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String Matching

• A simple problem: Given two strings of 
characters, how do we find the distance 
between them?

• Solution: Align them as best as we can, then 
measure the “cost” of aligning them

• Cost includes the costs of “insertion”, 
“Deletion”, “Substitution” and “Match”
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DDC CB

• Match 1: 
– Insertions: B, B, C, C, D, D
– Deletions: A, A, A, A
– Matches: B, B, A, C, B, D, D, A
– Total cost: 2I(C)+ 2I(B) + 2I(D) 

+ 4D(A) + 3M(B) + M(A) + 
M(C) + 2M(D)

• Match 2:
– Insertions: B, B, D, D
– Deletions: A, A
– Substitutions: (A,C), (A,C)
– Matches: B, B, A, C, B, D, D, A
– Total cost: 2I(B)+ 2I(D) + 

2D(A)  + 2S(A,C) + 3M(B) + 
2M(A) + M(C) + 2M(D)

DA B B A A A C B A D

B B

B

A C B D D

A

A

DD

C C

B

DA B B A A A C B A D

B B

B

A C B D D

A

A

Cost of match



2 March 2009 SR4D

• The cost of matching a data string to a model string is the 
minimum distortion that must be imposed on the model 
string to convert it to the data string

• How does one compute the minimum distortion?
– Exponentially large number of possibilities for matching two 

strings
– Exhaustive evaluation of the cost of all possibilities to identify the 

minimum cost match (and the corresponding cost) is infeasible and 
unnecessary

– The minimum cost can be efficiently computed using a dynamic 
programming algorithm that incrementally compares substrings of 
increasing length

• Dynamic Time Warping

Computing the minimum cost
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• Each match represents the cost of matching a data 
substring consisting of only the first symbol, to a 
model substring consisting of all symbols until the 
matched symbol
– E.g. C11 is the cost of matching the data substring “B” to 

the model substring “A”
– C12 is the cost of matching the data substring “B” to the 

model substring “A B”
– C13 is the cost of matching “B” to “A B B”

• The cost of matching the substrings is the lowest 
cost of matching these substrings in this manner
– Since there  is only one way of obtaining these matches

C11

C13

C12

C14

C10 
DDC C C B D D A

Alignment graph
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• Match data substring “B B” to all model 
substrings

• The cost of matching data substring “B B” to any 
model substring X is given as
– Minimum over Y (match(“B” , Y) + match(“B”, X -Y))
– Y is any model substring that is shorter than or equal to 

model substring X
– X – Y is the string of symbols that must be added to Y to 

make it equal to X

C23 = minimumY [match(“B” , Y) + match(“B”, “ABB” -Y)]

DDC C C B D D A

Alignment graph
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• Match data substring “B B” to all model 
substrings

• The cost of matching data substring “B B” to any 
model substring X is given as
– Minimum over Y (match(“B” , Y) + match(“B”, X -Y))
– Y is any model substring that is shorter than or equal to 

model substring X
– X – Y is the string of symbols that must be added to Y to 

make it equal to X

C10 C20 = C10 + I(B)

C23 = C12 + M(B)

DDC C C B D D A

Alignment graph
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• We repeat this procedure for matches of 
the substring “B B B”
– “B B B” is a combination of the substring 

“B B” and the symbol B

– The cost of matching “B B B” to any string can be 
expressed as the sum of the cost of matching “B B” and 
that of matching “B”

– The minimum cost of matching “B B B” to any model 
substring W is the minimum of the sum of the lowest 
cost of matching “B B” to some substring W1 or W, and 
that of matching the remaining B to the rest of W

• The lowest cost of matching “B B” to the various 
substrings has already been computed

C10 C20

C21
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C23

C24

DDC C C B D D A

Alignment graph
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• The entire procedure can be recursively applied to 
increasingly longer data substrings, until we have a the 
minimum cost of matching the entire data string to the 
model string
– In the process we also obtain the best manner of 

matching the two strings
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• The alignment process can be viewed as graph 
search

