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Revisiting the Covariance Matrix

• Assuming centered data

• C = SX XXT

• = X1X1
T + X2X2

T + ….

• Let us view C as a transform..
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Covariance matrix as a transform

• (X1X1
T + X2X2

T + … ) V = X1X1
TV + X2X2

TV + …
• Consider a 2-vector example

– In two dimensions for illustration
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Covariance Matrix as a transform

• Data comprises only 2 vectors..
• Major axis of component ellipses proportional to the 

squared length of the corresponding vector 
4
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Covariance Matrix as a transform

• Data comprises only 2 vectors..
• Major axis of component ellipses proportional to the 

squared length of the corresponding vector 
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Covariance Matrix as a transform

• More vectors..
• Major axis of component ellipses proportional to the 

squared length of the corresponding vector 
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Covariance Matrix as a transform

• More vectors..
• Major axis of component ellipses proportional to the 

squared length of the corresponding vector 
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Covariance Matrix as a transform

• And still more vectors..
• Major axis of component ellipses proportional to the 

squared length of the corresponding vector 
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Covariance Matrix as a transform

• The covariance matrix captures the directions of 
maximum variance

• What does it tell us about trends?
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Data Trends: Axis aligned 
covariance

• Axis aligned covariance
• At any X value, the average Y value of vectors is 0

– X cannot predict Y

• At any Y, the average X of vectors is 0
– Y cannot predict X

• The X and Y components are uncorrelated
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Data Trends: Tilted covariance

• Tilted covariance
• The average Y value of vectors at any X varies with X

– X predicts Y

• Average X varies with Y
• The X and Y components are correlated
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Decorrelation

• Shifting to using the major axes as the coordinate system
– L1 does not predict L2 and vice versa
– In this coordinate system the data are uncorrelated

• We have decorrelated the data by rotating the axes
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The statistical concept of 
correlatedness

• Two variables X and Y are correlated if If 
knowing X gives you an expected value of Y

• X and Y are uncorrelated if knowing X tells you 
nothing about the expected value of Y
– Although it could give you other information
– How? 
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Correlation vs. Causation

• The consumption of burgers has gone up 
steadily in the past decade

• In the same period, the penguin population of 
Antarctica has gone down
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Correlation, not Causation
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top-secret Antarctica division)



The concept of correlation

• Two variables are correlated if knowing the 
value of one gives you information about the 
expected value of the other
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A brief review of basic probability
• Uncorrelated:  Two random variables X and Y are 

uncorrelated iff:
– The average value of the product of the variables equals the 

product of their individual averages

• Setup:  Each draw produces one instance of X and one 
instance of Y 
– I.e one instance of (X,Y)

• E[XY] =  E[X]E[Y]

• The average value of Y is the same regardless of the value 
of X
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Correlated Variables

• Expected value of  Y given X:
– Find average of Y values of all samples at (or close) 

to the given X
– If this is a function of X, X and Y are correlated
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Uncorrelatedness

• Knowing X does not tell you what the average 
value of Y is
– And vice versa
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Uncorrelated Variables

• The average value of Y is the same regardless 
of the value of X and vice versa
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Uncorrelatedness in Random 
Variables

• Which of the above represent uncorrelated RVs?
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Benefits of uncorrelatedness..

• Uncorrelatedness of variables is generally considered 
desirable for modelling and analyses
– For Euclidean error based regression models and probabilistic 

models, uncorrelated variables can be separately handled
• Since the value of one doesn’t affect the average value of others
• Greatly reduces the number of model parameters

– Otherwise their interactions must be considered

• We will frequently transform correlated variables to make 
them uncorrelated  
– “Decorrelating” variables
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The notion of decorrelation

• So how does one transform the correlated 
variables (X,Y) to the uncorrelated (X’, Y’)
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What does “uncorrelated” mean

• If Y is a matrix of vectors, YYT = diagonal
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Decorrelation
• Let X be the matrix of correlated data vectors

– Each component of X informs us of the mean trend of 
other components

• Need a transform M such that if Y = MX such 
that the covariance of Y is diagonal
– YYT is the covariance if Y is zero mean 
– For uncorrelated components, YYT = Diagonal 

