* Solves for the optimum of the quadratic approximation

— Single step
* Repeat

— Can easily get lost if the initial point is poor

11-755/18-797 84



Newton’s Method

* Newton’s approach is based on the computation of both gradient and

Hessian . ... s
— Fast to converge (few iterations) .
— Slow to compute al 50

2

Newton’s method —/’

(arrives at optimum <o
in a single step) ot

* Can be very efficient
* This method is very sensitive to the initial point

— If theinitial point is very far from the optimal point, the optimization process may not converge

11-755/18-797 85



Descent methods

* |terative solutions that attempt to “descend”
the function in steps to arrive at the minimum

* Based on the first order derivatives (gradient)
and in some cases the second order
derivatives (Hessian).

— Newton’s method is based on both first and
second derivatives

— Gradient descent is based only on the first
derivative




The Approach of Gradient Descent

E
NEGATIVE SLOPE
. POSITIVE SLOPE

A IB DAL :
._—.' 4—

* |terative solution:
— Start at some point
— Find direction in which to shift this point to decrease error

* This can be found from the derivative of the function
— A positive derivative = moving left decreases error
— A negative derivative = moving right decreases error

— Shift point in this direction



The Approach of Gradient Descent

NEGATIVE SLOPE

POSITIVE SLOPE

GLOBAL (

WAL , .
] ] Dec“as‘é\? ] . Increase w
* |terative solution: Trivial algorithm
— Initialize x°

— While f'(x*) # 0

. If sign (f’(xk)) is positive:

k41 _ ok

- X — step

* Else
— xk+1 = x* + step

— But what must step be to ensure we actually get to the optimum?



The Approach of Gradient Descent

NEGATIVE SLOPE
: POSITIVE SLOPE

i

5 GLOBAL (

1 T :
Decrease w Increase w

* |terative solution: Trivial algorithm

— Initialize x©

— While f'(x*) # 0

o x*k*t1 = xk — sign (f’(xk)) .step

— Identical to previous algorithm



The Approach of Gradient Descent

NEGATIVE SLOPE
: POSITIVE SLOPE

i

5 GLOBAL (

1 T :
Decrease w Increase w

* |terative solution: Trivial algorithm

— Initialize x
— Whilef'(x*) # 0

e XL =k k(39
—n* is the “step size”

 What must the step size be?



Gradient descent/ascent
(multivariate)

* The gradient descent/ascent method to find the
minimum or maximum of a function f iteratively

— To find a maximum move in the direction of the
gradient

xR+l — y ko nkvf(xk)
— To find a minimum move exactly opposite the
direction of the gradient

k+1 = ok _ nkvf(xk)

» What is the step size n*



1. Fixed step size

* Fixed step size

— Use fixed value for n*

fix) &

Small Steps Target
. i

EEEEEEEREE >
X

11-755/18-797
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Influence of step size example
(constant step size)

F(x,x,) =(x,)7 +x,x, +4(x,) X" =

2
| i 1 I
(9] e~ w na — o == [R] w E=3 w
T T ——— T T T T —T
/ Vi \ \

2
LI S - - S -

%5 4 38 2 4 0 1 2 8 4
s 4 8 2 4 9 1z 3 4 75518797 2 93



Variable step size

e Shrink step size by a constant factor each iteration:

n* = an*~
— Wherea < 1

e Gradient descent algorithm:
— Initialize x°, n°
— Whilef'(x*) = 0
o xktl = xk _pkgr (xk)

o nktl = ank

e k=k+1



Optimal step size

* Finding the optimal step size is a challenge
* |deally, step size changes with iteration
* Several algorithms to find optimal step size

— On slides

* Please read the slides, this will appear in the quiz



2. Backtracking line search for step
size

* Two parameters a (typically 0.5) and [ (typically 0.8)
* At each iteration, estimate step size as follows:

— Setn® =1

— Update n* = fn*until

f (= 7)) < F(4) = an*|Pr (I
— Update x**1= xk —nkpf(xk)

