
2 March 2009 SR4D

Speech Recognition for Dummies

Bhiksha Raj

2 March 2009 SR4D

String Matching

• A simple problem: Given two strings of
characters, how do we find the distance
between them?

• Solution: Align them as best as we can, then
measure the “cost” of aligning them

• Cost includes the costs of “insertion”,
“Deletion”, “Substitution” and “Match”

2 March 2009 SR4D

DDC CB

• Match 1:
– Insertions: B, B, C, C, D, D
– Deletions: A, A, A, A
– Matches: B, B, A, C, B, D, D, A
– Total cost: 2I(C)+ 2I(B) + 2I(D)

+ 4D(A) + 3M(B) + M(A) +
M(C) + 2M(D)

• Match 2:
– Insertions: B, B, D, D
– Deletions: A, A
– Substitutions: (A,C), (A,C)
– Matches: B, B, A, C, B, D, D, A
– Total cost: 2I(B)+ 2I(D) +

2D(A) + 2S(A,C) + 3M(B) +
2M(A) + M(C) + 2M(D)

DA B B A A A C B A D

B B

B

A C B D D

A

A

DD

C C

B

DA B B A A A C B A D

B B

B

A C B D D

A

A

Cost of match

2 March 2009 SR4D

• The cost of matching a data string to a model string is the
minimum distortion that must be imposed on the model
string to convert it to the data string

• How does one compute the minimum distortion?
– Exponentially large number of possibilities for matching two

strings
– Exhaustive evaluation of the cost of all possibilities to identify the

minimum cost match (and the corresponding cost) is infeasible and
unnecessary

– The minimum cost can be efficiently computed using a dynamic
programming algorithm that incrementally compares substrings of
increasing length

• Dynamic Time Warping

Computing the minimum cost

2 March 2009 SR4D

D

A
B
B
A
A
A
C
B
A
D

A

B B B B A

• Each match represents the cost of matching a data
substring consisting of only the first symbol, to a
model substring consisting of all symbols until the
matched symbol
– E.g. C11 is the cost of matching the data substring “B” to

the model substring “A”
– C12 is the cost of matching the data substring “B” to the

model substring “A B”
– C13 is the cost of matching “B” to “A B B”

• The cost of matching the substrings is the lowest
cost of matching these substrings in this manner
– Since there is only one way of obtaining these matches

C11

C13

C12

C14

C10
DDC C C B D D A

Alignment graph

2 March 2009 SR4D

D

A
B
B
A
A
A
C
B
A
D

A

B B B B A

• Match data substring “B B” to all model
substrings

• The cost of matching data substring “B B” to any
model substring X is given as
– Minimum over Y (match(“B” , Y) + match(“B”, X -Y))
– Y is any model substring that is shorter than or equal to

model substring X
– X – Y is the string of symbols that must be added to Y to

make it equal to X

C23 = minimumY [match(“B” , Y) + match(“B”, “ABB” -Y)]

DDC C C B D D A

Alignment graph

2 March 2009 SR4D

D

A
B
B
A
A
A
C
B
A
D

A

B B B B A

• Match data substring “B B” to all model
substrings

• The cost of matching data substring “B B” to any
model substring X is given as
– Minimum over Y (match(“B” , Y) + match(“B”, X -Y))
– Y is any model substring that is shorter than or equal to

model substring X
– X – Y is the string of symbols that must be added to Y to

make it equal to X

C10 C20 = C10 + I(B)

C23 = C12 + M(B)

DDC C C B D D A

Alignment graph

2 March 2009 SR4D

D

A
B
B
A
A
A
C
B
A
D

A

B B B B A
C11

C13

C12

C14

• We repeat this procedure for matches of
the substring “B B B”
– “B B B” is a combination of the substring

“B B” and the symbol B

– The cost of matching “B B B” to any string can be
expressed as the sum of the cost of matching “B B” and
that of matching “B”