MXXTMT = Diagonal 

M.Cov(X).MT = Diagonal
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Decorrelation
• Easy solution:

– Eigen decomposition of Cov(X):  

Cov(X) = ELET

– EET = I

• Let M = ET

• MCov(X)MT = ETELETE = L = diagonal

• PCA: Y = ETX
– Projects the data onto the Eigen vectors of the covariance matrix
– Diagonalizes the covariance matrix
– “Decorrelates” the data
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PCA

• PCA: Y = ETX
– Projects the data onto the Eigen vectors of the covariance matrix

• Changes the coordinate system to the Eigen vectors of the covariance matrix

– Diagonalizes the covariance matrix
– “Decorrelates” the data
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Decorrelating the data

• Are there other decorrelating axes?
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Decorrelating the data

• Are there other decorrelating axes?
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Decorrelating the data

• Are there other decorrelating axes?
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Decorrelating the data

• Are there other decorrelating axes?
• What about if we don’t require them to be 

orthogonal?
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Decorrelating the data

• Are there other decorrelating axes?
• What about if we don’t require them to be 

orthogonal?
• What is special about these axes?
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The statistical concept of 
Independence

• Two variables X and Y are dependent if If 
knowing X gives you any information about Y

• X and Y are independent if knowing X tells you 
nothing at all of Y
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A brief review of basic probability
• Independence:  Two random variables X and Y

are independent iff:
– Their joint probability equals the product of their 

individual probabilities

• P(X,Y) =  P(X)P(Y)

• Independence implies uncorrelatedness
– The average value of X is the same regardless of the 

value of Y
• E[X|Y] = E[X]

– But uncorrelatedness does not imply independence
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A brief review of basic probability

• Independence:  Two random variables X and 
Y are independent iff:

• The average value of any function of X is the 
same regardless of the value of Y
– Or any function of Y

• E[f(X)g(Y)]  =  E[f(X)] E[g(Y)]   for all f(), g()
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Independence

• Which of the above represent independent RVs?

• Which represent uncorrelated RVs?
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A brief review of basic probability

• The expected value of an odd function of an 
RV is 0 if
– The RV is 0 mean

– The PDF is of the RV is symmetric around 0

• E[f(X)]  =  0 if f(X) is odd symmetric
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A note on bits..

• You flip a coin.  You must inform your friend in 
the next room about whether the outcome 
was heads or tails

• How many bits will you have to send?
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A note on bits..

• You roll a four-side dice.  You must inform your 
friend in the next room about the outcome

• How many bits will you have to send?
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A note on bits..

• You roll an eight-sided polyheldral dice.  You 
must inform your friend in the next room 
about the outcome

• How many bits will you have to send?
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A note on bits..

• You roll a six-sided dice.  You must inform your 
friend in the next room about the outcome

• How many bits will you have to send?
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Batching up 6-sided dice rolls

• Instead of sending 
individual rolls, you roll 
the dice twice
– And send the pair to your 

friend

• How many bits do you 
send per roll?
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Batching up 6-sided dice rolls

• Instead of sending individual 
rolls, you roll the dice twice
– And send the pair to your friend

• How many bits do you send per 
roll?

• 36 combinations: 6 bits per pair 
of numbers
– Still 3 bits per roll
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Batching up 6-sided dice rolls

• Instead of sending individual rolls, 
you roll the dice three times
– And send the triple to your friend

• How many bits do you send per 
roll?

• 216 combinations: 8 bits per triple
– Still 2.666 bits per roll
– Now we’re talking!

11755/18797 43

Digital 
channel

1 1 1

1 1 2

.. .. ..

1 6 3

.. ..

2 1 1

2 1 2

.. ..

6 6 6



Batching up 6-sided dice rolls
• Batching four rolls

– 1296 combinations

– 11 bits per outcome (4 rolls)

– 2.75 bit per roll

• Batching five rolls
– 7776 combinations

– 13 bits per outcome (5 rolls)

– 2.6 bits per roll
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Batching up 6-sided dice rolls

• Where will it end?
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Batching up 6-sided dice rolls

• Where will it end?

