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Music Understanding

Music Understanding: Recognition of Pattern
and Structure in Music

Surface structure:
Pitch — Loudness
Harmony — Notes
Deep structure:
Phrase relationships
Score following
Emotion
Expressive performance
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Accompaniment Video

Video online at https://
WWW.CS.cmu.edu/~rbd/videos.html
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Computer Accompaniment
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Vocal Accompaniment

Lorin Grubb’ s Ph.D. (CMU CSD)

Machine learning used to:
Learns what kinds of tempo variation are likely
Characterize sensors
When is a notated G sensed as a G#?

Machine learning
necessary for good
performance
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és Vocal Accompaniment
\Wigg Video online at https://

- WWw.cs.cmu.edu/~rbd/videos.html
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How It Works
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Listening to Jazz Styles

Pointilistic
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Video online at https://
www.cs.cmu.edu/~rbd/videos.html#research
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Onset Detection
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Beat Detection

Tempo Detection

Computer Accompaniment

Music Transcription
Query-By-Humming

Automatic Intelligent Audio Editor

© 2015 Roger B. Dannenberg
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Intelligent Audio Editor
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This excerpt is included in the audio examples:
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Before: After:
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Some Approaches

Features and Thresholds
High Frequency
Phase Change
Neural Networks
Hierarchical Models
HMM
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OR\ A Bootstrap Method for

Training an Accurate
Audio Segmenter

Ning Hu and
Roger B. Dannenberg
Carnegie Mellon University



Introduction

Audio segmentation is one of the major topics
iIn MIR research:

HMM approach (Raphael, 1999)
Neural Network approach (Marolt, et al., 2002)
Support Vector Machine (Lu, et al. 2001)

Hierarchical Model (Kapanci and Pfeffer,
2004)

In many cases, collecting training data is
time-consuming and expensive.
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Detour - Audio Alignment
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Audio Alignment Concepts

S e ———
"Score"
Midi File, Note List, not necessarily "real”
notation

Similarity Matrix

Chroma Vectors
Distance/Similarity Function
Research on accurate alignment
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\ Chromagram Representation

XU XD

el - Spectrum

WO TnE oW e 11 11 Linear frequency to log frequency:
\W "Semi vector": one bin per semitone

Projection to pitch classes: "Chroma vector"
L I I nll CitC+Cy+C +Cs+Ce+Cy,
@ CH+C#t,+Cly+CH, +Cls+CHo+CHy, ete,
- I I .J "Distance Function": Euclidean, Cosine, efc.
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Segmentation and Alignment

Segmentation, audio alignment, and score-following
are related

Rely on acoustic features

Precise alignment to symbolic score provides
segmentation data

We use alignment data to train a segmenter

Alignment avoids gross errors in segmentation

Segmenter learns fine-grain features that improve
precision beyond initial alignment

— high quality segmentation and alignment

19

© 2015 Roger B. Dannenberg Oct 2015



Motivation

We need very accurate segmentation to
extract trumpet envelopes (attacks ~30ms)

(for research on capturing synthesis models)«
Alignment is based on chroma (100 — 250ms)

Orio & Schwarz (2001) also use DTW and
short-term features (5.8 ms windows), but
alignment (an O(N?2) algorithm) is slow.

Our system performs alignment 25x faster.

Our small non-DTW analysis windows can
use different features.

20
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Audio-to-(MIDI)-Score Alignment

Chromagram features from Audio
Synthetic chromagram features for MIDI
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Acoustic Features for

Segmentation — 5.8 ms window
P~ — ——

Log energy (dB)
FO with SNDAN’ s (Beauchamp) MQ analysis

Relative strengths of first 3 harmonics:
Amplitude;/ Amplitude,,,,

Relative frequency deviations, first 3
harmonics:

(f—i XF0) /f,
Zero-crossing rate
Derivatives of all of the above
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Neural Network
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Input
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Gaussians

On alignment
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Bootstrap learning process

Multiply neural net output by PDF

-or each neighborhood around a segment
poundary, find the peak — “adjusted onset”

Retrain the neural network:
adjusted onsets are 1, other points are 0O

Estimated Note Onsets from Alignment

-------- Detected Note Onsets by Segmenter w/ Bootstrap

PDF

Acoustic

Waveform
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Results
e — == = =

¢ Model Miss Rate | Spurious Rate | Av. Error | STD
= ;
T gzgi']'gr‘?ter 8.8% 10.3% 21ms |29 ms
-
E Segmenter 0.0% 0.3% 10 ms 14 ms
0N w/ Bootstrap

Model Miss Rate | Spurious Rate | Av. Error | STD
3 gz;i']i;‘r‘?ter 15.0% 25.0% 35ms |48 ms
LL
@ Segmenter | ;g 4.0% 8ms |12 ms

w/ Bootstrap
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Sound Examples

Input

Output — segmenter was trained on similar
data using the bootstrap method. This input
was segmented without using any score
information.
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Conclusions

Supervised learning often wins over hand-crafted
systems

Segmentation training data is expensive, so
supervised training is difficult

Alignment provides strong hints, but not accurate
enough for training

Bootstrapping allows segmenter to generate its own
training data

Dramatic improvements in accuracy, even when
tested without alignment “hints”
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Summary

Computer Accompaniment
Offline Score Alignment
Onset Detection
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