
Machine Learning for Signal
Processing

Detecting faces (& other objects) in
images

Bhiksha Raj

11755/18979 1

Last Lecture: How to describe a face

• A “typical face” that captures the essence of
“facehood”..

• The principal Eigen face..

11755/18979 2

The typical face

A collection of least squares typical faces

• Extension: Many Eigenfaces
• Approximate every face f as f = wf,1 V1+ wf,2 V2 +.. + wf,k Vk

– V2 is used to “correct” errors resulting from using only V1

– V3 corrects errors remaining after correction with V2

– And so on..

• V = [V1 V2 V3] can be computed through Eigen analysis

11755/18979 3

Detecting Faces in Images

11755/18979 4

Detecting Faces in Images

• Finding face like patterns
– How do we find if a picture has faces in it
– Where are the faces?

• A simple solution:
– Define a “typical face”
– Find the “typical face” in the image

11755/18979 5

Given an image and a ‘typical’ face
how do I find the faces?

11755/18979 6

+

100×100

400×200
(RGB)

+

Finding faces in an image

• Picture is larger than the “typical face”
– E.g. typical face is 100x100, picture is 600x800

• First convert to greyscale
– R + G + B
– Not very useful to work in color

11755/18979 7

Finding faces in an image

• Goal .. To find out if and where images that
look like the “typical” face occur in the picture

11755/18979 8

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 9

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 10

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 11

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 12

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 13

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 14

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 15

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 16

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 17

Finding faces in an image

• Try to “match” the typical face to each location in
the picture

• The “typical face” will explain some spots on the
image much better than others
– These are the spots at which we probably have a face!

11755/18979 18

How to “match”

• What exactly is the “match”
– What is the match “score”

11755/18979 19

How to “match”

• What exactly is the “match”
– What is the match “score”

• The DOT Product
– Express the typical face as a vector
– Express the region of the image being evaluated as a vector
– Compute the dot product of the typical face vector and the “region”

vector

11755/18979 20

What do we get

• The right panel shows the dot product at
various locations
– Redder is higher

• The locations of peaks indicate locations of faces!

11755/18979 21

What do we get

• The right panel shows the dot product at various
locations
– Redder is higher

• The locations of peaks indicate locations of faces!

• Correctly detects all three faces
– Likes George’s face most

• He looks most like the typical face

• Also finds a face where there is none!
– A false alarm

11755/18979 22

What do we get

• The right panel shows the dot product at various
locations
– Redder is higher

• The locations of peaks indicate locations of faces!

• Correctly detects all three faces
– Likes George’s face most

• He looks most like the typical face

• Also finds a face where there is none!
– A false alarm

11755/18979 23

Sliding windows solves only the
issue of location – what about

scale?

11755/18979 24

• Not all faces are the same size
• Some people have bigger faces
• The size of the face on the image

changes with perspective
• Our “typical face” only represents

one of these sizes

Scale-Space Pyramid

11755/18979 25

Scale the image
(but keep your typical
face template fixed)

Location – Scale – What about Rotation?

• The head need not
always be upright!

• Our typical face
image was upright

11755/18979 27

Solution

• Create many “typical faces”
– One for each scaling factor
– One for each rotation

• How will we do this?
• Match them all

• Does this work
– Kind of .. Not well enough at all
– We need more sophisticated models

11755/18979 28

Face Detection: A Quick Historical Perspective

• Many more complex methods
– Use edge detectors and search for face like patterns
– Find “feature” detectors (noses, ears..) and employ them in complex

neural networks..

• The Viola Jones method
– Boosted cascaded classifiers

11755/18979 29

Face Detection: A Quick Historical Perspective

• Many more complex methods
– Use edge detectors and search for face like patterns
– Find “feature” detectors (noses, ears..) and employ them in complex

neural networks..

• The Viola Jones method (30K+ Citations!)
– Boosted cascaded classifiers

11755/18979 30

And even before that – what is classification?

