Machine Learning for Signal
Processing
Independent Component Analysis

Instructor: Bhiksha Raj
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Revisiting the Covariance Matrix

Assuming centered data

C=3, XX
= X X,T+ XX, T+ ...

Let us view C as a transform..
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Covariance matrix as a transform

o (X X{T+XX,T+ . ) V=XXV+XXTV+..
* Consider a 2-vector example

— |In two dimensions for illustration

11755/18797



Covariance Matrix as a transform

XXV

N
)®

 Data comprises only 2 vectors..

* Major axis of component ellipses proportional to the
squared length of the corresponding vector
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Covariance Matrix as a transform
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* More vectors..

* Major axis of component ellipses proportional to the
squared length of the corresponding vector
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Covariance Matrix as a transform

N
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* More ve

* Major axis of component ellipses proportional to the
squared length of the corresponding vector

11755/18797



Covariance Matrix as a transform

~
L/

 And still mor

* Major axis of component elipses proportional to the
squared lengthof the corresponding vector
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Covariance Matrix transform

 The covariance matrix captures the directions of
maximum variance

e What does it tell us about trends?
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Data Trends: Axis aligned

covariance
) A

v |

Axis aligned covariance

At any X value, the average Y value of vectors is O
— X cannot predict Y

At any Y, the average X of vectors is O
— Y cannot predict X

The X and Y components are uncorrelated
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Data Trends: Tilted covariance

A |

Tilted covariance

The average Y value of vectors at any X varies with X
— X predicts Y

Average X varies with Y
The X and Y components are correlated
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Decorrelation

/

* Shifting to using the major axes as the coordinate system
— L, does not predict L, and vice versa
— In this coordinate system the data are uncorrelated

 We have decorrelated the data by rotating the axes

11755/18797
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The statistical concept of
correlatedness

 Two variables X and Y are correlated if If
knowing X gives you an expected value of Y

« XandY are uncorrelated if knowing X tells you
nothing about the expected value of Y

— Although it could give you other information
— How?
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Correlation vs. Causation

 The consumption of burgers has gone up
steadily in the past decade

Antarctica has gone down

Correlation, not Causation
(unless McDonalds has a
b Ga % top-secret Antarctica division)
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The concept of correlation

* Two variables are correlated if knowing the
value of one gives you information about the

expected value of the other

Time

>
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A brief review of basic probability

Uncorrelated: Two random variables X and Y are
uncorrelated iff:

— The average value of the product of the variables equals the
product of their individual averages

Setup: Each draw produces one instance of X and one
instance of Y

— |.e one instance of (X,Y)

E[XY] = E[X]E[Y]

The average value of Y is the same regardless of the value
of X
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Correlated Variables

A

Penguin population

>

Burger consumption

Expected value of Y given X:

— Find average of Y values of all samples at (or close)
to the given X

— If this is a function of X, X and Y are correlated
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Uncorrelatedness

A

.m.
b, b,

Burger consumption

Average Income

* Knowing X does not tell you what the average
value of Y is

— And vice versa
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Uncorrelated Variables

A X as a function of Y
o Y as a function of X
g
)
(P
= Py ®
) ° °
S oo o
S
<

>

Burger consumption

 The average value of Y is the same regardless
of the value of X and vice versa
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Uncorrelatedness in Random
Variables

 Which of the above represent uncorrelated RVs?
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Benefits of uncorrelatedness..

* Uncorrelatedness of variables is generally considered
desirable for modelling and analyses

— For Euclidean error based regression models and probabilistic
models, uncorrelated variables can be separately handled
* Since the value of one doesn’t affect the average value of others
* Greatly reduces the number of model parameters

— Otherwise their interactions must be considered

* We will frequently transform correlated variables to make
them uncorrelated
— “Decorrelating” variables

11755/18797
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The notion of decorrelation

V)

>

e So how does one transform the correlated
variables (X,Y) to the uncorrelated (X', Y’)
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What does “uncorrelated” mean

N v— * E[X’] = constant
’ * E[Y’] = constant
o \AF .: . * E[Y’|X’] = constant
« E[X’Y’]=E[X’] E[Y’]
— All will be O for centered
v > data

