
Machine Learning for Signal
Processing

Detecting faces (& other objects) in
images

Bhiksha Raj

11755/18979 1

Previously: How to describe a face

• A “typical face” that captures the essence of
“facehood”..

• The principal Eigen face..

11755/18979 2

The typical face

A collection of least squares typical faces

• Extension: Many Eigenfaces
• Approximate every face f as f = wf,1 V1+ wf,2 V2 +.. + wf,k Vk

– V2 is used to “correct” errors resulting from using only V1

– V3 corrects errors remaining after correction with V2

– And so on..

• V = [V1 V2 V3] can be computed through Eigen analysis

11755/18979 3

Detecting Faces in Images

11755/18979 4

Detecting Faces in Images

• Finding face like patterns
– How do we find if a picture has faces in it
– Where are the faces?

• A simple solution:
– Define a “typical face”
– Find the “typical face” in the image

11755/18979 5

Given an image and a ‘typical’ face
how do I find the faces?

11755/18979 6

+

100×100

400×200
(RGB)

+

Finding faces in an image

• Picture is larger than the “typical face”
– E.g. typical face is 100x100, picture is 600x800

• First convert to greyscale
– R + G + B
– Not very useful to work in color

11755/18979 7

Finding faces in an image

• Goal .. To find out if and where images that
look like the “typical” face occur in the picture

11755/18979 8

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 9

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 10

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 11

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 12

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 13

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 14

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 15

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 16

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 17

Finding faces in an image

• Try to “match” the typical face to each location in
the picture

• The “typical face” will explain some spots on the
image much better than others
– These are the spots at which we probably have a face!

11755/18979 18

How to “match”

• What exactly is the “match”
– What is the match “score”

11755/18979 19

How to “match”

• What exactly is the “match”
– What is the match “score”

• The DOT Product
– Express the typical face as a vector
– Express the region of the image being evaluated as a vector
– Compute the dot product of the typical face vector and the “region”

vector

11755/18979 20

What do we get

• The right panel shows the dot product at
various locations
– Redder is higher

• The locations of peaks indicate locations of faces!

11755/18979 21

What do we get

• The right panel shows the dot product at various
locations
– Redder is higher

• The locations of peaks indicate locations of faces!

• Correctly detects all three faces
– Likes George’s face most

• He looks most like the typical face

• Also finds a face where there is none!
– A false alarm

11755/18979 22

What do we get

• The right panel shows the dot product at various
locations
– Redder is higher

• The locations of peaks indicate locations of faces!

• Correctly detects all three faces
– Likes George’s face most

• He looks most like the typical face

• Also finds a face where there is none!
– A false alarm

11755/18979 23

Sliding windows solves only the
issue of location – what about

scale?

11755/18979 24

• Not all faces are the same size
• Some people have bigger faces
• The size of the face on the image

changes with perspective
• Our “typical face” only represents

one of these sizes

Scale-Space Pyramid

11755/18979 25

Scale the image
(but keep your typical
face template fixed)

Location – Scale – What about Rotation?

• The head need not
always be upright!

• Our typical face
image was upright

11755/18979 26

Solution

• Create many “typical faces”
– One for each scaling factor
– One for each rotation

• How will we do this?
• Match them all

• Does this work
– Kind of .. Not well enough at all
– We need more sophisticated models

11755/18979 27

Face Detection: A Quick Historical Perspective

• Many more complex methods
– Use edge detectors and search for face like patterns
– Find “feature” detectors (noses, ears..) and employ them in complex

neural networks..

• The Viola Jones method
– Boosted cascaded classifiers

11755/18979 28

Face Detection: A Quick Historical Perspective

• Many more complex methods
– Use edge detectors and search for face like patterns
– Find “feature” detectors (noses, ears..) and employ them in complex

neural networks..

• The Viola Jones method (25K+ Citations!)
– Boosted cascaded classifiers

11755/18979 29

And even before that – what is classification?