• Given “features” describing an entity, determine the
category it belongs to
– Walks on two legs, has no hair. Is this

• A Chimpanizee
• A Human

– Has long hair, is 5’6” tall, is this
• A man
• A woman

– Matches “eye” pattern with score 0.5, “mouth pattern” with
score 0.25, “nose” pattern with score 0.1. Are we looking at

• A face
• Not a face?

11755/18979 31

Classification
• Multi-class classification

– Many possible categories
• E.g. Sounds “AH, IY, UW, EY..”
• E.g. Images “Tree, dog, house, person..”

• Binary classification
– Only two categories

• Man vs. Woman
• Face vs. not a face…

11755/18979 32

Detection vs Classification

• Detection: Find an X
• Classification: Find the correct label X,Y,Z etc.

11755/18979 33

Detection vs Classification

• Detection: Find an X
• Classification: Find the correct label X,Y,Z etc.
• Binary Classification as Detection: Find the

correct label X or not-X

11755/18979 34

Face Detection as Classification

• Faces can be many sizes
• They can happen anywhere in the image
• For each face size

– For each location
• Classify a rectangular region of the face size, at that location, as a face or

not a face

• This is a series of binary classification problems

11755/18979 35

For each square, run a
classifier to find out if it
is a face or not

Binary classification

• Classification can be abstracted as follows
• H: X  (+1,-1)
• A function H that takes as input some X and outputs a +1 or -1

– X is the set of “features”
– +1/-1 represent the two classes

• Many mechanisms (may types of “H”)
– Any many ways of characterizing “X”

• We’ll look at a specific method based on voting with simple rules
– A “META” method

11755/18979 36

Introduction to Boosting
• An ensemble method that sequentially combines many simple

BINARY classifiers to construct a final complex classifier
– Simple classifiers are often called “weak” learners
– The complex classifiers are called “strong” learners

• Each weak learner focuses on instances where the previous
classifier failed

– Give greater weight to instances that have been incorrectly classified
by previous learners

• Restrictions for weak learners
– Better than 50% correct

• Final classifier is weighted sum of weak classifiers

11755/18979 37

Boosting: A very simple idea
• One can come up with many rules to classify

– E.g. Chimpanzee vs. Human classifier:
– If arms == long, entity is chimpanzee
– If height > 5’6” entity is human
– If lives in house == entity is human
– If lives in zoo == entity is chimpanzee

• Each of them is a reasonable rule, but makes many mistakes
– Each rule has an intrinsic error rate

• Combine the predictions of these rules
– But not equally
– Rules that are less accurate should be given lesser weight

11755/18979 38

Boosting and the Chimpanzee Problem

• The total confidence in all classifiers that classify the entity as a
chimpanzee is

• The total confidence in all classifiers that classify it as a human is

• If Scorechimpanzee > Scorehuman then the our belief that we have a chimpanzee
is greater than the belief that we have a human

11755/18979 39


chimpanzeefavorsclassifier

chimpScore

classifier


humanfavorsclassifier

humanScore

classifier

Arm length?
armlength

Height?
height

Lives in house?
house

Lives in zoo?
zoo

human human chimp chimp

Boosting

• The basic idea: Can a “weak” learning algorithm
that performs just slightly better than a random
guess be boosted into an arbitrarily accurate
“strong” learner

• This is a “meta” algorithm, that poses no
constraints on the form of the weak learners
themselves

11755/18979 40

Boosting: A Voting Perspective

• Boosting is a form of voting
– Let a number of different classifiers classify the data
– Go with the majority
– Intuition says that as the number of classifiers increases,

the dependability of the majority vote increases
• Boosting by majority

• Boosting by weighted majority
– A (weighted) majority vote taken over all the classifiers
– How do we compute weights for the classifiers?
– How do we actually train the classifiers

11755/18979 41

ADA Boost

• Challenge: how to optimize the classifiers and
their weights?
– Trivial solution: Train all classifiers independently
– Optimal: Each classifier focuses on what others missed
– But joint optimization becomes impossible