EK);"](X' Y')} = E[ X X'Y') = (E[X' ] 0 j = diagonal matrix

X'y y" 0

E[Y"]

* If Y is a matrix of vectors, YY! = diagonal

11755/18797
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Decorrelation

e Let X be the matrix of correlated data vectors

— Each component of X informs us of the mean trend of
other components

* Need a transform M such that if Y = MX such
that the covariance of Y is diagonal
— YY!is the covariance if Y is zero mean
— For uncorrelated components, YY! = Diagonal
—=MXX'M' = Diagonal
—=M.Cov(X).M'" = Diagonal



Decorrelation

Easy solution:

— Eigen decomposition of Cov(X):
Cov(X) = EAE"

— EET=1

let M =E!

MCov(X)M! = ETEAE'E = A = diagonal

PCA: Y =EX

— Projects the data onto the Eigen vectors of the covariance matrix
— Diagonalizes the covariance matrix

— “Decorrelates” the data
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PCA

X=wE, +wkE,

X Wy

 PCA:Y=EX
— Projects the data onto the Eigen vectors of the covariance matrix
* Changes the coordinate system to the Eigen vectors of the covariance matrix
— Diagonalizes the covariance matrix
— “Decorrelates” the data
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Decorrelating the data

* Are there other decorrelating axes?

11755/18797
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Decorrelating the data

* Are there other decorrelating axes?
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Decorrelating the data

* Are there other decorrelating axes?
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Decorrelating the data

* Are there other decorrelating axes?

 What about if we don’t require them to be
orthogonal?
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Decorrelating the data

* Are there other decorrelating axes?

 What about if we don’t require them to be
orthogonal?

* What is special about these axes?

11755/18797
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The statistical concept of
Independence

 Two variables X and Y are dependent if If
knowing X gives you any information about Y

e XandY are independent if knowing X tells you
nothing at all of Y
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A brief review of basic probability

* Independence: Two random variables X and Y
are independent iff:

— Their joint probability equals the product of their
individual probabilities

* P(X)Y)= P(X)P(Y)
* Independence implies uncorrelatedness

— The average value of X is the same regardless of the
value of Y
* E[X[Y]=E[X]
— But uncorrelatedness does not imply independence

11755/18797 33



A brief review of basic probability

* Independence: Two random variables X and
Y are independent iff:

 The average value of any function of X is the
same regardless of the value of Y

— Or any function of Y

* E[f(X)g(Y)] = E[f(X)] E[g(Y)] for all (), g()
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Independence

* Which of the above represent independent RVs?

* Which represent uncorrelated RVs?

11755/18797 35



A brief review of basic probability

y = f(x)

-0 /5¢
F

B ——— i

* The expected value of an odd function of an
RVis O if
— The RV is 0 mean
— The PDF is of the RV is symmetric around O

e E[f(X)] = Oif f(X) is odd symmetric
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A note on bits..

* You flip a coin. You must inform your friend in
the next room about whether the outcome
was heads or tails

Digital @
channel ~ A

* How many bits will you have to send?
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A note on bits..

* You roll a four-side dice. You must inform your
friend in the next room about the outcome

(o,
\

Digital A
~— -~

* How many bits will you have to send?
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A note on bits..

* You roll an eight-sided polyheldral dice. You
must inform your friend in the next room
about the outcome

oy
\
Digital - [N ‘\\‘

* How many bits will you have to send?

11755/18797
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A note on bits..

* You roll a six-sided dice. You must inform your
friend in the next room about the outcome

(o,
\

Digital A
~— -~

* How many bits will you have to send?
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Batching up 6-sided dice rolls

oy
\

Digital i
~ R

ey 2\ “@ &,

* |nstead of sending 1|1
individual rolls, you roll 1 ]2
the dice twice - =

— And send the pair to your .
. 2 1
friend
2 2

* How many bits do you N
send per roll? 6 |6

11755/18797
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Batching up 6-sided dice rolls

oy
\

Digital ]
~ R

AN & B

Instead of sending individual 1 1
rolls, you roll the dice twice 1 2

— And send the pair to your friend 1 3
How many bits do you send per B B
roll? 7 1
36 combinations: 6 bits per pair 2 )
of numbers