– The minimum cost of matching “B B B” to any model
substring W is the minimum of the sum of the lowest
cost of matching “B B” to some substring W1 or W, and
that of matching the remaining B to the rest of W

• The lowest cost of matching “B B” to the various
substrings has already been computed

C10 C20

C21

C22

C23

C24

DDC C C B D D A

Alignment graph

2 March 2009 SR4D

• The entire procedure can be recursively applied to
increasingly longer data substrings, until we have a the
minimum cost of matching the entire data string to the
model string
– In the process we also obtain the best manner of

matching the two strings

D

A
B
B
A
A
A
C
B
A
D

A

B B B B A
C11

C13

C12

C14

C10 C20

C21

C22

C23

C24

DDC C C B D D A

Alignment graph

2 March 2009 SR4D

• The alignment process can be viewed as graph
search

• N.B: Only in this formulation
– Conventional string matching uses the “Edit Distance”
– String matching with the edit distance is not strictly

representable as search over a static graph
• Node score depends on the specific incoming edge

Aligning two strings

2 March 2009 SR4D 2

A

B
B
A

A
A

A

B
A

C

D
D

DD ADC DBAB CCB BB

Alignment graph

2 March 2009 SR4D 2

A

B
B
A

A
A

A

B
A

C

D
D

DD ADC DBAB CCB BB

Alignment graph

2 March 2009 SR4D

• This is just one way of creating the graph
– The graph is asymmetric

• Every symbol along the horizontal axis must be visited
• Symbols on the vertical axis may be skipped

– The resultant distance is not symmetric
• Distance(string1, string2) is not necessarily equal to Distance(string2,

string1)

• The graph may be constructed in other ways
– Symmetric graphs, where symbols on the horizontal axis may also

be skipped

• Additional constraints may be incorporated into the graph
– E.g. We may never delete more than one symbol in a sequence
– Useful for the classification problems

String matching

2 March 2009 SR4D

• The method is almost identical to what is done for
string matching

• The crucial additional information is the notion of
a distance between vectors

• The cost of substituting a vector A by a vector B is
the distance between A and B
– Distance could be computed using various metrics. E.g.

• Euclidean distance is sqrt(Σi|Ai – Bi|2)
• Manhattan metric or the L1 norm: Σi|Ai – Bi|
• Weighted Minkowski norms: (Σiwi|Ai – Bi|n)1/n

Matching vector sequences

2 March 2009 SR4D

DTW and speech recognition

• Simple speech recognition (e.g. we want to
recognize names for voice dialling)

• Store one or more examples of the speaker
uttering each of the words as templates

• Given a new word, match the new recording
against each of the templates

• Select the template for which the final DTW
matching cost is lowest

2 March 2009 SR4D

Speech Recognition
• An “utterance” is actually converted to a sequence of

cepstrals vector prior to recognition
– Both templates and new utterances

• Computing cepstra:
– Window the signal into segments of 25ms, where adjacent segments

overlap by 15ms
– For each segment compute a magnitude spectrum
– Compute the logarithm of the magnitude spectrum
– Compute the Discrete Cosine Transform of the log magnitude

spectrum
– Retain only the first 13 components of the DCT

• Each utterance is finally converted to a sequence of 13-
dimensional vectors

• Optionally augmented by delta and double delta features
– Potentially, with other processing such as mean and variance normalization

• Returning to our discussion...

2 March 2009 SR4D

DTW with two sequences of vectors

M
O

D
EL

DATA

The template (model) is matched against the data string to be recognized
Select the template with the lowest cost of match

2 March 2009 SR4D

Using Multiple Templates
• A person may utter a word (e.g. ZERO) in

multiple ways
– In fact, one never utters the word twice in exactly the

same way

• Store multiple templates for each word
– Record 5 instances of “ZERO”, five of “ONE” etc.

