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Representing Data

* The first and most important step in
processing signals is representing them
appropriately
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Representing an Elephant

It was six men of Indostan,

To learning much inclined,

Who went to see the elephant,
(Though all of them were blind),
That each by observation

Might satisfy his mind.

The first approached the elephant,
And happening to fall

Against his broad and sturdy side,
At once began to bawl:

"God bless me! But the elephant
Is very like a wall!“

The second, feeling of the tusk,

Cried: "Ho! What have we here,

So very round and smooth and sharp?
To me 'tis very clear,

This wonder of an elephant

Is very like a spear!”

The third approached the animal,
And happening to take

The squirming trunk within his hands,
Thus boldly up and spake:

"I see," quoth he, "the elephant

Is very like a snake!”

The fourth reached out an eager hand,
And felt about the knee.

"What most this wondrous beast is like

Is might plain," quoth he;
"Tis clear enough the elephant
Is very like a tree."

MLSP

The fifth, who chanced to touch the ear,
Said: "E'en the blindest man

Can tell what this resembles most:
Deny the fact who can,

This marvel of an elephant

Is very like a fan.”

The sixth no sooner had begun
About the beast to grope,

Than seizing on the swinging tail
That fell within his scope,

"I see," quoth he, "the elephant
Is very like a rope.”

And so these men of Indostan
Disputed loud and long,

Each in his own opinion
Exceeding stiff and strong.
Though each was partly right,
All were in the wrong.
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Representatlon

* Describe these images

— Such that a listener
can visualize what you
are describing
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Representation

* Describe these images “

— Such that a listener
can visualize what you
are describing

* More images
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Still more images

TR s - a
aboard Apollo space capsule. Apollo Xi aboard Apollo space capsule. aboard Apollo space capsule.

Building Apollo space ship.
1038 x 1280 - 142k 1280 x 1255 - 226k 1029 x 1280 - 128k 1280 x 1257 - 114k 1017 x 1280 - 130k
LIFE LIFE LIFE LIFE LIFE

Apollo 10 space ship, w.
1280 x 853 - 72k

Splashdown of Apollo XI mission.  Earth seen from space during the  Apollo Xi
1280 x 866 - 184k 1280 x 839 - 60k 844 x 1280 - 123k

1228 x 1280 - 181k
LIFE LIFE LIFE LIFE LIFE

- S
Apollo 8 working on Apollo space project.  the moon as seen from Apollo 8 Apollo 11 Apollo 8 Crew
1278 x 1280 - 74k 1280 x 956 - 117k 1223 x 1280 - 214k 1280 x 1277 - 142k 968 x 1280 - 125k
LIFE LIFE LIFE LIFE LIFE

How do you describe them?
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Representation

* Pixel-based descriptions are uninformative

* Content-based descriptions are infeasible in
the general case
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Sounds
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* Sounds are just sequences of numbers

* When plotted, they just look like blobs

— Which leads to “natural sounds are blobs”

* Or more precisely, “sounds are sequences of numbers that, when plotted,
look like blobs”

— Which wont get us anywhere
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Representation

* Representation is description
e Butin compact form
 Must describe the salient characteristics of the data

— E.g. a pixel-wise description of the two images here will be
completely different

A

 Must allow identification, comparison, storage,
reconstruction..



Representing images

b -~ -
aboard Apollo space capsule. Apollo Xi aboard Apollo space capsule Building Apollo space ship. aboard Apollo space capsule.
1038 x 1280 - 142k 1280 x 1255 - 226k 1029 x 1280 - 128k 1280 x 1257 - 114k 1017 x 1280 - 130k
LIFE LIFE LIFE LIFE LIFE

Earth seen from space during the  Apollo Xi
1280 x 839 - 60k 844 x 1280 - 123k

Splashdown of Apollo XI mission
1280 x 866 - 184k

Apollo Xi
1228 x 1280 - 181k
LIFE LIFE LIFE LIFE LIFE

Apollo 10 space ship, w.
1280 x 853 - 72k

Apollo 8 working on Apollo space project.  the moon as seen from Apollo § Apollo " Apollo 8 Crew
1278 x 1280 - 74k 1280 x 956 - 117k 1223 x 1280 - 214k 1280 x 1277 - 142k 968 x 1280 - 125k
LIFE LIFE LIFE LIFE LIFE

* The most common element in the image: background
— Or rather large regions of relatively featureless shading

Uniform sequences of numbers

11-755/18-797 13
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Representmg images usmga “plain” image

[ pixell |
B = 1 Image = pixel 2
1 | pixel N |

* Most of the figure is a more-or-less uniform shade
— Dumb approximation — a image is a block of uniform shade
* Will be mostly right!
 How to compute the “best” description? Projection