— Still 3 bits per roll 6 6

11755/18797
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Batching up 6-sided dice rolls

1 (1 |1
Instead of sending individual rolls, WERE
you roll the dice three times
— And send the triple to your friend
_ 1 |6 |3
How many bits do you send per
roll?
. . . . 2 |1 |1
216 combinations: 8 bits per triple P
— Still 2.666 bits per roll
— Now we’re talking!
6 |6 |6

11755/18797
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Batching up 6-sided dice rolls

e Batching four rolls

— 1296 combinations

— 11 bits per outcome (4 rolls)

— 2.75 bit per roll

* Batching five rolls

— 7776 combinations

— 13 bits per outcome (5 rolls)

— 2.6 bits per roll
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Batching up 6-sided dice rolls

4
?

W

No. of rolls batched together

Bits per roll

Where will it end?
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Batching up 6-sided dice rolls

?

|

Bits per roll

No. of rolls batched together

e Where will it end?

k log2(6)| _ log2(6) bits per roll in the limit

° limk_mo

— This is the absolute minimum — no batching will give you less

than these many bits per outcome
11755/18797 46



Can we do better?

A four-sided die needs 2 bits
per roll

But then you find not all
sides are equally likely

P(1) =0.5, P(2) =0.25, P(3) 0.125, P(4) =0.125

Can you do better than 2 bits per outcome

11755/18797
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Can we do better?

 You have
P(1) =0.5, P(2) =0.25, P(3) 0.125, P(4) =0.125

0

1

2 |10
* You use: > 110

4

111

— Note receiver is never in any doubt as to what
they received

 What is the average number of bits per
outcome
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Can we do better?

* You have
P(1) =0.5, P(2) =0.25, P(3) 0.125, P(4) =0.125

0

1

* You use: 2 |10 4
3 110
4

111

— Note receiver is never in any doubt as to what they
received

* An outcome with probability p is equivalent to
obtaining one of 1/p equally likely choices

— Requires logZ(%) bits on average



Entropy

N\ Digital _\\y/,\\"ssiigsg

channel

The average number of bits per symbol required to communicate a
random variable over a digitial channel using an optimal code is

H(p) = ZPL log— z p; log p;

You can’t do better

— Any other code will require more bits

This is the entropy of the random variable
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A brief review of basic info. theory

ee®  T(all), M(ed), S(hort)...

H(X)= ) P(X)[-log P(X)]

* Entropy: The minimum average number of bits
to transmit to convey a symbol

H(X,Y)=)Y P(X,Y)[-log P(X,Y)]

e Joint entropy: The minimum averagé number of
bits to convey sets (pairs here) of symbols
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A brief review of basic info. theory

H(X|Y)=) P(Y)) P(X|Y)[-logP(X|Y)]=> P(X,Y)[-log P(X|Y)]

* Conditional Entropy: The minimum average
number of bits to transmit to convey a symbol
X, after symbol Y has already been conveyed

— Averaged over all values of X and Y
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A brief review of basic info. theory

* Conditional entropy of X|Y = H(X)if X is

independent of Y
H(X |Y) =Y P(Y)Y. P(X |Y)[~log P(X | Y)]= Y P(Y)Y P(X)[~log P(X)] = H(X)

* Joint entropy of X and Y is the sum of the
entropies of X and Y if they are independent

H(X,Y)=) P(X,Y)[-log P(X,Y)]= ) P(X.Y)[-log P(X)P(Y)]

=—Y P(X,Y)log P(X)- Y P(X,Y)logP(Y)=H(X)+H(Y)
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Onward..

11755/18797
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multiple notes

Projection
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We’re actually computing a score

- - - = — = = S e
. -‘ b - = —_—— — e e == 7- e — e = - e——— ==
- — - e —— — e = =-——————|
_ = — — — —————— —— =
. - - = N = = — = S ——— ) — e
4 -] ‘ = — — e — = E——— —
— — — e —

= H=pinv(W)M
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How about the other way?

e - —— = —— — =
= = e e e S — - == — 2
= = = = = -
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When both parameters are unknown

H=?