• Given “features” describing an entity, determine the
category it belongs to
– Walks on two legs, has no hair. Is this

• A Chimpanizee
• A Human

– Has long hair, is 5’6” tall, is this
• A man
• A woman

– Matches “eye” pattern with score 0.5, “mouth pattern” with
score 0.25, “nose” pattern with score 0.1. Are we looking at

• A face
• Not a face?

11755/18979 30

Classification
• Multi-class classification

– Many possible categories
• E.g. Sounds “AH, IY, UW, EY..”
• E.g. Images “Tree, dog, house, person..”

• Binary classification
– Only two categories

• Man vs. Woman
• Face vs. not a face…

11755/18979 31

Detection vs Classification

• Detection: Find an X
• Classification: Find the correct label X,Y,Z etc.

11755/18979 32

Detection vs Classification

• Detection: Find an X
• Classification: Find the correct label X,Y,Z etc.
• Binary Classification as Detection: Find the

correct label X or not-X

11755/18979 33

Face Detection as Classification

• Faces can be many sizes
• They can happen anywhere in the image
• For each face size

– For each location
• Classify a rectangular region of the face size, at that location, as a face or

not a face

• This is a series of binary classification problems
– We can use the adaboost algorithm

11755/18979 34

For each square, run a
classifier to find out if it
is a face or not

Training Data

11755/18979 35

ID E1 E2. Class

A 0.3 -0.6 +1

B 0.5 -0.5 +1

C 0.7 -0.1 +1

D 0.6 -0.4 +1

E 0.2 0.4 -1

F -0.8 -0.1 -1

G 0.4 -0.9 -1

H 0.2 0.5 -1

Face = +1
Non-face = -1

A
B
C
D

D
E
F
G

The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set at = ½ ln ((1 – et) / et)
– For i = 1… N

• set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St at ht(x))

11755/18979 36

ADA Boost

• The final classifier is
– H(x) = sign(St at ht(x))

• The output is 1 if the total weight of all weak
learners that classify x as 1 is greater than the
total weight of all weak learners that classify it as
-1

11755/18979 37

E1 E2

= 0.4 E1 - 0.4 E2

Boosting and Face Detection

• Boosting is the basis of one of the most
popular methods for face detection: The
Viola-Jones algorithm
– Current methods use other classifiers like SVMs

and neural nets, but Adaboost classifiers remain
easy to implement and popular

– OpenCV implements Viola Jones..

11755/18979 38

The problem of face detection
• 1. Defining Features

– Should we be searching for noses, eyes, eyebrows etc.?
• Nice, but expensive

– Or something simpler

• 2. Selecting Features
– Of all the possible features we can think of, which ones make

sense

• 3. Classification: Combining evidence
– How does one combine the evidence from the different features?

11755/18979 39

Feature requirements

• Must be sufficiently descriptive
– So that we achieve good classification

• Must be extremely inexpensive to compute
– Face detection typically required to be performed in

realtime on very cheap devices

• Preferably computable using only integer operations
– Use less power

11755/18979 40

Features: The Viola Jones Method

• Integral Features!!
– Like the Checkerboard

• The same principle as we used to decompose images in terms of
checkerboards:
– The image of any object has changes at various scales
– These can be represented coarsely by a checkerboard pattern

• The checkerboard patterns must however now be localized
– Stay within the region of the face

11755/18979 41

B1 B2 B3 B4 B5 B6

...Im 332211  BwBwBwage

Features
• Checkerboard Patterns to represent facial features

– The white areas are subtracted from the black ones.
– Each checkerboard explains a localized portion of the

image
• Four types of checkerboard patterns (only)

11755/18979 42

Explaining a portion of the face with a
checker..

• How much is the difference in average intensity of the image
in the black and white regions
– Sum(pixel values in white region) – Sum(pixel values in black region)

• This is actually the dot product of the region of the face
covered by the rectangle and the checkered pattern itself
– White = 1, Black = -1

11755/18979 43

Integral images
• Summed area tables

• For each pixel store the sum of ALL pixels to the left of and above it.