— Represent the images as vectors and compute the projection of the
image on the “basis”

BW =~ Image
W = pinv(B)Image
PROJECTION = BW = B(B'B) ' B . Image

11-755/18-797 14




Adding more bases

* Lets improve the approximation - -
* Images have some fast varying regions

— Dramatic changes

— Add a second picture that has very fast changes
* A checkerboard where every other pixel is black and the rest are white

Image~ w B, +w,B,
W, BW =~ Image
W= W B=|B B,] W = pinv(B)Image
2

PROJECTION = BW = B(B"B)"' B" Image

11-755/18-797 15



* Regions that change with different speeds

Image~ wB; + wy,By, + w3B; + ...

W: W3 B:[Bl Bz B3]

L BW =Image
W = pinv(B)Image

11-755/18-797
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* A “standard” representation

— Checker boards are the same regardless of the picture you’re trying to
describe

* As opposed to using “nose shape” to describe faces and “leaf colour” to
describe trees.

* Any image can be specified as (for example)
Image
= 0.8 checkerboardy + 0.2 checkerboard,
+ 0.82checkerboard, + -

* The definition is sufficient to reconstruct the image to some
degree
— Not perfectly though

11-755/18-797 17



What about sounds?

NP i

e Square wave equivalents of checker boards

11-755/18-797 18



_ — .

Wl > Slgflal? WlBl + W2B2 + W3B3
— ) wm
- o W =| W B=|B; B B

W2 4 By B, Bs]

\ _W3_
W3 <
- B, B, B;™T -
BW = Signal

W = pinv(B)Signal
PROJECTION = BW = (B.pinv(B)).Signal

11-755/18-797 19
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General Philosophy of Representation

* |dentify a set of standard structures
— E.g. checkerboards
— We will call these “bases”

* Express the data as a weighted combination of these bases
— X=w;B;+w,B,+w3B3+..

* Chose weights wy, w,, ws.. for the best representation of X
— l.e. the error between X and Z; w; B, is minimized

— The error is generally chosen to be | |[X - X, w. B.| |2

* The weights wy, w,, ws.. fully specify the data
— Since the bases are known beforehand

— Knowing the weights is sufficient to reconstruct the data
11-755/18-797 20
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Bases requirements

* Non-redundancy

— Each basis must represent information not already
represented by other bases

— |.e. bases must be orthogonal
* <B;, B>=0foril=]j
— Mathematical benefit: can compute w; = <B;,X>

* Compactness

— Must be able to represent most of X with fewest bases

— Completeness: For D-dimensional data, need no more
than D bases

11-755/18-797 22
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Vichnelesming for 591 Procesing Gt

Useful fact: Property of orthogonal
bases

_bll b12 b13_ bll b21 b31

B=|by by by B = b, by by

b3 | b32 b33 bl 3 b23 b33

* The inverse of a matrix whose columns (rows) are unit length and
orthogonal to one another is its transpose

* |f the columns (rows) are not unit length (but still orthogonal), the inverse

is still a transpose, but with the rows (columns) scaled by the squared
length of the column vectors

* Thisis also true for non-square matrices: The pseudo inverse is just the
transpose

— With scaled rows, if the original columns are not unit length

11755/18979 23
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Bases based representation

b, b, b, W X,
b,, b, byl||w, =X,
_b31 by, b 1 W X,

* Place all bases in basis matrix B
BW =X
W = Pinv(B)X
* For orthogonal bases oo DA >

' 2
B

11-755/18-797 24
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Bases based representation

* Challenge: Choice of appropriate bases

11-755/18-797 25



* We cannot explain one
checkerboard in terms of
another

— The two are orthogonal to one
another!

e This means we can determine
the contributions of individual
bases separately

B =

: » . : Image~w B +w, B,
— Joint decomposition with multiple
W:{ } B=[B, B,] I 1

W

bases gives the same result as "
2

separate decomposition with each

— This never holds true if one basis W = (B;, Image)
can explain another L IIBiIIZ




Checker boards are not good bases“*

AVAVAVAVAV

e Sharp edges
— Can never be used to explain rounded curves

11-755/18-797 27
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Sinusoids ARE good bases

M

f’/\/\/\/\/

 They are orthogonal

* They can represent rounded shapes nicely

— Unfortunately, they cannot represent sharp corners

11-755/18-797 29



What are the frequencies of the sinusoids“#*

Follow the same format as the

checkerboard: R Y et

— DC

— The entire length of the signal is
one period

— The entire length of the signal is / \ ]

two periods.