=9
W= approx(M) =?

e Must estimate both H and W to best
approximate M

* |deally, must learn both the notes and their
transcription!



A least squares solution

W.H =argming ; | M- WH ||, +A(W'W -T)

Constraint: W is orthogonal

~WIW =1

The solution: W are the Eigen vectors of
MMT!

— PCAIl

M ~ WH is an approximation

Also, the rows of H are decorrelated
— Trivial to prove that HH' is diagonal



PCA

W.H =argming ; | M- WH I
M~ WH

e The columns of W are the bases we have
learned

— The linear “building blocks” that compose the
music

* They represent “learned” notes



So how does that work?

 There are 12 notes in the segment, hence we
try to estimate 12 notes..



So how does that work?

{2 L 8 1 = = — e === ==
< ——— e — e = === —— i z
1" J—%ﬁ = 200 400 600 800 1000 1200 1400
1 — = -

200 400 s500 800 1000 1200 1400

 There are 12 notes in the segment, hence we
try to estimate 12 notes..

e Results are not good



PCA through decorrelation of

notes
W.H =argming 4 [|M ~H|> +A(HH" - D)

[ E—
] [ [ [ ]
L N

e Different constraint: Constraint H to be decorrelated
—HH'=D
* This will result exactly in PCA too

* Decorrelation of H Interpretation: What does this
mean?



What else can we look for?

1M I
| M1 M B
[T 1 [l

 Assume: The “transcription” of one note does
not depend on what else is playing

— Or, in a multi-instrument piece, instruments are
playing independently of one another

* Not strictly true, but still..



What else can we look for?

1M I
| [ M B
[T 1 [l

Assume: The “transcription” of one note does not depend on what
else is playing

— Or, in a multi-instrument piece, instruments are playing independently
of one another

Attempting to find statistically independent components of the
mixed signal

— Independent Component Analysis
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Formulating it with Independence

W.H =argming || M- WH |17 +A(rows.of .H .are.independent)

* Impose statistical independence constraints
on decomposition



Changing problems for a bit

ﬁ . > > ....... > Q:] Wll(f) = Wllhl(f)-I-lehz(f)
il
b A

h ()

hy(2)

 Two people speak simultaneously
 Recorded by two microphones
* Each recorded signal is a mixture of both signals
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A Separation Problem

M \V H
/\AN\RM\/\/\ W, Wi, /\A,\/\/\/\/\/b\/\/\
MMM INTT |y g, W\f\\j\wm,v\\

\
Signal from speaker 1
* M=WH
‘. Signal at mic 1 Signal from speaker 2
— M = “mixed” signal
Signal at mic 2

— W = “notes”

— H = “transcription”

e Separation challenge: Given only M estimate H
* |dentical to the problem of “finding notes”
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A Separation Problem

H
Wi Wi N\/\/\A/\/\/WV\
Wy Wy \/VWV\/\WI\/\M

M

AV ANVVAN VA
AWM

e Separation challenge: Given only M estimate H

* ldentical to the problem of “finding notes”



Imposing Statistical Constraints

M W H
W\/\/\/\/W\/\ W1 Wi /\/\/\/\/\/\/\/\/\/\/\
MNVW\MN N B ASVAVANITVARVITON

M =WH
Given only M estimate H
H=W'M = AM

Only known constraint: The rows of H are
independent

Estimate A such that the components of AM are
statistically independent

— A is the unmixing matrix
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Statistical Independence

* M=WH
T Remember this form

11755/18797
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An ugly algebraic solution

M=WH ....... H=AM

 We could decorrelate signals by algebraic manipulation

— We know uncorrelated signals have diagonal correlation
matrix

— So we transformed the signal so that it has a diagonal
correlation matrix (HHY)

 Can we do the same for independence
— Is there a linear transform that will enforce independence?



An ugly algebraic solution

 We decorrelated signals by diagonalizing the
covariance matrix

* |s there a simple matrix we could just similarly
diagonalize to make them independent?
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An ugly algebraic solution

 We decorrelated signals by diagonalizing the
covariance matrix

* |s there a simple matrix we could just similarly
diagonalize to make them independent?