* |ntuitively: At each iteration
— Take a unit step size and keep shrinking it until we arrive at
a place where the function f (xk — nka(xk)) actually

decreases sufficiently w.r.t f(xk)



2. Backtracking line search for step size

* Keep shrinking step size till we find a good one
97



2. Backtracking line search for step size

* Keep shrinking step size till we find a good one
* Update estimate to the position at the converged step size.,



2. Backtracking line search for step size

* At each iteration, estimate step size as follows:
— Setnk =1
— Update nk = ﬁnkuntil
f (e =77 (2) < () = an P ()]
— Update x**1=x* —n*vf(x*) ),

-

Large Steps

e Figure shows actual evolution of x*
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3. Full line search for step size

* At each iteration scan for n;, that minimizes f (xk — nka(xk))
* Update x* = x* — n*Vf(x¥)

11-755/18-797 100



3. Full line search for step size

* At each iteration scan for 1, that minimizes f (xk — nka(xk))
* Can be computed by solving
df (xk — nka(xk))
dnk
* Update x*= x* — n*Vf(x¥)

=0
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Gradient descent convergence criteria

* The gradient descent algorithm converges
when one of the following criteria is satisfied

S =fON<g gy S

. lteration 3

* Or HVf(xk)H <&,

' lteration 4

Convergence

[ T N | |
T EEEEE >

Final
11-75L . Value [02



Gradient descent example

* This is the same optimization problem as
previously

* Minimize
J(x,x,,xy)= (x1)2 +x1(1_x2)_(x2)2 — X X3 +(x3)2 T X5

e Gradient initial vector

2x,+1-x,

V= —x+2x,—x, x'=| 0

—x, +2x, +1 0



Gradient descent example

2:-0+1-0 |

Vi(x")=| —-0+2-0-0 |=| O
—0+2-0+1 |

0 1 —a'

x'=| 0 |-’ 0 |=| 0
0 | o

* Find the best step value '



Gradient descent example

f(x)=(-a'y ~a’ +(-a"y =a’
=2(a) -2(a")

8f(x1) _ 4(0{0)—2
o’

* Set the derivative equal to zero i

0
—
1
TC) _yay-2=0=a'=L ¥ 0 |-
oo 2 P




Gradient descent example

e |teration 2 I “1+1+0 1 - 7
0
vicLo-Ly=| Liosd |4
2 2 2 2 0
- 0-1+1 | = -
1 I
2 0 2
x*= 0 |-d| 1 |5 -«
1 0 1
2 - 2
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Gradient descent example

2 1 1 1 o 1o 11
x)=——l+a)+(ad)y ——a +———
J(x7) A 2( )+(a) SE TS
1
— a12_g1__
(@) >
of (x°) 1
=2(a )1
3 (@) ) o
* Set the derivative equaltozero | 1
of (x° 1 i
f(x1)=2(0!1)—1=():>0[1=— X2: _al _
2




Gradient descent example

* |teration 3

V(-2

|
K
[\
N [— O N —

N[ — © N =




Gradient descent example

f(x))= %(of +1)° —%(0[2 +1)+%

of (x*) 3
P =(a’+1)

* Set the derivative equal to zero| _1 2,




Gradient descent example

* |teration 4

Vf(—— -

1
2’

11-755/18-797
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Gradient descent example

f(x“):i(a%l)z—%(a%—

5f(x4) 21(0(34—1)—2
oa® 2

3
* Set the derivative equal to zero

af(x4) —1(0[3 _|_1)_2:():> o’ =

S
o> 2 8 4

4
X =

3

2




Gradient descent example

* |[teration5 vy 32 .3, 3
7 Y 4)

|
A|wW 0O K|W




Gradient descent example

5 73 4\2 43 4 51
X )=—\ —— (0 )——
J(x7) 32( ) 32( ) ol
af(xs):73 4_@
oot 16 32
* Set the derivative equal to zero _1091
1168
5 ; 66
af(x4):73 4—£:0:>a4:£ X = —%
oo 16 32 146
_1091
1168