And so on.. /\/\/
The k-th sinusoid: ) A Mmoo
— F(k) = sin(2kn/N) /W\/\/

* Nis the length of the signal

* kis the number of periods in N
samples

11-755/18-797 30



A max of L/2 periods are possible

If we try to go to (L/2 + X) periods, it ends up being identical to having (L/2
— X) periods

— With sign inversion

Example for L =20

— Red curve = sine with 9 cycles (in a 20 point sequence)
* Y(n) =sin(2m9n/20)

— Green curve = sine with 11 cycles in 20 points
* Y(n) =-sin(2t11n/20)

— The blue lines show the actual samples obtained
* These are the only numbers stored on the computer

* This set is the same for both sinusoids
11-755/18-797 31
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How to compose the signal from sinusoids

[ ,E, _/ ]
\ L )
I g7 W Slgnal ~ WIBI + Wsz + W3B3
1 "
— ( W =|w B=[|B, B B
W K {2} |B, B, Bs]
2 e w3
\
\ W3
- By B, Bs;™ -

BW = Signal
W = Pinv(B)Signal
Projection = (B(B'B)™1B") Signal

* The sines form the vectors of the projection matrix

— Pinv() will do the trick as usual
11-755/18-797 32
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How to compose the signal from sinusoids

[ sin(27.0.0/L) sinz.1.0/L) . .  sinz(L/2).0L) || w | [ s[0] |
sin(27.0.1/L) sinz.1.1/L) . . sinQz.(L/2).1/L) Wy s[1]
sin(27kn/ L) | I
sin27.0.(L-1)/L) sinQz.1(L-1)/L) . . sinQz(L/2).(L-D/L) || w2 | |S[L-1]

, L/2 columns only
Signal = wB; + w, B, + w3 By

W
W = 11%) B:[Bl B2 B3]

" BW ~ Signal
[ s[0] | | |
signar=| *11 W = pinv(B)Signal
_S[L.—l]_

* The sines form the vectors of the projection matrix

— Pinv() will do the trick as usual
11-755/18-797 33



e Each sinusoid’s amplitude is adjusted until it gives us the
least squared error
— The amplitude is the weight of the sinusoid

* This can be done independently for each sinusoid

11-755/18-797 34



e Each sinusoid’s amplitude is adjusted until it gives us the
least squared error
— The amplitude is the weight of the sinusoid

* This can be done independently for each sinusoid
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Interpretation..

e Each sinusoid’s amplitude is adjusted until it gives us the
least squared error
— The amplitude is the weight of the sinusoid

* This can be done independently for each sinusoid
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Interpretation..

e Each sinusoid’s amplitude is adjusted until it gives us the
least squared error
— The amplitude is the weight of the sinusoid

* This can be done independently for each sinusoid
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A
- },/ /,_*
- S0 S o B =0
- ’// "’/{
- S0 == R =00 =0
A
- S0 oo a1 so =—oo =0

o Ao Aaso =oo =so
or ]
1 S50 100 1s0 =00 =250
A . .

o |- —]
A

50 100 150 p=telel =250
a
L / |

_a R . R .

50 TOoo 150 =00 =250
a

_A L N .

so Too Aaso =oco

* Every sine starts at zero

— Can never represent a signal that is non-zero in the first sample!

* Everycosinestartsatl

— If the first sample is zero, the signal cannot be represented!
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The need for phase

. \ B / Sines are shifted:
" \ / \/ do not start with
- 50 100 150 200 250 Value - O

e Allow the sinusoids to move!
signal =w, sm(2mkn/ N + ¢, ) +w, sin(2zkn/ N + ¢, ) +....

e How much do the sines shift?

11-755/18-797 39



Determining phase

_—

* Least squares fitting: move the sinusoid left / right, and at
each shift, try all amplitudes

— Find the combination of amplitude and phase that results in the
lowest squared error

* We can still do this separately for each sinusoid
— The sinusoids are still orthogonal to one another

11-755/18-797 40



Determining phase

* Least squares fitting: move the sinusoid left / right, and at
each shift, try all amplitudes

— Find the combination of amplitude and phase that results in the
lowest squared error

* We can still do this separately for each sinusoid
— The sinusoids are still orthogonal to one another
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Determining phase

* Least squares fitting: move the sinusoid left / right, and at
each shift, try all amplitudes

— Find the combination of amplitude and phase that results in the
lowest squared error

* We can still do this separately for each sinusoid
— The sinusoids are still orthogonal to one another
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Determining phase

/\

* Least squares fitting: move the sinusoid left / right, and at
each shift, try all amplitudes

— Find the combination of amplitude and phase that results in the
lowest squared error

* We can still do this separately for each sinusoid
— The sinusoids are still orthogonal to one another

