Machine Learning for Signal Processing Independent Component Analysis

Instructor: Bhiksha Raj

11755/18797

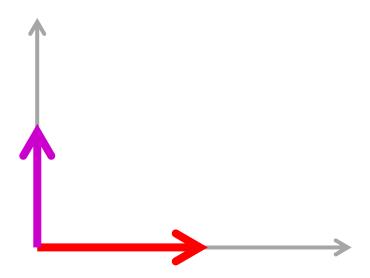
Revisiting the Covariance Matrix

Assuming centered data

•
$$C = \sum_{X} XX^{T}$$

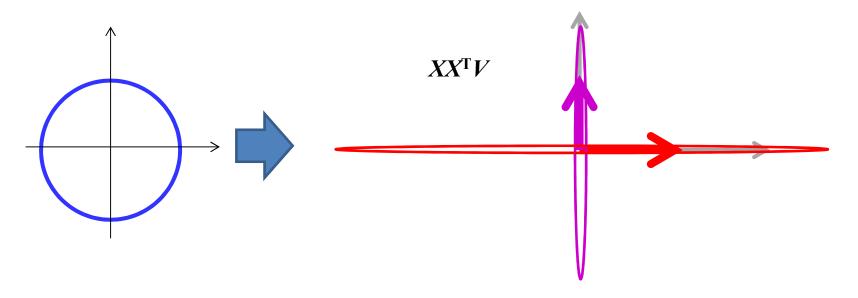
• =
$$X_1X_1^T + X_2X_2^T +$$

• Let us view C as a transform...

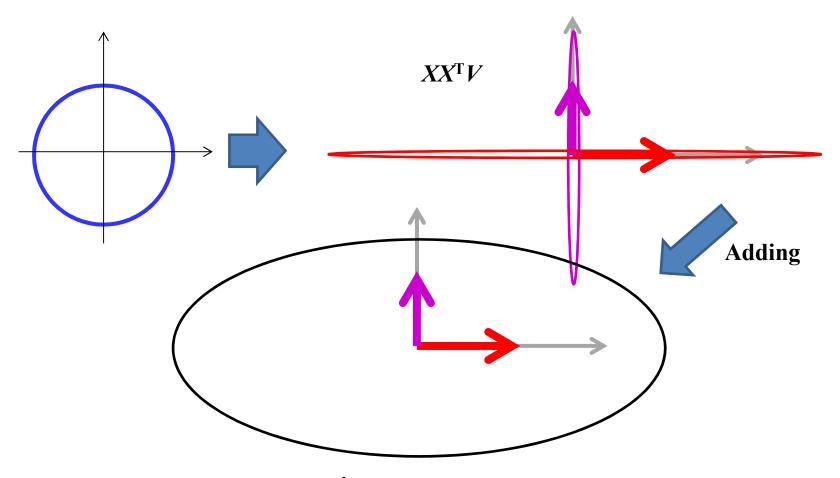


•
$$(X_1X_1^{\mathsf{T}} + X_2X_2^{\mathsf{T}} + \dots) V = X_1X_1^{\mathsf{T}}V + X_2X_2^{\mathsf{T}}V + \dots$$

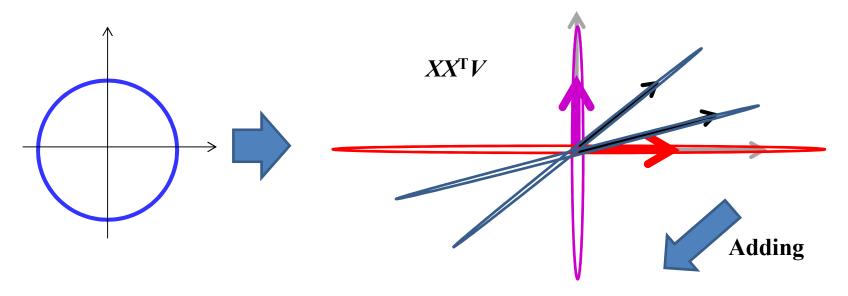
- Consider a 2-vector example
 - In two dimensions for illustration



- Data comprises only 2 vectors..
- Major axis of component ellipses proportional to the squared length of the corresponding vector

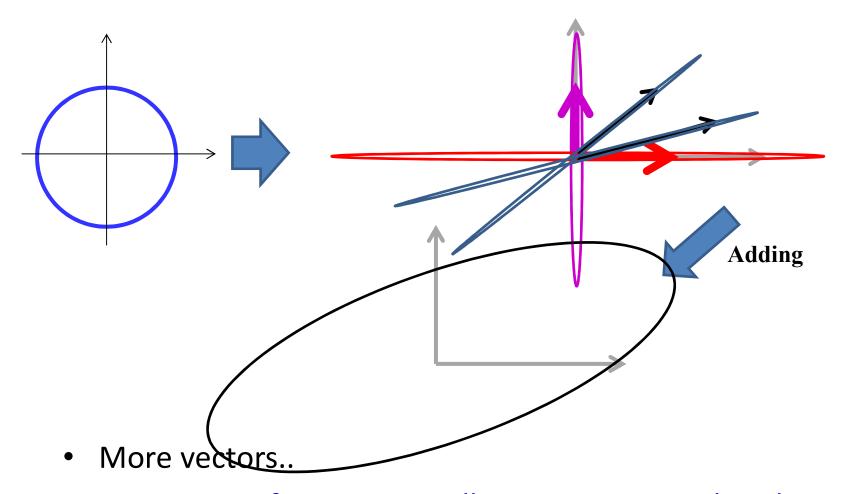


- Data comprises only 2 vectors..
- Major axis of component ellipses proportional to the squared length of the corresponding vector

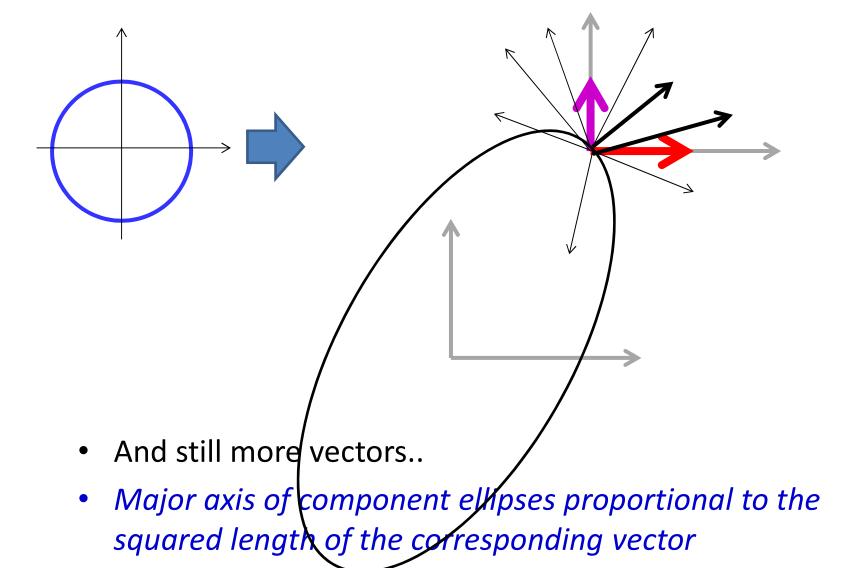


- More vectors..
- Major axis of component ellipses proportional to the squared length of the corresponding vector

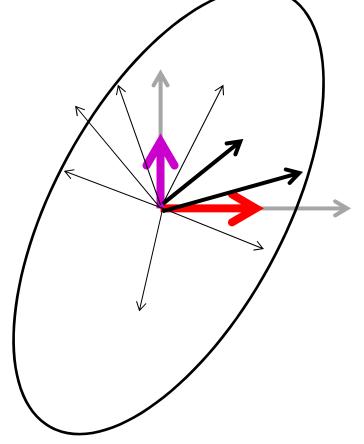
11755/18797



 Major axis of component ellipses proportional to the squared length of the corresponding vector



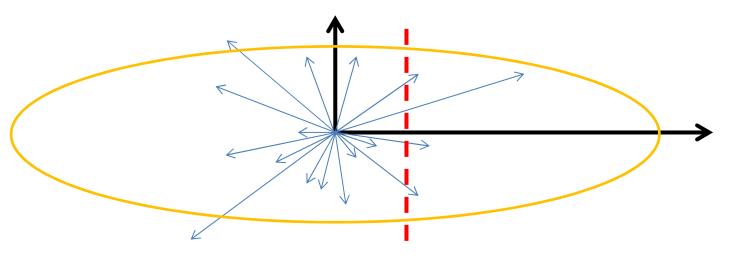
11755/18797



- The covariance matrix captures the directions of maximum variance
- What does it tell us about trends?

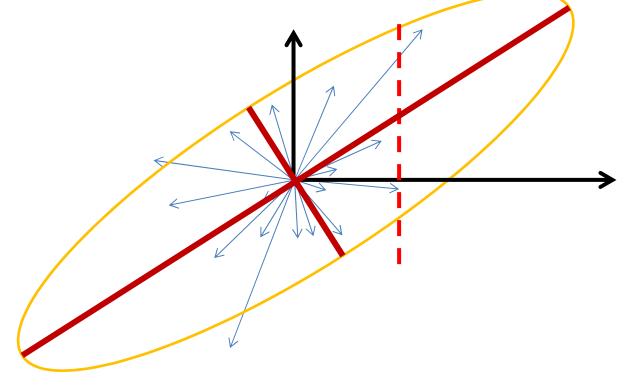
11755/18797

Data Trends: Axis aligned covariance

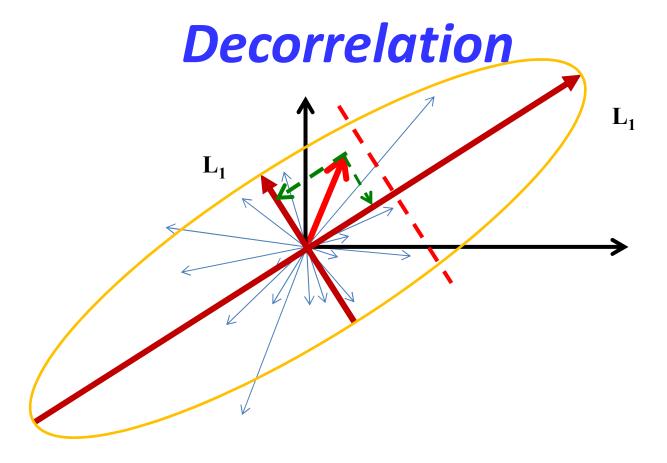


- Axis aligned covariance
- At any X value, the average Y value of vectors is 0
 - X cannot predict Y
- At any Y, the average X of vectors is 0
 - Y cannot predict X
- The X and Y components are uncorrelated

Data Trends: Tilted covariance



- Tilted covariance
- The average Y value of vectors at any X varies with X
 - X predicts Y
- Average X varies with Y
- The X and Y components are correlated



- Shifting to using the major axes as the coordinate system
 - L₁ does not predict L₂ and vice versa
 - In this coordinate system the data are uncorrelated
- We have decorrelated the data by rotating the axes

The statistical concept of correlatedness

 Two variables X and Y are correlated if If knowing X gives you an expected value of Y

- X and Y are uncorrelated if knowing X tells you nothing about the expected value of Y
 - Although it could give you other information
 - How?