Gradient descent example

* Verifying the stopping criteria HVf(xS)H

21

584
35

584
21

584

V(x)=

= 28] o[ 25T (2T =00




Gradient descent example

=0.0786 is very small. The stopping

criteria is satisfied.
1091
1168

e The vector - _% can be taken as the
minimum 1091

1168

* The vector x’ is very close to the optimal
minimum | _;

al
xPmel = 1




Gradient descent vs. Newton’s

* Gradient descent is typically much slower to converge than
NeWton,S x.24x x2+4 x22

5 1. 1.

— But much faster to compute P

Newton’s method

Gradient descent

« Newton’s method is exponentially faster for “convex” problems
— Although derivatives and Hessians may be hard to derive

— May not converge for non-convex problems
116



Index

1. The problem of optimization
2. Direct optimization

3. Descent methods
— Newton’s method
—  @Gradient methods

4. Online optimization

5. Constrained optimization
—  Lagrange’s method
—  Projected gradients

6. Regularization
7. Convex optimization and Lagrangian duals
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Online Optimization

Often our objective function is an error

The error is the cumulative error from many
signals

—Eg. EW) = Xilly — fC, WH|I?

Optimization will find the W that minimizes total
error across all x

What if wanted to update our parameters after
each input x instead of waiting for all of them to
arrive?



MLSP

A problem we saw

= — — e — — e =
- B = = = — = = - = =
= S s - = = s =
) = - _— = . . ;t1-li—7 =y _:: o el P -
OO = = - — = e R = =
e = = S e S — e e = — = -— - =
- s e | = - e == e |
[El=TeT=} = — = e iy = o= . - =
so00 —= =& =8 4 === = = - — ] = S E
ES = ——— e = e el = e =
—_ = = — E == — - - == = = = ——— =
-_ = ao000 = —_— — ——— —_ —— - = — —— — =
= e —— e 5 - — —— = —— e ey e el &
oo Sl e e e T e e b e ey
—— s e = ————— e e e e
e — e = e e e e
Z=ooo = e e ===y s = e R e e e =
e e e = — T = e — s A
000 e e E e e — e e s e
— . ————— — e e —— = —
o — e e e === ——=—
= - = = (=) 1= -
Time

Given the music M and the score § of only four of the
notes, but not the notes themselves, find the notes

M=NS = N=MPinv(S)
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MLSP

The Actual Probl

= s; : i_ t ,\ — — = e
— — ] e e s e e - —’-i.*—, — —g —

] = B = ;‘?"‘ - —— - = — —
e —— SR — — ﬁ_—f—:-__i_ = e 7_77 = 7? e T T fﬁ, ~ — =
e - e = = — — - =
————— = —_— _—— e e

= =

Given the music M and the score S find a matrix /NV such the error of
reconstruction

— E = Y;lIM; — NS;||?

is minimized
This is a standard optimization problem
The solution gives us N = MPinv(S)
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MLSP

The Actual Problem

— — — = — -
W T e g e E = - - - -
S e S e 3
e e — e =
. S e o — e e = e e —— e e e
e == ———————— = === —— —
= ———=—— . == == ————

Given the music M and the score S find a matrix /NV such the error of
reconstruction

— E = Y;|IM; — NS;||?

is minimized

This requires "seeing” all
of M and S to estimate NV

This is a standard optimization problem
The solution gives us N = MPinv(S)
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MLSP

NO Nl N2 N3 N4

 What if we want to update our estimate of the notes after every
input
— After observing each vector of music and its score

— A situation that arises in many similar problems
11-755/18-797 122



Incremental Updates

Easy solution: To obtain the ki estimate N*, minimize the error on
the kth input

— The error on the k™ input is:
E, = My — NSg
— The squared error is:
Ly = EI% = ||Mg — NSKHZ
— Differentiating it gives us
VN = 2(Mg — NSi)S} = 2E, Sk
Update the parameter to move in the direction of this update
N+l = N* + nEg S

n must typically be very small to prevent the updates from being
influenced entirely by the latest observation