— Not really, but there is a matrix we can diagonalize
to make fourth-order moments independent

e Just as decorrelation made second-order moments
independent
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Emulating Independence

H

aVe SN A A N VACTA VA
NIAVA NN AVIVAYA VAN

 The rows of H are uncorrelated
— E[hh;] = E[h,;|E[h;]
— h; and h; are the i and j*" components of any vector in H

 The fourth order moments are independent
— E[h;hhyhy| = E[h;|E[h]E[h, |E[h,]
- E:hizhjhk] — E[hiZ]E[hj]E[hk]
— E:hizhjz] — E[hiz]E[hjZ]
— Etc.
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Zero Mean

e Usual to assume zero mean pProcesses
— Otherwise, some of the math doesn’t work well

* M=WH H=AM

 Ifmean(M)=0 => mean(H)=0
— E[H|=A.E[M]=A0=0
— First step of ICA: Set the meanof M to O

1
lle: Zmi

cols (M) =

m,=m, — u_ Vi

1

— m, are the columns of M



Emulating Independence..

H Diagonal

H=AM

+ rankl
H’ matrix A=BC

H=BCM

Independence = Uncorrelatedness

Find C such that CM is decorrelated
— PCA

Find B such that B(CM) is independent
A little more than PCA
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Decorrelating and Whitening

H Diagonal

H=AM

+ rankl
H’ matrix A=BC

H=BCM

Eigen decomposition MM = ESET
C = S-l/zET

X=CM

Not merely decorrelated but whitened
— XXT=CMM'C" = S'2ETESETES2 = |

C is the whitening matrix
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Uncorrelated != Independent

Whitening merely ensures that the resulting signals are
uncorrelated, i.e.

E[xx]=01f1!=]

This does not ensure higher order moments are also
decoupled, e.g. it does not ensure that

E[Xizsz] = E[x*]E [ij]

This is one of the signatures of independent RVs
Lets explicitly decouple the fourth order moments



Decorrelating

H’

c X=CM

<XXT -1 >

Diagonal

+ rankl
matrix

Will multiplying X by B re-correlate the components?

 Not if Bis unitary
— BB'=B'B=1
« HH'=BXX'B'=BB!=1

* So we want to find a unitary matrix

— Since the rows of H are uncorrelated

* Because they are independent

11755/18797
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H=BCM

H=BX
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FOBI: Freeing Fourth Moments

Find B such that the rows of H = BX are independent

The fourth moments of H have the form:
E[h, hj h, h]

If the rows of H were independent
Elh, hj h, h] =E[h,] E[hj] E[h,] E[h]

Solution: Compute B such that the fourth moments of H = BX
are decoupled
— While ensuring that B is Unitary

FOBI: Fourth Order Blind Identification
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ICA: Freeing Fourth Moments

Objective: Find a matrix B
such that the rows of H=BX
are statistically independent

H= h Define a matrix D that would
k be diagonal if the rows of BX
are independent

Compute B such that this
matrix becomes diagonal

e Create a matrix of fourth moment terms that would be
diagonal were the rows of H independent and diagonalize it

A good candidate: the weighted correlation matrix of H

D = E[IRIZRAT] = ) Ik |2k
k

— h are the columns of H
— Assuming h is real, else replace transposition with Hermitian



ICA: The D matrix

D = E[||h||2hA"] dij = E

Sum of squares

of all componentg
2
l

it component

On the actual matrix

D = > llhl*hyh]
k
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ICA: The D matrix

- ] D = E[||h||*hhT] _
d, d, d, . dij =E

D = d21 dzz d23

l

i)

k

. |
e e e d. = h> \h h.
- - Y colS(H)Z(Z,: klj Kl

If the s, terms were independent and zero mean

Foril=j

E|hihy ) h?| = E[R3]E[w] + EIRE[R] + EIRJE[R] ) E[r] =0
1 1£01%]

Fori=j

— E|hih; X hf| = E[hf| + E|R}] 212 E[RE] # 0

i.e., if 1, were independent, D would be a diagonal matrix
— Let us diagonalize D
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Diagonalizing D