11755/18979 44

Fast Computation of Pixel Sums

• To compute the sum of the pixels within “D”:
– Pixelsum(1) = Area(A)
– Pixelsum(2) = Area(A) + Area(B)
– Pixelsum(3) = Area(A) + Area(C)
– Pixelsum(4) = Area(A)+Area(B)+Area(C) +Area(D)

• Area(D) = Pixelsum(4) – Pixelsum(2) – Pixelsum(3) + Pixelsum(1)
11755/18979 45

1 2

3 4

A B

C D

• Store pixel table for every pixel in the image
– The sum of all pixel values to the left of and above the pixel

• Let A, B, C, D, E, F be the pixel table values at the locations shown
– Total pixel value of black area = D + A – B – C
– Total pixel value of white area = F + C – D – E
– Feature value = (F + C – D – E) – (D + A – B – C)

11755/18979 46

A B

D

F
C

E

A Fast Way to Compute the Feature

“Integral” features

• Each checkerboard has the following characteristics
– Length
– Width
– Type

• Specifies the number and arrangement of bands

• The four checkerboards above are the four used by Viola and Jones

11755/18979 47

How many features?

• Each checker board of width P and height H can start at any of
(N-P)(M-H) pixels

• (M-H)*(N-P) possible starting locations
– Each is a unique checker feature

• E.g. at one location it may measure the forehead, at another the chin

48

MxN
PxH

11755/18979

How many features

• Each feature can have many sizes
– Width from (min) to (max) pixels
– Height from (min ht) to (max ht) pixels

• At each size, there can be many starting locations
– Total number of possible checkerboards of one type:

No. of possible sizes x No. of possible locations
• There are four types of checkerboards

– Total no. of possible checkerboards: VERY VERY LARGE!

11755/18979 49

Learning: No. of features

• Analysis performed on images of 24x24 pixels
only
– Reduces the no. of possible features to about

180000

• Restrict checkerboard size
– Minimum of 8 pixels wide
– Minimum of 8 pixels high

• Other limits, e.g. 4 pixels may be used too

– Reduces no. of checkerboards to about 50000

11755/18979 50

No. of features

• Each possible checkerboard gives us one feature
• A total of up to 180000 features derived from a 24x24 image!
• Every 24x24 image is now represented by a set of 180000

numbers
– This is the set of features we will use for classifying if it is a face or not!

11755/18979 51

F1 F2 F3 F4 ….. F180000

7 9 2 -1 ….. 12

-11 3 19 17 ….. 2

The Classifier
• The Viola-Jones algorithm uses AdaBoost with “stumps”

• At each stage find the best feature to classify the data
with
– I.e the feature that gives us the best classification of all the

training data
• Training data includes many examples of faces and non-face

images

– The classification rule is of the kind
• If feature > threshold, face (or if feature < threshold, face)
• The optimal value of “threshold” must also be determined.

11755/18979 52

To Train
• Collect a large number of facial images

– Resize all of them to 24x24
– These are our “face” training set

• Collect a much much much larger set of 24x24
non-face images of all kinds
– Each of them is
– These are our “non-face” training set

• Train a boosted classifier

11755/18979 53

The Viola Jones Classifier

• During tests:
– Given any new 24x24 image

• R = Sf af (f > pf q(f))
• Only a small number of features

(f < 100) typically used

• Problems:
– Only classifies 24 x 24 images entirely as faces or non-faces

• Pictures are typically much larger
• Pictures may contain many faces
• Faces in pictures can be much larger or smaller

– Not accurate enough
– Too slow

11755/18979 54

Multiple faces in the picture

• Scan the image
– Classify each 24x24 rectangle from the photo
– All rectangles that get classified as having a face indicate the location

of a face
• For an NxM picture, we will perform (N-24)*(M-24) classifications
• If overlapping 24x24 rectangles are found to have faces, merge them