• Recognition: For each word, select the template
that is closest to the test utterance. Finally, select
the word for which the distance from the closest
template was minimum

2 March 2009 SR4D

DTW with multiple models

DATA

MODELS

Evaluate all templates for a word against the data

2 March 2009 SR4D

DTW with multiple models

DATA

MODELS

Evaluate all templates for a word against the data

2 March 2009 SR4D

DTW with multiple models

DATA

MODELS

Evaluate all templates for a word against the data
Select the best fitting template. The corresponding cost is the cost of the match

2 March 2009 SR4D

The Problem with Multiple
Templates

• Finding the closest template to a test utterance
requires evaluation of all test templates
– This is expensive

• Additionally, the set of templates may not cover
all possible variants of the words
– We would like some mechanism whereby we can

generalize from the templates to something that
represents even variants that have not hitherto been
seen

• We do this by averaging the templates

2 March 2009 SR4D

DTW with multiple models
MODELS

T1 T2 T3

T4

T4

T3

T4
T3

Align the templates
themselves against

one another

2 March 2009 SR4D

DTW with multiple models
MODELS

T1 T2 T3 T4

T4
T3

T2

T1

Average Model

Align the templates
themselves against

one another

Average the aligned templates

2 March 2009 SR4D

DTW with one model

M
O

D
EL

DATA

A SIMPLER METHOD: Segment the templates themselves
and average within segments

2 March 2009 SR4D

M
O

D
EL

DATA

DTW with one model

A simple trick: segment the “model” into regions of equal length
Average each segment into a single point

2 March 2009 SR4D

DTW with one model

∑
∈

=
segmenti

ivector
N

VectorModel)(1

∑
∈

=
segmenti

ivector
N

VectorModel)(1

∑
∈

=
segmenti

ivector
N

VectorModel)(1

∑
∈

=
)(
)(1

jsegmentij
j iv

N
m

mj is the model vector for the jth segment
Nj is the number of training vectors in the jth segment
v(i) is the ith training vector

2 March 2009 SR4D

M
O

D
EL

DATA

DTW with one model

The averaged template is matched against the data string to be recognized
Select the word whose averaed template has the lowest cost of match

2 March 2009 SR4D

DTW with multiple models
MODELS

DATA

Segment all templates
Average each region into a single point

2 March 2009 SR4D

DTW with multiple models
MODELS

DATA

Segment all templates
Average each region into a single point

2 March 2009 SR4D

∑∑ ∈

=
)(,

)(1
jsegmenti

k
k jk

j
k

iv
N

m

mj is the model vector for the jth segment

Nk,j is the number of training vectors in the
jth segment of the kth training sequence

vk(i) is the ith vector of the kth training
sequence

T1 T2 T3 T4

MODELS

A
VG

. M
O

D
EL

segmentk(j) is the jth segment of the
kth training sequence

DTW with multiple models

2 March 2009 SR4D

A
VG

. M
O

D
EL

DATA

DTW with multiple models

Segment all templates
Average each region into a single point

To get a simple average model, which is used for recognition

2 March 2009 SR4D

• The inherent variation between vectors is
different for the different segments
– E.g. the variation in the colors of the beads

in the top segment is greater than that in the
bottom segment

• Ideally we should account for the
differences in variation in the segments
– E.g, a vector in a test sequence may actually

be more matched to the central segment,
which permits greater variation, although it
is closer, in a Euclidean sense, to the mean
of the lower segment, which permits lesser
variation

DTW with multiple models

T1 T2 T3 T4

MODELS

2 March 2009 SR4D

()()Tjk
jsegmenti

jk
k jk

j mivmiv
N

C
k

−−= ∑∑ ∈

)()(1
)(,

mj is the model vector for the jth segment

Cj is the covariance of the vectors in the jth

segmentT1 T2 T3 T4

MODELS

We can define the covariance for each
segment using the standard formula
for covariance