11-755/18-797 43



The problem with phase

sin(27.0.0/L + ¢y) sinz.1.0L+¢) . . sinQRa(L/2).0L+¢ ) || w | [ s[0] |
sin(27.0.1/L + ¢y) sin2z.1.I/L+¢) . .  sinQz(L/2).1/L+¢. ) Wy s[1]
sin27.0.(L-1)/L+d¢y) sinQr.l(L-D/L+d) . . sinQr(L/2).(L-D/L+¢ ) || wpn| |s[L-1]]

L/2 columns only

* This can no longer be expressed as a simple linear algebraic
equation
— The “basis matrix” depends on the unknown phase
* |.e.there’s a component of the basis itself that must be estimated!
* Linear algebraic notation can only be used if the bases are
fully known

— We can only (pseudo) invert a known matrix

11-755/18-797 44



Complex Exponential to the resc

= sin(freqxn)

b|n] = exp(j.freq.n) = cos(freq.n) + jsin(freq.n)

0000 0000
A00MNONADDS

exp(j. (freq.n+ ¢)) = exp(] freq n)exp(ﬂp)
= cos(freq.n+ @) + jsin(freq.n + @)
 The cosine is the real part of a complex exponential

— The sine is the imaginary part

* A phase term for the sinusoid becomes a multiplicative
term for the complex exponential!! 45
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Complex exponentials are well behave

Like sinusoids, a complex exponential of one
frequency can never explain one of another
— They are orthogonal

They represent smooth transitions

Bonus: They are complex

— Can even model complex data!

They can also model real data
— exp(j x ) + exp(+ x) is real
* cos(x) +sin(x) + cos(x) — ] sin(x) = 2cos(x)

11-755/18-797
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Complex Exponential bases

( > \ Wi (
Ny Rttt w2 | <
DXl < h
/ Y § WL /2+1 )
U ’
Il ( L W1 _ ]

bO b1 bLI2

* Explain the data using L complex exponential bases

11-755/18-797 48



Complex Exponential Bases: Algebraic

[ exp(j27.0.0/L)
exp(j27.0.1/L)

L exp(27.0.(L-1)/L) . exp(27z.(L/2).(L-1)/L)

Formulation

exp(j27.(L/2).0/L).
exp(j2z.(L/2).1/L).

exp(j27.(L —1).0/L) |

exp(j2z.(L —1).1/L)

- exp(27(L-1).(L-1)/L)

* Note: The basis do not include phase

— The phase is obtained through a multiplicative

term exp(j@) which factors into S and is

estimated

11-755/18-797
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Complex exponentials are well behave®%®
* Conjugate symmetry

~ (L/2=x)n ~ (L/2+x)n
€X 27 + ex 2 .
p(] L A’ L is real

* The complex exponentials with frequencies equally
spaced from L/2 are complex conjugates

11-755/18-797 50
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Complex exponentials are well behaved”

. exp(j oz (L/ 2L— xX)n j N exp(j oz (L/ 2L+ x)n]

— The complex exponentials with frequencies equally spaced from
L/2 are complex conjugates

* “Frequency = k” = k periods in L samples

(L/2—x)n
L

(L/2+x)nj
L

a exp( Jj2r j + conjugate(a) exp( J2r

— Is also real

— If the two exponentials are multiplied by numbers that are
conjugates of one another the result is real

11-755/18-797 51



Complex Exponential bases

Complex
— r ~conjugatgs ;| —

Ny W ~ W, N
o S8 0 4
NG |

'. / 1
il Y +4 Wr/2-1 (
\ / o0 EEEX = (
Nl 8 WLz <

oAl NE \
il > . Wr /241 ﬁ;
\\ \“\ (\//\/\ o \

> (
o L W1 _

bO b1 bLIZ o .

W24k = conjugate(wr o_y)

For real signals:

The weights given to the (L/2 + k)th basis and the (L/2 — k)th
basis should be complex conjugates, to make the result real

Fortunately, a least squares fit will give us complex conjugate

weights to both bases automatically
11-755/18-797 52



Complex Exponential Bases: Algebraic

Formulation
[ exp(j27.0.0L) . exp(i27(L/2).0L). .  exp(z(L-D.OL) || S, | [ s[0] |
exp(j27.0.1/L) : exp(j2z.(L/2).1/L). : exp(j2z.(L —1).1/L) : s[1]

exp(i27.0.(L-1)/L) . exp(2a(L/2)(L-1)L) . exp(i2a(L-D(L-D/L)|| S, | [s[L-1]]

* Note: The basis
* Note that§; /,,, = conjugate(S; ,, ) for real s

11-755/18-797 53



Shorthand Notation
1

Wh" = —exp(j27kn/ L
L \/Z p(J )
e owE L NS, ][ s[0]
WLO,I . WLL/2,1. . WLL—l,l . S[l]
SL/Z —