• bits per roll in the limit

– This is the absolute minimum – no batching will give you less 
than these many bits per outcome
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Can we do better?
• A four-sided die needs 2 bits

per roll
• But then you find not all

sides are equally likely

• P(1) = 0.5, P(2) = 0.25, P(3) 0.125, P(4) = 0.125
• Can you do better than 2 bits per outcome
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Can we do better?
• You have
P(1) = 0.5, P(2) = 0.25, P(3) 0.125, P(4) = 0.125

• You use:

– Note receiver is never in any doubt as to what 
they received

• What is the average number of bits per 
outcome
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Can we do better?
• You have
P(1) = 0.5, P(2) = 0.25, P(3) 0.125, P(4) = 0.125

• You use:

– Note receiver is never in any doubt as to what they 
received

• An outcome with probability is equivalent to 
obtaining one of equally likely choices

– Requires bits on average
49
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Entropy

• The average number of bits per symbol required to communicate a 
random variable over a digitial channel using an optimal code is

௜
௜

 

௜

௜ ௜

 

௜

• You can’t do better
– Any other code will require more bits

• This is the entropy of the random variable
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A brief review of basic info. theory

• Entropy:  The minimum average number of bits 
to transmit to convey a symbol

• Joint entropy:  The minimum average number of 
bits to convey sets (pairs here) of symbols
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A brief review of basic info. theory

• Conditional Entropy:  The minimum average 
number of bits to transmit to convey a symbol 
X, after symbol Y has already been conveyed
– Averaged over all values of X and Y
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A brief review of basic info. theory

• Conditional entropy of if is 
independent of 

• Joint entropy of and is the sum of the 
entropies of and if they are independent
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Onward..
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Projection: multiple notes
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 P = W (WTW)-1 WT

 Projected Spectrogram = PM

M = 

W = 



We’re actually computing a score
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 M ~  WH
 H = pinv(W)M

M = 

W = 

H = ? 



How about the other way?
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 M ~ WH              W = Mpinv(H)       U = WH

M = 
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H = 
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When both parameters are unknown

• Must estimate both H and W to best 
approximate M

• Ideally, must learn both the notes and their 
transcription!

W =? 

H = ? 

approx(M) = ? 
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A least squares solution

• Constraint: W is orthogonal
– WTW = I

• The solution: W are the  Eigen vectors of 
MMT

– PCA!!

• M ~ WH is an approximation
• Also, the rows of H are decorrelated

– Trivial to prove that HHT is diagonal

)(||||minarg, 2
, IWWHWMHW HW L T

F
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PCA

• The columns of W are the bases we have 
learned
– The linear “building blocks” that compose the 

music

• They represent “learned” notes

WHM

HWMHW HW



 2
, ||||minarg, F
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So how does that work?

• There are 12 notes in the segment, hence we 
try to estimate 12 notes..
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So how does that work?

• There are 12 notes in the segment, hence we 
try to estimate 12 notes..

• Results are not good
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PCA through decorrelation of 
notes

• Different constraint: Constraint H to be decorrelated
– HHT = D

• This will result exactly in PCA too

• Decorrelation of H Interpretation: What does this 
mean?
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What else can we look for?

• Assume: The “transcription” of one note does 
not depend on what else is playing
– Or, in a multi-instrument piece, instruments are 

playing independently of one another

• Not strictly true, but still..
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What else can we look for?

• Assume: The “transcription” of one note does not depend on what 
else is playing
– Or, in a multi-instrument piece, instruments are playing independently 

of one another

• Attempting to find statistically independent components of the 
mixed signal
– Independent Component Analysis
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Formulating it with Independence

• Impose statistical independence constraints 
on decomposition
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Changing problems for a bit

• Two people speak simultaneously
• Recorded by two microphones
• Each recorded signal is a mixture of both signals
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A Separation Problem

• M = WH
– M = “mixed” signal
– W = “notes”
– H = “transcription”

• Separation challenge: Given only M estimate H
• Identical to the problem of “finding notes”
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A Separation Problem

• Separation challenge: Given only M estimate H

• Identical to the problem of “finding notes”
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Imposing Statistical Constraints

• M = WH

• Given only M estimate H
• H = W-1M =   AM

• Only known constraint:  The rows of H are 
independent

• Estimate A such that the components of AM are 
statistically independent
– A is the unmixing matrix
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Statistical Independence

• M = WH      H = AM

11755/18797 71

Remember this form



An ugly algebraic solution

• We could decorrelate signals by algebraic manipulation
– We know uncorrelated signals have diagonal correlation 

matrix
– So we transformed the signal so that it has a diagonal 

correlation matrix (HHT)

• Can we do the same for independence
– Is there a linear transform that will enforce independence?
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An ugly algebraic solution

• We decorrelated signals by diagonalizing the 
covariance matrix

• Is there a simple matrix we could just similarly 
diagonalize to make them independent?