Correlation vs. Causation

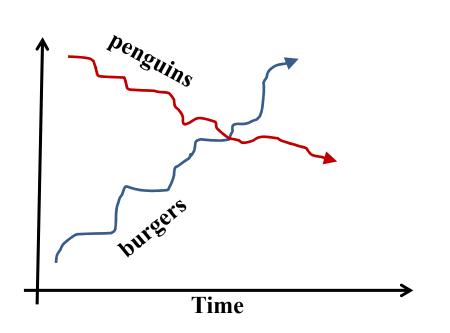
 The consumption of burgers has gone up steadily in the past decade

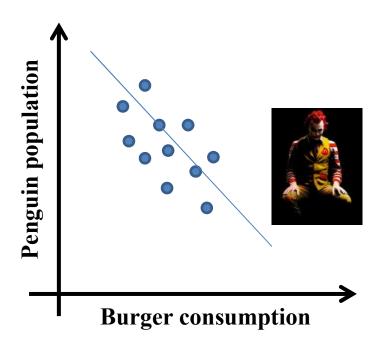
• In the same period, the penguin population of Antarctica has gone down

Correlation, not Causation (unless McDonalds has a top-secret Antarctica division)

The concept of correlation

 Two variables are correlated if knowing the value of one gives you information about the expected value of the other





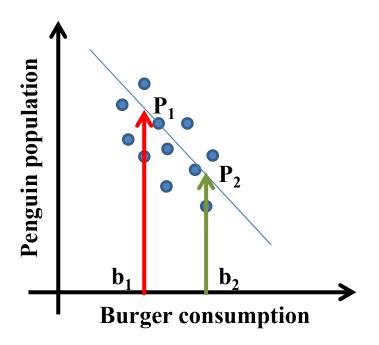
A brief review of basic probability

- Uncorrelated: Two random variables X and Y are uncorrelated iff:
 - The average value of the product of the variables equals the product of their individual averages
- Setup: Each draw produces one instance of X and one instance of Y
 - I.e one instance of (X,Y)
- E[XY] = E[X]E[Y]
- The average value of Y is the same regardless of the value of X

11755/18797

16

Correlated Variables

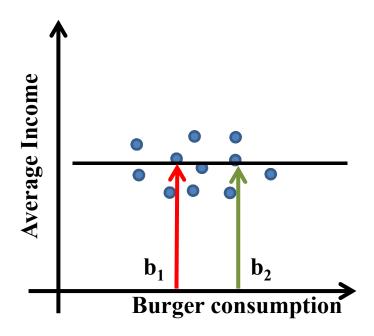


- Expected value of Y given X:
 - Find average of Y values of all samples at (or close)
 to the given X
 - If this is a function of X, X and Y are correlated

11755/18797

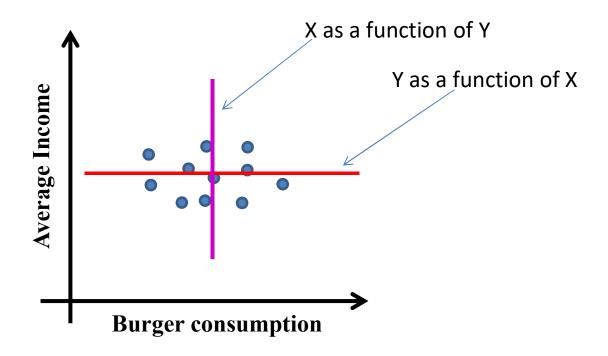
17

Uncorrelatedness



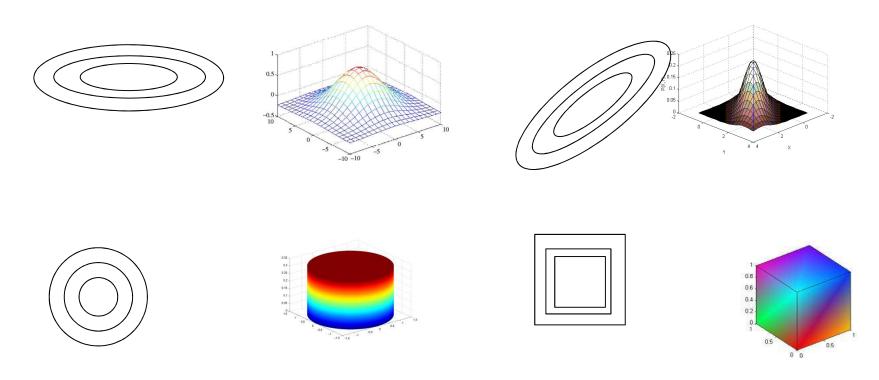
- Knowing X does not tell you what the average value of Y is
 - And vice versa

Uncorrelated Variables



 The average value of Y is the same regardless of the value of X and vice versa

Uncorrelatedness in Random Variables

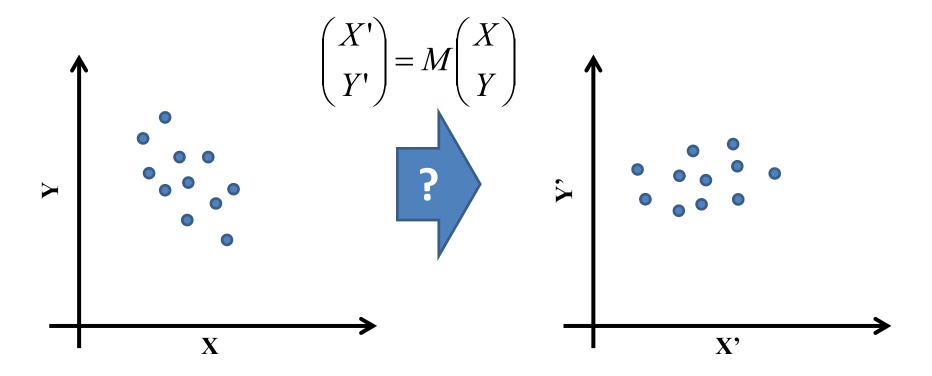


Which of the above represent uncorrelated RVs?

Benefits of uncorrelatedness...

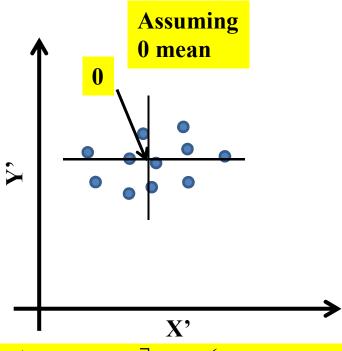
- Uncorrelatedness of variables is generally considered desirable for modelling and analyses
 - For Euclidean error based regression models and probabilistic models, uncorrelated variables can be separately handled
 - Since the value of one doesn't affect the average value of others
 - Greatly reduces the number of model parameters
 - Otherwise their interactions must be considered
- We will frequently transform correlated variables to make them uncorrelated
 - "Decorrelating" variables

The notion of decorrelation



 So how does one transform the correlated variables (X,Y) to the uncorrelated (X', Y')

What does "uncorrelated" mean



- E[X'] = constant
- E[Y'] = constant
- E[Y|X'] = constant
- E[X'Y'] = E[X'] E[Y']
 - All will be 0 for centered data

$$E\begin{bmatrix} \begin{pmatrix} X' \\ Y' \end{pmatrix} (X' & Y') \end{bmatrix} = E\begin{pmatrix} X'^2 & X'Y' \\ X'Y' & Y'^2 \end{pmatrix} = \begin{pmatrix} E[X'^2] & 0 \\ 0 & E[Y'^2] \end{pmatrix} = diagonal \quad matrix$$

• If Y is a matrix of vectors, YY^T = diagonal

Decorrelation

- Let X be the matrix of correlated data vectors
 - Each component of ${\bf X}$ informs us of the mean trend of other components
- Need a transform \mathbf{M} such that if $\mathbf{Y} = \mathbf{M}\mathbf{X}$ such that the covariance of \mathbf{Y} is diagonal
 - $-\mathbf{Y}\mathbf{Y}^{\mathrm{T}}$ is the covariance if \mathbf{Y} is zero mean
 - For uncorrelated components, $YY^T = Diagonal$
 - \Rightarrow **MXX**^T**M**^T = **Diagonal**
 - \Rightarrow **M.**Cov(**X**).**M**^T = **Diagonal**

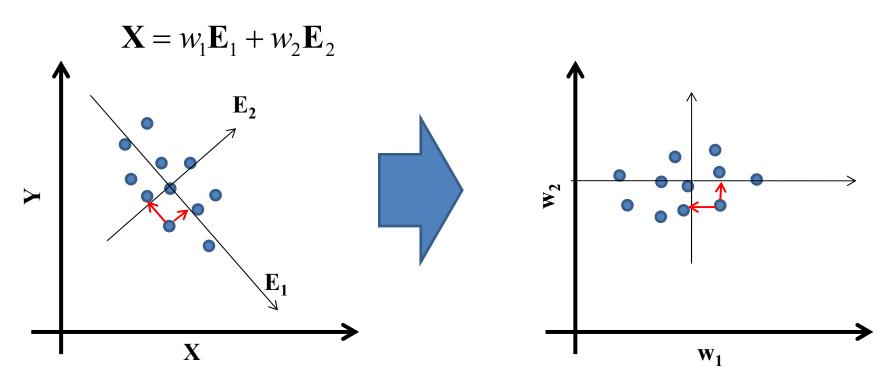
Decorrelation

- Easy solution:
 - Eigen decomposition of Cov(X):

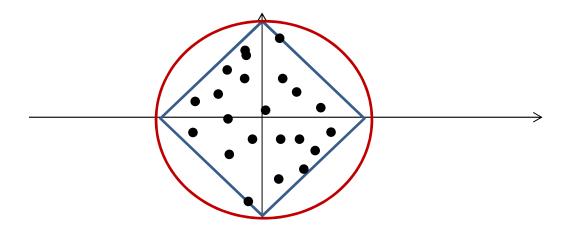
$$Cov(\mathbf{X}) = \mathbf{E}\Lambda\mathbf{E}^{\mathrm{T}}$$

- $-\mathbf{E}\mathbf{E}^{\mathrm{T}}=\mathbf{I}$
- Let $\mathbf{M} = \mathbf{E}^{\mathrm{T}}$
- $MCov(X)M^T = E^TE\Lambda E^TE = \Lambda = diagonal$
- PCA: $Y = E^TX$
 - Projects the data onto the Eigen vectors of the covariance matrix
 - Diagonalizes the covariance matrix
 - "Decorrelates" the data

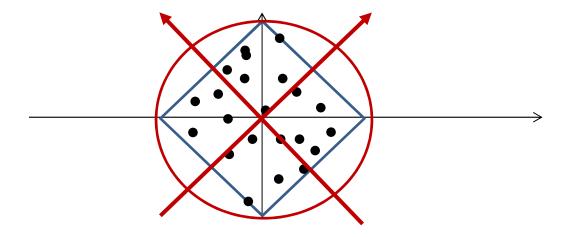
PCA



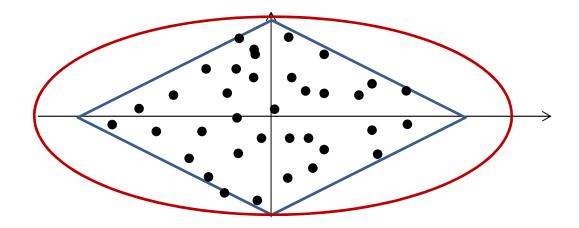
- PCA: $Y = E^TX$
 - Projects the data onto the Eigen vectors of the covariance matrix
 - Changes the coordinate system to the Eigen vectors of the covariance matrix
 - Diagonalizes the covariance matrix
 - "Decorrelates" the data



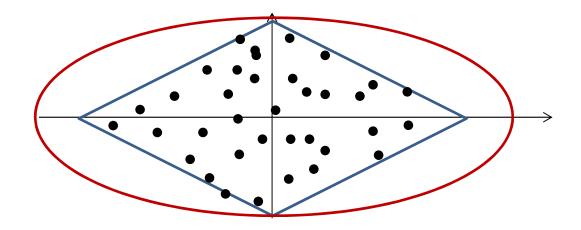
Are there other decorrelating axes?