Objective: Find a matrix B
such that the rows of H=BX

Reca”: H = BX are statistically independent

— i ¢ i Define a matrix D that would
Bis whajc we’re trying to learn to e dicronal 1f the rows of B
make H independent are independent

— Assumption: B is unitary, i.e. BBT=1 Compute B such that this
matrix becomes diagonal

Note: if H=BX, then each vector h = Bx
The fourth moment matrix of H is
D= E[h"hhh']= E[x'BB'x B x x'B]
= E[x'x B'x x'B]
= BT E[x'x xx'|B
=B E[||x|]> xx']B



Diagonalizing D

Objective: Estimate B such that the fourth
moment of H = BX is diagonal

Compose Dy = ¥ lIx [I2xpx;;

Diagonalize D via Eigen decomposition
D, = UAUT

B=U"
— That’s it!!!!



B frees the fourth moment

D, =UAU' ; B=U!
U is a unitary matrix, i.e. UTU = UU! =1 (identity)
H=BX=U'X

h=U'x

The fourth moment matrix of H is
E[|[h|[* h h'] = U" E[[|x|]* xx']U
=U'D, U
=UTUAUTU=A
The fourth moment matrix of H = UTX is Diagonal!!

11755/18797
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Overall Solution

* Objective: Estimate A such that the rows of H =
AM are independent

 Step 1: Whiten M

— Cis the (transpose of the) matrix of Eigen vectors of
MM!

- X=CM

* Step 2: Free up fourth moments on X

— B is the (transpose of the) matrix of Eigenvectors of
X.diag(X'X).XT
— A=BC



FOBI for ICA

Goal: to derive a matrix A such that the rows of AM are
independent

Procedure:

1. “Center” M

2. Compute the autocorrelation matrix R, of M

3. Compute whitening matrix C via Eigen decomposition
R, =ESET, C=S12ET

Compute X =CM

Compute the fourth moment matrix D’ = E||x||?xxT]

Diagonalize D’ via Eigen decomposition

D’ = UAU"

Compute A = UTC

The fourth moment matrix of H=AM is diagonal

— Note that the autocorrelation matrix of H will also be diagonal

© o un s



ICA by diagonalizing moment

matrices
 FOBI is not perfect

— Only a subset of fourth order moments are considered

e Diagonalizing the particular fourth-order moment matrix we
have chosen is not guaranteed to diagonalize every other

fourth-order moment matrix

* JADE: (Joint Approximate Diagonalization of
Eigenmatrices), J.F. Cardoso

— Jointly diagonalizes multiple fourth-order cumulant
matrices



Enforcing Independence

Specifically ensure that the components of H are
independent

— H=AM

Contrast function: A non-linear function that has a
minimum value when the output components are
independent

Define and minimize a contrast function
» F(AM)

Contrast functions are often only approximations too..
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A note on pre-whitening

The mixed signal is usually “prewhitened” for all ICA methods
— Normalize variance along all directions
— Eliminate second-order dependence

Eigen decomposition MM! = ESE!
C= S-I/ZET

Can use first K columns of E only if only K independent sources are
expected

— In microphone array setup —only K < M sources

X=CM
— E[x;x;] = 9;; for centered signal



The contrast function

e Contrast function: A non-linear function that
has a minimum value when the output
components are independent

* An explicit contrast function

I(H) =2 H(h;)~H(h)

e With constraint: H=BX
— X is “whitened” M



Linear Functions

 h=Bx, x=B'h
— Individual columns of the H and X matrices

— X is mixed signal, B is the unmixing matrix
R, (h)=P(B"'h)|B["
H(x)=— j P(x)log P(x)dx

log P(h) =log P,(B"'h) —log(| B|)
Hh)=H(x)+log|B|



The contrast function

I(H) = H(h)~H(h)

I(H) =Y H(h)~H(x)~log| B|

* Ignoring H(x) (Const)
J(H) =2 H(h;)~log|B]

e Minimize the above to obtain B



An alternate approach

Recall PCA

M = WH, the columns of W must be orthogonal
Leads to: miny | | M -WWIM| |2+ A.trace(W!W)
— Error minimization framework to estimate W

Can we arrive at an error minimization framework
for ICA

Define an “Error” objective that represents
independence



An alternate approach

* Definition of Independence —if x and y are
independent:

— E[f(x)g(»)] = E[Ax)]E[g(V)]
— Must hold for every f() and g()!!