DTW with multiple models

2 March 2009 SR4D

• The distance function must be modified to account for the
covariance

• Mahalanobis distance:
– Normalizes contribution of all dimensions of the data

DTW with multiple models

)()(),(1
jj

T
jj mvCmvmvd −−= −

– v is a data vector, mj is the mean of a segment, Cj is the
covariance matrix for the segment

• Negative Gaussian log likelihood:
– Assumes a Gaussian distribution for the segment and computes

the probability of the vector on this distribution

()
)()(5.0 1

2

1),;(jj
T

j mvCmv

j
djj e

C
CmvGaussian −−− −

=
π

()jjj CmvGaussianmvd ,;(log),(−=

()())()(5.02log5.0 1
jj

T
jj

d mvCmvC −−+= −π

2 March 2009 SR4D

• Simple uniform segmentation of training instances is not
the most effective method of grouping vectors in the
training sequences

• A better segmentation strategy is to segment the training
sequences such that the vectors within any segment are
most alike
– The total distance of vectors within each segment from the model

vector for that segment is minimum
– For a global optimum, the total distance of all vectors from the

model for their respective segments must be minimum

• This segmentation must be estimated

• The segmental K-means procedure is an iterative
procedure to estimate the optimal segmentation

Segmental K-means

2 March 2009 SR4D

T1 T2 T3 T4

Alignment for training a model from multiple vector
sequences

MODELS

A
VG

. M
O

D
EL

Initialize by uniform segmentation

2 March 2009 SR4D

T4T1 T2 T3

Alignment for training a model from multiple vector
sequences

Initialize by uniform segmentation

2 March 2009 SR4D

T4T1 T2 T3

Alignment for training a model from multiple vector
sequences

Initialize by uniform segmentation
Align each template to the averaged model to get new segmentations

2 March 2009 SR4D

T1 T2 T3

T4OLD

T4NEW

Alignment for training a model from multiple vector
sequences

2 March 2009 SR4D

T1 T2
T3NEW

T4NEW

Alignment for training a model from multiple vector
sequences

2 March 2009 SR4D

T1

T3NEW

T2NEW

Alignment for training a model from multiple vector
sequences

T4NEW

2 March 2009 SR4D

T3NEW

T2NEW

T1NEW

Alignment for training a model from multiple vector
sequences

T4NEW

2 March 2009 SR4D

T4NEWT1NEW

T2NEW

T3NEW

Alignment for training a model from multiple vector
sequences

Initialize by uniform segmentation
Align each template to the averaged model to get new segmentations

Recompute the average model from new segmentations

2 March 2009 SR4D

T4NEW

T1NEW

T2NEW

T3NEW

Alignment for training a model from multiple vector
sequences

2 March 2009 SR4D

T4NEWT1NEW

T2NEW

T3NEW

Alignment for training a model from multiple vector
sequences

T1 T2 T3 T4
The procedure can be continued until convergence

Convergence is achieved when the total best-alignment error for
all training sequences does not change significantly with further
refinement of the model

2 March 2009 SR4D

• The variance formula just shown will result in very poor estimates for
the covariance if the number of training vectors in a segment is small

– If a segment has only 1 vector, the variance is 0!

• In practice, when the number of training vectors is small, the variance
estimate is improved by sharing or smoothing

– Example of sharing: all segments have the same grand covariance:

DTW with multiple models

()()∑ ∑∑
−−=

∈k

T
jk

jsegmenti
jk

k k
j mivmiv

N
C

k

)()(1
)(

• Nk is the number of vectors in the kth model sequence

– Example of smoothing: interpolate between segment specific covariance and
the grand covariance :

()() ()()Tjk
jsegmenti

jk
k jkk

T
jk

jsegmenti
jk

k k
j mivmiv

N
mivmiv

N
C

kk

−−+−−−= ∑∑∑ ∑∑ ∈∈

)()(1)()(1)1(
)(,)(

αα

• A typical value of α is 0.5

• There are also other methods of estimating covariances more robustly

2 March 2009 SR4D

Shifted terminology

STATE

mj , Cj

SEGMENT

TRAINING DATA

TRAINING DATA VECTOR

SEGMENT BOUNDARY

MODEL PARAMETERS
or
PARAMETER VECTORS

MODEL

2 March 2009 SR4D

Transition structures in models

DATA

M
O

D
EL

The converged models can be used to score / align data sequences

Model structure in incomplete.