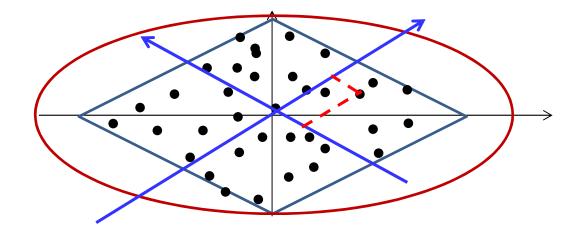
Are there other decorrelating axes?



Are there other decorrelating axes?



- Are there other decorrelating axes?
- What about if we don't require them to be orthogonal?



- Are there other decorrelating axes?
- What about if we don't require them to be orthogonal?
- What is special about these axes?

The statistical concept of Independence

 Two variables X and Y are dependent if If knowing X gives you any information about Y

 X and Y are independent if knowing X tells you nothing at all of Y

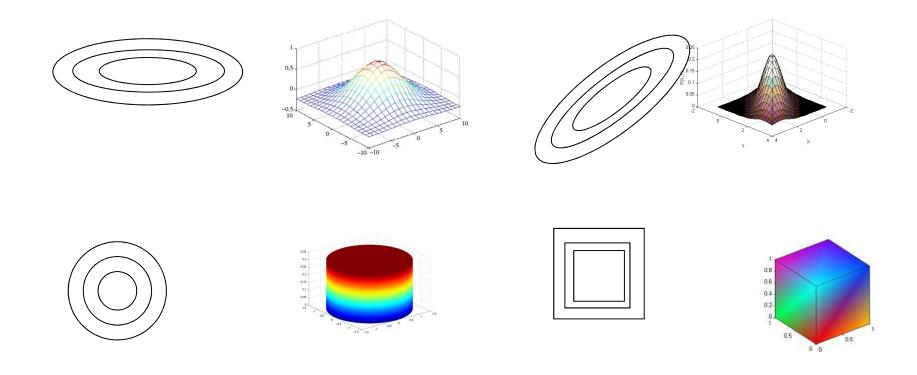
A brief review of basic probability

- *Independence:* Two random variables X and Y are independent iff:
 - Their joint probability equals the product of their individual probabilities
- P(X,Y) = P(X)P(Y)
- Independence implies uncorrelatedness
 - The average value of \boldsymbol{X} is the same regardless of the value of \boldsymbol{Y}
 - E[X|Y] = E[X]
 - But uncorrelatedness does not imply independence

A brief review of basic probability

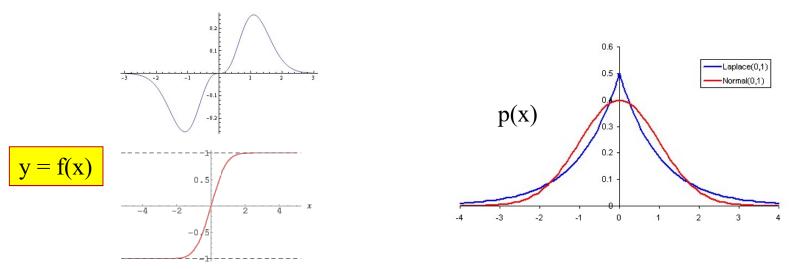
- Independence: Two random variables X and Y are independent iff:
- The average value of any function of X is the same regardless of the value of Y
 - Or any function of Y
- E[f(X)g(Y)] = E[f(X)] E[g(Y)] for all f(), g()

Independence



- Which of the above represent independent RVs?
- Which represent uncorrelated RVs?

A brief review of basic probability

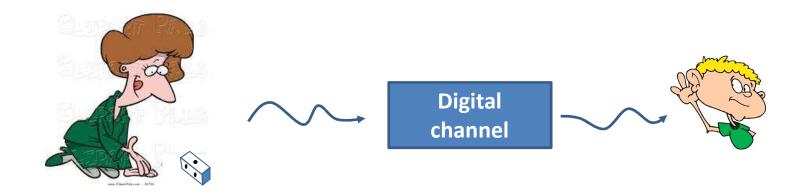


- The expected value of an odd function of an RV is 0 if
 - The RV is 0 mean
 - The PDF is of the RV is symmetric around 0
- E[f(X)] = 0 if f(X) is odd symmetric

 You flip a coin. You must inform your friend in the next room about whether the outcome was heads or tails

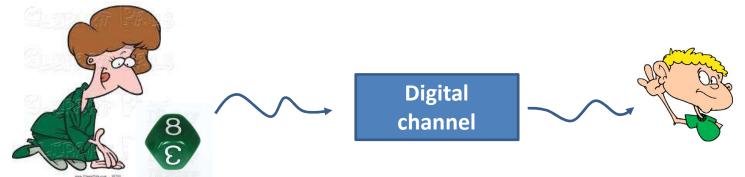
How many bits will you have to send?

 You roll a four-side dice. You must inform your friend in the next room about the outcome



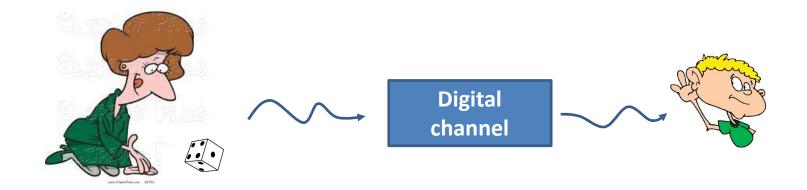
How many bits will you have to send?

 You roll an eight-sided polyheldral dice. You must inform your friend in the next room about the outcome

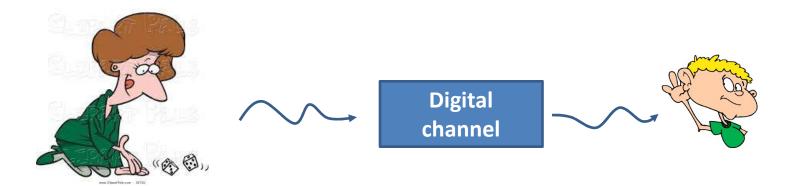


How many bits will you have to send?

 You roll a six-sided dice. You must inform your friend in the next room about the outcome

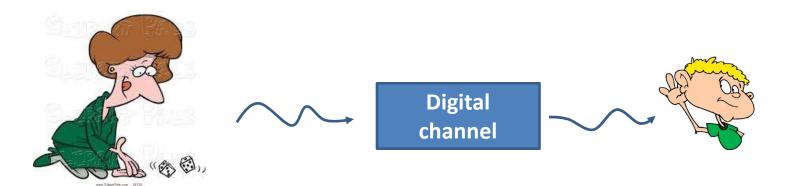


How many bits will you have to send?



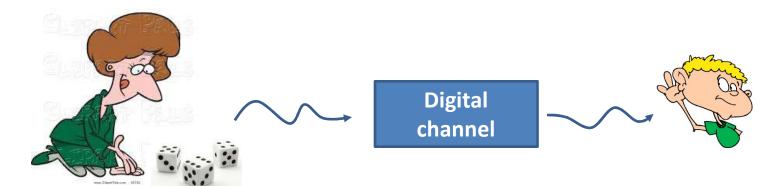
- Instead of sending individual rolls, you roll the dice twice
 - And send the *pair* to your friend
- How many bits do you send per roll?

1	1
1	2
1	3
••	••
2	1
2	2
••	••
6	6



- Instead of sending individual rolls, you roll the dice twice
 - And send the pair to your friend
- How many bits do you send per roll?
- 36 combinations: 6 bits per pair of numbers
 - Still 3 bits per roll

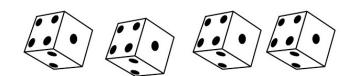
1	1
1	2
1	3
••	
2	1
2	2
••	••
6	6



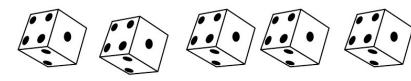
- Instead of sending individual rolls, you roll the dice three times
 - And send the *triple* to your friend
- How many bits do you send per roll?
- 216 combinations: 8 bits per triple
 - Still 2.666 bits per roll
 - Now we're talking!

1	1	1
1	1	2
••	:	•
1	6	3
		••
2	1	1
2	1	2
		••
6	6	6

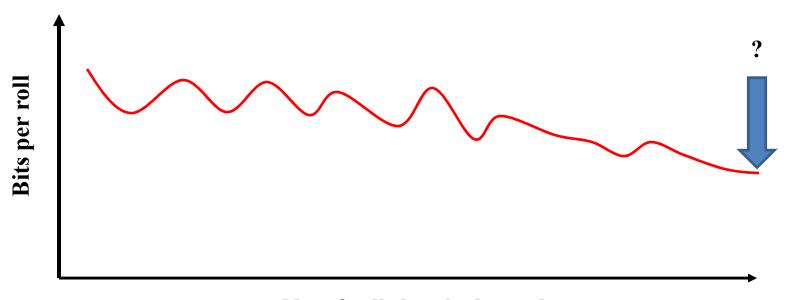
- Batching four rolls
 - 1296 combinations



- 11 bits per outcome (4 rolls)
- 2.75 bit per roll
- Batching five rolls
 - 7776 combinations

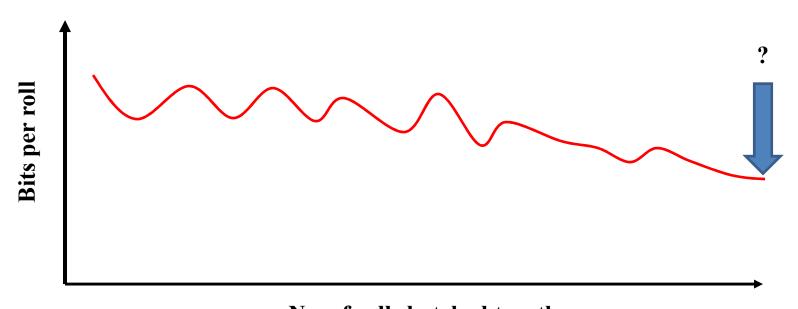


- 13 bits per outcome (5 rolls)
- 2.6 bits per roll



No. of rolls batched together

• Where will it end?