• N.B: Only in this formulation
– Conventional string matching uses the “Edit Distance”
– String matching with the edit distance is not strictly 

representable as search over a static graph
• Node score depends on the specific incoming edge

Aligning two strings
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• This is just one way of creating the graph
– The graph is asymmetric

• Every symbol along the horizontal axis must be visited
• Symbols on the vertical axis may be skipped

– The resultant distance is not symmetric
• Distance(string1, string2) is not necessarily equal to Distance(string2, 

string1)

• The graph may be constructed in other ways
– Symmetric graphs, where symbols on the horizontal axis may also 

be skipped

• Additional constraints may be incorporated into the graph
– E.g. We may never delete more than one symbol in a sequence
– Useful for the classification problems

String matching
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• The method is almost identical to what is done for 
string matching

• The crucial additional information is the notion of 
a distance between vectors

• The cost of substituting a vector A by a vector B is 
the distance between A and B
– Distance could be computed using various metrics. E.g. 

• Euclidean distance is sqrt(Σi|Ai – Bi|2)
• Manhattan metric or the L1 norm:  Σi|Ai – Bi|
• Weighted Minkowski norms: (Σiwi|Ai – Bi|n)1/n

Matching vector sequences



2 March 2009 SR4D

DTW and speech recognition

• Simple speech recognition (e.g. we want to 
recognize names for voice dialling)

• Store one or more examples of the speaker 
uttering each of the words as templates

• Given a new word, match the new recording 
against each of the templates

• Select the template for which the final DTW 
matching cost is lowest
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Speech Recognition
• An “utterance” is actually converted to a sequence of 

cepstrals vector prior to recognition
– Both templates and new utterances

• Computing cepstra: 
– Window the signal into segments of 25ms, where adjacent segments

overlap by 15ms
– For each segment compute a magnitude spectrum
– Compute the logarithm of the magnitude spectrum
– Compute the Discrete Cosine Transform of the log magnitude 

spectrum
– Retain only the first 13 components of the DCT

• Each utterance is finally converted to a sequence of 13-
dimensional vectors

• Optionally augmented by delta and double delta features
– Potentially, with other processing such as mean and variance normalization

• Returning to our discussion...
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DTW with two sequences of vectors
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The template (model) is matched against the data string to be recognized
Select the template with the lowest cost of match 
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Using Multiple Templates
• A person may utter a word (e.g. ZERO) in 

multiple ways
– In fact, one never utters the word twice in exactly the 

same way

• Store multiple templates for each word
– Record 5 instances of “ZERO”, five of “ONE” etc.

• Recognition: For each word, select the template 
that is closest to the test utterance. Finally, select 
the word for which the distance from the closest 
template was minimum
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DTW with multiple models

DATA

MODELS

Evaluate all templates for a word against the data
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DTW with multiple models

DATA

MODELS

Evaluate all templates for a word against the data
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DTW with multiple models

DATA

MODELS

Evaluate all templates for a word against the data
Select the best fitting template. The corresponding cost is the cost of the match
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The Problem with Multiple 
Templates

• Finding the closest template to a test utterance 
requires evaluation of all test templates
– This is expensive

• Additionally, the set of templates may not cover 
all possible variants of the words
– We would like some mechanism whereby we can 

generalize from the templates to something that 
represents even variants that have not hitherto been 
seen

• We do this by averaging the templates
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DTW with multiple models
MODELS

T1 T2 T3

T4

T4

T3

T4
T3

Align the templates
themselves against

one another



2 March 2009 SR4D

DTW with multiple models
MODELS

T1 T2 T3 T4

T4
T3

T2

T1

Average Model

Align the templates
themselves against

one another

Average the aligned templates
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DTW with one model

M
O

D
EL

DATA

A SIMPLER METHOD:  Segment the templates themselves
and average within segments
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DTW with one model