Online update: Non-quadratic
functions

The earlier problem has a linear predictor as the underlying model
M, = NS,
We often have non-linear predictors
Ve = g(WXy)
Ex =Yy — g(WXy)
The derivative of the squared error E w.r.t W is often ugly or
intractable

For such problems we will still use the following generalization of
the online update rule for linear predictors

W = WK 4 nEp X))
This is the Widrow-Hoff rule

— Based on quadratic Taylor series approximation of g(.)
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Index

1. The problem of optimization
2. Direct optimization
3. Descent methods
— Newton’s method
—  Gradient methods
4. Online optimization
5. Constrained optimization
—  Lagrange’s method
—  Projected gradients
6. Regularization
7. Convex optimization and Lagrangian duals
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A problem we recently saw

=000 — — e — — - = - —— o =
= = e s A MR R e e ] o = S = = e
= — == = e e = ——— T = = — L |
= B s L = ST B = = e = = - =
N = > o e S = - g e - = - [
—_ = e s el I T == - e W g E e — f— = =il =
- - W= RS e e = S i == =5 __OF an -
eooo = = 5 = - = = == San o =
s000 — R i —— - - = = = 3
= = e = =l = .
= = = S == e - - = = = e — ——
=2 ao0o00 —_— —_— = ————————— — — === = — e e
— H = = = - = - e — == e e o
mo0o il ra—a—— & & e e e e e e
T . e e e =" e e == e e
== —— e — == - — e
TT-T-0 - - —— - — e i = e e R e e =
= = — — e SmmeE - e . e e b == e e
Ccoo e e e B e — = —_—t = = — e
e — — = — —— ——
B e = - ——_— e — ———
e ———=— = ——————— R e e e e
= el (=1 = (=) 1=

. — - - B S — N
ENE - |
=411 - - — 8= - = :

* The projection matrix P is the matrix that minimizes
the total error between the projected matrix S and the
original matrix M
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CONSTRAINED optimization

Recall the projection problem:
Find P such that we minimize
E = YlIM; — PM;]|?

AND such that the projection is composed of

the notesin NV
P =NC

This is a problem of constrained optimization



Optimization problem
with constraints

* Finding the minimum of a function f: RY — R
subject to constraints

min f(x)
s.t. g(x)<0 i={l,.. k}
h(x)=0 j={1..,/}

e Constraints define a feasible region, which is
nonempty



Optimization without constraints

* No Constraints min f(x,y,z)=x"+)"

Best minimum
point




Optimization with constraints

e With Constraints min f(x,y)=x"+)"
X,V

2x+y<-4
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Optimization with constraints

- : min f(x,y)=x"+)"
* Minima w/ and w/o constraints =

s.it. 2x+y<—4

-10

. 5
\I\//I\/l.?%mutm t . t -10 =20 -30 10 Minimum
ithout constraints 11-755/18-797 With constraints 131



Solving for constrained optimization:
the method of Lagrangians

* Consider a function f(x, y) that must be
maximized w.r.t (x, y) subject to

gx,y) =c

— Note, we’re using a maximization example to go
with the figures that have been obtained from
Wikipedia



The Lagrange Method

fxy)

X

* Purple surfaceis f(x,y)
— Must be maximized

* Red curve is constraint g(x,y) =
— All solutions must line on this curve

* Problem: Find the position of the largest f(x,y) on the red
curve!
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The Lagrange Method

&) | maximize f(x,y),s.t. g(x,y) =c

* Dotted lines are constant-value contours f (x,y)
— f(x,y) has the same value C at all points on a contour

* The constrained optimum will be at the point where the
highest constant-value contour touches the red curve