No. of rolls batched together

- Where will it end?
- $\lim_{k\to\infty} \frac{[k \log 2(6)]}{k} = \log 2(6)$ bits per roll in the limit
 - This is the absolute minimum no batching will give you less than these many bits per outcome

Can we do better?

- A four-sided die needs 2 bits per roll
- But then you find not all sides are equally likely

- P(1) = 0.5, P(2) = 0.25, P(3) 0.125, P(4) = 0.125
- Can you do better than 2 bits per outcome

Can we do better?

You have

$$P(1) = 0.5$$
, $P(2) = 0.25$, $P(3) 0.125$, $P(4) = 0.125$

• You use:

1	0
2	10
3	110
4	111

- Note receiver is never in any doubt as to what they received
- What is the average number of bits per outcome

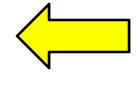
Can we do better?

You have

$$P(1) = 0.5$$
, $P(2) = 0.25$, $P(3) 0.125$, $P(4) = 0.125$

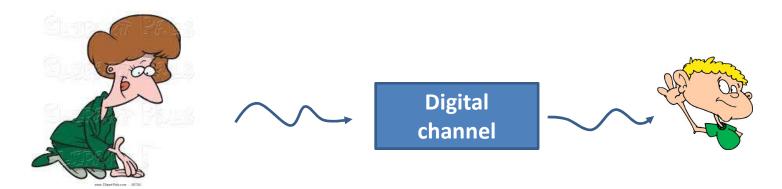
You use:

1	0
2	10
3	110
4	111



- Note receiver is never in any doubt as to what they received
- An outcome with probability p is equivalent to obtaining one of 1/p equally likely choices
 - Requires $log 2(\frac{1}{p})$ bits on average

Entropy

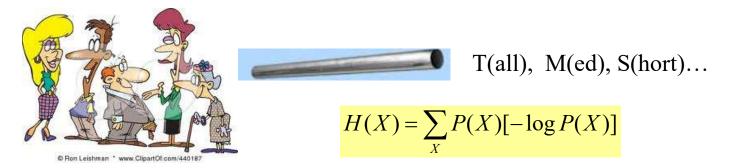


 The average number of bits per symbol required to communicate a random variable over a digitial channel using an optimal code is

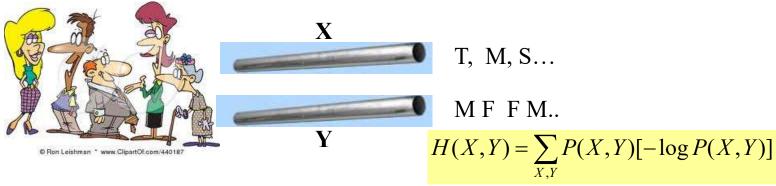
$$H(p) = \sum_{i} p_i \log \frac{1}{p_i} = -\sum_{i} p_i \log p_i$$

- You can't do better
 - Any other code will require more bits
- This is the *entropy of the random variable*

A brief review of basic info. theory

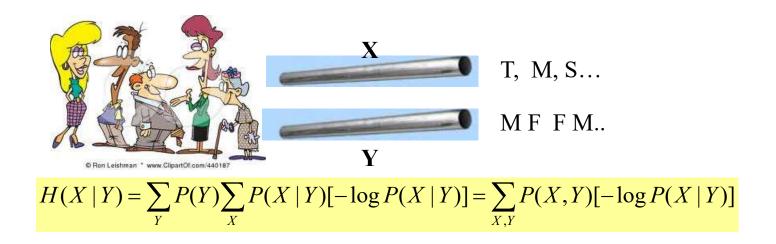


 Entropy: The minimum average number of bits to transmit to convey a symbol



• Joint entropy: The *minimum average* number of bits to convey sets (pairs here) of symbols

A brief review of basic info. theory



- Conditional Entropy: The minimum average number of bits to transmit to convey a symbol
 X, after symbol Y has already been conveyed
 - Averaged over all values of X and Y

A brief review of basic info. theory

• Conditional entropy of X|Y = H(X) if X is independent of Y

$$H(X | Y) = \sum_{Y} P(Y) \sum_{X} P(X | Y) [-\log P(X | Y)] = \sum_{Y} P(Y) \sum_{X} P(X) [-\log P(X)] = H(X)$$

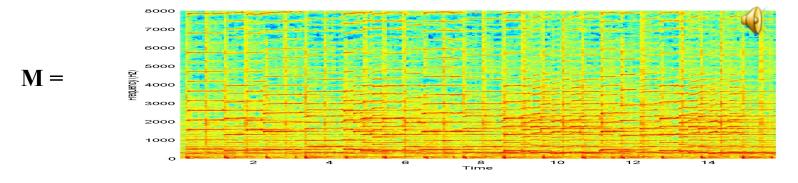
 Joint entropy of X and Y is the sum of the entropies of X and Y if they are independent

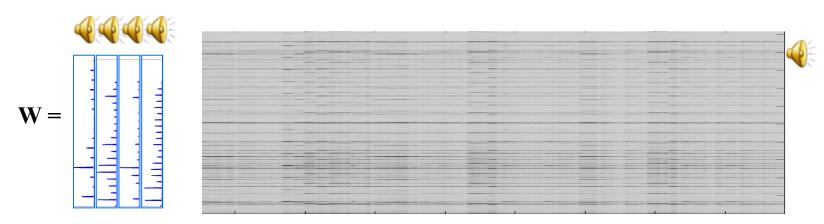
$$H(X,Y) = \sum_{X,Y} P(X,Y)[-\log P(X,Y)] = \sum_{X,Y} P(X,Y)[-\log P(X)P(Y)]$$

$$= -\sum_{X,Y} P(X,Y) \log P(X) - \sum_{X,Y} P(X,Y) \log P(Y) = H(X) + H(Y)$$

Onward...

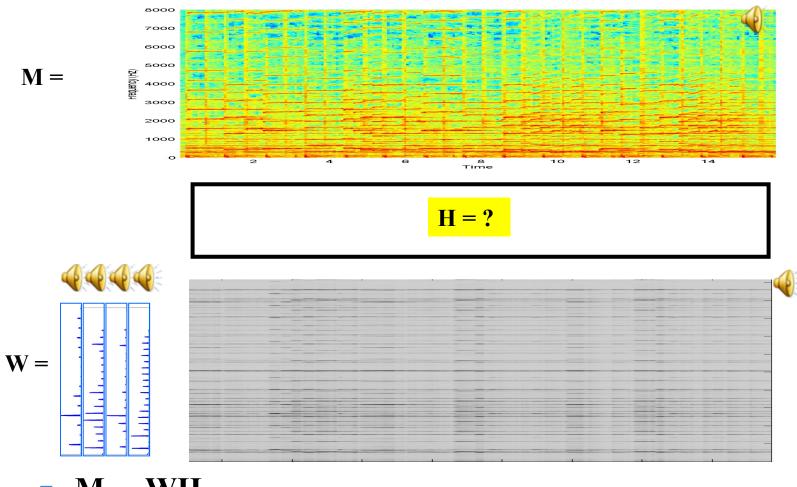
Projection: multiple notes





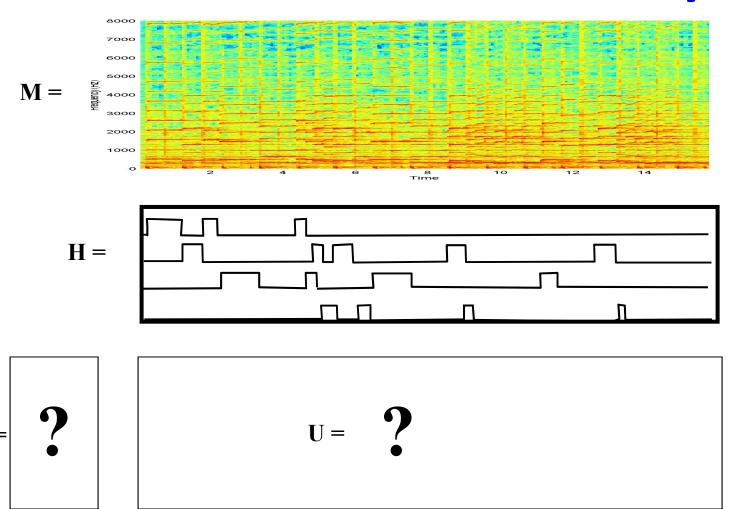
- $P = W (W^T W)^{-1} W^T$
- Projected Spectrogram = PM

We're actually computing a score



- M ~ WH
- H = pinv(W)M

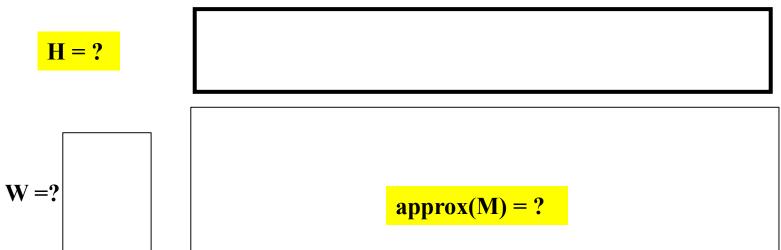
How about the other way?



■ M ~ WH

$$W = Mpinv(H)$$
 $U = WH$

When both parameters are unknown



- Must estimate both ${\bf H}$ and ${\bf W}$ to best approximate ${\bf M}$
- Ideally, must learn both the notes and their transcription!