11755/18797 73



An ugly algebraic solution

• We decorrelated signals by diagonalizing the 
covariance matrix

• Is there a simple matrix we could just similarly 
diagonalize to make them independent?
– Not really, but there is a matrix we can diagonalize

to make fourth-order moments independent
• Just as decorrelation made second-order moments 

independent

11755/18797 74



Emulating Independence

• The rows of H are uncorrelated
– E[hihj] = E[hi]E[hj]
– hi and hj are the ith and jth components of any vector in H

• The fourth order moments are independent
– E[hihjhkhl] = E[hi]E[hj]E[hk]E[hl]
– E[hi

2hjhk] = E[hi
2]E[hj]E[hk]

– E[hi
2hj

2] = E[hi
2]E[hj

2]
– Etc.

11755/18797 75

H



Zero Mean
• Usual to assume zero mean processes

– Otherwise, some of the math doesn’t work well

• M = WH      H = AM

• If mean(M) = 0  =>  mean(H) = 0
– E[H] = A.E[M] = A0 = 0
– First step of ICA:  Set  the mean of M to 0

– mi are the columns of M
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Emulating Independence..

• Independence  Uncorrelatedness
• Find C such that CM is decorrelated

– PCA

• Find B such that B(CM) is independent
• A little more than PCA
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Decorrelating and Whitening

• Eigen decomposition MMT= ESET

• C = S-1/2ET

• X = CM

• Not merely decorrelated but whitened
– XXT = CMMTCT = S-1/2ET ESETES-1/2 = I

• C is the whitening matrix
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Uncorrelated != Independent

• Whitening merely ensures that the resulting signals are 
uncorrelated, i.e.

E[xixj] = 0 if i != j

• This does not ensure higher order moments are also 
decoupled, e.g. it does not ensure that

E[xi
2xj

2] = E[xi
2]E [xj

2]

• This is one of the signatures of independent RVs
• Lets explicitly decouple the fourth order moments
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Decorrelating

• X = CM

• XXT = I

• Will multiplying X by B re-correlate the components?
• Not if B is unitary

– BBT = BTB = I

• HHT = BXXTBT = BBT = I

• So we want to find a unitary matrix
– Since the rows of H are uncorrelated

• Because they are independent
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FOBI: Freeing Fourth Moments
• Find B such that the rows of H = BX are independent

• The fourth moments of H have the form:
E[hi hj hk hl] 

• If the  rows of H were independent
E[hi hj hk hl]  = E[hi] E[hj] E[hk] E[hl]

• Solution:  Compute B such that the fourth moments of H = BX 
are decoupled
– While ensuring that B is Unitary

• FOBI:  Fourth Order Blind Identification
8111755/18797



ICA: Freeing Fourth Moments

• Create a matrix of fourth moment terms that would be 
diagonal were the rows of H independent and diagonalize it

• A good candidate: the weighted correlation matrix of H
𝟐 ୘

௞
ଶ

௞ ௞
୘

 

௞

– h are the columns of H
– Assuming h is real,  else replace transposition with Hermitian

82

H = hk

Objective: Find a matrix B 
such that the  rows of  H=BX 
are statistically independent

Define a matrix D that would 
be diagonal if the rows of BX 
are independent

Compute B such that this 
matrix becomes diagonal



ICA: The D matrix
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ICA: The D matrix

• If the hi terms were independent and zero mean
• For i != j

௜ ௝ ௟
ଶ

 

௟

௜
ଷ

௝ ௜ ௝
ଷ

௜ ௝ ௟
ଷ

 