11755/18979 55

Multiple faces in the picture

• Scan the image
– Classify each 24x24 rectangle from the photo
– All rectangles that get classified as having a face indicate the location

of a face
• For an NxM picture, we will perform (N-24)*(M-24) classifications
• If overlapping 24x24 rectangles are found to have faces, merge them

11755/18979 56

Multiple faces in the picture

• Scan the image
– Classify each 24x24 rectangle from the photo
– All rectangles that get classified as having a face indicate the location

of a face
• For an NxM picture, we will perform (N-24)*(M-24) classifications
• If overlapping 24x24 rectangles are found to have faces, merge them

11755/18979 57

Multiple faces in the picture

• Scan the image
– Classify each 24x24 rectangle from the photo
– All rectangles that get classified as having a face indicate the location

of a face
• For an NxM picture, we will perform (N-24)*(M-24) classifications
• If overlapping 24x24 rectangles are found to have faces, merge them

11755/18979 58

Picture size solution
• We already have a

classifier
– That uses weak

learners
• Scale the Picture

– Scale the picture
down by a factor a

– Keep decrementing
down to a minimum
reasonable size

11755/18979 59

False Rejection vs. False Detection
• False Rejection: There’s a face in the image, but the classifier misses it

– Rejects the hypothesis that there’s a face
• False detection: Recognizes a face when there is none.

• Classifier:
– Standard boosted classifier: H(x) = sign(St at ht(x))
– Modified classifier H(x) = sign(St at ht(x) + Y)

• St at ht(x) is a measure of certainty
– The higher it is, the more certain we are that we found a face

• If Y is large, then we assume the presence of a face even when we are not
sure

– By increasing Y, we can reduce false rejection, while increasing false
detection

11755/18979 60

ROC

• Ideally false rejection will be 0%, false detection will also
be 0%

• As Y increases, we reject faces less and less
– But accept increasing amounts of garbage as faces

• Can set Y so that we rarely miss a face

11755/18979 61

vsfalse neg determined by

% False detection

%
Fa

ls
e

R
ej

ec
ti

n

0 100

0

10
0

As Y increases

Problem: Not accurate enough, too slow

• If we set Y high enough, we will never miss a
face
– But will classify a lot of junk as faces

• Solution: Classify the output of the first
classifier with a second classifier
– And so on.

11755/18979 62

Classifier 1

Not a face

Classifier 2

Not a face

Problem: Not accurate enough, too slow

• If we set Y high enough, we will never miss a
face
– But will classify a lot of junk as faces

• Solution: Classify the output of the first
classifier with a second classifier
– And so on.

11755/18979 63

Useful Features Learned by Boosting

11755/18979 64

A Cascade of Classifiers

11755/18979 65

Detection in Real Images

• Basic classifier operates on 24 x 24 subwindows

• Scaling:
– Scale the detector (rather than the images)
– Features can easily be evaluated at any scale
– Scale by factors of 1.25

• Location:
– Move detector around the image (e.g., 1 pixel increments)

• Final Detections
– A real face may result in multiple nearby detections
– Postprocess detected subwindows to combine overlapping detections

into a single detection

11755/18979 66

Training
• In paper, 24x24 images of faces and non faces (positive and negative

examples).

11755/18979 67

Sample results using the Viola-Jones Detector

• Notice detection at multiple scales

11755/18979 68

More Detection Examples

11755/18979 69

Practical implementation

• Details discussed in Viola-Jones paper

• Training time = weeks (with 5k faces and 9.5k non-faces)

• Final detector has 38 layers in the cascade, 6060 features

• 700 Mhz processor:
– Can process a 384 x 288 image in 0.067 seconds (in 2003 when

paper was written)

11755/18979 70

Best Window/Background Issues

11755/18979 71

Best Window/Background Issues

11755/18979 72

Best Window/Background Issues

11755/18979 73

Key Ideas

• EigenFace feature
• Sliding windows & scale-space pyramid
• Boosting an ensemble of weak classifiers
• Integral Image / Haar Features
• Cascaded Strong Classifiers

11755/18979 74