11755/18797

A least squares solution

$$\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} || \mathbf{M} - \overline{\mathbf{W}} \overline{\mathbf{H}} ||_F^2 + \Lambda (\overline{\mathbf{W}}^T \overline{\mathbf{W}} - \mathbf{I})$$

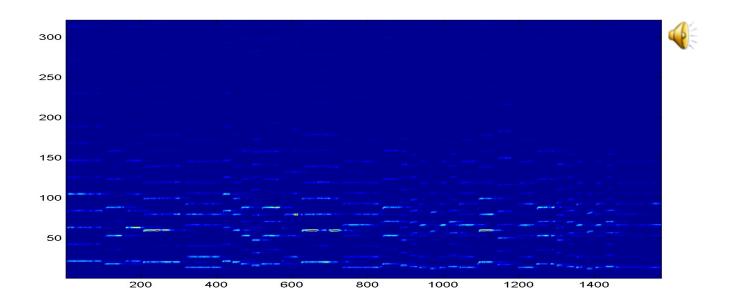
- Constraint: W is orthogonal
 - $-\mathbf{W}^{\mathrm{T}}\mathbf{W}=\mathbf{I}$
- The solution: W are the Eigen vectors of MM^T
 - PCA!!
- M ~ WH is an approximation
- Also, the rows of H are decorrelated
 - Trivial to prove that $\mathbf{H}\mathbf{H}^{\mathrm{T}}$ is diagonal

PCA

$$\mathbf{W}, \mathbf{H} = \operatorname{arg\,min}_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} || \mathbf{M} - \overline{\mathbf{W}} \overline{\mathbf{H}} ||_F^2$$
 $\mathbf{M} \approx \mathbf{W} \mathbf{H}$

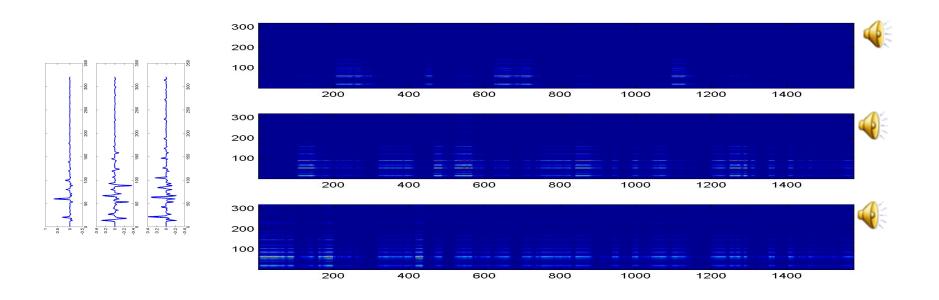
- The columns of W are the bases we have learned
 - The linear "building blocks" that compose the music
- They represent "learned" notes

So how does that work?



 There are 12 notes in the segment, hence we try to estimate 12 notes..

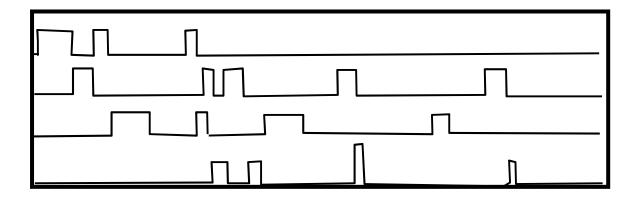
So how does that work?



- There are 12 notes in the segment, hence we try to estimate 12 notes..
- Results are not good

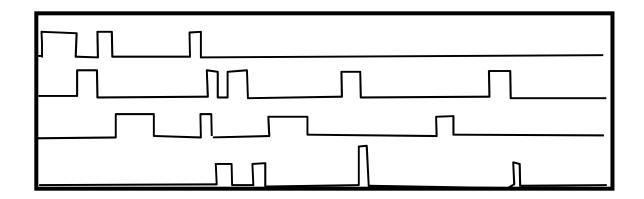
PCA through decorrelation of notes

$$\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} ||\mathbf{M} - \overline{\mathbf{H}}||_F^2 + \Lambda (\overline{\mathbf{H}}\overline{\mathbf{H}}^T - \mathbf{D})$$



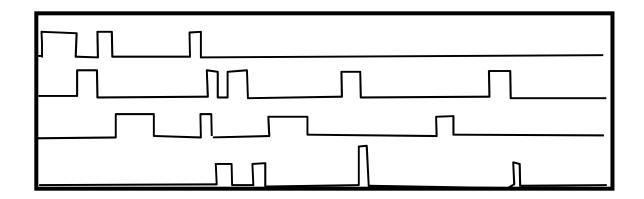
- Different constraint: Constraint H to be decorrelated
 - $\mathbf{H}\mathbf{H}^{\mathrm{T}} = \mathbf{D}$
- This will result exactly in PCA too
- Decorrelation of H Interpretation: What does this mean?

What else can we look for?



- Assume: The "transcription" of one note does not depend on what else is playing
 - Or, in a multi-instrument piece, instruments are playing independently of one another
- Not strictly true, but still...

What else can we look for?



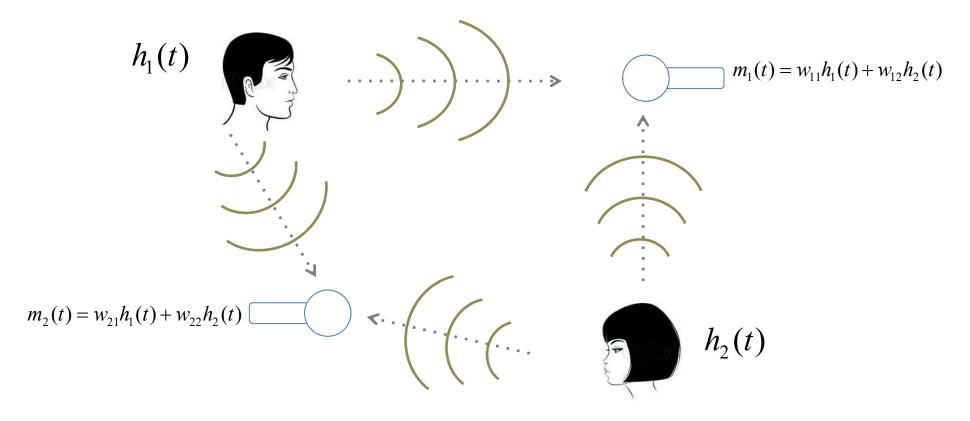
- Assume: The "transcription" of one note does not depend on what else is playing
 - Or, in a multi-instrument piece, instruments are playing independently of one another
- Attempting to find statistically independent components of the mixed signal
 - Independent Component Analysis

Formulating it with Independence

$$\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} || \mathbf{M} - \overline{\mathbf{W}} \overline{\mathbf{H}} ||_F^2 + \Lambda(rows.of.H.are.independent)$$

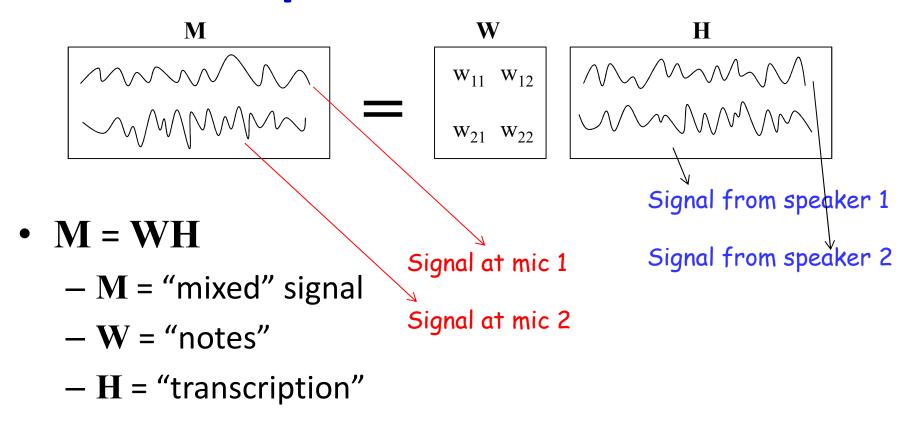
 Impose statistical independence constraints on decomposition

Changing problems for a bit



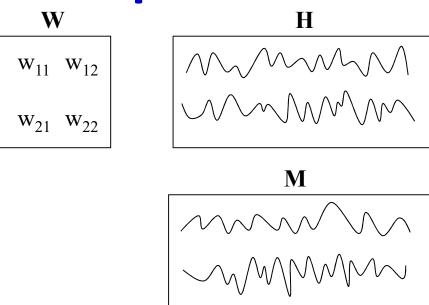
- Two people speak simultaneously
- Recorded by two microphones
- Each recorded signal is a mixture of both signals

A Separation Problem



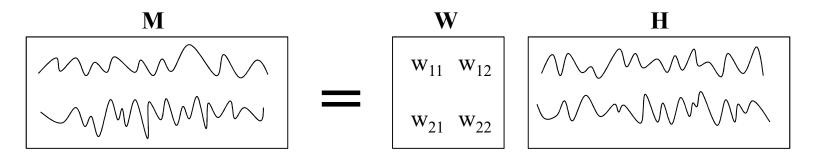
- ullet Separation challenge: Given only ${f M}$ estimate ${f H}$
- Identical to the problem of "finding notes"

A Separation Problem



- Separation challenge: Given only **M** estimate **H**
- Identical to the problem of "finding notes"

Imposing Statistical Constraints



- **M** = **W**H
- Given only M estimate H
- $\mathbf{H} = \mathbf{W}^{-1}\mathbf{M} = \mathbf{A}\mathbf{M}$
- Only known constraint: The rows of H are independent
- Estimate A such that the components of AM are statistically independent
 - A is the unmixing matrix

Statistical Independence

•
$$M = WH$$
 $H = AM$

Remember this form

An ugly algebraic solution

$$M = WH$$
 $H = AM$

- We could decorrelate signals by algebraic manipulation
 - We know uncorrelated signals have diagonal correlation matrix
 - So we transformed the signal so that it has a diagonal correlation matrix $(\mathbf{H}\mathbf{H}^T)$
- Can we do the same for independence
 - Is there a linear transform that will enforce independence?

An ugly algebraic solution

We decorrelated signals by diagonalizing the covariance matrix

• Is there a simple matrix we could just similarly diagonalize to make them independent?

An ugly algebraic solution

We decorrelated signals by diagonalizing the covariance matrix

- Is there a simple matrix we could just similarly diagonalize to make them independent?
 - Not really, but there is a matrix we can diagonalize to make fourth-order moments independent
 - Just as decorrelation made second-order moments independent

11755/18797

74

Emulating Independence

- The rows of H are uncorrelated
 - $E[\mathbf{h}_i \mathbf{h}_j] = E[\mathbf{h}_i] E[\mathbf{h}_j]$
 - \mathbf{h}_i and \mathbf{h}_j are the ith and jth components of any vector in \mathbf{H}
- The fourth order moments are independent
 - $E[\mathbf{h}_i \mathbf{h}_j \mathbf{h}_k \mathbf{h}_l] = E[\mathbf{h}_i] E[\mathbf{h}_j] E[\mathbf{h}_k] E[\mathbf{h}_l]$
 - $E[\mathbf{h}_i^2 \mathbf{h}_j \mathbf{h}_k] = E[\mathbf{h}_i^2] E[\mathbf{h}_j] E[\mathbf{h}_k]$
 - $E[\mathbf{h}_i^2 \mathbf{h}_i^2] = E[\mathbf{h}_i^2] E[\mathbf{h}_i^2]$
 - Etc.