_WLO,L—I . WLL/Z,L—I . WLL—l,L—l SL 1 _S[L . 1]_

* Note that for real signals S, ,,, = conjugate(S; ,, )

11-755/18-797 54



A quick detour

e Real Orthonormal matrix:
—_XXT=XXl=1
e But only if all entries are real

— The inverse of X is its own transpose

e Definition: Hermitian

— XH = Complex conjugate of XT

* Complex Orthonormal matrix

— XXH=XHX=1
— The inverse of a complex orthonormal matrix is its own
Hermitian

11-755/18-797 55



w1 =w"

B Wo,o . WL/Z,O. . WL—I,O ] ) 1 .
L01 LL/21 LL—ll WLk, =Texp(] 27an/L)
wh o owrH o wEh L

0,L—1 L/2,1-1 L-1,1-1
woLrt oy W

WLO,O . WL—O,L/2 . . WL—O,L—I
-1,0, -1,L/2 -1,L-1
1 e ot
WL_k’n = f exp(—j27zkn /L) WH —
_WL—(L—I),O . WL—(L—I),L/2 . WL—(L—I),(L—I) ]

= The complex exponential basis is orthogonal
o lts inverse is its own Hermitian

1 — wH
o W =W 11-755/18-797 56



Doing it in matrix form

"WLo,o . WLL/Z’O. . WLL—I,O ] So s[0]
WLO,I . WLL/2,1. . WLL—I,l . S[l]

SO WLO,O . WL—O,L/ 2 . . WL—O,L—I S[O]
WL—I,O, . WL—I,L/2 . . WL—I,L—I S[l]
SL/z =
] SL_1 ) _WL—(L—I),O . WL—(L—I),L/Z . WL—(L—I),(L—l) | S[ I — 1]_

— Because W1 = WwWH

11-755/18-797 57



The Discrete Fourier Transform

So w0 w2 w0 sf0] ]
-1,0, —1,L/2 —-1,L-1
w; oW LWy s[1]

i _ WL—(L—I),O | WL—(L—I),L/2 | WL—(L—I),(L—I) S[L-1]

 The matrix to the right is called the “Fourier
Matrix”

* The weights (S, S;. . Etc.) are called the Fourier
transform

11-755/18-797 58



. . 73 f/g
The Inverse Discrete Fourier Transform ™

w0 k20 w0 r sy ] [ s(0]
wht o owhE o owEN (1]

_WZ(J),L—I . Wl{z/2,L—1 . Wl{z—l,L—l SL | _S[L _ 1]_

e The matrix to the left is the inverse Fourier matrix

* Multiplying the Fourier transform by this matrix gives us
the signal right back from its Fourier transform

11-755/18-797 59
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The Fourier Matrix
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e Left panel: The real part of the Fourier matrix

— For a 32-point signal

e Right panel: The imaginary part of the Fourier matrix
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The outcome of the transformation with the Fourier matrix is the
DISCRETE FOURIER TRANSFORM (DFT)

The FAST Fourier transform is an algorithm that takes advantage of
the symmetry of the matrix to perform the matrix multiplication
really fast

The FFT computes the DFT

— |Is much faster if the length of the signal can be expressed as 2N
11-755/18-797 61



Images

* The complex exponential is two dimensional

— Has a separate X frequency and Y frequency

 Would be true even for checker boards!

— The 2-D complex exponential must be unravelled
to form one component of the Fourier matrix
e For a KxL image, we’d have K*L bases in the matrix



MLSP

Typical Image Bases

100 200 300 400 500 600 700 80 900 1000

00 200 300 400 500 600 700 800 900 1000

* Only real components of bases shown

11-755/18-797 63



DFT: Properties

 The DFT coefficients are complex
— Have both a magnitude and a phase

S, IS, lexp(~j£S,)

* Simple linear algebra tells us that
— DFT(A + B) = DFT(A) + DFT(B)
— The DFT of the sum of two signals is the DFT of their sum

* A horribly common approximation in sound processing
— Magnitude(DFT(A+B)) = Magnitude(DFT(A)) + Magnitude(DFT(B))
— Utterly wrong
— Absurdly useful
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Index

Representing signals
Basis-based representations
Haar bases

— For images and sound
Fourier bases

— For images and sound
* Generalizes to any time-series signal or 2D signal

Spectrograms
— For sound and time-series data

Real Fourier representations, aka DCT

— For sound and images

Gaussian and Laplacian pyramids for images
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Symmetric signals

¥ ¥
¥ ¥
** **

AT T

Contributions from points equidistant from L/2
combine to cancel out imaginary terms

%

* If asignalis (conjugate) symmetric around L/2, the Fourier coefficients are real!