௟ஷ௜,௟ஷ௝
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– ௜ ௝ ௟
ଶ 

௟ ௜
ସ

௜
ଶ

௟
ଶ 

௟ஷ௜

• i.e., if hi were independent, D would be a diagonal matrix
– Let us diagonalize D 84
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Diagonalizing D
• Recall:  H = BX

– B is what we’re trying to learn to 
make H independent

– Assumption: B is unitary, i.e. BBT = I

• Note:    if H = BX ,  then each vector h = Bx

• The fourth moment matrix of H is
• D =  E[hT h h hT] =  E[xTBBTx BT x xTB]

=  E[xTx BT x xTB]
=  BT E[xTx xxT]B

= BT E[||x||2 xxT]B

85

Objective: Find a matrix B 
such that the  rows of  H=BX 
are statistically independent

Define a matrix D that would 
be diagonal if the rows of BX 
are independent

Compute B such that this 
matrix becomes diagonal



Diagonalizing D

• Objective: Estimate B such that the fourth 
moment of H = BX is diagonal

• Compose 

• Diagonalize Dx via Eigen decomposition
Dx = ULUT

• B = UT

– That’s it!!!!
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B frees the fourth moment
Dx = ULUT ;   B = UT

• U is a unitary matrix, i.e. UTU = UUT = I (identity)
• H = BX = UTX

• h = UTx

• The fourth moment matrix of H is
E[||h||2 h hT]  =  UT E[||x||2 xxT]U

= UT Dx U
= UT U L U T U = L

• The fourth moment matrix of H = UTX is Diagonal!!
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Overall Solution

• Objective:  Estimate A such that the rows of H = 
AM are independent

• Step 1:  Whiten M
– C is the (transpose of the) matrix of Eigen vectors of 

MMT

– X = CM

• Step 2:  Free up fourth moments on X
– B is the (transpose of the) matrix of Eigenvectors of  

X.diag(XTX).XT

– A = BC
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FOBI for ICA
• Goal: to derive a matrix A such that the rows of AM are 

independent
• Procedure:

1. “Center” M
2. Compute the autocorrelation matrix RMM of M
3. Compute whitening matrix C via Eigen decomposition

RMM = ESET,    C = S-1/2ET

4. Compute X = CM

5. Compute the fourth moment matrix D’ = E[||x||2xxT] 

6. Diagonalize D’ via Eigen decomposition
7. D’ = ULUT

8. Compute A = UTC

• The fourth moment matrix of H=AM is diagonal
– Note that the autocorrelation matrix of H will also be diagonal
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ICA by diagonalizing moment 
matrices

• FOBI is not perfect
– Only a subset of fourth order moments are considered

• Diagonalizing the particular fourth-order moment matrix we 
have chosen is not guaranteed to diagonalize every other 
fourth-order moment matrix

• JADE: (Joint Approximate Diagonalization of 
Eigenmatrices), J.F. Cardoso
– Jointly diagonalizes multiple fourth-order cumulant

matrices
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Enforcing Independence

• Specifically ensure that the components of H are 
independent
– H = AM

• Contrast function: A non-linear function that has a 
minimum value when the output components are 
independent

• Define and minimize a contrast function
» F(AM)

• Contrast functions are often only approximations too..
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A note on pre-whitening
• The mixed signal is usually “prewhitened” for all ICA methods

– Normalize variance along all directions
– Eliminate second-order dependence

• Eigen decomposition MMT = ESET

• C = S-1/2ET

• Can use first K columns of E only if only K independent sources are 
expected
– In microphone array setup – only K < M sources

• X =  CM
– E[xixj] = dij for centered signal
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The contrast function

• Contrast function: A non-linear function that 
has a minimum value when the output 
components are independent

• An explicit contrast function

• With constraint :  H = BX
– X is “whitened” M
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Linear Functions

• h = Bx,    x = B-1h 
– Individual columns of the H and X matrices
– x is mixed signal, B is the unmixing matrix
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The contrast function

• Ignoring H(x) (Const)

• Minimize  the above to obtain B
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An alternate approach

• Recall PCA

• M = WH,  the columns of W must be orthogonal

• Leads to:  minW||M –WWTM||2 + L.trace(WTW)