Zero Mean

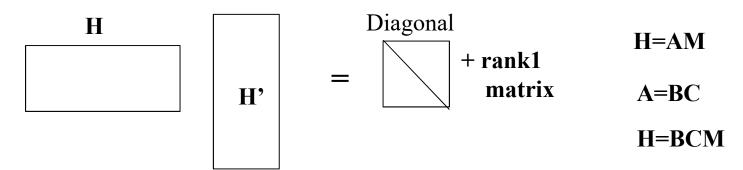
- Usual to assume zero mean processes
 - Otherwise, some of the math doesn't work well
- M = WH H = AM
- If $mean(\mathbf{M}) = 0 \Rightarrow mean(\mathbf{H}) = 0$
 - E[H] = A.E[M] = A0 = 0
 - First step of ICA: Set the mean of M to 0

$$\mu_{\mathbf{m}} = \frac{1}{cols(\mathbf{M})} \sum_{i} \mathbf{m}_{i}$$

$$\mathbf{m}_{i} = \mathbf{m}_{i} - \mu_{\mathbf{m}} \qquad \forall i$$

 $-\mathbf{m}_{i}$ are the columns of \mathbf{M}

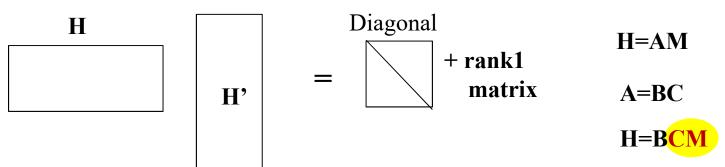
Emulating Independence..



- Independence

 Uncorrelatedness
- Find C such that CM is decorrelated
 PCA
- Find B such that B(CM) is independent
- A little more than PCA

Decorrelating and Whitening



- Eigen decomposition MM^T= ESE^T
- $C = S^{-1/2}E^T$
- X = CM
- Not merely decorrelated but whitened

$$-\mathbf{X}\mathbf{X}^{\mathrm{T}} = \mathbf{C}\mathbf{M}\mathbf{M}^{\mathrm{T}}\mathbf{C}^{\mathrm{T}} = \mathbf{S}^{-1/2}\mathbf{E}^{\mathrm{T}}\mathbf{E}\mathbf{S}\mathbf{E}^{\mathrm{T}}\mathbf{E}\mathbf{S}^{-1/2} = \mathbf{I}$$

• C is the whitening matrix

Uncorrelated != Independent

 Whitening merely ensures that the resulting signals are uncorrelated, i.e.

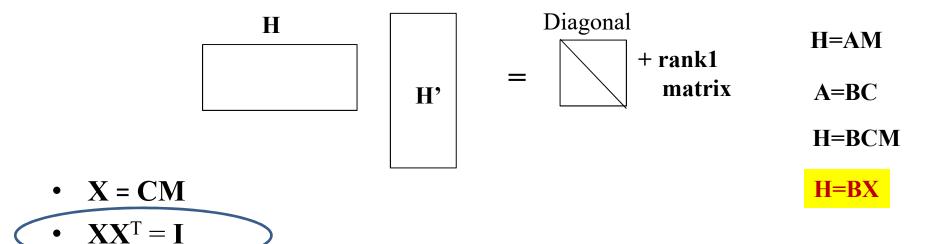
$$E[\mathbf{x}_i \mathbf{x}_j] = 0 \text{ if i } != j$$

 This does not ensure higher order moments are also decoupled, e.g. it does not ensure that

$$E[\mathbf{x}_i^2 \mathbf{x}_j^2] = E[\mathbf{x}_i^2] E[\mathbf{x}_j^2]$$

- This is one of the signatures of independent RVs
- Lets explicitly decouple the fourth order moments

Decorrelating



- Will multiplying X by B re-correlate the components?
- Not if **B** is unitary

$$- \mathbf{B}\mathbf{B}^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{B} = \mathbf{I}$$

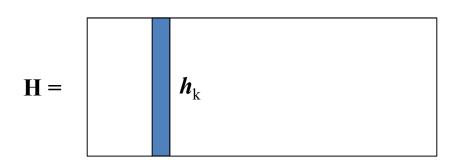
•
$$\mathbf{H}\mathbf{H}^{\mathrm{T}} = \mathbf{B}\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{B}^{\mathrm{T}} = \mathbf{B}\mathbf{B}^{\mathrm{T}} = \mathbf{I}$$

- So we want to find a unitary matrix
 - Since the rows of H are uncorrelated
 - Because they are independent

FOBI: Freeing Fourth Moments

- Find **B** such that the rows of H = BX are independent
- The fourth moments of \mathbf{H} have the form: $\mathrm{E}[\mathbf{h}_i \ \mathbf{h}_i \ \mathbf{h}_k \ \mathbf{h}_l]$
- If the rows of \mathbf{H} were independent $E[\mathbf{h}_i \ \mathbf{h}_j \ \mathbf{h}_k \ \mathbf{h}_l] = E[\mathbf{h}_i] \ E[\mathbf{h}_j] \ E[\mathbf{h}_k] \ E[\mathbf{h}_l]$
- Solution: Compute ${\bf B}$ such that the fourth moments of ${\bf H}={\bf B}{\bf X}$ are decoupled
 - While ensuring that **B** is Unitary
- FOBI: Fourth Order Blind Identification

ICA: Freeing Fourth Moments



Objective: Find a matrix B such that the rows of H=BX are statistically independent

Define a matrix D that would be diagonal if the rows of BX are independent

Compute B such that this matrix becomes diagonal

- Create a matrix of fourth moment terms that would be diagonal were the rows of **H** independent and diagonalize it
- A good candidate: the weighted correlation matrix of H

$$\boldsymbol{D} = E[\|\boldsymbol{h}\|^2 \boldsymbol{h} \boldsymbol{h}^{\mathrm{T}}] = \sum_{k} \|\boldsymbol{h}_{k}\|^2 \boldsymbol{h}_{k} \boldsymbol{h}_{k}^{\mathrm{T}}$$

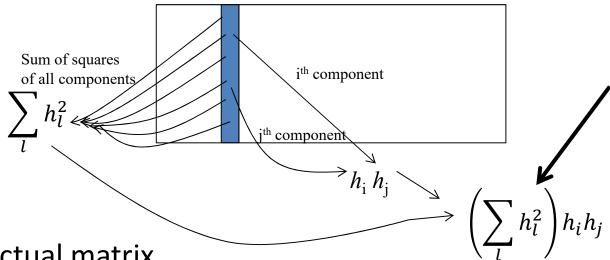
- h are the columns of H
- Assuming h is real, else replace transposition with Hermitian

ICA: The D matrix

$$D = \begin{bmatrix} d_{11} & d_{12} & d_{13} & \dots \\ d_{21} & d_{22} & d_{23} & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix}$$

$$D = E[||h||^2 h h^{\mathrm{T}}]$$

$$D = E[||h||^2 h h^{\mathrm{T}}] \qquad d_{ij} = E\left[\left(\sum_{l} h_l^2\right) h_i h_j\right]$$



On the actual matrix

$$\boldsymbol{D} = \sum_{\boldsymbol{k}} \|\boldsymbol{h}_{\boldsymbol{k}}\|^2 \boldsymbol{h}_{\boldsymbol{k}} \boldsymbol{h}_{\boldsymbol{k}}^{\mathrm{T}}$$

$$d_{ij} = \frac{1}{cols(\mathbf{H})} \sum_{k} \left(\sum_{l} h_{kl}^{2} \right) h_{ki} h_{kj}$$

ICA: The D matrix

$$D = \begin{bmatrix} d_{11} & d_{12} & d_{13} & .. \\ d_{21} & d_{22} & d_{23} & .. \\ .. & .. & .. & .. \end{bmatrix} \qquad D = E[||h||^2 h h^T] \qquad d_{ij} = E[\left(\sum_{l} h_l^2\right) h_i h_j]$$

$$d_{ij} = \frac{1}{cols(\mathbf{H})} \sum_{k} \left(\sum_{l} h_{kl}^2\right) h_{ki} h_{kj}$$

- If the h_i terms were independent and zero mean
- For i != j

$$E\left[h_{i}h_{j}\sum_{l}h_{l}^{2}\right] = E\left[h_{i}^{3}\right]E\left[h_{j}\right] + E\left[h_{i}\right]E\left[h_{j}^{3}\right] + E\left[h_{i}\right]E\left[h_{j}\right] \sum_{l \neq i, l \neq j}E\left[h_{l}^{3}\right] = \mathbf{0}$$

- For i = j
 - $E[h_i h_j \sum_l h_l^2] = E[h_i^4] + E[h_i^2] \sum_{l \neq i} E[h_l^2] \neq \mathbf{0}$
- i.e., if h_i were independent, D would be a diagonal matrix
 - Let us diagonalize D

Diagonalizing D

- Recall: $\mathbf{H} = \mathbf{B}\mathbf{X}$
 - B is what we're trying to learn to make H independent
 - Assumption: **B** is unitary, i.e. $\mathbf{B}\mathbf{B}^{\mathrm{T}} = \mathbf{I}$

Objective: Find a matrix B such that the rows of H=BX are statistically independent

Define a matrix D that would be diagonal if the rows of BX are independent

Compute B such that this matrix becomes diagonal

- Note: if H = BX, then each vector h = Bx
- The fourth moment matrix of **H** is

•
$$\mathbf{D} = \mathrm{E}[\mathbf{h}^{\mathrm{T}} \mathbf{h} \mathbf{h} \mathbf{h}^{\mathrm{T}}] = \mathrm{E}[\mathbf{x}^{\mathrm{T}} \mathbf{B} \mathbf{B}^{\mathrm{T}} \mathbf{x} \mathbf{B}^{\mathrm{T}} \mathbf{x} \mathbf{x}^{\mathrm{T}} \mathbf{B}]$$

= $\mathrm{E}[\mathbf{x}^{\mathrm{T}} \mathbf{x} \mathbf{B}^{\mathrm{T}} \mathbf{x} \mathbf{x}^{\mathrm{T}} \mathbf{B}]$
= $\mathbf{B}^{\mathrm{T}} \mathrm{E}[\mathbf{x}^{\mathrm{T}} \mathbf{x} \mathbf{x} \mathbf{x}^{\mathrm{T}}] \mathbf{B}$
= $\mathbf{B}^{\mathrm{T}} \mathrm{E}[||\mathbf{x}||^{2} \mathbf{x} \mathbf{x}^{\mathrm{T}}] \mathbf{B}$

Diagonalizing D

- Objective: Estimate $\bf B$ such that the fourth moment of $\bf H = \bf B X$ is diagonal
- Compose $\mathbf{D}_{\mathbf{x}} = \sum_{k} ||\mathbf{x}_{k}||^{2} \mathbf{x}_{k} \mathbf{x}_{k}^{\mathrm{T}}$
- Diagonalize $\mathbf{D}_{\mathbf{x}}$ via Eigen decomposition $\mathbf{D}_{\mathbf{x}} = \mathbf{U}\Lambda\mathbf{U}^{\mathrm{T}}$
- $\mathbf{B} = \mathbf{U}^{\mathrm{T}}$
 - That's it!!!!