— It will be tangential to the red curve
134



The Lagrange Method

&) | maximize f(x,y),s.t. g(x,y) =c

* The constrained optimum is where the highest
constant-value contour is tangential to the red curve

* The gradient of f(x,y) = C will be parallel to the
gradient of g(x,y) =

135



The Lagrange Method

f%Y) | maximize f(x,y),s.t. glx,y) =c
Y

* At the optimum
Vi(x,y) = AVg(x,y)
glx,y) =c
* Find (x, y) that satisfies both above conditions

136



The Lagrange Method

Vi(x,y) = AVg(x,y)
glx,y) =c
Find (x, y) that satisfies both above conditions
Combine the above two into one equation
L, y, 1) = f(x,y) —A(g(x,y) — ¢)
Optimize it for (x,y, A)

Solving for (x,y),
Veyl(x,y,1)=0 = Vf(x,y) =4AVg(x,y)

Solving for A
dL(x,y,4) "

T = gkxy)=c

11-755/18-797
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The Lagrange Method

Vi(x,y) =AVg(x,y)
glx,y) =c

* Find (x, y) that satisfies both above conditions
* Combine the above two into one equation

L(x,y,/l) — f(X,y) _A(g(x'y) o C)

* Optimize it for (x,y,1)

* So

Formally:
. solto maximize f(x,y): max (min L(x,y, /1))
X,y A

to minimize f(x,y): min (max L(x,y, /1))
X,y

A

11-755/18-797
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Generalizes to inequality constraints

e Optimization problem with constraints
min f(x)

* Lagrange multipliers A20,veR

L(x,A,v)= f(x)+zk:/1igi(x)+zl: vjhj (x)

* The necessary condition

VI =0e Lo, % % _g
ox 04 Ov



Generalizes to inequality constraints

Maximize w.r.t A

* Optimization problem with cCtf constraint is not satisfied

min f(x) this term can be made to
x go to inf with high choice of A
st.g(x)<0i= {1,.
PN Minimizing the loss while maximizing
h(x)=0j= {1"'” A forces constraint to be satisfied
and A togo to O

* Lagrange multipliers /IZ.ZW

L(x,A,v)= f(x)+zk:/1igi(x)+zl: vjhj (x)

* The necessary condition

VI =0e Lo, % % _g
ox 04 Ov



Lagrange multiplier example

min f(x, y)= xt + y2
x’y

st.2x+y<-4

* Lagrange multiplier ]

L=x"+y"+A2x+y+4) ¢

 Evaluate

VLG Av)=0e k=0 %L 20 %k g
ox 04 Ov
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Lagrange multiplier example

* Critical point

o —2/1+(—£j+4:0
— =2x+24=0 2
Ox X==4 5
——A=-4
Eﬂ>£:2y+/1=0 y=—i 2
oy 2 R
oL 2x+y+4=0 ﬂzg =3
—=2x+y+4=0 5
oA
__ 4
g 2
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Optimization with constraints

.. min  f(x,y)=x"+)’
* Lagrange Multiplier results vy
st 2x+y<-4

200 —
180 —
160 —
140 —
120 —

100 —

20

-10
10-30 =20

Minimum With constraints
(-8/5,-4/5,16/5) 11-755/18-797 143



An Alternate Approach: Projected
Gradients

Feasible
Set

y

* The constraints specify a “feasible set”

— The region of the space where the solution can lie
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An Alternate Approach: Projected
Gradients

18 L1

Feasible
Set

12 fowr
as ¥

04 e

From the current estimate, take a step using the conventional
gradient descent approach

— If the update is inside the feasible set, no further action is required
11-755/18-797 145



An Alternate Approach: Projected
Gradients

165 L1

Feasible
Set

oy
as ¥

04 "1

* |f the update falls outside the feasible set,
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An Alternate Approach: Projected
Gradients

Feasible
Set

* |f the update falls outside the feasible set,

— find the closest point to the update on the boundary of the

feasible set
11-755/18-797 147



An Alternate Approach: Projected
Gradients

15 =T

Feasible
Set

)