– Error minimization framework to estimate W

• Can we arrive at an error minimization framework 
for ICA

• Define an “Error” objective that represents 
independence
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An alternate approach

• Definition of Independence – if x and y are 
independent:   
– E[f(x)g(y)] = E[f(x)]E[g(y)] 

– Must hold for every f() and g()!!
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An alternate approach
• Define g(H) = g(BX)  (component-wise 

function)

• Define f(H) = f(BX)
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An alternate approach
• P = g(H) f(H)T = g(BX) f(BX)T

This is a square matrix
• Must ideally be

• Error = ||P-Q||F2

11755/18797 99

P11

P12
.
.
.

P21

P22
.
.
.

. . .

. . .

P =

Q11

Q12
.
.
.

Q21

Q22
.
.
.

Q =

jihfEhgEQ jiij     )]([)]([

)]()([ iiii hfhgEQ 

Pij = E[g(hi)f(hj)]



An alternate approach

• Ideal value for Q

• If g() and f() are odd symmetric functions 
E[g(hi)] = 0 for all i
– Since = E[hi] = 0   (H is centered)

• Q is a Diagonal Matrix!!!
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An alternate approach
• Minimize Error

• Leads to trivial Widrow Hopf type iterative 
rule:
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Update Rules
• Multiple solutions under different 

assumptions for g() and f()
• H = BX

• B = B +  DB

• Jutten Herraut : Online update
– DBij = f(hi)g(hj);  -- actually assumed a recursive 

neural network

• Bell Sejnowski
– DB = ([BT]-1 – g(H)XT)

11755/18797 102



Update Rules

• Multiple solutions under different 
assumptions for g() and f()

• H = BX

• B = B +  DB

• Natural gradient  -- f() = identity function
– DB = (I – g(H)HT) XT

• Cichoki-Unbehaeven
– DB = (I – g(H)f(H)T) XT
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What are G() and F()

• Must be odd symmetric functions
• Multiple functions proposed

• Audio signals in general
– DB = (I – HHT-Ktanh(H)HT) XT

• Or simply
– DB = (I –Ktanh(H)HT) XT
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So how does it work?

• Example with instantaneous mixture of two 
speakers

• Natural gradient update
• Works very well!
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Another example!
Input Mix Output
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Another Example

• Three instruments..

11755/18797 107



The Notes

• Three instruments..
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ICA for data exploration

• The “bases” in PCA 
represent the “building 
blocks”
– Ideally notes

• Very successfully used
• So can ICA be used to 

do the same?
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ICA vs PCA bases
Non-Gaussian data

ICA
PCA

 Motivation for using ICA vs PCA

 PCA will indicate orthogonal directions 
of maximal variance

 May not align with the data!

 ICA finds directions that are 
independent

 More likely to “align” with the data 
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Finding useful transforms with ICA
• Audio preprocessing 

example
• Take a lot of audio snippets 

and concatenate them in a 
big matrix, do component 
analysis

• PCA results in the DCT bases
• ICA returns time/freq 

localized sinusoids which is a 
better way to analyze sounds

• Ditto for images
– ICA returns localizes edge 

filters
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Example case: ICA-faces vs. Eigenfaces

ICA-faces Eigenfaces
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ICA for Signal Enhncement

• Very commonly used to enhance EEG signals
• EEG signals are frequently corrupted by 

heartbeats and biorhythm signals
• ICA can be used to separate them out
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So how does that work?

• There are 12 notes in the segment, hence we 
try to estimate 12 notes..
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PCA solution

• There are 12 notes in the segment, hence we 
try to estimate 12 notes..
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So how does this work: ICA solution

• Better..
– But not much

• But the issues here?
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ICA Issues
• No sense of order

– Unlike PCA

• Get K independent directions, but does not have a notion 
of the “best” direction
– So the sources can come in any order
– Permutation invariance

• Does not have sense of scaling
– Scaling the signal does not affect independence

• Outputs are scaled versions of desired signals in permuted 
order
– In the best case
– In worse case, output are not desired signals at all..
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What else went wrong?

• Notes are not independent
– Only one note plays at a time

– If one note plays, other notes are not playing

• Will deal with these later in the course..
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