—  A(L/2-k) * exp(-j **(L/2-k)) + A(L/2+k) * exp(-j*f*(L/2+k)) is always real if

A(L/2-k) = conjugate(A(L/2+k))

— We can pair up samples around the center all the way; the final summation term is always real
e Overall symmetry properties

— If the signal is real, the FT is (conjugate) symmetric

— If the signal is (conjugate) symmetric, the FT is real

— If the signal is real and symmetric, the FT is real and symmetric
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The Discrete Cosine Transform

¥

« Compose a symmetric signal or image
— Images would be symmetric in two dimensions

 Compute the Fourier transform

— Since the FT is symmetric, sufficient to store only half the coefficients
(quarter for an image)

* Or as many coefficients as were originally in the signal / image
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DCT

cos(27(0.5).0/2L) cos(27.(1+0.5).0/2L) - cos(2z.(L —0.5).0/2L)
cos(27.(0.5).1/2L) cos(2z.(1+0.5).12L) - cos(2z.(L —0.5).1/2L)
cos(27.(0.5).(L—1D/2L) cosRz.(1+0.5).(L-D2L) . . cosRz.(L—0.5).(L-1)/2L) ||
L columns

* Not necessary to compute a 2xL sized FFT

— Enough to compute an L-sized cosine transform
— Taking advantage of the symmetry of the problem

 This is the Discrete Cosine Transform




Multiply by
DCT matrix

Most common coding is the DCT

JPEG: Each 8x8 element of the picture is converted using a
DCT

The DCT coefficients are quantized and stored
— Degree of quantization = degree of compression

Also used to represent textures etc for pattern recognition
and other forms of analysis
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Representing Sound and Images

* “Deterministic” representations of audio time
series and image data..
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Aside: some tricks to computing
Fourier transforms

* Direct computation of the Fourier transform
can result in poor representations
* Boundary effects can cause error

— Solution : Windowing

* The size of the signal can introduce
inefficiency
— Solution: Zero padding
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Index

Representing signals
Basis-based representations
Haar bases

— For images and sound
Fourier bases

— For images and sound
* Generalizes to any time-series signal or 2D signal

Spectrograms

— For sound and time-series data
Real Fourier representations, aka DCT
— For sound and images

Gaussian and Laplacian pyramids for images
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Sound: A thought experiment
WWM

Analysis: Analyze the sound L l
using a bank of tuning forks

Transduce the vibrations %\
and store / transmit them

: - . ‘;ww | ‘1
Synthesis: Activate tuning i

fgrks with the transduced § § §/§ §

signal

What do we get? %\\R
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The Fourier Transform and Perception: 4
Ssound =

* The Fourier transforms it 4 1
represents the signal

analogously to a bank of %\\R

tuning forks —

e Qur ear has a bank of
tuning forks

* The output of the Fourier /
transform is perceptually § § § § §
G

f?w R H‘

very meaningful
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The Fourier Transform and Perception: 54
Sound

* Processing Sound: TR l
* Analyze the sound using a

bank of tuning forks %\\H

 Sample the transduced FT
output of the turning forks ,ﬂ
at periodic intervals M' ’.

%%
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Sound parameterization

* The signal is processed in segments of 25-64 ms
— Because the properties of audio signals change quickly
— They are “stationary” only very briefly

11-755/18-797
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T T X

* The signal is processed in segments of 25-64 ms
— Because the properties of audio signals change quickly
— They are “stationary” only very briefly

* Adjacent segments overlap by 15-48 ms
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T T X

* The signal is processed in segments of 25-64 ms
— Because the properties of audio signals change quickly
— They are “stationary” only very briefly

* Adjacent segments overlap by 15-48 ms
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* The signal is processed in segments of 25-64 ms
— Because the properties of audio signals change quickly
— They are “stationary” only very briefly

* Adjacent segments overlap by 15-48 ms
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Sound parameterization

10

T T X

:13 IJ.J | ..‘h)l uh
m

o.s a a.s = =.=s = =.5

* The signal is processed in segments of 25-64 ms
— Because the properties of audio signals change quickly
— They are “stationary” only very briefly

* Adjacent segments overlap by 15-48 ms
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Sound parameterization

10

T T L

* The signal is processed in segments of 25-64 ms
— Because the properties of audio signals change quickly
— They are “stationary” only very briefly

* Adjacent segments overlap by 15-48 ms
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T T L

* The signal is processed in segments of 25-64 ms
— Because the properties of audio signals change quickly
— They are “stationary” only very briefly

* Adjacent segments overlap by 15-48 ms
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Segments shift every 10-
16 milliseconds