B frees the fourth moment

$$\mathbf{D}_{\mathbf{x}} = \mathbf{U}\Lambda\mathbf{U}^{\mathrm{T}} \; ; \; \; \mathbf{B} = \mathbf{U}^{\mathrm{T}}$$

- U is a unitary matrix, i.e. $U^TU = UU^T = I$ (identity)
- $\mathbf{H} = \mathbf{B}\mathbf{X} = \mathbf{U}^{\mathrm{T}}\mathbf{X}$
- $\mathbf{h} = \mathbf{U}^{\mathrm{T}}\mathbf{x}$
- The fourth moment matrix of **H** is

$$E[||\mathbf{h}||^{2} \mathbf{h} \mathbf{h}^{T}] = \mathbf{U}^{T} E[||\mathbf{x}||^{2} \mathbf{x} \mathbf{x}^{T}] \mathbf{U}$$

$$= \mathbf{U}^{T} \mathbf{D}_{\mathbf{x}} \mathbf{U}$$

$$= \mathbf{U}^{T} \mathbf{U} \Lambda \mathbf{U}^{T} \mathbf{U} = \Lambda$$

• The fourth moment matrix of $\mathbf{H} = \mathbf{U}^T \mathbf{X}$ is Diagonal!!

Overall Solution

- Objective: Estimate A such that the rows of H =
 AM are independent
- Step 1: Whiten M
 - C is the (transpose of the) matrix of Eigen vectors of MM^T
 - -X = CM
- Step 2: Free up fourth moments on **X**
 - **B** is the (transpose of the) matrix of Eigenvectors of $\mathbf{X}.diag(\mathbf{X}^{T}\mathbf{X}).\mathbf{X}^{T}$
 - -A = BC

FOBI for ICA

- Goal: to derive a matrix A such that the rows of AM are independent
- Procedure:
 - 1. "Center" M
 - 2. Compute the autocorrelation matrix R_{MM} of M
 - 3. Compute whitening matrix \mathbf{C} via Eigen decomposition $\mathbf{R}_{MM} = \mathbf{E}\mathbf{S}\mathbf{E}^{T}$, $\mathbf{C} = \mathbf{S}^{-1/2}\mathbf{E}^{T}$
 - 4. Compute X = CM
 - 5. Compute the fourth moment matrix $\mathbf{D}' = E[||\mathbf{x}||^2 \mathbf{x} \mathbf{x}^T]$
 - 6. Diagonalize **D**' via Eigen decomposition
 - 7. $\mathbf{D}' = \mathbf{U} \Lambda \mathbf{U}^{\mathrm{T}}$
 - 8. Compute $\mathbf{A} = \mathbf{U}^{\mathrm{T}} \mathbf{C}$
- The fourth moment matrix of H=AM is diagonal
 - Note that the autocorrelation matrix of H will also be diagonal

ICA by diagonalizing moment matrices

- FOBI is not perfect
 - Only a subset of fourth order moments are considered
 - Diagonalizing the particular fourth-order moment matrix we have chosen is not guaranteed to diagonalize every other fourth-order moment matrix
- JADE: (Joint Approximate Diagonalization of Eigenmatrices), J.F. Cardoso
 - Jointly diagonalizes multiple fourth-order cumulant matrices

Enforcing Independence

• Specifically ensure that the components of ${\bf H}$ are independent

$$-H = AM$$

- Contrast function: A non-linear function that has a minimum value when the output components are independent
- Define and minimize a contrast function
 » F(AM)
- Contrast functions are often only approximations too..

A note on pre-whitening

- The mixed signal is usually "prewhitened" for all ICA methods
 - Normalize variance along all directions
 - Eliminate second-order dependence
- Eigen decomposition $\mathbf{M}\mathbf{M}^{\mathrm{T}} = \mathbf{E}\mathbf{S}\mathbf{E}^{\mathrm{T}}$
- $\mathbf{C} = \mathbf{S}^{-1/2} \mathbf{E}^{\mathrm{T}}$
- Can use first K columns of $\mathbf E$ only if only K independent sources are expected
 - In microphone array setup only K < M sources
- X = CM
 - $E[\mathbf{x}_i \mathbf{x}_j] = \delta_{ij}$ for centered signal

The contrast function

- Contrast function: A non-linear function that has a minimum value when the output components are independent
- An explicit contrast function

$$I(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - H(\overline{\mathbf{h}})$$

- With constraint : H = BX
 - -X is "whitened" M

Linear Functions

- h = Bx, $x = B^{-1}h$
 - Individual columns of the H and X matrices
 - $-\mathbf{x}$ is mixed signal, \mathbf{B} is the *unmixing* matrix

$$P_{\mathbf{h}}(\mathbf{h}) = P_{\mathbf{x}}(\mathbf{B}^{-1}\mathbf{h}) |\mathbf{B}|^{-1}$$

$$H(\mathbf{x}) = -\int P(\mathbf{x}) \log P(\mathbf{x}) d\mathbf{x}$$

$$\log P(\mathbf{h}) = \log P_{\mathbf{x}}(\mathbf{B}^{-1}\mathbf{h}) - \log(|\mathbf{B}|)$$

$$H(\mathbf{h}) = H(\mathbf{x}) + \log |\mathbf{B}|$$

The contrast function

$$I(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - H(\overline{\mathbf{h}})$$
$$I(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - H(\mathbf{x}) - \log |\mathbf{B}|$$

• Ignoring $H(\mathbf{x})$ (Const)

$$J(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - \log |\mathbf{B}|$$

• Minimize the above to obtain **B**

- Recall PCA
- M = WH, the columns of W must be orthogonal
- Leads to: $\min_{\mathbf{W}} ||\mathbf{M} \mathbf{W} \mathbf{W}^{T} \mathbf{M}||^{2} + \Lambda. \operatorname{trace}(\mathbf{W}^{T} \mathbf{W})$
 - Error minimization framework to estimate W
- Can we arrive at an error minimization framework for ICA
- Define an "Error" objective that represents independence

- Definition of Independence if x and y are independent:
 - $-\operatorname{E}[f(x)g(y)] = \operatorname{E}[f(x)]\operatorname{E}[g(y)]$
 - Must hold for every f() and g()!!

Define g(H) = g(BX) (component-wise function)

```
g(h_{11}) g(h_{21}) ... g(h_{12}) g(h_{22}) ... ...
```

• Define f(H) = f(BX)

```
f(h_{11}) f(h_{21}) ... f(h_{12}) f(h_{22}) ... ...
```

• $P = g(H) f(H)^T = g(BX) f(BX)^T$

$$\mathbf{P} = \begin{bmatrix} P_{11} & P_{21} & \dots \\ P_{12} & P_{22} \\ \vdots & \vdots \\ \vdots & \ddots & \vdots \\ P_{13} & P_{24} \end{bmatrix}$$

$$\mathbf{P}_{ij} = \mathbf{E}[\mathbf{g}(h_i)\mathbf{f}(h_j)]$$

This is a square matrix

Must ideally be

$$\mathbf{Q} = \begin{bmatrix} Q_{11} & Q_{21} & \cdots \\ Q_{12} & Q_{22} \\ \vdots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \end{bmatrix}$$

$$Q_{ij} = E[g(h_i)]E[f(h_j)] \quad i \neq j$$

$$Q_{ii} = E[g(h_i)f(h_i)]$$

• Error =
$$\|\mathbf{P} - \mathbf{Q}\|_{F}^{2}$$

Ideal value for Q

$$\mathbf{Q} = \begin{bmatrix} Q_{11} & Q_{21} & \cdots \\ Q_{12} & Q_{22} \\ \vdots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \end{bmatrix} Q_{ij}$$

$$Q_{ij} = E[g(h_i)]E[f(h_j)] \quad i \neq j$$

$$Q_{ii} = E[g(h_i)f(h_i)]$$

- If g() and f() are odd symmetric functions $E[g(h_i)] = 0$ for all i
 - Since = $E[h_i] = 0$ (**H** is centered)
- Q is a Diagonal Matrix!!!

Minimize Error

$$\mathbf{P} = \mathbf{g}(\mathbf{B}\mathbf{X})\mathbf{f}(\mathbf{B}\mathbf{X})^{\mathrm{T}}$$
$$\mathbf{Q} = Diagonal$$

$$error = \parallel \mathbf{P} - \mathbf{Q} \parallel_F^2$$

 Leads to trivial Widrow Hopf type iterative rule:

$$\mathbf{E} = Diag - \mathbf{g}(\mathbf{BX})\mathbf{f}(\mathbf{BX})^{\mathrm{T}}$$

$$\mathbf{B} = \mathbf{B} + \eta \mathbf{E} \mathbf{X}^{\mathrm{T}}$$

Update Rules

- Multiple solutions under different assumptions for g() and f()
- H = BX
- $\mathbf{B} = \mathbf{B} + \mathbf{\eta} \Delta \mathbf{B}$
- Jutten Herraut : Online update
 - $-\Delta B_{ij} = f(\mathbf{h}_i)g(\mathbf{h}_j)$; -- actually assumed a recursive neural network
- Bell Sejnowski

$$-\Delta \mathbf{B} = ([\mathbf{B}^{\mathrm{T}}]^{-1} - \mathbf{g}(\mathbf{H})\mathbf{X}^{\mathrm{T}})$$

Update Rules

- Multiple solutions under different assumptions for g() and f()
- H = BX
- $\mathbf{B} = \mathbf{B} + \mathbf{\eta} \Delta \mathbf{B}$
- Natural gradient -- f() = identity function - $\Delta \mathbf{B} = (\mathbf{I} - \mathbf{g}(\mathbf{H})\mathbf{H}^T) \mathbf{X}^T$
- Cichoki-Unbehaeven

$$-\Delta \mathbf{B} = (\mathbf{I} - \mathbf{g}(\mathbf{H})\mathbf{f}(\mathbf{H})^{\mathrm{T}}) \mathbf{X}^{\mathrm{T}}$$

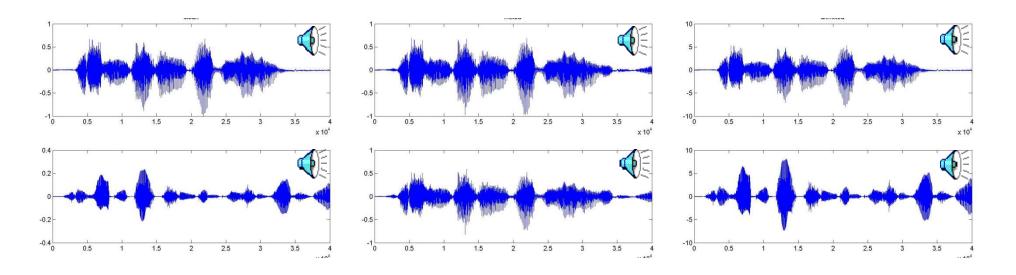
What are G() and F()

- Must be odd symmetric functions
- Multiple functions proposed

$$g(x) = \begin{cases} x + \tanh(x) & \text{x is super Gaussian} \\ x - \tanh(x) & \text{x is sub Gaussian} \end{cases}$$