1_: = o

as ¥

If the update falls outside the feasible set,

— find the closest point to the update on the boundary of the feasible set
— And move the updated estimate to this new point

11-755/18-797 148



The method of projected gradients

min f(x)
st.g.(x)<0i={l,..,k}

 The constraints specify a “feasible set”
— The region of the space where the solution can lie

 Update current estimate using the conventional gradient descent
approach
— If the update is inside the feasible set, no further action is required

— |If the update falls outside the feasible set,
* find the closest point to the update on the boundary of the feasible set
* And move the updated estimate to this new point

 The closest point “projects” the update onto the feasible set

* For many problems, however, finding this “projection” can be

difficult or intractable 807 149
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— Newton’s method
—  Gradient methods
4. Online optimization
5. Constrained optimization
—  Lagrange’s method
—  Projected gradients
6. Regularization
7. Convex optimization and Lagrangian duals

11-755/18-797

150



Regularization

I(l

e Sometimes we have additiona
parameters

regularization” on the

— Note these are not hard constraints

* E.g
— Minimize f(X) while requiring that the length || X||? is also
minimum
— Minimize f(X) while requiring that | X|; is also minimal
— Minimize f(X) such that g(X) is maximum

* We will encounter problems where such requirements are
logical
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Contour Plot of a Quadratic Objective

f(x)

Jx)

e Left: Actual 3D plot
— X= [xp xz]
* Right: constant-value contours
— Innermost contour has lowest value

* Unconstrained/unregularized solution: The center of the innermost

contour
11-755/18-797 152



Examples of regularization

8 / /
5 F i’ P
Ao ; by
i Far Fy #
L LI P ; » S
P § f_’x . P ’Hf’f

Image Credit: Tibshirani

B, B,

e Left: “L,” regularization, find x that minimizes f(x)
o Also minimize |x|,
o [x|; = const is a diamond
o Find x that also minimizes “diameter” of diamond

* Right: “L,” or Tikhonov regularization
o Also minimize ||x]|?
o ||x||* = const is a circle (sphere)

o Find x that also minimizes “diameter” of circle
11755/18797 153



Regularization

* The problem: multiple simultaneous objectives
— Minimize f(X)
— Also minimize g, (X), g,(X), ...

* These are “regularizers”

e Solution: Define

— LX) = f(X) + 119:(X) + 1, 9,(X) + -
— A4, A, etc are regularization parameters. These are set and
not estimated

e Unlike Lagrange multipliers

— Minimize L(X)



Contour Plot of a Quadratic Objective

fx)

e Left: Actual 3D plot
— X = [xp xz]

* Right: equal-value contours of f(X)
— Innermost contour has lowest value
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With L, regularization

f(x) + 0.5,

X,

FOR

5
---------------

* L, regularized objective f(x) + A|x|4, for
different values of regularization parameter A
— Note: Minimum value occurs on x, axis for A =1

* “Sparse” solution

11-755/18-797
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L, and L,-L regularlzatlon

Sx) + [xl,? AX) + x|, + [x],2 s
: y
1 )¢ N % ﬁ
xz? X,
- /%/‘ . . \\\\\\\\
X1 X,




Regularization

Original Signal
T T T

Sparse signal reconstruction
— Minimum Square Error

Signal X of length 100

10 non-zero components

10

L
20

L
30

L
40

50

60

70

L
80

Reconstructing the original signal from noisy 50

measurements
b=AX + ¢

11-755/18-797
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Signal reconstruction
Minimum Square Error

* Signal reconstruction

e Least square problem minHAx—bHi

Original Signal Classical Laast Square
T T

“vL
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L2-Regularization

* Signal reconstruction

2 2
7]