A simple trick: segment the “model” into regions of equal length
Average each segment into a single point
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DTW with one model
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mj is the model vector for the jth segment
Nj is the number of training vectors in the jth segment
v(i) is the ith training vector 
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DTW with one model

The averaged template is matched against the data string to be recognized
Select the word whose averaed template has the lowest cost of match 
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DTW with multiple models
MODELS

DATA

Segment all templates
Average each region into a single point
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DTW with multiple models
MODELS

DATA

Segment all templates
Average each region into a single point
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mj is the model vector for the jth segment

Nk,j is the number of training vectors in the
jth segment of the kth training sequence

vk(i) is the ith vector of the kth training
sequence
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segmentk(j) is the jth segment of the
kth training sequence

DTW with multiple models
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DTW with multiple models

Segment all templates
Average each region into a single point

To get a simple average model, which is used for recognition
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• The inherent variation between vectors is 
different for the different segments
– E.g. the variation in the colors of the beads 

in the top segment is greater than that in the 
bottom segment

• Ideally we should account for the 
differences in variation in the segments
– E.g, a vector in a test sequence may actually 

be more matched to the central segment, 
which permits greater variation, although it 
is closer, in a Euclidean sense, to the mean 
of the lower segment, which permits lesser 
variation

DTW with multiple models

T1 T2 T3 T4

MODELS
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mj is the model vector for the jth segment

Cj is the covariance of the vectors in the jth

segmentT1 T2 T3 T4

MODELS

We can define the covariance for each
segment using the standard formula
for covariance

DTW with multiple models
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• The distance function must be modified to account for the 
covariance

• Mahalanobis distance:
– Normalizes contribution of all dimensions of the data

DTW with multiple models
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– v is a data vector, mj is the mean of a segment, Cj is the 
covariance matrix for the segment

• Negative Gaussian log likelihood:
– Assumes a Gaussian distribution for the segment and computes 

the probability of the vector on this distribution
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• Simple uniform segmentation of training instances is not 
the most effective method of grouping vectors in the 
training sequences

• A better segmentation strategy is to segment the training 
sequences such that the vectors within any segment are 
most alike
– The total distance of vectors within each segment from the model

vector for that segment  is minimum
– For a global optimum, the total distance of all vectors from the

model for their respective segments must be minimum

• This segmentation must be estimated

• The segmental K-means procedure is an iterative 
procedure to estimate the optimal segmentation

Segmental K-means



2 March 2009 SR4D

T1 T2 T3 T4

Alignment for training a model from multiple vector 
sequences

MODELS
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Initialize by uniform segmentation
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T4T1 T2 T3

Alignment for training a model from multiple vector 
sequences

Initialize by uniform segmentation
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T4T1 T2 T3

Alignment for training a model from multiple vector 
sequences

Initialize by uniform segmentation
Align each template to the averaged model to get new segmentations



2 March 2009 SR4D

T1 T2 T3

T4OLD

T4NEW

Alignment for training a model from multiple vector 
sequences
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T1 T2
T3NEW

T4NEW

Alignment for training a model from multiple vector 
sequences
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T1

T3NEW

T2NEW

Alignment for training a model from multiple vector 
sequences

T4NEW
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T3NEW

T2NEW

T1NEW

Alignment for training a model from multiple vector 
sequences

T4NEW
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T4NEWT1NEW

T2NEW

T3NEW

Alignment for training a model from multiple vector 
sequences

Initialize by uniform segmentation
Align each template to the averaged model to get new segmentations

Recompute the average model from new segmentations
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T4NEW

T1NEW

T2NEW

T3NEW

Alignment for training a model from multiple vector 
sequences
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T4NEWT1NEW

T2NEW

T3NEW

Alignment for training a model from multiple vector 
sequences

T1 T2 T3 T4
The procedure can be continued until convergence

Convergence is achieved when the total best-alignment error for
all training sequences does not change significantly with further
refinement of the model
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• The variance formula just shown will result in very poor estimates for 
the covariance if the number of training vectors in a segment is small

– If a segment has only 1 vector, the variance is 0!