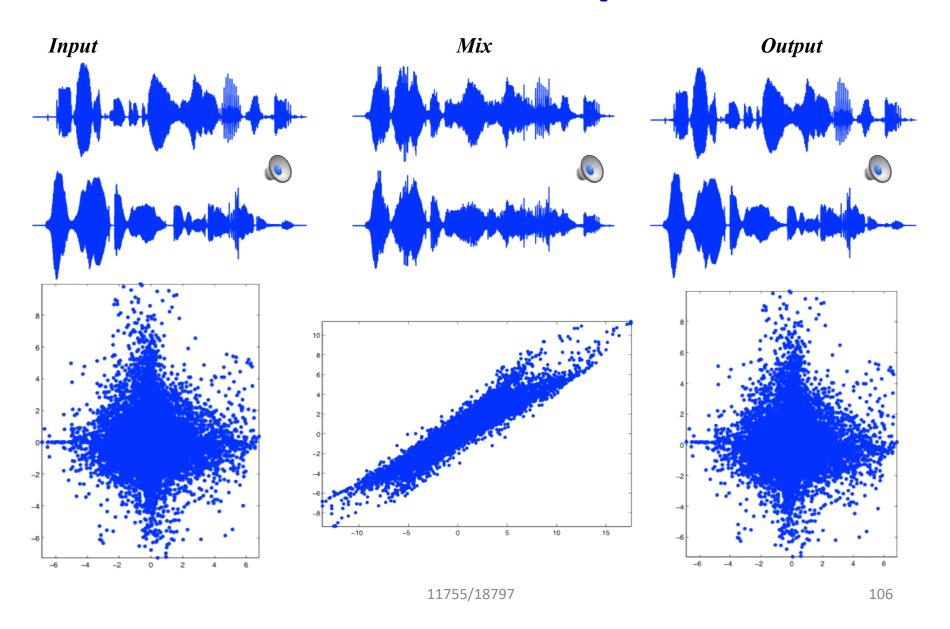
- Audio signals in general
 - $-\Delta \mathbf{B} = (\mathbf{I} \mathbf{H}\mathbf{H}^{\mathrm{T}} \mathbf{K} \mathbf{t} \mathbf{a} \mathbf{n} \mathbf{h} (\mathbf{H}) \mathbf{H}^{\mathrm{T}}) \mathbf{X}^{\mathrm{T}}$
- Or simply
 - $-\Delta \mathbf{B} = (\mathbf{I} \mathbf{K} \mathbf{tanh}(\mathbf{H}) \mathbf{H}^{\mathrm{T}}) \mathbf{X}^{\mathrm{T}}$

So how does it work?

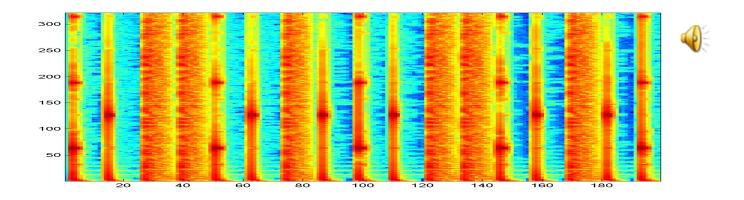


- Example with instantaneous mixture of two speakers
- Natural gradient update
- Works very well!

Another example!

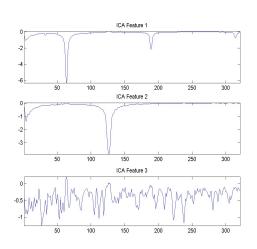


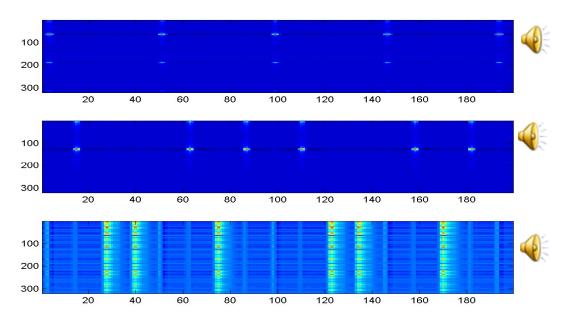
Another Example



• Three instruments...

The Notes

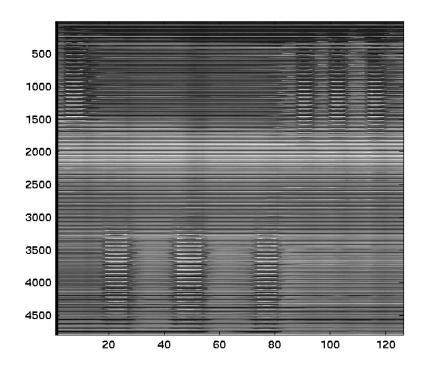




• Three instruments...

ICA for data exploration

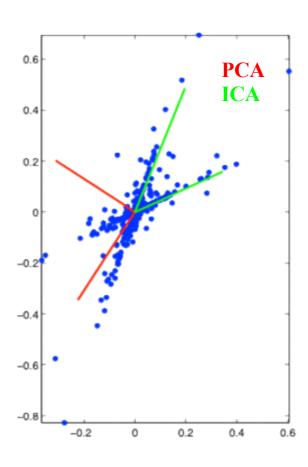
- The "bases" in PCA represent the "building blocks"
 - Ideally notes
- Very successfully used
- So can ICA be used to do the same?



ICA vs PCA bases

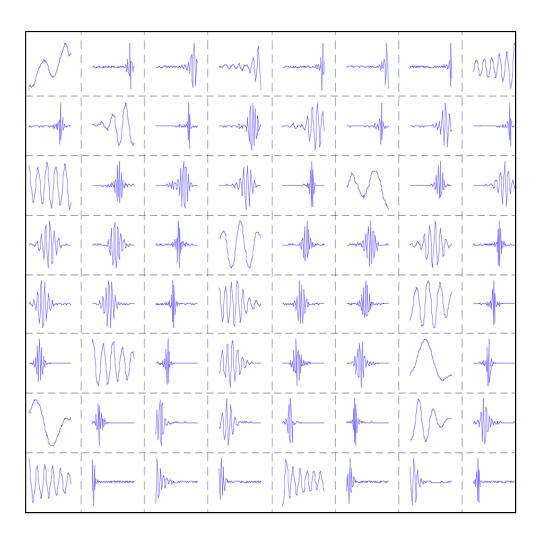
- Motivation for using ICA vs PCA
- PCA will indicate orthogonal directions of maximal variance
 - May not align with the data!
- ICA finds directions that are independent
 - More likely to "align" with the data

Non-Gaussian data



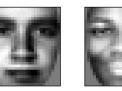
Finding useful transforms with ICA

- Audio preprocessing example
- Take a lot of audio snippets and concatenate them in a big matrix, do component analysis
- PCA results in the DCT bases
- ICA returns time/freq localized sinusoids which is a better way to analyze sounds
- Ditto for images
 - ICA returns localizes edge filters



Example case: ICA-faces vs. Eigenfaces

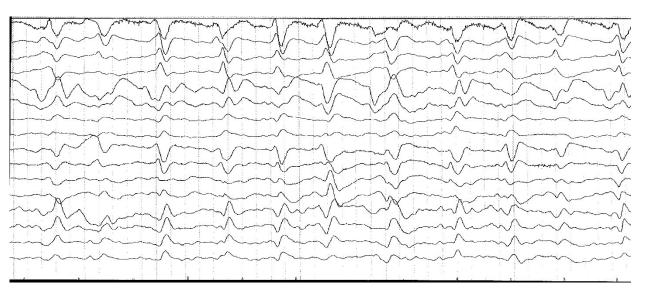
ICA-faces



Eigenfaces

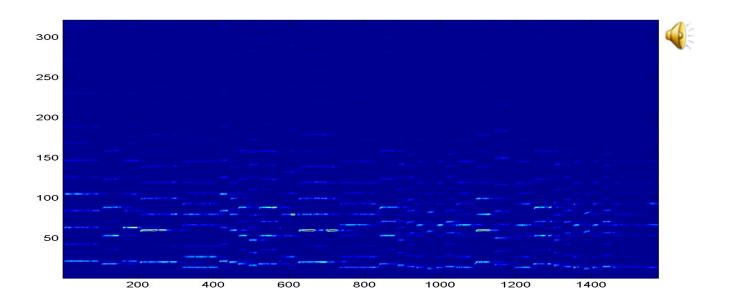
11755/18797 112

ICA for Signal Enhacement



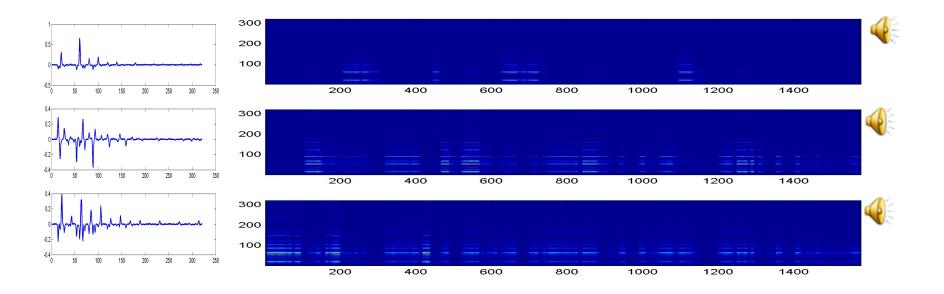
- Very commonly used to enhance EEG signals
- EEG signals are frequently corrupted by heartbeats and biorhythm signals
- ICA can be used to separate them out

So how does that work?



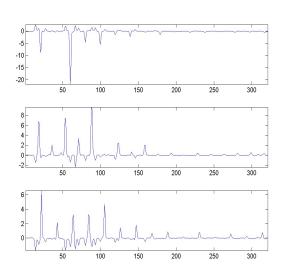
 There are 12 notes in the segment, hence we try to estimate 12 notes..

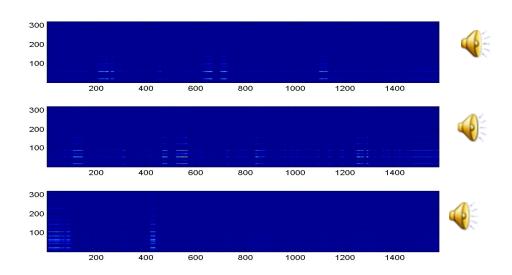
PCA solution



 There are 12 notes in the segment, hence we try to estimate 12 notes..

So how does this work: ICA solution





- Better...
 - But not much
- But the issues here?

ICA Issues

- No sense of order
 - Unlike PCA
- Get K independent directions, but does not have a notion of the "best" direction
 - So the sources can come in any order
 - Permutation invariance
- Does not have sense of scaling
 - Scaling the signal does not affect independence
- Outputs are scaled versions of desired signals in permuted order
 - In the best case
 - In worse case, output are not desired signals at all..

What else went wrong?

- Notes are not independent
 - Only one note plays at a time
 - If one note plays, other notes are not playing

Will deal with these later in the course...