An alternate approach

* Define g(H) = g(BX) (component-wise
function)

g(fy) g(hy)
g(hp)  glhy)

* Define f(H) = f(BX)

f(hy) 1)
f(h;))  1(hy)
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An alternate approach
» P=gH) f(H)" = g(BX) f(BX)"

Py Py,

sz Pzz. - Pl] = E[g(hz)f(hj)]

This is a square matrix
 Must ideally be

00 00 = E[g(h)IELf(h))] i# ]

Q. =Elgh)f(h)]

Q=

* Error = |[P-QJ|¢’
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An alternate approach

* |deal value for Q

o 08T O ERUEL ()] i)

O = Elg(h) f(h)]

* |f g() and f() are odd symmetric functions
E[g(h,)] =0 for all i
—Since = E[h,]=0 (H s centered)

* Qis aDiagonal Matrix!!!



An alternate approach
* Minimize Error
P = g(BX)f(BX)'
Q = Diagonal

error =| P- Q|

e Leads to trivial Widrow Hopf type iterative
le:
e E = Diag — g(BX)f(BX)"
B =B+7EX"'



Update Rules

Multiple solutions under different
assumptions for g() and f()

H = BX

B=B+nAB

Jutten Herraut : Online update

— AB;; = f(h))g(h;); -- actually assumed a recursive
neural network

Bell Sejnowski
—AB = ([B']"" - g(H)X")



Update Rules

Multiple solutions under different
assumptions for g() and f()

H=BX
B=B+nAB

Natural gradient -- f() = identity function
— AB=(I-g(H)HT) XT
Cichoki-Unbehaeven

—AB = (I - g(Hf(H)") X'



What are G() and F()

Must be odd symmetric functions
Multiple functions proposed

x + tanh(x) x 1is super Gaussian
x —tanh(x) x1ssub Gaussian

o(x) = {

Audio signals in general

— AB = (1 - HH"-Ktanh(H)HT) XT
Or simply

— AB = (1 -Ktanh(H)H™) XT



So how does it work?

05- i i I - 05 il i
A L I 1 T » | L L A L 1 1
0 05 1 15 2 25 3 35 4 0 05 1 15
x10'
04 ‘ ; ‘ ; : : 1 : : :
4 ],.,
.
02k M 05- ;
| | |
0 - h—4 0
N e I
02- . 05
i ‘ i ‘ ! A L 4 i A
0 05 1 15 2 25 3 35 4 0 05 1 15
and

 Example with instantaneous mixture of two
speakers

* Natural gradient update
* Works very well!
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Another example!

Input Mix Output
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Another Example

e Three instruments..
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The Notes

o

ICA Feature 1
e e ‘ —7 100
\f \J ]
\{ 200
- ‘ ‘ ‘ . o 300
50 100 150 200 250 300
ICA Feature 2
—— == == - -
L =
U Vo
\/ 1 100
| o
. | y 1 1 1 1
50 100 150 200 250 300 200
ICA Feature 3
N T— ‘ ‘ \ — 300
MmN oMy M on M Y
b A Ay
TR UAR U
4! \J/ u I
5‘0 160 1.“)0 260 25‘)0 360 100 B

200 [&

300

140 160 180

20 40 50 80 100 12

e Three instruments..
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ICA for data exploration

e The “bases” in PCA

represent the “building
blocks”

— Ideally notes

(A

I
|

|

e Very successfully used

e So can ICA be used to
do the same?

MR
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ICA vs PCA bases

- Motivation for using ICA vs PCA Non-Gaussian data
= PCA will indicate orthogonal directions
of maximal variance o . PCA %

= May not align with the data!