• Adaptive Boosting: Greedy incremental
optimization of classifiers
– Keep adding classifiers incrementally, to fix what

others missed

11755/18979 42

AdaBoost

11755/18979 43

ILLUSTRATIVE
EXAMPLE

AdaBoost

11755/18979 44

First WEAK Learner

AdaBoost

11755/18979 45

The First Weak
Learner makes
Errors

AdaBoost

11755/18979 46

Reweighted data

AdaBoost

11755/18979 47

SECOND Weak Learner

FOCUSES ON DATA
“MISSED” BY FIRST
LEARNER

AdaBoost

11755/18979 48
SECOND STRONG Learner Combines both Weak Learners

AdaBoost

11755/18979 49
RETURNING TO THE SECOND WEAK LEARNER

AdaBoost

11755/18979 50

The SECOND Weak
Learner makes
Errors

AdaBoost

11755/18979 51

Reweighting data

AdaBoost

11755/18979 52

FOCUSES ON DATA
“MISSED” BY FIRST
AND SECOND
LEARNERs

THIRD Weak
Learner

AdaBoost

11755/18979 53

THIRD STRONG
Learner

Boosting: An Example

• Red dots represent training data from Red class
• Blue dots represent training data from Blue class

11755/18979 54

• The final strong learner has learnt a complicated decision
boundary

11755/18979 55

Boosting: An Example

• The final strong learner has learnt a complicated decision boundary

• Decision boundaries in areas with low density of training
points assumed inconsequential

11755/18979 56

Boosting: An Example

Overall Learning Pattern

11755/18979 57

 Strong learner increasingly accurate with increasing
number of weak learners

 Residual errors increasingly difficult to correct
‒ Additional weak learners less and less effective

Error of nth weak learner

Error of nth strong learner

number of weak learners

Overfitting

11755/18979 58

Note: Can continue to add weak learners
EVEN after strong learner error goes to 0!
 Shown to IMPROVE generalization!

Error of nth weak learner

Error of nth strong learner

number of weak learners

This may go to 0

AdaBoost: Summary

11755/18979 59

• No relation to Ada Lovelace
• Adaptive Boosting
• Adaptively Selects Weak Learners
• ~17.5K citations of just one paper by Freund

and Schapire

The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set t = ½ ln ((1 – et) / et)
– For i = 1… N

• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St t ht(x))

11755/18979 60

First, some example data

• Face detection with multiple Eigen faces
• Step 0: Derived top 2 Eigen faces from Eigen face training data
• Step 1: On a (different) set of examples, express each image

as a linear combination of Eigen faces
– Examples include both faces and non faces
– Even the non-face images are explained in terms of the Eigen faces

11755/18979 61

E1

E2

= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

Image = a*E1 + b*E2  a = Image.E1

Training Data

11755/18979 62

ID E1 E2. Class

A 0.3 -0.6 +1

B 0.5 -0.5 +1

C 0.7 -0.1 +1

D 0.6 -0.4 +1

E 0.2 0.4 -1

F -0.8 -0.1 -1

G 0.4 -0.9 -1

H 0.2 0.5 -1

= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

Face = +1
Non-face = -1

A
B
C
D

D
E
F
G

The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set t = ½ ln ((1 – et) / et)
– For i = 1… N

• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St t ht(x))

11755/18979 63

Initialize D1(xi) = 1/N

11755/18979 64

Training Data

11755/18979 65

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set t = ½ ln (et /(1 – et))
– For i = 1… N

• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St t ht(x))

The ADABoost Algorithm

11755/18979 66

The E1 “Stump”

11755/18979 67

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

threshold

The E1 “Stump”

11755/18979 68

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

threshold

The E1 “Stump”

11755/18979 69

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

threshold

The E1 “Stump”

11755/18979 70

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

threshold

11755/18979 71

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

threshold

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The E1 “Stump”

Sign = +1, error = 3/8
Sign = -1, error = 5/8

11755/18979 72

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 2/8
Sign = -1, error = 6/8

threshold

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The E1 “Stump”