2 March 2009 SR4D

• Some segments are naturally longer than others
– E.g., in the example the initial (yellow) segments are

usually longer than the second (pink) segments

• This difference in segment lengths is different
from the variation within a segment
– Segments with small variance could still persist very

long for a particular sound or word

• The DTW algorithm must account for these
natural differences in typical segment length

• This can be done by having a state specific
insertion penalty
– States that have lower insertion penalties persist

longer and result in longer segments

DTW with multiple models

T4NEWT1NEW

T2NEW

T3NEW

2 March 2009 SR4D

Transition structures in models

DATA

State specific insertion penalties are represented as
self transition arcs for model vectors. Horizontal edges within the
trellis will incur a penalty associated with the corresponding arc.
Every transition within the model can have its own penalty.

I1

T11

T22

T33

T12

T23

T34

2 March 2009 SR4D

Transition structures in models

DATA

State specific insertion penalties are represented as
self transition arcs for model vectors. Horizontal edges within the
trellis will incur a penalty associated with the corresponding arc.
Every transition within the model can have its own penalty or score

T11

T22

T33

T12

T23

T34

T01

T11 T11

T12

T23

T33 T33

2 March 2009 SR4D

Transition structures in models

DATA

This structure also allows the inclusion of arcs that permit the
central state to be skipped (deleted)
Other transitions such as returning to the first state from the
last state can be permitted by inclusion of appropriate arcs

T11

T22

T33

T12

T23

T34

T13

2 March 2009 SR4D

• Transition behavior can be expressed with probabilities
– For segments that are typically long, if a data vector is within that segment,

the probability that the next vector will also be within it is high

– If the ith segment is typically followed by the jth segment, but also rarely
by the kth segment, then, if a data vector is within the ith segment, the
probability that the next data vector lies in the jth segment is greater than
the probability that it lies in the kth segment

• A good choice for transition scores are the negative logarithm of
the probabilities of the appropriate transitions
– Tii is the negative of the log of the probability that if the current data vector

belongs to the ith state, the next data vector will also belong to the ith state

– Tij is the negative of the log of the probability that if the current data vector
belongs to the ith state, the next data vector belongs to the jth state

– More probable transitions are less penalized. Impossible transitions are
infinitely penalized

What should the transition scores be

2 March 2009 SR4D

Modified segmental K-means AKA Viterbi training

T4NEWT1NEW

T2NEW

T3NEW

• Nk,i is the number of vectors in the ith segment
(state) of the kth training sequence

• Nk,i,j is the number of vectors in the ith segment
(state) of the kth training sequence that were
followed by vectors from the jth segment (state)

– E.g., No. of vectors in the 1st (yellow) state = 20
No of vectors from the 1st state that were
followed by vectors from the 1st state = 16
P11 = 16/20 = 0.8; T11 = -log(0.8)

)log(
,

,,
ijij

k ik

k jik
ij PT

N
N

P −==
∑
∑

• Transition scores can be easily computed by a
simple extension of the segmental K-means
algorithm

• Probabilities can be counted by simple counting

2 March 2009 SR4D

Modified segmental K-means AKA Viterbi training

T4NEWT1NEW

T2NEW

T3NEW

)log(0
0

jj
j

j PT
N

N
P −==

• A special score is the penalty associated with
starting at a particular state

• In our examples we always begin at the first state
• Enforcing this is equivalent to setting T01 = 0,