Each segment is typically 25-64

milliseconds wide
Audio signals typically do not change
significantly within this short time interval
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Complex
spectrum

Each segment is windowed
and a DFT is computed from it Frequency (Hz)
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Each segment is windowed
and a DFT is computed from it
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Compute Fourier Spectra of segments of audio and stack them side-by-side
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Computing a Spectrogram

frequency
frequency
frequency
frequency
frequency
frequency
frequency

B
oo E
SR E
-
sooe E
5=
£ oo
=
sooc 2
=
—ooc =

&l

Compute Fourier Spectra of segments of audio and stack them side-by-side
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Compute Fourier Spectra of segments of audio and stack them side-by-side
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Computing a Spectrogram
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Compute Fourier Spectra of segments of audio and stack them side-by-side
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Computing a Spectrogram

pbo
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Compute Fourier Spectra of segments of audio and stack them side-by-side
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Computing a Spectrogram
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Compute Fourier Spectra of segments of audio and stack them side-by-side
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Computing a Spectrogram
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Compute Fourier Spectra of segments of audio and stack them side-by-side
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Computing a Spectrogram
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Compute Fourier Spectra of segments of audio and stack them side-by-side
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Computing a Spectrogram
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Compute Fourier Spectra of segments of audio and stack them side-by-side
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Computing a Spectrogram

oo
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Compute Fourier Spectra of segments of audio and stack them side-by-side
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Computing a Spectrogram

frequency frequency frequency
frequency frequency frequency
frequency frequency frequency
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Compute Fourier Spectra of segments of audio and stack them side-by-side
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Computing a Spectrogram

frequency frequency frequency
frequency frequency frequency
frequency frequency frequency
frequency frequency frequency
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frequency frequency frequency

Compute Fourier Spectra of segments of audio and stack them side-by-side
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Computing a Spectrogram

ad

frequency frequency frequency
frequency frequency frequency
frequency frequency frequency
frequency frequency frequency
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frequency frequency frequency
frequency frequency frequency

Compute Fourier Spectra of segments of audio and stack them side-by-side
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Computing a Spectrogram
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Compute Fourier Spectra of segments of audio and stack them side-by-side
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Compute Fourier Spectra of segments of audio and stack them side-by-side
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Computing a Spectrogram
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Compute Fourier Spectra of segments of audio and stack them side-by-side
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Computing a Spectrogram

frequency frequency frequency
frequency frequency frequency
frequency frequency frequency
frequency frequency frequency
frequency frequency frequency
frequency frequency frequency
frequency frequency frequency

Compute Fourier Spectra of segments of audio and stack them side-by-side
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Computing the Spectrogram

00000
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o 1000 S000 [=T=I=I=] 7Oooo

N
i

| A TN O D DS

Compute Fourier Spectra of segments of audio and stack them side-by-side
The Fourier spectrum of each window can be inverted to get back the signal.
Hence the spectrogram can be inverted to obtain a time-domain signal

In this example each segment was 25 ms long and adjacent segments overlapped by
15 ms
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The result of parameterization

s=ooco

Tooo

socoo

Each column here represents the FT of a single segment of signal
64ms wide.

— Adjacent segments overlap by 48 ms.
DFT details

— 1024 points (16000 samples a second).
— 2048 point DFT — 1024 points of zero padding.

— Only 1025 points of each DFT are shown
* The rest are “reflections”

The value shown is actually the magnitude of the complex spectral
values

— Most of our analysis / operations are performed on the magnitude
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[ 1,0,0
W
0,1
4

0,L-1
4

Magnitude and phase/?

Sk =| Sk | exp(j.phase(Sy.))

L/2,0 L-1,0
whk'20 !

L/2,1 L-11
wht'slo o

L/2,L-1 L-1,L-1
. W . W

All the operations (e.g. the examples shown in the previous

]

s[1]

S[L—1]

class) are performed on the magnitude

The phase of the complex spectrum is needed to invert a

DFT to a signal

— Where does that come from?

Deriving phase is a serious, not-quite solved problem.
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Phase

Common tricks: Obtain the phase from the original signal
— Sft = DFT(signal)
— Phasel = phase(Sft)

* Each term is of the form real + j imag
* For each element, compute arctan(imag/real)

— Smagnitude = magnitude(Stt)
* For each element compute Sqrt(real*real + imag*imag)
— ProcessedSpectrum = Process(Smagnitude)
— New SFT = ProcessedSpectrum*exp(j*Phase)
— Recover signal from SFT

Some other tricks:
— Compute the FT of a different signal of the same length
— Use the phase from that signal
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Returnmg to the speech signal

r ;;f =3 = ;;; =0 Actually a matrix of complex numbers

16ms (256 samples)