11755/18979 73

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 1/8
Sign = -1, error = 7/8

threshold

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The E1 “Stump”

11755/18979 74

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 2/8
Sign = -1, error = 6/8

threshold

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The E1 “Stump”

11755/18979 75

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 1/8
Sign = -1, error = 7/8

threshold

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The E1 “Stump”

11755/18979 76

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 2/8
Sign = -1, error = 6/8

threshold

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The E1 “Stump”

The Best E1 “Stump”

11755/18979 77

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

Sign = +1
Threshold = 0.45Sign = +1, error = 1/8

threshold

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The E2“Stump”

11755/18979 78

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5

G A B D C F E H

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

threshold

Note order

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The Best E2“Stump”

11755/18979 79

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)

face = true

sign = -1
Threshold = 0.15

Sign = -1, error = 2/8

threshold

G A B D C F E H

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The Best “Stump”

11755/18979 80

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The Best overall classifier
based on a single feature is
based on E1

If (wt(E1) > 0.45)  Face
Sign = +1, error = 1/8

threshold

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The Best “Stump”

11755/18979 81

The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set t = ½ ln (et /(1 – et))
– For i = 1… N
–

• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St t ht(x))

11755/18979
82

The Best “Stump”

11755/18979 83

The Best Error

11755/18979 84

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The Error of the classifier
is the sum of the weights of
the misclassified instances

Sign = +1, error = 1/8

threshold

NOTE: THE ERROR IS THE SUM OF THE WEIGHTS OF MISCLASSIFIED
INSTANCES

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set t = ½ ln ((1 – et) / et)
– For i = 1… N

• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St t ht(x))

11755/18979 85

Computing Alpha

11755/18979 86

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Alpha = 0.5ln((1-1/8) / (1/8))

= 0.5 ln(7) = 0.97

Sign = +1, error = 1/8

threshold

The Boosted Classifier Thus Far

11755/18979 87

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Alpha = 0.5ln((1-1/8) / (1/8))

= 0.5 ln(7) = 0.97

Sign = +1, error = 1/8

threshold

h1(X) = wt(E1) > 0.45 ? +1 : -1

H(X) = sign(0.97 * h1(X))

It’s the same as h1(x)

The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Average {½ (1 – yi ht(xi))}

– Set t = ½ ln ((1 – et) / et)
– For i = 1… N

• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St t ht(x))

11755/18979 88

The Best Error

11755/18979 89

ID E1 E2. Class Weight Weight

A 0.3 -0.6 +1 1/8 * 2.63 0.33

B 0.5 -0.5 +1 1/8 * 0.38 0.05

C 0.7 -0.1 +1 1/8 * 0.38 0.05

D 0.6 -0.4 +1 1/8 * 0.38 0.05

E 0.2 0.4 -1 1/8 * 0.38 0.05

F -0.8 0.1 -1 1/8 * 0.38 0.05

G 0.4 -0.9 -1 1/8 * 0.38 0.05

H 0.2 0.5 -1 1/8 * 0.38 0.05

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

Dt+1(xi) = Dt(xi) exp(- t yi ht (xi))

exp(t) = exp(0.97) = 2.63
exp(-t) = exp(-0.97) = 0.38

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63

AdaBoost

11755/18979 90

AdaBoost

11755/18979 91

The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Average {½ (1 – yi ht(xi))}

– Set t = ½ ln ((1 – et) / et)
– For i = 1… N

• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St t ht(x))

11755/18979 92

The Best Error

11755/18979 93

ID E1 E2. Class Weight Weight Weight

A 0.3 -0.6 +1 1/8 * 2.63 0.33 0.48

B 0.5 -0.5 +1 1/8 * 0.38 0.05 0.074

C 0.7 -0.1 +1 1/8 * 0.38 0.05 0.074

D 0.6 -0.4 +1 1/8 * 0.38 0.05 0.074

E 0.2 0.4 -1 1/8 * 0.38 0.05 0.074

F -0.8 0.1 -1 1/8 * 0.38 0.05 0.074

G 0.4 -0.9 -1 1/8 * 0.38 0.05 0.074

H 0.2 0.5 -1 1/8 * 0.38 0.05 0.074

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

D’ = D / sum(D)