• In practice, when the number of training vectors is small, the variance 
estimate is improved by sharing or smoothing

– Example of sharing: all segments have the same grand covariance:

DTW with multiple models
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• Nk is the number of vectors in the kth model sequence

– Example of smoothing: interpolate between segment specific covariance and 
the grand covariance :
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• A typical value of α is 0.5

• There are also other methods of estimating covariances more robustly
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Shifted terminology

STATE

mj , Cj

SEGMENT

TRAINING DATA

TRAINING DATA VECTOR

SEGMENT BOUNDARY

MODEL PARAMETERS
or
PARAMETER VECTORS

MODEL
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Transition structures in models

DATA

M
O

D
EL

The converged models can be used to score / align data sequences

Model structure in incomplete.
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• Some segments are naturally longer than others
– E.g., in the example the initial (yellow) segments are 

usually longer than the second (pink) segments

• This difference in segment lengths is different 
from the variation within a segment
– Segments with small variance could still persist very 

long for a particular sound or word

• The DTW algorithm must account for these 
natural differences in typical segment length

• This can be done by having a state specific 
insertion penalty
– States that have lower insertion penalties persist 

longer and result in longer segments

DTW with multiple models

T4NEWT1NEW

T2NEW

T3NEW
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Transition structures in models

DATA

State specific insertion penalties are represented as 
self transition arcs for model vectors. Horizontal edges within the
trellis will incur a penalty associated with the corresponding arc.
Every transition within the model can have its own penalty.

I1

T11

T22

T33

T12

T23

T34
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Transition structures in models

DATA

State specific insertion penalties are represented as 
self transition arcs for model vectors. Horizontal edges within the
trellis will incur a penalty associated with the corresponding arc.
Every transition within the model can have its own penalty or score

T11

T22

T33

T12

T23

T34

T01

T11 T11

T12

T23

T33 T33
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Transition structures in models

DATA

This structure also allows the inclusion of arcs that permit the
central state to be skipped (deleted)
Other transitions such as returning to the first state from the
last state can be permitted by inclusion of appropriate arcs

T11

T22

T33

T12

T23

T34

T13
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• Transition behavior can be expressed with probabilities
– For segments that are typically long, if a data vector is within that segment, 

the probability that the next vector will also be within it is high

– If the ith segment is typically followed by the jth segment, but also rarely 
by the kth segment, then, if a data vector is within the ith segment, the 
probability that the next data vector lies in the jth segment is greater than 
the probability that it lies in the kth segment

• A good choice for transition scores are the negative logarithm of 
the probabilities of the appropriate transitions
– Tii is the negative of the log of the probability that if the current data vector 

belongs to the ith state, the next data vector will also belong to the ith state

– Tij is the negative of the log of the probability that if the current data vector 
belongs to the ith state, the next data vector belongs to the jth state

– More probable transitions are less penalized. Impossible transitions are 
infinitely penalized

What should the transition scores be
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Modified segmental K-means AKA Viterbi training

T4NEWT1NEW

T2NEW

T3NEW

• Nk,i is the number of vectors in the ith segment 
(state) of the kth training sequence

• Nk,i,j is the number of vectors in the ith segment 
(state) of the kth training sequence that were 
followed by vectors from the jth segment (state)

– E.g., No. of vectors in the 1st (yellow) state = 20
No of vectors from the 1st state that were
followed by vectors from the 1st state = 16
P11 = 16/20 = 0.8;   T11 = -log(0.8)

)log(              
,

,,
ijij

k ik

k jik
ij PT

N
N

P −==
∑
∑

• Transition scores can be easily computed by a 
simple extension of the segmental K-means 
algorithm

• Probabilities can be counted by simple counting
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Modified segmental K-means AKA Viterbi training

T4NEWT1NEW

T2NEW

T3NEW
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• A special score is the penalty associated with 
starting at a particular state