= |CA finds directions that are
independent

= More likely to “align” with the data

=02 i} 02 0.4 0.6

11755/18797 110



Finding useful transforms with ICA

Audio preprocessing 1 n N |
/Y ‘ Al \ I 1 oaanhii

€Xa mple "‘/\V’/ MWM‘JJI( WWMT.‘ e i WWW‘"‘I‘»‘ IR T VY v
\ \ /

Take a lot of audio snippets .‘ | (T | |
. e[l ~A/ _v'\\-wl‘/vv ) —~r”|\f’/ H/‘V—Nf‘" |‘1 ~——elyf """—"-"I‘I‘_ —i 1‘

and concatenate them in a AL L B o
. . VAR | i | | J i
big matrix, do component L = i - M;-[_'I.I*T\., —’*w':r T —
UV | | \ !

analysis L T T
PCA results in the DCT bases Uik |

localized sinusoids whichisa |,

\

\

\

\

\

\

\

\

\

\

\

|

M Mt i A \ |

ICA returns time/freq A~ ¥ - [ e~

1 | |""L ‘
\

\

\

\

\

\

\

\

\

\

\

\

.,q\|“{\,. INANAATA .A\.‘I‘,, ‘.‘I"::‘ | A ¢‘l\“,'|m. _,“{f‘.l"‘w a)l-
better way to analyze sounds |1~ i/ 7 W I ,‘-‘
: . x-\ ST T, | | o
Ditto for images A\ s(*p e e — T 4 | A
— ICA returns localizes edge T R ST TR TTOn S
f. I ."‘:‘I- .";\ ‘\ ‘( J‘Ifh‘?’"”w ‘ ‘l"x’“mw “| l \‘ |\“ ‘. l['~ e ffp-i
ilters RLLARE I (W I |
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Example case: ICA-faces vs. Eigenfaces

ICA-faces Eigenfaces
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ICA for Slgnal Enhncement

,,.w T *—ua._,,\ ——— e~ - \/\”’\J/\
R «\_/—-L_f\/’\,wf ”‘“wj/ /“--'\/\\/ JW \J M%ww -_\A\/

IOOERN L NARY SN gEY Q/JW Ryl Wﬂw

e AN SN u‘“’\v«W
% f,/-—\/\/vﬁ“\/\f*w\/\fx ’\/ 3 N\C Q\A*"“\f\ f\/fMW\ﬁ
\H/\/vmf\mm\f\. 4 S
A r\/\ﬁ LN \/\ﬁ_mﬁn \pf\w Jg\um\/\m “\/\\/,h,\,_f\ Y AP (R A
wa‘/\x—a_/\/\-k.—ﬂ \A\._/\V\_/"-‘v-/—/\—-w-f\f\ S W“"\[\.\/\,\__/ f w-/v-.—\,\/\/_/%\_ﬁ,\,

* Very commonly used to enhance EEG signals

EEG signals are frequently corrupted by
heartbeats and biorhythm signals

ICA can be used to separate them out
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So how does that work?

 There are 12 notes in the segment, hence we
try to estimate 12 notes..



PCA solution

200 400 600 200 1000 1200 1400

200 400 s500 800 1000 1200 1400

 There are 12 notes in the segment, hence we
try to estimate 12 notes..



So how does this work: ICA solution

o M J\u\/ ,—/V\\"J‘\/\«» Fv_\ﬁ;yv_‘v_h‘ﬁ’
5F \r B

20 ‘
50

sl T [ T

TN

e

g

o) L‘“ﬂv\/\w PN SOV S
2k I I | | | -

A |
o |
T M‘L‘«ﬂ/ 'k/m/ i “N‘LJ\THML?MAFTQNW\T&
50 100 150 200 250 300

 Better..

— But not much

e But the issues here?
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ICA Issues

No sense of order

— Unlike PCA

Get K independent directions, but does not have a notion
of the “best” direction

— So the sources can come in any order

— Permutation invariance

Does not have sense of scaling

— Scaling the signal does not affect independence
Outputs are scaled versions of desired signals in permuted
order

— In the best case

— In worse case, output are not desired signals at all..



What else went wrong?

* Notes are not independent
— Only one note plays at a time

— If one note plays, other notes are not playing

 Will deal with these later in the course..