T0j = infinity for j != 1
• It is sometimes useful to permit entry directly into

later states
– i.e. permit deletion of initial states

• The score for direct entry into any state can be
computed as

• N is the total number of training sequences
• N0j is the number of training sequences for which

the first data vector was in the jth state

N = 4
N01 = 4
N02 = 0
N03 = 0

2 March 2009 SR4D

• Some structural information
must be prespecified

• The number of states must be
prespecified
– Various heuristics exist to

determine this number
automatically

– Otherwise, the number must
be manually specified

• Allowable start states and
transitions must be presecified
– E.g. we may specify

beforehand that the first
vector may be in states 1 or
2, but not 3

– We may specify possible
transitions between states

Modified segmental K-means AKA Viterbi training

3 model vectors
Permitted initial states: 1
Permitted transitions: shown by arrows

4 model vectors
Permitted initial states: 1, 2
Permitted transitions: shown by arrows

Some example specifications

2 March 2009 SR4D

• Initializing state parameters
– Segment all training instances uniformly, learn means and variances

• Initializing T0j scores
– Count the number of permitted initial states

• Let this number be M0
– Set all permitted initial states to be equiprobable: Pj = 1/M0
– T0j = -log(Pj) = log(M0)

• Initializing Tij scores
– For every state i, count the number of states that are permitted to follow

• i.e. the number of arcs out of the state, in the specification
• Let this number be Mi

– Set all permitted transitions to be equiprobable: Pij = 1/Mi
– Initialize Tij = -log(Pij) = log(Mi)

• This is only one technique for initialization
– You may choose to initialize parameters differently, e.g. by random

values

Modified segmental K-means AKA Viterbi training

2 March 2009 SR4D

• The entire segmental K-means algorithm:
1. Initialize all parameters

• State means and covariances
• Transition scores
• Entry transition scores

2. Segment all training sequences
3. Reestimate parameters from segmented

training sequences
4. If not converged, return to 2

Modified segmental K-means AKA Viterbi training

2 March 2009 SR4D

Alignment for training a model from multiple vector
sequences

T1 T2 T3 T4
The procedure can be continued until convergence

Convergence is achieved when the total best-alignment error for
all training sequences does not change significantly with further
refinement of the model

Initialize Iterate

2 March 2009 SR4D

• This structure is a generic representation of a statistical
model for processes that generate time series

• The “segments” in the time series are referred to as states
– The process passes through these states to generate time series

• The entire structure may be viewed as one generalization
of the DTW models we have discussed thus far

• Strict left-to-right Bakis topology

DTW and Hidden Markov Models (HMMs)

T11 T22 T33

T12 T23

T13

2 March 2009 SR4D

• A Hidden Markov Model consists of two components
– A state/transition backbone that specifies how many states there

are, and how they can follow one another
– A set of probability distributions, one for each state, which

specifies the distribution of all vectors in that state

Hidden Markov Models

• This can be factored into two separate probabilistic entities
– A probabilistic Markov chain with states and transitions
– A set of data probability distributions, associated with the states

Markov chain

Data distributions

2 March 2009 SR4D

Analogy between DTW vs. HMM
• DTW: Transition penalty HMM: Transition probability

– The transition penalty of the DTW template is analogous to the
negative log of the transition probability for the HMM

• DTW: Symbol matching cost HMM: State probability
– The matching cost of DTW is analogous to the negative log of the

probability of the observation computed from the probability
distribution associated with the state

• DTW: minimizing cost HMM: Maximizing probability
• The string matching algorithm for DTW actually finds the

sequence of states in the HMM that matches the observation

2 March 2009 SR4D

• Thus far we have been talking about Costs,
that are in fact Negative Log Probabilities

• Henceforth we will talk in terms of
Probabilities and not Log probabilities
– A matter of convenience
– This does not change the basic procedures –

what used to be summation will now become
multiplication

• Ie. We multiply the probabilities along the best path,
rather than to add them

A change of notation

2 March 2009 SR4D

QUESTIONS?

• ??