Original Signal L2 Regularization
T T T T T T T T T T T T

1 I\J\JIIU'I‘97 160

* Least squares problem min||4x—b




L1-Regularization

» Signal reconstruction
* Least square problem minHAx—szﬂ/Hle

Original Signal
T T

9 100 10 20 30 40 60 70 80 9 100
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Convex optimization Problems

* An convex optimization problem is defined by
— convex objective function
— Convex inequality constraints f,
— Affine equality constraints #,

min f,(x) (convex function)

s.t. f(x)<0 (convex sets)

h.(x)=0 (Affine)



Convex Sets

e aset ce g is convey, if for each x,y e Cand

a €[0,1] then ax+(1-a)yeC

Convex

Non Convex




Convex functions

e Afunction f: RN — R is convex if for each
x,y € domain(f) and a €[0,1]

flax+(1-a)y)<af(x)+(1-a)f(y)

Convex
f(x) Non Convex f()/)
af(x)+(1-a)f(y)

af @) +1-a)foN\ Y )




Concave functions

e Afunction f: RN — R is convex if for each
x,y € domain(f) and a €[0,1]

flax+(-a)y)zaf(x)+(1-a)f(y)

J)

Concave

af(x)+(1-a)f(y)



First order convexity conditions

» A differentiable function f: RY — R is convex
if and only if for x, y € domain(f) the
following condition is satisfied

S = f(x)+Vi(x) (y—x)

Lower Bound

e
f(x)+Vf(x) (y—x)
(x, f(x))



Second order convexity conditions

e A twice-differentiable function f: RY — R is convex
if and only if for all x, y € domain(f) the Hessian is
superior or equal to zero

200 -,

150

ViF(x)>0 -




Properties of Convex Optimization

* For convex objectives over convex feasible
sets, the optimum value is unique

— There are no local minima/maxima that are not
also the global minima/maxima

* Any gradient-based solution will find this
optimum eventually

— Primary problem: speed of convergence to this
optimum



Lagrange multiplier duality

* Optimization problem with constraints
min f(x)
st g(x)<0 i={l,..,k}

* Lagrange multipliers 4. >20,v e R

k [
L(x, 4, v)= f(x)+ ) Ag(x)+ D vh (x)
=1 =]
e The Dual function ]

k [
inf L(x, 4, v)=inf3 f(x)+ D Ag(x)+D_vh (x)
. "L i=1 j=l

'

J



Lagrange multiplier duality

* The Original optimization problem

min{ sup L(x, A, v)}

X A>0,v

* The Dual optimization

max { inf L(x, A, v)}

A>0,v X

* Property of the Dual for convex function

sup {inf L(x, A, v)} = f(x")

A>0,v X



Lagrange multiplier duality

* Previous Example min f(x,y)=x"+y’
— f(x,y)is convex o

st. 2x+y<-4

— Constraint function is convex
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Lagrange multiplier duality

* Primal system . Dualsystesm
min f(x,y)=x"+y’ mleW(ﬁ)=Z/12+4/1
st. 2x+y<—4 sit. A>20
* Lagrange Multiplier
L=x"4+y"+A2x+y-4) * Property
Z—L:2x+2/1:o:>x=—/1 W(A%)= f(x*, %)
X
a—L:2y+/1=O:>y:—£
0y 2



Lagrange multiplier duality

w(Al)
|
|
* Dual system I
32f —— ===~ Fermme = mmmm s
5 5 VAN
maxw(A)=—A"+44 =, / |
A 4 i I
: \
S . t . Zl 2 O 1 : : '\.\_\\
|
 Concave function i 78 2

— Convex function become concave function in dual problem

a—W=—§)u+4:0:>ﬂf"=§

OX 2 5
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Lagrange multiplier duality

* Primal system

mm_fug¢:f+y2
X,y

S.1.

2x+y<—4
* Evaluating w(A*)= f(x*,y*)

* Dual system
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n?xm(lyzéﬂ?+4l

4
s.t. 120
P
5
2
wan=-3(4] 2
4\5 5
16
A*)=—
w(A*) 5
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