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0

The Best Error

11755/18979 94

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

D’ = D / sum(D)

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0

The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Average {½ (1 – yi ht(xi))}

– Set t = ½ ln (et /(1 – et))
– For i = 1… N

• set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St t ht(x))

11755/18979 95

E1 classifier

11755/18979 96

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .48 .074 .074 .074 .074

threshold

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 0.222
Sign = -1, error = 0.778

E1 classifier

11755/18979 97

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 0.148
Sign = -1, error = 0.852

.48 .074

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074

The Best E1 classifier

11755/18979 98

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 0.074

.48 .074

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074

The Best E2 classifier

11755/18979 99

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5

G A B D C F E H

.074 .48 .074 .074 .074 .074 .074 .074

threshold

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)

face = true

sign = +1 or -1

Sign = -1, error = 0.148

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074

The Best Classifier

11755/18979 100

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Classifier based on E1:
if (wt(E1) > 0.45) face = true

Sign = +1, error = 0.074

.48 .074

Alpha = 0.5ln((1-0.074) / 0.074)
= 1.26

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074

The Boosted Classifier Thus Far

11755/18979 101

h1(X) = wt(E1) > 0.45 ? +1 : -1

h2(X) = wt(E1) > 0.25 ? +1 : -1

H(X) = sign(0.97 * h1(X) + 1.26 * h2(X))

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

.48 .074

threshold

Reweighting the Data

11755/18979 102

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48*0.28 0.32

B 0.5 -0.5 +1 0.074*0.28 0.05

C 0.7 -0.1 +1 0.074*0.28 0.05

D 0.6 -0.4 +1 0.074*0.28 0.05

E 0.2 0.4 -1 0.074*0.28 0.05

F -0.8 0.1 -1 0.074*0.28 0.05

G 0.4 -0.9 -1 0.074*3.5 0.38

H 0.2 0.5 -1 0.074*0.28 0.05

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Sign = +1, error = 0.074

.48 .074

Exp(alpha) = exp(1.26) = 3.5
Exp(-alpha) = exp(-1.26) = 0.28

RENORMALIZE

Reweighting the Data

11755/18979 103

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Sign = +1, error = 0.074

.48 .074

RENORMALIZE

NOTE: THE WEIGHT OF “G”
WHICH WAS MISCLASSIFIED
BY THE SECOND CLASSIFIER
IS NOW SUDDENLY HIGH

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48*0.28 0.32

B 0.5 -0.5 +1 0.074*0.28 0.05

C 0.7 -0.1 +1 0.074*0.28 0.05

D 0.6 -0.4 +1 0.074*0.28 0.05

E 0.2 0.4 -1 0.074*0.28 0.05

F -0.8 0.1 -1 0.074*0.28 0.05

G 0.4 -0.9 -1 0.074*3.5 0.38

H 0.2 0.5 -1 0.074*0.28 0.05

AdaBoost
• In this example both of our first two classifiers were

based on E1
– Additional classifiers may switch to E2

• In general, the reweighting of the data will result in a
different feature being picked for each classifier

• This also automatically gives us a feature selection
strategy
– In this data the wt(E1) is the most important feature

11755/18979 104

AdaBoost
• NOT required to go with the best classifier so far
• For instance, for our second classifier, we might use the

best E2 classifier, even though its worse than the E1
classifier
– So long as its right more than 50% of the time

• We can continue to add classifiers even after we get 100%
classification of the training data
– Because the weights of the data keep changing
– Adding new classifiers beyond this point is often a good

thing to do

11755/18979 105

ADA Boost

• The final classifier is
– H(x) = sign(St t ht(x))

• The output is 1 if the total weight of all weak
learners that classify x as 1 is greater than the
total weight of all weak learners that classify it as
-1

11755/18979 106

E1 E2

= 0.4 E1 - 0.4 E2