• In our examples we always begin at the first state
• Enforcing this is equivalent to setting T01 = 0,

T0j = infinity for j != 1
• It is sometimes useful to permit entry directly into 

later states
– i.e. permit deletion of initial states

• The score for direct entry into any state can be 
computed as

• N is the total number of training sequences
• N0j is the number of training sequences for which 

the first data vector was in the jth state 

N = 4
N01 = 4
N02 = 0
N03 = 0
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• Some structural information 
must be prespecified

• The number of states must be 
prespecified
– Various heuristics  exist to 

determine this number 
automatically

– Otherwise, the number must 
be manually specified

• Allowable start states and 
transitions must be presecified
– E.g. we may specify 

beforehand that the first 
vector may be in states 1 or 
2, but not 3

– We may specify possible 
transitions between states

Modified segmental K-means AKA Viterbi training

3 model vectors
Permitted initial states: 1
Permitted transitions: shown by arrows 

4 model vectors
Permitted initial states: 1, 2
Permitted transitions: shown by arrows 

Some example specifications
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• Initializing state parameters
– Segment all training instances uniformly, learn means and variances

• Initializing T0j scores
– Count the number of permitted initial states

• Let this number be M0
– Set all permitted initial states to be equiprobable:  Pj = 1/M0
– T0j = -log(Pj) = log(M0)

• Initializing Tij scores
– For every state i,  count the number of states that are permitted to follow

• i.e. the number of arcs out of the state, in the specification
• Let this number be Mi

– Set all permitted transitions to be equiprobable:  Pij = 1/Mi
– Initialize Tij = -log(Pij) = log(Mi)

• This is only one technique for initialization
– You may choose to initialize parameters differently, e.g. by random 

values

Modified segmental K-means AKA Viterbi training
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• The entire segmental K-means algorithm:
1. Initialize all parameters

• State means and covariances
• Transition scores
• Entry transition scores

2. Segment all training sequences
3. Reestimate parameters from segmented 

training sequences
4. If not converged, return to 2

Modified segmental K-means AKA Viterbi training



2 March 2009 SR4D

Alignment for training a model from multiple vector 
sequences

T1 T2 T3 T4
The procedure can be continued until convergence

Convergence is achieved when the total best-alignment error for
all training sequences does not change significantly with further
refinement of the model

Initialize Iterate
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• This structure is a generic representation of a statistical 
model for processes that generate time series

• The “segments” in the time series are referred to as states
– The process passes through these states to generate time series

• The entire structure may be viewed as one generalization 
of the DTW models we have discussed thus far

• Strict left-to-right Bakis topology

DTW and Hidden Markov Models (HMMs)

T11 T22 T33 

T12 T23 

T13 
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• A Hidden Markov Model consists of two components
– A state/transition backbone that specifies how many states there

are, and how they can follow one another
– A set of probability distributions, one for each state, which 

specifies the distribution of all vectors in that state

Hidden Markov Models

• This can be factored into two separate probabilistic entities
– A probabilistic Markov chain with states and transitions
– A set of data probability distributions, associated with the states

Markov chain

Data distributions
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Analogy between DTW vs. HMM
• DTW:  Transition penalty HMM: Transition probability

– The transition penalty of the DTW template is analogous to the 
negative log of the transition probability for the HMM

• DTW: Symbol matching cost HMM: State probability
– The matching cost of DTW is analogous to the negative log of the 

probability of the observation computed from the probability 
distribution associated with the state

• DTW: minimizing cost HMM: Maximizing probability
• The string matching algorithm for DTW actually finds the 

sequence of states in the HMM that matches the observation
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• Thus far we have been  talking about Costs, 
that are in fact Negative Log Probabilities

• Henceforth we will talk in terms of 
Probabilities and not Log probabilities
– A matter of convenience
– This does not change the basic procedures –

what used to be summation will now become 
multiplication

• Ie. We multiply the probabilities along the best path, 
rather than to add them

A change of notation
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QUESTIONS?

• ??