For each complex spectral vector, compute a signal from the inverse DFT
— Make sure to have the complete FT (including the reflected portion)

If need be window the retrieved signal

Overlap signals from adjacent vectors in exactly the same manner as

during analysis
— E.g.If a48ms (768 sample) overlap was used during analysis, overlap adjacent
segments by 768 samples
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Additional tri(‘:mks

* The basic representation is the
magnitude spectrogram

 Oftenitis transformed to a /log spectrum Log()
— By computing the log of each entry in the YWEbHE Tk et
spectrogram matrix e feiie oy
— After processing, the entry is
exponentiated to get back the magnitude
spectrum

* To which phase may be factored in to get X DCT(24X1 025) l

a signal

* The log spectrum may be “compressed”
by a dimensionality reducing matrix

— Usually a DCT matrix

B
100 200 300 400 500 600 700 800 900
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Index

Representing signals
Basis-based representations
Haar bases

— For images and sound
Fourier bases

— For images and sound
* Generalizes to any time-series signal or 2D signal

Spectrograms
— For sound and time-series data

Real Fourier representations, aka DCT
— For sound and images

Gaussian and Laplacian pyramids for images

11-755/18-797

MLSP

Vi inelsaming o 5g7aProcessing Gy

109



MLSP

Representing Images

Npixels / 64 columns
EEEEAEEEEEEEEEEN ‘—ﬁ\\\\\\$

EEEEEEEEEEEEEEn
L 1 a4 Al 1 1 B 0 1 14 3 )
NEupEEGASEEESENEER
ENPEESNZisssEAEEER
EEENrF IS EEEEEN
L1 T 14 AZEEEEEEEEEN DCT
EENcEESEEaEEEEEN PP
EEEEEEEEEEEEEEEN
I OO O
EEEENEPEEEEEENER
EEEEEETEEEEEEEEm
EEEEE AN EEEENEEN
EEEEEEEEENEENENER

* DCT of small segments
— 8x8

— Each image becomes a matrix of DCT vectors

* DCT of the image
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MLSP
Downsampling-based representations

* Downsampling an example
— Trying to reduce size by factor of 4 each time

* Select every alternate sample row-wise and column-wise

— What exactly did we capture?
e Clue : Results are horrible.
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Downsampling-based representations

G )

,' ‘{' j

* Nasty aliasing effects!
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The Gaussian Ker

81
87

EnN

MLSP

nel

* A two-dimensional image of a Gaussian

* Characterized by
— Center (mean)

— Standard deviation o (assumed same in both directions)

* |.e. sphereical Gaussian

 The image can be represented by a vector
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The Gaussian Kernel matrix

AN
75\

811
811

E N1

812
g

N2

SN
EoN

ENN |

 Each column is one Gaussian
— Representing a Gaussian centered at one of the pixels

in the image

* As many columns as pixels
— Also as many rows as pixels
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Downsampling-based representations

>

p
SN
P>
[ ]

* Transform with Gaussian
kernel matrix

* Then downsample
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Downsampling-based representations
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The Gaussian Pyramid

W u.

* Successive smoothing and scaling

* The entire collection of images is the Gaussian
pyramid
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Laplacian Pyramid
-G,
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Remember..

Analog signal DigitT signal

A#I}+¢TTT [

 The Gaussian is an anti-aliasing filter

 The Gaussian pyramid is the low-pass filtered
version of the image

* The Laplacian pyramid is the high-pass filtered
version of the image
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The Gaussian/Laplacian

Decomposition

Low pass '

Low pass High pass

High pass

* Each low-pass filtered image is downsampled
* The process is recursively performed
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The discrete wavelet transform

g[n] : Level 3
coefficients
—»{ gln] |2 hin] > 2)—
> .( ) > .. p Level2
g[n] h[n] @ coefficients
o] > .( :) > Level 1
x[n] h[n] coefficients

* Very similar in structure

* But the bases at each scale are orthogonal to
bases at other scales

— As opposed to a Gaussian kernel matrix
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Haar Wavelets

 We have already encountered Haar wavelets
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Other characterizations

e Content-based characterizations

— E.g. Hough transform

e Captures linear arrangements of pixels

— Radon transform
— SIFT features
— Etc.
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Summary

The need to represent signals
Basis-based representations
Haar bases

— For images and sound
Fourier bases

— For images and sound
* Generalizes to any time-series signal or 2D signal

Spectrograms
— For sound and time-series data

Real Fourier representations, aka DCT
— For sound and images

Gaussian and Laplacian pyramids for images
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Next up..

* The representations we saw today were
deterministic

 The bases were designed without considering
the specific data set

* Next: data-dependent bases



